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ABSTRACT 

 
 
Tangeman, Larissa Jordan. M.S., Microbiology and Immunology Program, Wright State 
University, 2011.  Targeted Knockdown of AMP-activated Protein Kinase Alpha 1 and 
Alpha 2 Catalytic Subunits. 

 

 

 AMP-activated protein kinase (AMPK) regulates cellular metabolism and 

promotes ATP production when energy is depleted.  Evidence suggests that AMPK may 

be involved in oxygen sensing by carotid body cells, which are responsible for regulating 

the breathing rate to maintain proper blood oxygen levels.  There are two isoforms of the 

catalytic α subunit, AMPKα1 and AMPKα2, which could be involved in oxygen 

sensing.  Here, the production of a short hairpin RNA (shRNA) targeting both catalytic 

isoforms of AMPK in human, mouse, and rat is described.  The shRNA causes significant 

knockdown of both isoforms of AMPKα  in mouse and human cells and a significant 

reduction in AMPK activity, measured as phosphorylation of a direct target.  This shRNA 

will be used to generate a rat model with tissue-specific knockdown of AMPKα1 and 2 

using a Cre-Lox recombination system to determine the role of AMPK in oxygen sensing 

by the carotid body.   
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I. INTRODUCTION 

 

AMP-activated protein kinase 

Regulating energy levels is an essential process that occurs in all living 

organisms.  AMPK (5’-adenosine monophosphate-activated protein kinase), also known 

as protein kinase, AMP-activated (PRKAA), is an enzyme that is conserved from yeast to 

humans and has important roles in sensing the energy status of the cell to maintain 

homeostasis [1-5].  AMPK has been linked to numerous disease states, including 

metabolic disorders and cancer, although its role is still not clear and appears to be 

context-dependent [6].  Functional AMPK is a heterotrimer that acts to regulate 

metabolism and is composed of three subunits, the catalytic alpha subunit and the 

regulatory beta and gamma subunits [3,7].  There are two isoforms of the AMPK alpha 

subunit, AMPKα1 and AMPKα2, and each isoform has been shown to have overlapping 

as well as distinct functions depending on the cell type [3,8-11].   

 

AMPK acts as a metabolic master switch regulating several intracellular systems 

including glucose uptake and β-oxidation of fatty acids.  AMPK inhibits fatty acid 

synthesis by phosphorylating acetyl-CoA carboxylase (ACC) at Ser79 [12].  The energy-

sensing capability of AMPK can be attributed to its ability to detect and react to 
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fluctuations in the AMP: ATP ratio.  Stressors, such as muscle contraction or ischemia, 

that deplete ATP in the cell result in an elevated AMP: ATP ratio, triggering AMPK 

activation.  AMPK is phosphorylated at Thr172 of the alpha subunit by LKB1, a known 

tumor suppressor [13], and calmodulin-dependent protein kinase kinase β (CaMKKβ) 

[14], and this phosphorylation is required for activation.  AMP activates AMPK by 

inhibiting the dephosphorylation of Thr172 by protein phosphatase-2C [5,8].  AMPK is 

also allosterically activated by AMP binding to the γ subunit [8].  Activated AMPK 

promotes ATP production and inhibits anabolic pathways that utilize ATP.   

 

Carotid body 

In addition to its other roles, AMPK may be involved in oxygen sensing.  The 

carotid body is a small paired sensory organ which is responsible for sensing oxygen 

levels in the carotid artery and signaling through the carotid sinus nerve to regulate the 

breathing rate in order to maintain oxygen homeostasis [15].  The carotid body is 

composed of two types of cells; type I cells sense oxygen through an unknown 

mechanism, and type II cells appear to provide support [16].  AMPK has been reported to 

couple hypoxic inhibition of mitochondrial oxidative phosphorylation to excitation of 

isolated rat carotid body type I cells [17].  To determine if AMPK is necessary for 

oxygen sensing by carotid body type I cells, we decided to generate an AMPK-deficient 

rat model to study the ability of the animals to respond to hypoxia.  Rats were chosen 

because the carotid body has been studied extensively in the rat [16].  It is not known 

which isoform of AMPKα may be involved in oxygen sensing or if they can both 

perform the same function in the carotid body.  For this reason, we wanted to inhibit both 
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isoforms.  These rats will be used to determine if AMPK is required in vivo for the 

carotid body to upregulate the breathing rate in response to hypoxia.   

 

Studying AMPK activity 

Multiple strategies to manipulate AMPK activity have been developed.  Drugs 

targeting AMPK, such as the activating drug AICAR (5-aminoimidazole-4-carboxyamide 

ribonucleoside) and inhibitor Compound C, have been identified, but these 

pharmacological agents have been shown to alter other processes in the cell as well [18-

19].  For example, AICAR is metabolized in the cell into an AMP analogue that is able to 

bind AMP-binding sites on other proteins and is also able to inhibit oxidative 

phosphorylation independent of its effect on AMPK [18].  Compound C has been shown 

to inhibit over 10 kinases, not just AMPK [19].  Therefore, these drugs do not specifically 

target AMPK, and alternate methods should be used to alter AMPK activity more 

precisely.  The generation of AMPKα1 (α1-/-) and α2 (α2-/-) knockout mice have 

established critical roles for AMPKα1 and AMPKα2 in the regulation of energy 

metabolism and oxygen sensing [3,9,20].  Double knockout of the AMPKα1 and 

AMPKα2 isoforms, simultaneously, results in lethality at embryonic day 10.5 [3], so this 

model system is not available to study functions that can be performed by both isoforms 

of AMPKα.  An alternative method to inhibit AMPKα1 and 2 is needed. 

 

RNA interference 

Another way to study the activity of AMPK is to block its expression using RNA 

interference.  RNA interference (RNAi) is a process by which double-stranded RNA 
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(dsRNA) molecules can regulate gene expression.  Small interfering RNAs (siRNAs), are 

synthetic, 21-nucleotide dsRNA molecules that are complementary to a mRNA transcript 

[21].  As shown in Figure 1, when siRNA is introduced into a cell, one strand is 

incorporated into the RNA-induced silencing complex (RISC) and binds the 

complementary mRNA [22].  This results in destruction of the mRNA transcript by a 

member of the Argonaute family of proteins [23], thus preventing translation into protein 

[24-25].  The effects of siRNA are transient because the siRNA molecules get diluted as 

the cells divide [26].  Therefore, this strategy is not useful for long-term studies.  

 

Short hairpin RNAs (shRNAs) are synthetic RNA molecules that have been 

modified to include a stem-loop-stem structure resembling the structure of naturally-

occurring microRNAs (miRNAs). As shown in Figure 1, the hairpin structure of shRNAs 

is cleaved by the enzyme Dicer in the cytoplasm into siRNA molecules [27].  shRNAs 

are transcribed from DNA templates such as plasmids, and this allows their expression to 

be stable and heritable in cell culture [28-31].  The RNA polymerase III promoters U6 

and H1, which are the promoters for the U6 small nuclear RNA and histone H1 

respectively, are commonly used to drive expression of shRNAs [32].  In addition, 

shRNAs can be used to generate transgenic animal models with knockdown of target 

proteins as an alternative to classic transgenic animal knockout models.  A number of 

silencing RNAs against AMPK have been generated [2,10,33-34], but there is no  
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Figure 1. Diagram of RNAi  pathway 

Diagram of the siRNA and shRNA pathways after transcription of an shRNA from a 

DNA template in the nucleus or introduction of synthetic siRNA molecules directly into 

the cytoplasm of the cell.  Arrows indicate molecules that must be introduced into the cell 

through transfection or another method to generate knockdown: DNA template such as a 

plasmid or virus (shRNA) or dsRNA molecules (siRNA). 
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Figure 1 
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reported sequence that is able to knock down both catalytic isoforms of AMPKα1 and 

AMPKα2 in multiple species.  For this reason, we designed an shRNA that is 

complementary to a sequence conserved between both catalytic isoforms in human, 

mouse, and rat and can be used in any of these three model systems. 

 

Cre-Lox system 

We will use Cre recombinase to direct the tissue-specific expression of an shRNA 

against AMPKα1 and 2.  Cre recombinase is an enzyme that catalyzes site-specific DNA 

recombination at sequences called LoxP sites [35].  LoxP sites are 34-basepair stretches 

of DNA containing two 13-basepair palindromes separated by an 8-basepair spacer, 

which confers directionality to the site; the region of DNA flanked by two LoxP sites is 

said to be “floxed” [36].  The Cre enzyme binds to LoxP sites in the DNA and aligns two 

sites in the same orientation.  It then catalyzes a recombination reaction in which the 

floxed DNA sequence and one of the two LoxP sites are excised from the DNA (Figure 

2).  This technique is used to delete genes or other stretches of DNA.  Cre recombinase 

has been used to create animal models with tissue-specific knockout of genes by mating 

mice with floxed genes to mice with tissue-specific expression of the Cre recombinase 

enzyme [originally described in 37].  The offspring resulting from the mating have 

knockout of the floxed gene only in tissues where Cre recombinase is expressed.  This 

powerful technique has been used numerous times to create animal models, especially 

when the total body knockout causes embryonic lethality. 
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Figure 2. Diagram of Cre recombinase-mediated recombination 

DNA recombination catalyzed by Cre recombinase at LoxP sites located between DNA 

regions A and B and regions B and C. Region B is the floxed DNA that is removed 

following binding of Cre recombinase at LoxP sites, looping of the DNA, aligning of the 

LoxP sites, and recombination. 
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Figure 2 
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Tissue-specific knockdown 

Tissue-specific knockdown will be accomplished by disrupting the U6 promoter, 

which controls the expression of the shRNA, with a floxed sequence of DNA containing  

an RNA polymerase III stop sequence.  The promoter will not be active, and the shRNA 

will not be transcribed, unless the extra DNA is removed.  Figure 3 shows a diagram of a 

standard shRNA under control of the U6 promoter, an shRNA with a disrupted U6 

promoter, and a schematic of the recombination that would occur following the 

expression of Cre recombinase.  Tissue-specific expression of Cre recombinase will 

allow the promoter to be restored, and the shRNA will only be made in tissues that 

express Cre recombinase.   

 

The tissue-specific promoter that was chosen to direct the expression of Cre 

recombinase is the tyrosine hydroxylase (TH) promoter.  Tyrosine hydroxylase is an 

enzyme that catalyzes the conversion of L-tyrosine to DOPA, the rate-limiting step of 

catecholamine synthesis [38], and it is only expressed in carotid body type I cells [39] 

and in the brain and adrenal glands [40].  The shRNA will only be made in cells that 

express tyrosine hydroxylase.  The TH promoter was chosen because TH is known to be 

highly expressed in carotid body type I cells, and TH is frequently used as a marker for 

type I cells [39].  It is possible that there could be off-target effects on breathing 

regulation due to knockdown of AMPKα in other tissues.   

 

Both of the components necessary to generate tissue-specific knockdown of 

AMPKα1 and 2 will be cloned into one construct that can be used to make a lentivirus.   
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Figure 3. Structures of shRNA constructs 

(A) Structure of the shRNA under control of the U6 promoter. (B) Structure of the 

shRNA with disrupted U6 promoter. (C) Diagram of recombination that would occur 

following expression of Cre recombinase with the construct shown in B. 
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Figure 3 
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Figure 4 shows a diagram of this final construct.  The virus will contain both the shRNA 

with a disrupted U6 promoter and the Cre recombinase gene under control of the TH 

promoter.  Also shown in Figure 4 is a diagram of the recombination that would occur in 

tissues that activate the TH promoter and, therefore, express Cre recombinase.  This 

construct will be made into a lentivirus because the virus can be used to infect embryos in 

order to generate a transgenic rat strain with tissue-specific knockdown of AMPKα1 and 

2. 

 

Summary 

In this study, we demonstrate the production of a novel shRNA that 

simultaneously targets both AMPKα1 and α2 isoforms.  This shRNA is 100% 

complementary to a nucleotide sequence conserved in the human, mouse, and rat forms 

of the AMPKα1 and AMPKα2 mRNA and causes a significant reduction in AMPKα1 

and 2 protein levels.  Knockdown of AMPKα1 and 2 also reduces phosphorylation of 

ACC, a direct target of AMPK.  This new shRNA will be useful for analyzing the 

numerous functional roles of AMPKα1 and 2, and it will later be used to generate a 

transgenic rat strain with tissue-specific silencing of AMPKα1 and 2.  These rats will be 

studied to determine if AMPK is involved in the oxygen-sensing capabilities of carotid 

body type I cells.
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Figure 4. Structure of virus producing tissue-specific silencing  

(A) Structure of the virus. (B) Diagram of recombination that would occur in tissues that 

activate the TH promoter and express Cre recombinase. 
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Figure 4 
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II. MATERIALS AND METHODS 

 

Cloning and cell culture 

Restriction enzymes and buffers used in ligation experiments were purchased 

from Invitrogen (Carlsbad, CA) and used according to the manufacturer’s specifications.  

Digested vector DNA was dephosphorylated using Antarctic Phosphatase (New England 

Biolabs, Ipswich, MA, M0289S) prior to ligation.  Digested DNA was separated using 

agarose gel electrophoresis, and DNA fragments for ligation were isolated using an 

E.Z.N.A. Gel Extraction Kit (Omega Bio-Tek, Norcross, GA, D2501-01) according to the 

manufacturer’s specifications.  All ligations were performed using a rapid ligation kit 

(Roche, Basel, Switzerland, 11635379001) according to the manufacturer’s 

specifications.  Lentiviral plasmids were transformed into One Shot Stbl3 Chemically 

Competent Cells (Invitrogen, Carlsbad, CA, C7373-03) according to the manufacturer’s 

specifications.  Plasmid DNA was isolated from bacterial cultures using E.Z. Nucleic 

Acid Plasmid Mini (D6942-02) or Maxi (D6922-02) Kits from Omega Bio-Tek 

(Norcross, GA) according to the manufacturer’s specifications.  Sequences were verified 

by DNA sequencing (AGCT, Inc., Wheeling, IL).  Table 1 contains a summary of base 

plasmids used as starting materials for cloning.  Table 2 contains a summary of all cloned 

plasmid constructs.  
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A multiple cloning site, or MCS, (ClaI-XbaI-NdeI-HindIII-EcoRV-EcoRI-PstI-

SmaI-SalI-XbaI-BamHI) was purchased as DNA oligonucleotides from IDT, Inc. 

(Coralville, IA), annealed, and ligated into pLenti6/V5 D-TOPOTM (Invitrogen, Carlsbad, 

CA, K4955-01) containing an enhanced green fluorescent protein (GFP) gene using ClaI 

and BamHI to create pLv-MCS-GFP.   

 

The rat tyrosine hydroxylase promoter was isolated from 4.5ThpAL+ (provided 

by Dr. Karen O’Malley, Washington University School of Medicine) using EcoRV and 

EcoRI and cloned into the MCS to create pLv-MCS-THp-GFP.  This construct was used 

to generate a stable pool of HEK293 cells expressing GFP under control of the TH 

promoter.   

 

The GFP gene was removed from pLv-MCS-GFP using BamHI and ApaI, and the 

sticky ends were removed by blunting with a Quick Blunting Kit (New England Biolabs, 

Ipswich, MA, E1202L) according to the manufacturer’s specifications.  The blunt ends 

were ligated together to create pLv-MCS-∆GFP.  The TH promoter was cloned into this 

construct using EcoRV and EcoRI to create pLv-MCS-THp-∆GFP.   

 

The Cre recombinase gene with a Myc tag was isolated from pCAG-CreMyc 

(purchased from Addgene, Inc., Cambridge, MA) using polymerase chain reaction (PCR) 

(Platinum Taq DNA Polymerase High Fidelity, Invitrogen, Carlsbad, CA, 11304-011) 

according to the manufacturer’s specifications.  Primers were purchased from IDT, Inc. 

(Coralville, IA).  The PCR reaction added EcoRI sites to both ends of CreMyc, and a 
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HindIII site was added to the 3’ end inside the EcoRI site.  EcoRI was used to clone the 

CreMyc PCR product into pLv-MCS-THp-∆GFP to create pLv-MCS-THp-CreMyc.  

This construct was used to generate a stable pool of HEK293 cells expressing CreMyc 

under control of the TH promoter.   

 

RNA oligonucleotides for siRNA experiments and DNA oligonucleotides for 

shRNA experiments were synthesized by ACGT, Inc. (Wheeling, IL).  DNA oligos were 

annealed and ligated into pENTRTM/U6 using the BLOCK-iTTM U6 RNAi entry vector 

kit (Invitrogen, Carlsbad, CA, K4944-00) according to the manufacturer’s instructions to 

create the plasmid shRNAs (pENTR-U6-AMPKα1&2shRNA Loops 2-4) and control 

shRNA (pENTR-U6-control shRNA loop 3).  pENTR plasmids were transformed in One 

Shot TOP10 Chemically Competent E. coli cells (Invitrogen, Carlsbad, CA, C4040-10) 

according to the manufacturer’s specifications.   

 

An RNA polymerase III stop site flanked by two LoxP sites (LoxP-Stop-ClaI-

XhoI-LoxP) was purchased as DNA oligonucleotides with 5’ phosphorylated overhangs 

complementary to NdeI sticky ends from IDT, Inc. (Coralville, IA) and annealed.  The 

annealed oligo contained overhangs that could be directly ligated into the pENTR-U6-

AMPKα1&2shRNA-Loop3 plasmid digested with NdeI to create pENTR-U6-LoxP-

AMPKα1&2shRNA-Loop3.  Successful ligation of the oligo into the NdeI site of the 

vector removed the NdeI site, and the ligated DNA was digested with NdeI prior to 

transformation to remove religated vector DNA.  To test the recombination, pENTR-U6-

LoxP-AMPKα1&2shRNA-Loop3 DNA was recombined with Cre recombinase (New 
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Table 1.  Base plasmids used to create constructs 

 Plasmid name: Use: 
pLv-CMV-GFP Base plasmid for TH 

promoter-driven constructs 
4.5ThpAL+ Source of rat TH promoter 

to drive expression of GFP 
and CreMyc 

pCAG-CreMyc Source of CreMyc DNA to 
be cloned into TH 
promoter-driven construct, 
ubiquitously expressed 
CreMyc for control in 
transfection 

pEGFP Ubiquitously expressed 
CMV promoter-driven 
GFP for control in 
transfections 
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Table 2.  Cloned constructs 

Plasmid name: Backbone: Cloning strategy: Use: Status: 
pLv-MCS-GFP pLenti6 CMV in pLv-CMV-

GFP replaced with 
MCS 

Base plasmid for 
TH promoter-
driven GFP and 
CreMyc constructs 

Completed 

pLv-MCS-
THp-GFP 

pLenti6 TH promoter cloned 
in front of GFP in 
pLv-MCS-GFP 

Used to make TH 
promoter-driven 
GFP virus for 
infection and as 
TH promoter-
driven GFP for 
transfection in cells 

Completed 

pLv-MCS-
∆GFP 

pLenti6 GFP gene removed 
from pLv-MCS-GFP  

Base plasmid for 
TH promoter-
driven CreMyc 

Completed 

pLv-MCS-
THp-∆GFP 

pLenti6 TH promoter cloned 
into pLv-MCS-∆GFP 

Base plasmid for 
TH promoter-
driven CreMyc 

Completed 

pLv-MCS-
THp-CreMyc 

pLenti6 CreMyc PCR product 
from pCAG-CreMyc 
cloned after TH 
promoter 

TH promoter-
driven CreMyc for 
transfection in cells 

Completed 

pENTR-U6-
AMPKshRNA 

pENTR/U6 shRNA oligos ligated 
into backbone 

Expression of 
shRNA for 
transfection in cells 

Completed 

pENTR-U6-
LoxP-AMPK 
shRNA loop 3 

pENTR/U6 LoxP oligo ligated 
into NdeI site in U6 
promoter 

Disrupted shRNA, 
tested with 
recombinant Cre 

Completed 

pENTR-U6-
LoxP-AMPK 
shRNA loop 3-
MCS 

pENTR/U6 MCS cloned after 
shRNA 

Base plasmid for 
final construct 

Not completed 

pENTR-U6-
LoxP-AMPK 
shRNA loop 3-
THp-CreMyc 

pENTR/U6 THp-CreMyc from 
pLv-MCS-THp-
CreMyc cloned after 
shRNA 

Base plasmid for 
final construct 

Not completed 

pLv-BlockiT-
DEST- U6-
LoxP-AMPK 
shRNA loop 3-
THp-CreMyc 

pLenti6/ 
BLOCK-
iT-DEST 

U6-LoxP-AMPK 
shRNA-THp-
CreMyc cassette 
from pENTR 
construct cloned into 
lentiviral backbone 

Lentiviral plasmid 
to make final 
lentivirus 

Not completed 
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England Biolabs, Ipswich, MA, M0298S) according to the manufacturer’s specifications, 

digested with XhoI and PvuII, and electrophoresed on a 1% agarose gel.   

 

NIH3T3, HEK293, and PC12 cells were purchased from ATCC, Inc. (Manassas, 

VA), and maintained at 37oC supplemented with 5% CO2 in HyClone DMEM/High 

glucose (Thermo Scientific, Waltham, MA, SH30022.01) with 10% FBS (Biowest, 

Nuaillé, France, S01520) and 1% HyClone antibiotic/antimycotic solution (Thermo 

Scientific, Waltham, MA, SV30079.01).  Cells were passaged at 90% confluency.   

 

siRNA and shRNA design 

 cDNA sequences of human, mouse, and rat AMPKα1 and AMPKα2 were aligned 

using MacVector software.  The sequence ATGATGTCAGATGGTGAATTT was 

identified in the NCBI database (http://www.ncbi.nlm.nih.gov/index.html) and 

determined to be 100% identical in all cDNAs and corresponded to the following 

nucleotide regions: hAMPKα1 (gene accession number Q96E92) 553-573, mAMPKα1 

498-518, rAMPKα1 487-507, hAMPKα2 558-578 (gene accession number P54646.2), 

mAMPKα2 596-616, rAMPKα2 494-514).  The global siRNA and shRNA were 

designed to target this region.  A second sequence, AATGGAATATGTGTCTGGAGG, 

was 100% conserved in the cDNA sequences of human, mouse, and rat AMPKα2.  This 

region contains two base pair mismatches with the mouse and rat AMPKα1 sequences 

and three base pair mismatches with the human AMPKα1 sequence.  A control shRNA 

was designed to be identical to the AMPKα1 and 2 shRNA with the exception of 5 base 

pair mismatches.  The sequence of the control shRNA 
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(ACGACGTCAGCTGGTGCATGT) did not contain significant homology to known 

genes in the human, mouse, or rat genomes as determined by analysis in the 

NCBI/BLAST program.  shRNA stem loop design was based upon previous studies 

[TLB unpublished data, 27].   

 

Transfection and infection 

HEK293 cells were seeded on 60 mm plates at 1.2x106 cells/plate and transfected 

with a 3:1 ratio of Lipofectamine2000 (Invitrogen, Carlsbad, CA, 11668019) to DNA 

according to the manufacturer’s specifications.  NIH3T3 cells were simultaneously 

seeded on 60 mm plates at 8x105 cells/plate and transfected with a 5:1 ratio of 

Metafectene (Biontex, San Diego, CA, T020-1.0) to DNA according to the 

manufacturer’s specifications.  Transfection efficiency was determined by replicate 

transfection with ubiquitously expressed GFP (pEGFP).  Cells were lysed 24, 48, or 72 

hours post- siRNA transfection and 72 hours post-shRNA (pENTR-U6-AMPKα1&2 

shRNA Loops 2-4) transfection for analysis.  Stable pools were generated by treating 

transfected HEK293 cells (transfected with pLv-MCS-THp-GFP or pLv-MCS-THp-

CreMyc) with 10 µg/ml Blasticidin (InvivoGen, San Diego, ant-bl-1).  PC12 cells were 

seeded on 60 mm plates at 5x104 cells/plate and infected by adding 2 ml of lentiviral 

THp-GFP (made from pLv-MCS-THp-GFP plasmid) for 24 hrs.  Cells were maintained 

under standard culture conditions and examined for GFP expression after 72 hours. 
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Western blotting 

 Whole cell lysates were collected with Cell Lysis Buffer (Cell Signaling, Beverly, 

MA, 9803) supplemented with Complete Protease Inhibitor Tablets (Roche, Basel, 

Switzerland, #11836153001).  Lysates were briefly sonicated on ice, and protein 

concentrations were determined by the Bradford method [41-42].  Lysates were boiled in 

Laemmli reducing buffer, and 50 µg of total protein from each sample was 

electrophoresed on 10% SDS polyacrylamide gels for AMPK isolation or 8% SDS 

polyacrylamide gels for ACC isolation.  Proteins were transferred to an Immobilon 

PVDF Membrane (Millipore, Billerica, MA, IPVH08100) and blocked in Tris-buffered 

saline containing 0.1% Tween-20 and 5% nonfat, dry milk.  Antibodies purchased from 

Cell Signaling (Beverly, MA, anti-AMPKα1 #2795; anti-AMPKα #2603; anti-phospho-

ACC #3661; anti-ACC #3676) were used overnight at a dilution of 1:1000 in Tris-

buffered saline with 0.1% Tween-20 and 5% bovine serum albumin.  Antibodies 

purchased from GeneTex (San Antonio, TX, anti-AMPKα2,GTX111373) were used 

overnight at a dilution of 1:2000 in Tris-buffered saline with 0.1% Tween-20 and 5% 

nonfat, dry milk.  Anti-actin C4 monoclonal antibody (Seven Hills Bioreagents, 

Cincinnati, OH) was used at a 1/10,000 dilution for 1 hr at room temperature.  Anti-Myc 

antibody (clone 9E10) was purchased from Millipore, Inc. (Billerica, MA).  Horseradish 

peroxidase-conjugated secondary antibodies were purchased from Promega (Madison, 

WI, anti-rabbit IgG, HRP conjugate #W401B; and anti-mouse IgG, HRP-conjugate 

#W402B) and used at a dilution of 1:25,000 for one hour.  Blots were developed using 

SuperSignal West Pico Chemiluminescent Substrate kit (Thermo Scientific, Waltham, 

MA, 34080), exposed to x-ray film, and visualized by chemiluminescence.   



24 
 

 

Data analysis 

 Western blot data was analyzed with NIH ImageJ software (rsbweb.nih.gov/ij/) to 

quantitate protein levels.  For shRNA experiments, three to six independent experiments 

were performed for each blot, and the results were averaged.  Statistical significance was 

determined using one-way ANOVA.  
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III. RESULTS 

 

siRNA-mediated knockdown of AMPK alpha 

AMPKα was first knocked down using siRNA in order to identify viable 

sequences that can be targeted with an shRNA to generate stable knockdown.  To 

generate a global AMPKα1 and 2 gene knockdown, we aligned the cDNA sequences of 

human, mouse, and rat AMPKα1 and 2 and identified a single 21 bp sequence conserved 

in each (Table 3).  We generated an siRNA targeting this sequence to determine if it 

could knock down AMPKα1 and AMPKα2 simultaneously.  We also made an siRNA 

against a region of AMPKα2 that is conserved in human, mouse, and rat (Table 4).  The 

siRNAs were transfected in mouse fibroblast cells, NIH3T3s, at two different 

concentrations, and the cells were lysed 24, 48, and 72 hours post-transfection and run on 

a western blot (Figure 5).  The lower concentration, 20 nm, was used to ensure there were 

few off-target effects.  The higher concentration, 100 nm, was used to ensure the greatest 

knockdown of the target protein.  The global siRNA knocked down AMPKα1 and 2 

protein levels at both concentrations at all three time points compared to mock-

transfected control.  The AMPKα2 siRNA caused a moderate knockdown of AMPKα1 

and 2.  Surprisingly, it caused a greater knockdown of AMPKα1 than AMPKα2 though 

the siRNA was not a perfect match for AMPKα1.  The transient nature of siRNA- 
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Table 3. Identification of a globally conserved sequence in AMPK alpha 1 and 2 

AMPKα1 Human AAC ATG ATG TCA GAT GGT GAA TTT TTA 

Mouse AAC ATG ATG TCA GAT GGT GAA TTT TTA 

Rat AAC ATG ATG TCA GAT GGT GAA TTT TTA 

AMPKα2 Human AAT ATG ATG TCA GAT GGT GAA TTT CTG 

Mouse AAT ATG ATG TCA GAT GGT GAA TTT CTA 

Rat AAT ATG ATG TCA GAT GGT GAA TTT CTA 

AMPKα1&2 global siRNA         ATG ATG TCA GAT GGT GAA TTT 

 

cDNA sequences for human, mouse, and rat AMPKα1 and α2 were aligned using the 

MacVector software program.  Mismatches are shown in bold. 
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Table 4. Identification of a conserved sequence in AMPK alpha 2 

AMPKα1 Human GGT GAT GGA ATA TGT CTC AGG AGG AGA 

Mouse GGT GAT GGA ATA TGT CTC TGG AGG AGA 

Rat GGT GAT GGA ATA TGT CTC TGG AGG AGA 

AMPKα2 

 

Human GGT AAT GGA ATA TGT GTC TGG AGG TGA 

Mouse GGT AAT GGA ATA TGT GTC TGG AGG TGA 

Rat GGT AAT GGA ATA TGT GTC TGG AGG TGA 

AMPKα2 specific siRNA          AAT GGA ATA TGT GTC TGG AGG  

 

cDNA sequences for human, mouse, and rat AMPKα1 and α2 were aligned using the 

MacVector software program.  Mismatches are shown in bold. 



28 
 

Figure 5. siRNA-mediated knockdown of AMPK alpha 1 and 2 in NIH3T3 cells 

(A) Western blots of NIH3T3 cells transfected with AMPKα2 or AMPKα1&2 siRNA at 

20 nM or 100 nM.  Cells were lysed after 24 hrs, 48 hrs, or 72 hrs and separated with 

SDS-PAGE.  Blots were probed with anti-AMPKα1, anti-AMPKα2, and anti-actin.  

Representative actin blot shown in A.  (B-C) Relative AMPKα1 (B) and AMPKα2 (C) 

protein levels in siRNA-transfected NIH3T3 cells compared to mock-transfected control 

cells 24, 48, and 72 hours post-transfection after normalizing to actin loading control.  

Data was analyzed with NIH ImageJ software.   



29 
 

Figure 5 
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mediated knockdown is evident in Figure 5 as a less efficient knockdown 72 hrs after 

transfection.  These results prompted us to select the sequence of the global AMPKα1 

and 2 siRNA to generate an shRNA that can be used to stably knock down AMPKα1 and 

2. 

 

shRNA-mediated knockdown of AMPK alpha 

 To generate stable knockdown of AMPKα1 and 2, we used the AMPKα1 and 2 

siRNA sequence to generate an shRNA.  Though the loop structure of the shRNA is 

cleaved prior to binding of the RNA to the target mRNA, the sequence of the loop has a 

significant impact on the activity of the shRNA [43].  We will refer to the most 

commonly used shRNA loop sequence (TTCAAGAGA) as the Brummelkamp loop [29].  

However, this particular loop begins with two thymidine residues.  RNA polymerase III, 

which drives shRNA production from the U6 promoter in the pENTRTM vector, 

recognizes a stretch of four or more thymidine residues as a stop site [44].  Therefore, this 

loop cannot be used if the stem sequence of the shRNA ends in two or more thymidine 

residues, as is the case for the AMPKα1 and 2 shRNA.  For this reason, we needed to 

identify different loop sequences that did not begin with thymidine (Table 5).  We tested 

three loops, referred to as loops 2-4, in NIH3T3 cells (Figure 6).  A fourth loop, loop 1 

was not tested because the plasmid was found to contain a mutation after sequencing.  

Two of the loops, loops 3 and 4, significantly knocked down protein levels of both 

isoforms of AMPKα.  Loops 3 and 4 were the complement and the reverse, respectively, 

of the Brummelkamp loop.  We found that the complement of the Brummelkamp loop,  
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Table 5.  Design of shRNA loop sequences and sequences of shRNA oligos 

Brummelkamp loop TTCAAGAGA 

Loop 2 CCACACC 

Loop 3 AAGTTCTCT 

Loop 4 AGAGAACTT 

Loop 2 top oligo CACCGATGATGTCAGATGGTGAATTTCC
ACACCAAATTCACCATCTGACATCAT 

Loop 2 bottom oligo AAAAATGATGTCAGATGGTGAATTTGGT
GTGGAAATTCACCATCTGACATCATC 

Loop 3 top oligo CACCGATGATGTCAGATGGTGAATTTAA
GTTCTCTAAATTCACCATCTGACATCAT 

Loop 3 bottom oligo AAAAATGATGTCAGATGGTGAATTTAGA
GAACTTAAATTCACCATCTGGACATCATC 

Loop 4 top oligo CACCGATGATGTCAGATGGTGAATTTAG
AGAACTTAAATTCACCATCTGACATCAT 

Loop 4 bottom oligo AAAAATGATGTCAGATGGTGAATTTAAGT
TCTCTAAATTCACCATCTGACATCATC 

 

Loop sequences and sequences of DNA oligos ordered from ACGT, Inc., and ligated into 
pENTRTM to create plasmid shRNAs.
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Table 6.  Design of global AMPK alpha 1 and 2 shRNA and corresponding control 
shRNA 

AMPKα1&2 Loop 3 shRNA sequence 

ATG ATG TCA GAT GGT GAA TTT 

                 

TAC TAC AGT CTA CCA TCC AAA  

Control shRNA sequence 

ACG ACG TCA GCT GGT GCA TGT 

 

TGC TGC AGT CGA CCA CGT ACA 

 

Base pair mismatches in the control shRNA are shown in bold. 
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Figure 6.  shRNA-mediated knockdown of AMPK alpha 1 and 2 in NIH3T3 cells 
with different loop sequences 

(A) Representative western blot of NIH3T3 cells transfected with AMPKα1 and 2 

shRNA with loops 2-4 and control shRNA.  Cells were lysed after 72 hrs.  Lysates were 

electrophoresed with SDS-PAGE and immunoblotted with anti-AMPKα1, anti-

AMPKα2, and anti-actin.  (B) Relative AMPKα1 and 2 protein levels in shRNA-

transfected NIH3T3 cells compared to control shRNA-transfected NIH3T3 cells after 

normalizing to actin loading control.  Relative protein levels are listed as percentages of 

control.  Results are representative of 3 independent experiments.  Data was analyzed 

with NIH ImageJ software.  Error bars represent the standard error of the mean.  (*) 

P<0.05.  (**) P<0.01.  (***) P<0.001.   
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loop 3, resulted in the greatest knockdown, 54% knockdown of AMPKα1 and 55% 

knockdown of AMPKα2, and this shRNA was chosen for further study.  We created a 

control shRNA containing five base-pair mismatches from the target 21 nt siRNA 

sequence using the loop 3 sequence (Table 6).  AMPKα1 and 2 protein levels in cells 

transfected with the control shRNA were equivalent to mock-transfected controls (data 

not shown).  This control shRNA was used for all shRNA experiments.   

 

Knockdown of AMPK alpha in mouse and human cells 

We transfected the shRNA into mouse NIH3T3 cells and human embryonic 

kidney HEK293 cells to demonstrate its ability to knock down AMPKα1 and 2 in 

multiple species (Figure 7).  The shRNA significantly knocked down protein levels of 

both isoforms of AMPKα in both species.  In mouse NIH3T3 cells, AMPKα1 and 

AMPKα2 protein levels were knocked down 49% and 44%, respectively, compared to 

the control shRNA.  In human HEK293 cells, AMPKα1 and AMPKα2 protein levels 

were knocked down 63% and 72%, respectively, compared to the control shRNA.  The 

shRNA was likely more effective in human cells than in mouse cells due to the increased 

transfection efficiency in HEK293 cells, as determined by replicate transfections with 

GFP.  Representative fluorescence micrographs of NIH3T3 and HEK293 cells 

transfected with GFP are shown in Figure 8 to demonstrate the difference in transfection 

efficiency between the cell types. Both transfections were performed as controls during 

shRNA experiments simultaneously and under the same conditions as the shRNA 

transfections.  Transfection with GFP was more efficient in HEK293 cells than in 

NIH3T3 cells.
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 Figure 7.  shRNA-mediated knockdown of AMPK alpha 1 and 2 in mouse and 

human cells 

(A) Representative western blot of NIH3T3 and HEK293 cells transfected with AMPKα1 

and 2 loop 3 shRNA and control shRNA.  Cells were lysed after 72 hrs.  Lysates were 

electrophoresed with SDS-PAGE and immunoblotted with anti-AMPKα1, anti-

AMPKα2, and anti-actin.  (B-C) Relative AMPKα1 and 2 protein levels in shRNA-

transfected NIH3T3 cells (B) and HEK293 cells (C) compared to control shRNA-

transfected cells after normalizing to actin loading control.  Relative protein levels are 

listed as percentages of control.  Results are representative of 3-6 independent 

experiments.  Data was analyzed with NIH ImageJ software.  Error bars represent the 

standard error of the mean.  (***) P<0.001.   
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Figure 8.  Transfection efficiency of NIH3T3 and HEK293 cells 

(A-B) Representative fluorescence micrographs of NIH3T3 cells (A) and HEK293 cells 

(B) transfected with ubiquitously expressed CMV promoter-driven GFP (pEGFP) as 

replicate controls for shRNA transfection experiments.  Fluorescence was checked after 

72 hrs.  
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Figure 8 
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Functional knockdown of AMPK alpha 

 To show functional knockdown of AMPK by the loop 3 shRNA, we looked for 

reduced phosphorylation of a direct target, acetyl-CoA carboxylase (ACC).  Transfection 

of HEK293 cells with the loop 3 AMPKα1 and 2 shRNA did not alter total ACC protein 

levels; however, it did cause a significant reduction in the phosphorylated form of ACC 

(phospho-ACC, Figure 9).  The protein level of phosphorylated ACC was knocked down 

41% by the AMPKα1 and 2 shRNA compared to the control shRNA.  The total ACC 

protein levels in the AMPKα1 and 2 shRNA-treated cells compared to the control 

shRNA-treated cells were nearly identical and unaffected by transfection.   

 

Expression of TH promoter-driven constructs 

 To test the expression of the tyrosine hydroxylase promoter-driven GFP plasmid 

(pLv-MCS-THp-GFP), we transfected HEK293 cells and selected with blasticidin to 

generate a stable pool of transfected cells.  The cells expressed GFP (Figure 10 A), 

indicating the construct is functional.  HEK293 cells express TH [45], even though they 

were isolated from kidney cells, because they have been found to more closely resemble 

neuronal cells than kidney cells [46].  The TH promoter-driven GFP was also expressed 

in PC12 cells (Figure 10 B), which are rat pheochromocytoma cells that express TH [47].  

HEK293 cells were transfected with the TH-driven CreMyc plasmid (pLv-MCS-THp-

CreMyc) and selected with blasticidin to generate a stable pool of cells.  The extracts 

from these cells were run on a western blot along with positive control lysates of 

HEK293 cells transiently transfected with the ubiquitously expressed CreMyc plasmid 

(pCAG-CreMyc) (Figure 10 C).  Both transfected cell populations expressed CreMy
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Figure 9.  shRNA-mediated knockdown of AMPK alpha activity in HEK293 cells  

(A) Representative western blot of HEK293 cells transfected with AMPKα1 and 2 loop 3 

shRNA and control shRNA.  Cells were lysed after 72 hrs.  Lysates were electrophoresed 

on an 8% SDS-PAGE gel and immunoblotted with anti-phospho-ACC, anti-ACC, and 

anti-actin.  Lysates from one experiment were also electrophoresed on a 10% SDS-PAGE 

gel and immunoblotted with anti-AMPKα and anti-actin.  (B) Phospho-ACC protein 

levels in shRNA-transfected HEK293 cells compared to control shRNA-transfected cells 

as a percentage of total ACC levels after normalizing to actin loading control.  Relative 

protein levels are listed as percentages of control.  Results are representative of 3 

independent experiments.  Data was analyzed with NIH ImageJ software.  Error bars 

represent the standard error of the mean.  (**) P<0.01. 
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Figure 10.  Expression of TH promoter-driven constructs 

(A) Fluorescence micrograph of HEK293 cells transfected with TH promoter-driven GFP 

plasmid (pLv-MCS-THp-GFP).  Transiently transfected cells were selected with 10 

µg/ml Blasticidin to generate a stable pool of transfected cells.  (B) Fluorescence 

micrograph of PC12 cells infected with TH promoter-driven GFP lentivirus.  (C) Western 

blot of HEK293 cells transfected with TH promoter-driven CreMyc plasmid (pLv-MCS-

THp-CreMyc) and ubiquitously expressed CreMyc plasmid (pCAG-CreMyc).  Cells were 

lysed after 72 hrs.  Lysates were electrophoresed on a 10% SDS-PAGE gel and 

immunoblotted with anti-Myc.   
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(38 kDa), and all HEK293 cell populations did not express endogenous Myc (49 kDa) as 

expected [48].  

 

Cre recombinase-driven recombination 

The U6 promoter was disrupted with two LoxP sites flanking an RNA polymerase 

III stop site.  The DNA was tested with recombinant Cre to ensure the floxed sequence 

was removed.  The recombined DNA was digested with XhoI and PvuII and 

electrophoresed on an agarose gel to determine the size of the resulting fragments (Figure 

11).  The recombination removed 52 bp, including the XhoI site, from the DNA.  This 

can be seen in the gel as a decrease in the amount of 770 and 279 bp fragments and the 

appearance of a 997 bp fragment (indicated with an arrow).  The reaction is reversible, so 

the reaction proceeds to equilibrium.  The banding pattern indicates the recombination 

occurred as expected.   
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Figure 11.  In vitro recombination of disrupted U6 promoter construct with Cre 
recombinase 

Agarose gel of pENTR-U6-LoxP-AMPKα1&2shRNA Loop 3 construct recombined with 

Cre recombinase. Lane 1 contains a ladder. Lanes 2 and 3 contain pENTR-U6-LoxP-

AMPKα1&2shRNA DNA digested with XhoI and PvuII. Lane 3 was recombined with 

Cre recombinase prior to digestion.  
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IV. DISCUSSION 

 

AMPK alpha 1 and 2 knockdown 

AMPK is a key regulator of cellular metabolism, and it exerts its function through 

the catalytic alpha subunit.  Knocking down both isoforms of the catalytic subunit is a 

way to study the function of AMPK; however, previous knockdowns of AMPKα were 

only designed to be effective in one model system.  We originally tested an shRNA 

against AMPKα1 and 2 that had been previously published [34], but the target sequence 

was not conserved between multiple species.  Therefore, we were unable to test the 

knockdown in a convenient system.  This led us to develop an siRNA that can target both 

catalytic α1 and α2 isoforms of AMPK in human, mouse, and rat cells.  This new siRNA 

could be used in any number of systems because the sequence is conserved.  Because 

siRNA only causes a transient knockdown in protein levels, we converted the siRNA into 

an shRNA.  The shRNA caused a significant reduction in AMPKα protein levels in both 

human and mouse cells.  We hypothesize the shRNA will also be effective in rat cells 

because the sequence is 100% conserved.   

 

When designing an shRNA, the loop that is used can have a significant impact on 

the knockdown of the target protein [43].  We chose to test three different loops to 
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determine which is the most effective.  The complement of the most commonly reported 

loop (loop 3) was found to be the most effective.  This loop can be used for shRNAs that 

end in thymidine residues as an alternative to the most common loop to prevent the 

formation of an RNA polymerase III stop site.   

 

The shRNA was cloned into the pENTRTM/U6 Entry vector from Invitrogen.  

From this plasmid, the shRNA can be transferred into other expression systems such as 

the lentiviral Block-iTTM Dest vector from Invitrogen, which can be used to make a 

lentivirus containing the shRNA.  Lentiviral infection with the shRNA should cause 

greater knockdown due to a higher efficiency of transduction.   

 

Knockdown of protein levels does not necessarily correspond to a reduction in 

activity of the target protein.  For this reason, we wanted to ensure AMPKα activity was 

also reduced by the shRNA.  ACC is phosphorylated at Ser79 by AMPKα [49].  ACC 

catalyzes the production of malonyl-CoA from acetyl-CoA, thus providing the starting 

material for fatty acid synthesis.  When ATP is depleted from the cell, ACC is inactivated 

by AMPK, and acetyl-CoA is used for energy production in the citric acid cycle.  The 

reduction in phospho-ACC levels indicates that AMPK activity, not just protein levels, 

was reduced by the shRNA.   

 

Tissue-specific constructs 

The tyrosine hydroxylase promoter will be used to generate tissue-specific 

expression of the shRNA.  A plasmid containing TH promoter-driven GFP was generated 
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to visualize where the TH promoter was expressed.  GFP was expressed in HEK293 and 

PC12 cells, which are TH positive, so the promoter is functional.  Also, the PC12 cells 

were infected with a lentivirus containing TH promoter-driven GFP.  This lentivirus was 

over 12 kb in size.  The generally accepted size limit for a lentivirus to be efficiently 

packaged into viral particles is about 10 kb.  The expression of GFP in these cells 

indicates that a larger virus is still capable of being effectively packaged and infecting 

cells.  This is important because the final virus will be about 12 kb, so we would expect 

the final virus to be functional from this result.   

 

A plasmid containing TH promoter-driven Cre recombinase with a Myc tag (pLv-

MCS-THp-CreMyc) was generated to direct tissue-specific expression of Cre 

recombinase.  Cre, when used with the shRNA with a disrupted promoter, will restore the 

promoter and allow the shRNA to be made in TH positive cells only.  The Myc tag was 

detected in lysates of a stable pool of HEK293 cells transfected with pLv-MCS-THp-

CreMyc, indicating the plasmid is functional.   

 

Disrupted U6 promoter 

The U6 promoter of the shRNA was disrupted by a floxed sequence of DNA 

containing an RNA polymerase III stop site.  The cloning to create this construct was 

challenging because the floxed sequence of DNA was ordered as small, approximately 90 

bp, DNA oligos that were annealed and digested before ligation into the NdeI site of the 

vector.  The small size of the insert and the lack of directional cloning made the reaction 

very unfavorable.  To overcome this issue, we designed oligos that would have overhangs 
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following annealing that are complementary to the NdeI site in the vector.  The oligos 

were synthesized with phosphorylated 5’ ends, which are required by DNA ligase, to 

allow them to be ligated directly into the digested vector following annealing.  Ligation 

of this oligo into the vector would remove the NdeI site in the vector, so we were able to 

digest the ligated DNA with NdeI before transformation to get rid of any vector DNA 

that religated with itself.  This strategy selected for successful ligations and removed the 

large amount of background vector religation.  The floxed sequence of DNA was 

removed from the promoter in vitro following treatment with Cre recombinase.  This 

indicates the floxed sequence is able to be removed as expected, and the promoter should 

be restored following expression of Cre recombinase.   

 

Future work 

In the future, the HEK293 cells stably expressing TH promoter-driven CreMyc 

will be transfected with the shRNA with a disrupted promoter to test the recombination 

mediated by Cre to determine if the U6 promoter function is restored following excision 

of the floxed sequence.  The TH-driven plasmids must also be tested to ensure they are 

truly tissue specific and are not expressed in TH negative cells.  In order to make the final 

virus, the cassette containing the TH promoter-driven Cre recombinase will be transferred 

to the same vector as the shRNA with the disrupted promoter.  

 

The construct with the disrupted promoter must still be tested to determine if the 

shRNA is no longer expressed.  If the floxed sequence of DNA is not sufficient to disrupt 

the U6 promoter, and there is still some expression of the shRNA, a GFP reporter gene 
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can be cloned into the sequence.  This reporter gene is very large and will effectively 

prevent transcription from the promoter.  The construct with the disrupted promoter must 

also be tested to determine if the shRNA is expressed after recombination with Cre 

recombinase.  Following recombination with Cre, one 34 basepair LoxP site remains in 

the DNA.  The distance between crucial elements of the U6 promoter is critical to its 

proper function, but the sequence of DNA between the elements is not [50].  If the extra 

DNA from the LoxP site prevents efficient binding of RNA polymerase III to the restored 

U6 promoter, an alternate strategy is to remove part of the U6 promoter so the LoxP site 

remaining after recombination replaces it.  This should ensure the promoter will be 

functional following recombination.   

 

In future studies, the tissue-specific shRNA will be used to generate a rat 

transgenic strain with knockdown of AMPKα1 and 2 only in cells that express TH.  A 

lentivirus containing both the shRNA with the disrupted U6 promoter and the TH 

promoter-driven Cre recombinase will be used to infect fertilized rat embryos.  A 

technique called embryo transfer will be used to transplant the infected embryos into 

pseudopregnant mothers [51-52].  The pups will have the transgene integrated into every 

cell, but the shRNA will only be made in cells that express TH.  Therefore, the rats will 

have tissue-specific knockdown of AMPKα1 and 2.  We expect the knockdown should 

not result in embryonic lethality because it is not a complete knockout, so some AMPKα 

protein is still made, and it is only knocked down in some tissues.  Previously, a mouse 

strain with total body knockout of AMPKα1 and liver-specific knockout of AMPKα2 

was generated [3,18].  The mice were viable, so this indicates that tissue-specific double 
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knockout models are possible, although it is currently not known which tissues require 

expression of AMPKα1 and 2 for survival of the animals.  It is also important to 

remember that the rats will have knockdown of AMPKα1 and 2, not knockout.  It is 

possible that minimal expression of AMPKα1 and 2 could allow the animals to survive.  

If the animals are not viable, an alternative is to use a conditional expression system, such 

as a Tet-On system [53], to control the temporal expression of Cre recombinase.  Using 

this system, Cre recombinase would not be expressed in TH-positive tissues until the 

animals are treated with the antibiotic tetracycline or a derivative, doxycycline.  In this 

way, knockdown of AMPK would not occur until after the animals are already born, so 

defects in development would be avoided.  The rats will be used in future studies to 

determine if breathing regulation by carotid body type I cells is impaired by knockdown 

of AMPK.  If AMPK is necessary for carotid body type I cells to respond to hypoxia, the 

rats will not be able to upregulate their breathing rate in response to hypoxia.  These 

studies will help elucidate the role of AMPK in oxygen sensing by the carotid body.   

  

In conclusion, we have generated a new shRNA that can significantly knock 

down protein levels and activity of AMPKα1 and 2 in multiple species.  This shRNA will 

later be used to generate a transgenic rat strain with tissue-specific knockdown of 

AMPKα1 and 2. 
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V. APPENDIX 

Abbreviations 

 

AMPK- 5’-Adenosine Monophosphate-Activated Protein Kinase 

PRKAA- Protein-Kinase, AMP-activated 

ACC- Acetyl-CoA Carboxylase 

CaMKKβ- Calmodulin-Dependent Protein Kinase Kinase β 

AICAR- 5-Aminoimidazole-4-Carboxyamide Ribonucleoside 

RNAi- RNA Interference 

dsRNA- Double-Stranded RNA 

siRNA- Small Interfering RNA 

RISC- RNA-Induced Silencing Complex 

shRNA- Short Hairpin RNA 

miRNA- Micro RNA 

TH- Tyrosine Hydroxylase 

MCS- Multiple Cloning Site 

GFP- Green Fluorescent Protein 

PCR- Polymerase Chain Reaction 
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