Time Saving in Measurement of NMR and EPR Relaxation Times

David C. Look
Wright State University - Main Campus, david.look@wright.edu

Donald R. Locker

Follow this and additional works at: https://corescholar.libraries.wright.edu/physics

Part of the Physics Commons

Repository Citation
https://corescholar.libraries.wright.edu/physics/607

This Article is brought to you for free and open access by the Physics at CORE Scholar. It has been accepted for inclusion in Physics Faculty Publications by an authorized administrator of CORE Scholar. For more information, please contact library-corescholar@wright.edu.
Time Saving in Measurement of NMR and EPR Relaxation Times*

D. C. LOOK
University of Dayton, Dayton, Ohio 45409

AND

D. R. LOCKER
Aerospace Research Laboratories, Wright-Patterson Air Force Base, Dayton, Ohio 45433

(Received 22 July 1969)

By producing a train of absorption or dispersion signals (continuous-wave magnetic resonance) or free induction decays (pulsed magnetic resonance) it is possible to save time in spin-lattice relaxation measurements due to the fact that it is not necessary to wait for equilibrium magnetization before initiating the train. The relaxation time may be calculated from the train according to a simple rapidly converging iteration.

INTRODUCTION

A periodic train of magnetic field passages through resonance, or a periodic train of rf pulses at resonance produce, respectively, a corresponding train of absorption (or dispersion) signals or free induction decays, illustrated in Fig. 1; these may be analyzed to yield the spin-lattice relaxation time T_1. Methods and apparatus for accomplishing such experiments have been discussed for cw NMR, cw EPR, and pulsed NMR. It is the purpose of this paper to show that it is not necessary to wait for equilibrium of the spin system before initiating such a train of signals, and the resulting time saving may be considerable if T_1 is large.

I. THEORY

Following Look and Locker, let τ be the time between successive signals in the train and let M_n^+ and M_n^- be, respectively, the magnetization along the magnetic field before and after the nth passage (or pulse). Furthermore, define the fraction of saturation, X, due to a passage (or pulse) by

$$M_n^+ = M_n^-(1-X), \quad 0 \leq X \leq 2,$$

where $X=2$ would correspond to an adiabatic reversal or 180° pulse. Assuming that between successive passages M relaxes exponentially we have

$$M_{n+1}^- = M_e^- (1-e^{-\tau/T_1}) + M_n^- e^{-\tau/T_1}$$

$$= M_e^- (1-e^{-\tau/T_1}) + M_n^- (1-X) e^{-\tau/T_1},$$

where M_e^- is the equilibrium magnetization. Designating the first signal in the train as M_0 and letting $u=e^{-\tau/T_1}$ and $y=(1-X)$, we can relate M_n to M_0 by induction, according to Eq. (2),

$$M_1^- = M_e^- (1-u) + M_0^- yu$$

$$M_2^- = M_e^- (1-u) [1+yu] + M_0^- y^2 u^2$$

$$\vdots$$

$$M_n^- = M_e^- (1-u) [1+yu+y^2 u^2 \cdots y^{n-1} u^{n-1}]$$

$$+ M_0^- y^n u^n. \quad (3)$$

The observed signal M_n will be proportional to M_n^- so we can drop the superscripts and rewrite Eq. (3) as

$$M_n = M_e (1-u) \sum_{q=0}^{n-1} y^q u^q + M_0 y^n u^n$$

$$= M_e (1-u) \frac{1-y^n u^n}{1-yu} + M_0 y^n u^n. \quad (4)$$

After many passages, the magnetization reaches a constant value M_∞ given by Eq. (4) as

$$M_\infty = M_e (1-u)/(1-yu) \quad (5)$$

and, thus,

$$M_\infty - M_0 = (M_\infty - M_0) [(1-X)e^{-\tau/T_1}]^n. \quad (6)$$

Taking logarithms of both sides gives an equation of the form \(Y = I + nS \) where \(I \) and \(S \) are, respectively, the intercept and slope of a \(Y \) vs \(n \) plot. Here

\[
Y = \ln(M_n - M_\infty) \quad (8a)
\]

or, using Eq. (5) to solve for \(X = 1 - y \),

\[
(M_n - M_\infty) = (M_0 - M_\infty) \left[e^{-\tau/T_1} \left(1 + \frac{M_\infty - M_n}{M_\infty} \right) \right].
\] (7)

From this, we use Eq. (5)

\[
e^{-\tau/T_1} = \frac{1 - (1-e^S)\frac{M_n}{M_\infty}}{1 - e^S}.
\] (12)

which can be solved for \(T_1 \) using the experimental parameters, \(\tau \) and \(T \), those given by the data, \(M_\infty \) and \(M_0 \), and the calculated slope \(S \) of an In\((M_n - M_\infty)\) vs \(n \) plot.

II. Iteration

It is generally more convenient to solve Eq. (12) iteratively if \(T \geq T_1 \) since the second term in square brackets is clearly a corrective term which is small when \(T \) is large, making \(M_0 \) close to \(M_\infty \). Thus, defining the successive approximations to \(T_1 \) as \(T_1^{(1)}, T_1^{(2)}, T_1^{(3)}, \ldots \), we cyclically solve

\[
e^{-\tau/T_1^{(n+1)}} = 1 - (1-e^S)\frac{M_n}{M_0}\left[1 - C^{(n)} \right], \quad n \geq 0
\] (13a)

\[
C^{(n)} = (1-e^S)e^{\tau/T_1^{(n)}}/(1-e^S), \quad n \geq 1
\] (13b)

letting \(C^{(0)} = 0 \). The first few terms are

\[
e^{-\tau/T_1^{(1)}} = 1 - (1-e^S)\frac{M_n}{M_0}
\] (14a)

\[
C^{(1)} = (1-e^S)e^{\tau/T_1^{(1)}}/(1-e^S)
\] (14b)

\[
e^{-\tau/T_1^{(2)}} = 1 - (1-e^S)\frac{M_n}{M_0}(1-C^{(1)})
\] (14c)

The convergence is generally quite rapid. In one example \((^{19}\text{F in CaF}_2)\), which the authors chose at random, the parameters were \(T_1 = 0.125 \text{ sec} \) (true \(T_1 \)), \(e^S = 0.688 \), \(\tau = 0.025 \text{ sec} \), \(M_\infty/M_0 = 0.675 \), and \(T = 0.164 \pm 0.357 \text{ sec} \). Then, using Eqs. (13a) and (13b), we got \(T_1^{(1)} = 0.106 \text{ sec} \), \(T_1^{(2)} = 0.122 \text{ sec} \), \(T_1^{(3)} = 0.124 \text{ sec} \), and \(T_1^{(4)} = 0.125 \text{ sec} \). Thus, with only three iterations the \(T_1 \) value was within 1% of the correct value and the data accumulation time was only about one half of that required to insure \(M_0 = M_\infty \). In another example \((^1\text{H in H}_2\text{O})\) the parameters were \(T_1 = 2.50 \text{ sec} \), \(e^S = 0.580 \), \(\tau = 0.0625 \text{ sec} \), \(M_\infty/M_0 = 0.0974 \), and \(T = 2.23 \text{ sec} \). The iterations gave \(T_1^{(1)} = 1.49 \text{ sec} \), \(T_1^{(2)} = 2.48 \text{ sec} \); thus, after seven iterations the \(T_1 \) value was less than 1% low and the data accumulation time was only about one fourth that required.

Although in the above examples the \(T_1 \) measurement time would not be long by any method, it is apparent that if it is expected to be long, due to a large \(T_1 \), the method described in this paper has significant advantages since it is not necessary to wait for spin system equilibrium before taking data. The iterations are easily programmed on a computer.

\[^6 \text{Interested persons may obtain the computer program (FORTRAN IV, XTRAN, or CAL) from the authors.}\]