Impurity Photomagnetolectric Effect: Application to Semi-Insulating GaAs

David C. Look
Wright State University - Main Campus, david.look@wright.edu

Follow this and additional works at: https://corescholar.libraries.wright.edu/physics

Part of the Physics Commons

Repository Citation
https://corescholar.libraries.wright.edu/physics/624

This Article is brought to you for free and open access by the Physics at CORE Scholar. It has been accepted for inclusion in Physics Faculty Publications by an authorized administrator of CORE Scholar. For more information, please contact library-corescholar@wright.edu.
Impurity photomagnetoelectric effect: Application to semi-insulating GaAs

D. C. Look

Physics Department, University of Dayton, Dayton, Ohio 45469
(Received 15 June 1977)

The theories of the photomagnetoelectric (PME) and photoconductivity (PC) effects in semiconductors are extended to include unequal excitation rates of holes and electrons, as might be expected from impurity photo-excitation. The results are applied to two semi-insulating Cr-doped GaAs crystals, which exhibit mixed conductivity. It is seen that the PC and PME effects give complementary information on the holes and electrons. In the impurity excitation region the PME current responds strongly to changes in the absorption coefficient, and provides a convenient way to study this quantity.

I. INTRODUCTION

Semi-insulating GaAs, produced by doping with Cr and/or O is widely used as a substrate material for GaAs devices. Because of this it has been studied extensively by many techniques in recent years, including the photomagnetoelectric (PME) effect. However, the PME effect varies strongly with the absorption constant (α) and, thus, as far as we know, has been experimentally applied to semiconductors only in the intrinsic photoexcitation region, where α is large. This is true of the available theoretical treatments also, which are formulated under the condition that electrons and holes are excited at equal rates. For extrinsic (impurity, or defect) photoexcitation this condition may not hold, so the theory must be extended. In semi-insulating Cr-doped GaAs we have found that the PME response can be measured down to about 0.6 eV, much lower than the intrinsic response, which cuts off at about 1.42 eV, the room-temperature bandgap. In this paper we develop the theory of the impurity PME and photoconductivity (PC) effects and use the results to elucidate the nature of the Cr energy levels in GaAs:Cr.

II. THEORY

The theory of current-carrier transport in semiconductors has been developed rather extensively by van Roosbroek, under a variety of conditions, including free-charge neutrality, total-charge neutrality, and non-neutrality (space charge). The neutrality aspects applicable to this paper will be discussed later, although they are not specifically invoked in the theory which follows.

The continuity equations for holes and electrons may be written

\[ \nabla \cdot \mathbf{J}_h = \frac{\partial \rho}{\partial t} + r_h - g_h, \tag{1} \]

\[ \nabla \cdot \mathbf{J}_e = \frac{\partial \rho}{\partial t} + r_e - g_e, \tag{2} \]

where \( \mathbf{J}_h \) is the hole current density, \( g_h \) the hole generation rate, \( r_h \) the hole recombination rate, and \( \rho \) the "excess" hole density, i.e., \( \rho = n - n_e \), where \( n_e \) is the hole density in the dark. Similar definitions hold for the electrons, and \( e \) is the absolute value of the electronic charge. We will assume that the light propagation is in the \( y \) direction and that the generation rates are independent of \( x \) and \( z \). Then we can write \( g_h = \alpha n_e J_\nu e^{-\alpha x} \) and \( g_e = \alpha n_e J_\nu e^{-\alpha x} \), where \( \alpha \) is the absorption constant, \( n_e \) and \( n_e \) are the efficiencies, respectively, for hole and electron excitation, and \( J_\nu \) is the light intensity (photons/cm² sec) incident at the surface. In reality, \( J_\nu \) should be adjusted for reflections but we will not do so here. For interband (intrinsic) excitation, \( n_e = n_\nu \), of course, so that \( g_h = g_h \). If there are no sources or sinks of total current, then \( \nabla \cdot \mathbf{J} = \nabla \cdot (\mathbf{J}_h + \mathbf{J}_e) = 0 \), and, at steady state, \( r_h - g_h = r_e - g_e \). For intrinsic excitation then, \( r_e = r_n \), but for extrinsic excitation this will not generally be the case. We will assume phenomenological expressions for the recombination rates: \( r_h = \tilde{r}_h / \tau_h \) and \( r_e = \tilde{r}_e / \tau_e \), where \( \tau_h \) and \( \tau_e \) are independent of sample coordinates. Such independence should hold if the sample is homogeneous and if the occupational levels of the dominant recombination centers do not change appreciably, such as for small-signal conditions.

The hole and electron current densities may be written, for small Hall angles (\( \tan \theta_B = \mu_B B \)), as

\[ \mathbf{J}_h = \sigma_h \mathbf{E} - eD_h \nabla \rho + \mu_h B \mathbf{J}_h \times \mathbf{B} \tag{3} \]

\[ \mathbf{J}_e = \sigma_e \mathbf{E} + eD_e \nabla \rho - \mu_e B \mathbf{J}_e \times \mathbf{B} \tag{4} \]

where for holes, \( \sigma_h \) is the conductivity, \( D_h \) the diffusion constant, and \( \mu_h \) the Hall mobility, and similarly for electrons, \( \mathbf{E} \) is the electric field, and \( \mathbf{B} \) the magnetic field strength. For \( \mu_h B \ll 1 \), we can approximate \( \mathbf{J}_h \) in the third term of Eq. 3 by the first two terms, and, for \( \mu_e B \ll 1 \), we can do the same in Eq. (4). Then, by adding Eqs. (3) and
and (4) the total current density is found:
\[ \mathbf{J} = (\sigma_n + \sigma_p) \mathbf{E} + e \left( D_p \nabla n - D_p \nabla p \right) + (\mu_p \sigma_p - \mu_n \sigma_n) \mathbf{E} \times \mathbf{B} \]
\[ - e \left( \mu_n D_p \nabla n + \mu_p D_p \nabla p \right) \times \mathbf{B} = \frac{\mu_n \mu_p \sigma_n \sigma_p}{(\sigma_n + \sigma_p)^2} \mathbf{E}. \quad (5) \]
Here the four terms on the right-hand side represent drift, Dember, Hall, and PME contributions, respectively.\(^3\)
Again, for \( \mu_n B \ll 1 \), we can use Eq. (5) to approximate
\[ \mathbf{E} \approx \left[ \mathbf{J} - e (D_p \nabla n - D_p \nabla p) \right] / (\sigma_n + \sigma_p) \quad (6) \]
and substitute this into the third and fourth terms of Eq. (5). After some manipulation the result is
\[ \mathbf{J} = (\sigma_n + \sigma_p) \mathbf{E} + e (D_p \nabla n - D_p \nabla p) + \frac{\mu_n \mu_p \sigma_n \sigma_p}{(\sigma_n + \sigma_p)^2} \mathbf{J} \times \mathbf{B} \]
\[ - e \left( \mu_n D_p \nabla n + \mu_p D_p \nabla p \right) \times \mathbf{B} = \frac{\mu_n \mu_p \sigma_n \sigma_p}{(\sigma_n + \sigma_p)^2} \mathbf{E}. \quad (7) \]
The fourth term on the right-hand side is the PME contribution to the current density. Note that \( \nabla n = \nabla \bar{n}, \ n \bar{p} = \nabla \bar{p} \), and if we assume that these are collinear with the light vector \( \mathbf{E} = I_0 \mathbf{f} \), and that \( \mathbf{B} \) is in the \( z \) direction \( (\mathbf{B} = B \mathbf{k}) \), then, under short-circuit conditions \( (I_s = 0) \), the PME current density will be
\[ \mathbf{J}_{\text{PME}} = - e B (\mu_n + \mu_p) \left[ \left( \sigma_n D_n \frac{\partial n}{\partial y} \right) \mathbf{E} + (\sigma_n + \sigma_p) \frac{\partial p}{\partial y} \right] \mathbf{E}. \quad (8) \]
We next develop the differential equations for \( n \) and \( p \). Substitution of Eqs. (3) and (4) into Eqs. (1) and (2), respectively, yields
\[ \nabla \cdot \mathbf{J}_n = - \frac{\partial \bar{n}}{\partial t} \frac{e}{e} \cdot \mathbf{E} - \frac{\partial \bar{n}}{\partial t} \frac{\partial \mathbf{E}}{\partial t} + D_n \nabla^2 \bar{n} = \frac{\partial \bar{n}}{\partial t} + \bar{r}_n - \bar{g}_n \]
\[ \nabla \cdot \mathbf{J}_p = \frac{\partial \bar{p}}{\partial t} \frac{e}{e} \cdot \mathbf{E} + \frac{\partial \bar{p}}{\partial t} \frac{\partial \mathbf{E}}{\partial t} + D_p \nabla^2 \bar{p} = \frac{\partial \bar{p}}{\partial t} + \bar{r}_p - \bar{g}_p \]
\[ (9) \]
where we have assumed that \( \nabla D_n = \nabla D_p = 0. \]
\( (D = \hbar T \mu / c, \text{ by the Einstein relation}) \) Multiplication of Eq. (9) by \( \sigma_n \), and Eq. (10) by \( \sigma_p \), and then adding the results, yields
\[ \bar{r}_n - \bar{g}_p = \bar{r}_n - \bar{g}_n \]
\[ \frac{\sigma_n D_n \nabla^2 \bar{n} + \sigma_p D_p \nabla^2 \bar{p}}{\sigma_n + \sigma_p} + \frac{1}{e} \frac{\sigma_n \nabla \bar{n} - \sigma_p \nabla \bar{p}}{\sigma_n + \sigma_p} \mathbf{E}, \quad (11) \]
where we have now assumed steady-state conditions. Again, we approximate \( \mathbf{E} \) by Eq. (6), and, after lengthy manipulation, can show that
\[ \bar{r}_n - \bar{g}_p = \bar{r}_n - \bar{g}_n \]
\[ \frac{\sigma_n D_n \nabla \bar{n} + \sigma_p D_p \nabla \bar{p}}{\sigma_n + \sigma_p} \mathbf{E} + \frac{\mu_n \mu_p \sigma_n \sigma_p}{(\sigma_n + \sigma_p)^2} \mathbf{E} \cdot \bar{J}. \quad (12) \]
Here it may be noted that the argument of the first term on the right-hand side is the same as one of the factors in the PME term of Eq. (7). The second term in Eq. (12) will vanish, because no total current will flow in the direction of \( \nabla \bar{n} \) and \( \nabla \bar{p} \), i.e., the light propagation direction.
To relate \( \nabla \bar{n} \) to \( \nabla \bar{p} \) we use the fact that \( \bar{r}_n - \bar{g}_n \) to get
\[ \nabla \bar{p} / \bar{r}_p = (\nabla \bar{n} / \bar{r}_n) - \alpha^2 (\eta_p - \eta_n) \mathbf{L} e^{\alpha y} \]
\[ (13) \]
This expression can be substituted into Eq. (12), but the resulting differential equation, after taking the divergence, becomes rather cumbersome. For intrinsic excitation, \( \eta_p = \eta_n \), and the second term on the right-hand side vanishes; furthermore, for extrinsic excitation, \( \alpha \) will be small and we may be able to ignore this term here also. We will see later that a condition for this is \( \mathcal{L} = \mathcal{L}_0 \ll 1 \), where \( L \) is a diffusion length, about \( 10^{-4} \) cm. Typical measured values of \( \alpha \) in the extrinsic region are \( 1 - 10 \) cm\(^{-1} \), so that indeed, \( \mathcal{L} \ll 1 \). At any rate, we will solve Eq. (12) under the approximation \( \nabla \bar{p} / \bar{r}_p = \nabla \bar{n} / \bar{r}_n \), giving the following differential equations for \( \bar{p} \) and \( \bar{n} \):
\[ \nabla \cdot D_n \nabla \bar{n} - \bar{n} / \bar{r}_n = - \alpha \eta_p \mathbf{L} e^{\alpha y} \]
\[ \nabla \cdot D_p \nabla \bar{p} - \bar{p} / \bar{r}_p = - \alpha \eta_n \mathbf{L} e^{\alpha y} \]
\[ (14) \]
\[ (15) \]
where
\[ D_n^* = \frac{\sigma_n D_n + \sigma_p D_p \bar{r}_p / \bar{r}_n}{\sigma_n + \sigma_p} \]
\[ D_p^* = \frac{\sigma_p D_p + \sigma_n D_n \bar{r}_p / \bar{r}_n}{\sigma_n + \sigma_p} \]
\[ (16) \]
\[ (17) \]
If \( \bar{r}_p = \bar{r}_p \), then \( D_n^* = D_p^* = D^* \), the familiar ambipolar diffusion constant.\(^3\) Note that the effective diffusion length is the same for both electrons and holes; i.e., \( L = (D_n^* \tau_n)^{1/2} = (D_p^* \tau_p)^{1/2} \).
At this point it is perhaps worthwhile to discuss the concept of the "relaxation" semiconductor, introduced by van Roosbroeck,\(^5\) which differs from the more commonly encountered "lifetime" semiconductor. The latter has a dielectric relaxation time \( \tau_d \) shorter than the carrier lifetimes, so that local charge neutrality obtains. Then, \( \bar{n} = \bar{p} \) (and \( \bar{r}_p = \bar{r}_p \)) in the absence of trapping, or \( \bar{n} / \bar{r}_p = \bar{p} / \bar{r}_p \) in the more general case. For steady-state photoconductivity in the relaxation semiconductor, how...
ever, \( \tau_c \gg \tau \), and an approximate state of overall charge neutrality is maintained by equal volume capture rates of holes and electrons, i.e., \( n/\tau_n \approx p/\tau_p \). A special case of this is Schetzina’s “conductivity-locked” transport\(^{16}\) which holds if \( \tau_p \), \( \mu_n \) and \( \mu_p \) do not vary with the light irradiation, thus keeping the ratio \( \sigma_e/\sigma_h \) constant. Since \( \dot{\mathbf{n}}/\tau_n = \dot{\mathbf{p}}/\tau_p \) in all of these cases (for constant \( \tau_0 \)) the resulting differential equations are essentially the same, and our expressions for \( \dot{\mathbf{n}} \) and \( \dot{\mathbf{p}} \) are the same as Schetzina’s,\(^{14} \) with the substitution \( n/\tau_n = p/\tau_p \). For 10\(^{9} \) \( \Omega \) cm material, with a dielectric constant of 10, we can calculate \( \tau_d \approx 10^{-4} \) sec, which is certainly longer than the carrier lifetimes (10\(^{-8}\)–10\(^{-1} \) sec) normally encountered in GaAs:Cr at room temperature. At higher light levels, however, it is possible to have \( \tau_d \approx \tau \). Although there is evidence for conductivity locking in some of our samples this is not a major point in the analysis which follows, and thus the distinction between the lifetime and relaxation cases will not be dealt with further in this paper.

Equations (14) and (15) are readily solved only if \( D_p^* \) and \( D_n^* \) are independent of coordinates. This will occur under the following conditions: (i) small signal strengths, for which \( \sigma_e = \sigma_n \); (ii) predominant electron conductivity, for which \( D_e^* = D_e^{\tau_e}/\tau_e \); (iii) predominant hole conductivity, for which \( D_h^* = D_h^{\tau_h}/\tau_h \); or (iv) equality of \( n \) and \( p \), for which

\[
D_n^* = D_n D_h (1 + \tau_p/\tau_n)/ (D_n + D_h) \text{,}
\]

\[
D_p^* = D_n D_h (1 + \tau_n/\tau_p)/ (D_n + D_h) \text{.}
\]

From Eq. (7) it is seen that only \( D_h^* = D_h \) is important for case (ii), and only \( D_e^* = D_e \) for case (iii); i.e., the hole diffusion is important for \( n \)-type samples, and the electron diffusion for \( p \)-type samples, and the electron diffusion for \( p \)-type samples.

\[
\nabla \cdot \mathbf{n}/L^2 = - (D_n^*)^{-1} \alpha n I_0 \text{e}^{-0y} \text{,} \tag{18}
\]

\[
\nabla \cdot \mathbf{p}/L^2 = - (D_p^*)^{-1} \alpha p I_0 \text{e}^{-0y} \text{,} \tag{19}
\]

where \( \nabla \cdot \mathbf{n} = \partial n/\partial y \) and \( \nabla \cdot \mathbf{p} = \partial p/\partial y \). These equations may be readily solved by standard techniques to yield

\[
n = N_0 \text{e}^{-yL} + B_0 \text{e}^{-yL} + C_0 \text{e}^{-0y} \text{,} \tag{20}
\]

\[
p = P_0 \text{e}^{-yL} + B_0 \text{e}^{-yL} + C_0 \text{e}^{-0y} \text{,} \tag{21}
\]

where

\[
C_0 = \alpha n I_0 \tau_n / (\alpha L^2 - 1) \text{,} \tag{22}
\]

and

\[
C_p = \alpha n I_0 \tau_p / (\alpha L^2 - 1) \text{.} \tag{23}
\]

It must be remembered here that Equations (20)–(23) are valid only for small \( \sigma \), if \( \eta = \eta_p \).

The boundary conditions are given by the perpendicular currents at the surfaces, which may be obtained from Equations (3), (4), and (6):

\[
D_n^* \frac{\partial \mathbf{n}}{\partial y} \mid_{y=0} = S_{0n} \dot{\mathbf{n}}(0) \text{,} \tag{24a}
\]

\[
-D_n^* \frac{\partial \mathbf{n}}{\partial y} \mid_{y=d} = S_{dn} \dot{\mathbf{n}}(d) \text{,} \tag{24b}
\]

\[
D_p^* \frac{\partial \mathbf{p}}{\partial y} \mid_{y=0} = S_{0p} \dot{\mathbf{p}}(0) \text{,} \tag{24c}
\]

\[
-D_p^* \frac{\partial \mathbf{p}}{\partial y} \mid_{y=d} = S_{dp} \dot{\mathbf{p}}(d) \text{,} \tag{24d}
\]

where the illuminated surface is at \( y=0 \) and the back surface at \( y=d \). The quantities \( S_p \) and \( S_n \) are surface recombination velocities for holes and electrons, respectively. Then the constants in Eqs. (20) and (21) become

\[
A_n = C_0 \frac{(S_n + D_n^* L)(S_n + \alpha D_n^*) \text{e}^{-yL} - (S_n + D_n^* L)(S_n - \alpha D_n^*) \text{e}^{-0L}}{(S_n + D_n^* L)(S_n + D_n^* L) \text{e}^{-yL} - (S_n - D_n^* L)(S_n - D_n^* L) \text{e}^{-0L}} \text{,} \tag{25a}
\]

\[
B_n = -C_0 \frac{(S_n + D_n^* L)(S_n + \alpha D_n^*) \text{e}^{-yL} - (S_n - D_n^* L)(S_n - \alpha D_n^*) \text{e}^{-0L}}{(S_n + D_n^* L)(S_n + D_n^* L) \text{e}^{-yL} - (S_n - D_n^* L)(S_n - D_n^* L) \text{e}^{-0L}} \text{.} \tag{25b}
\]

The expressions for \( A_p \) and \( B_p \) are the same, except with \( n \rightarrow p \).

The short-circuit PME current \textit{per unit width} \( I_{PME} \) will now be given by Eq. (8), integrated over \( y \),

\[
I_{PME} = \int_{0}^{L} J_y dy = e (\mu_n + \mu_p) BD_n^* \int_{0}^{0} \frac{\partial n}{\partial y} dy
\]

\[
= e (\mu_n + \mu_p) BD_n^* [\hat{n}(d) - \hat{n}(0)]
\]

\[
= e (\mu_n + \mu_p) BD_n^* [\hat{n}(d) - \hat{n}(0)]
\]

\[
+ D_n^* [\hat{p}(d) - \hat{p}(0)] \text{,} \tag{26}
\]

where the last expression is written to maintain a symmetry with respect to \( \hat{n} \) and \( \hat{p} \).

The excess conductance, per unit width, is given by

\[
\hat{G} = \int_{0}^{L} \hat{n} dy = e \int_{0}^{L} (\mu_n \hat{n} + \mu_p \hat{p}) dy
\]

\[
e L [\mu_n A_n + \mu_p A_p] (1 - \text{e}^{-L})
\]

\[
- (\mu_n B_n + \mu_p B_p) (1 - \text{e}^{-L})
\]

\[
- (\alpha L)^{-1} (\mu_n C_n + \mu_p C_p) (1 - \text{e}^{-0L}) \text{,} \tag{27}
\]
where \( \mu_n \) and \( \mu_p \), without superscript \( H \), are conductivity mobilities. We will evaluate these expressions in the limit \( d/L \gg 1 \), since, for typical GaAs wafers, \( d \approx 500 \mu m \), and we expect \( L \approx 1-10 \mu m \). Then terms in \( \varepsilon' d/L \) and \( \varepsilon'' d/L \), and Eqs. (26) and (27) can be written

\[
\hat{G} = \left[ e I_o /(1-\alpha^2 L^2) \right] \left[ \eta_n \mu_n \tau_n (1+\alpha L)/(1-\alpha L) \right] (1-\varepsilon-o) + \alpha (L_{on}+L_{om}-2L) + \alpha^2 L (L_{on}+L_{om})
\]

\[
+ \eta_p \mu_p \tau_p [1+\alpha L] (1-\varepsilon-o) + \alpha (L_{on}+L_{om}-2L) + \alpha^2 L (L_{on}+L_{om})
\]

(28)

\[
(I_{PMX} = \frac{e I_o B (\mu_n^H + \mu_p^H) \alpha L}{2} \left[ \eta_n \left( \frac{L_{on}}{1+\alpha L} - \frac{L_{on} e^{-\varepsilon-o}}{1-\alpha L} \right) \right]
\]

(29)

where \( L_{on} = L/(1+S_{on} \tau_n/L) \), and \( L_{om}, L_{op}, \) and \( L_{up} \) have similar definitions. The \( L_{on} \)'s are "effective" diffusion lengths, conforming to the general notion of, for example, Adduci, et al.\(^7\)

For intrinsic excitation, well above the band gap, we would expect \( \eta_n = \eta_p = \eta \) and \( ad \gg 1 \), since \( \alpha \gg 10^2 \) cm\(^{-1} \). Then

\[
I_{PMX} = e I_o B (\mu_n^H + \mu_p^H) \alpha L / (1+\alpha L)
\]

(30)

\[
\hat{G} = e I_o B \eta_n (\mu_n \tau_n + \mu_p \tau_p) / (1+\alpha L)
\]

(31)

where \( L_o = L/(1+S_{on} \tau_n/L) = L/(1+S_{on} \tau_p/L) \) since, in this case, \( \eta_n = \eta_p \), which, by the boundary condition, leads to \( S_{on} \tau_n = S_{on} \tau_p \). Equations (30) and (31) are essentially the same as those developed by Adduci, et al,\(^7\) except that in their expressions, \( \tau_n = \tau_p \). For \( \alpha L \gg 1 \), and \( \alpha L \ll 1 \), these equations become

\[
(I_{PMX} = e I_o B (\mu_n^H + \mu_p^H) \alpha L / (1+\alpha L)
\]

(32)

\[
\hat{G} = e I_o B \eta_n (\mu_n \tau_n + \mu_p \tau_p)
\]

(33)

where \( h = \mu_n^H / \mu_p^H \), \( c = n/p \), and \( \tau_{PMX} = (\tau_n + c \tau_p) / (1+c) \), \( \tau_{PC} = (\tau_n + b \tau_p) / (1+b) \), as defined by Zitter,\(^\circ\) who considered the PME and PC effects in the presence of trapping. Here we have ignored differences in the Hall and conductivity mobilities. The individual lifetimes \( \tau_n \) and \( \tau_p \) can sometimes be determined from the values of \( \tau_{PC} \) and \( \tau_{PMX} \), as measured according to Eqs. (32) and (33). If \( \tau_n \neq \tau_p \), \( \tau_n \neq \tau_p \), a common technique for measuring the lifetime is based upon Eqs. (30) and (31):

\[
\tau^{1/2} = \left( I_{PMX} / B \hat{G} / \sqrt{\chi} \right) (1+1/\alpha L_o)
\]

(34)

It should be remembered that all of the above expressions for \( I_{PMX} \) and \( \hat{G} \) have been derived under the assumption that \( D_n^*, D_p^*, \) and \( D^* \) are independent of coordinates, which is true if (i) \( \bar{n}, \bar{p} \ll n_o, p_o \), respectively, (ii) \( \eta \gg p \), (iii) \( p \gg n \), or (iv) \( n = p \). An additional assumption, of course, is that the individual \( D^* \)'s, i.e., \( D_n \) and \( D_p \) (or \( \mu_n \) and \( \mu_p \)) are independent of coordinates.

We now consider extrinsic excitation, for which \( \alpha L \ll 1 \), but \( \eta_n \neq \eta_p \) necessarily. First, as discussed earlier, we must be able to ignore the second term on the right-hand side of Eq. (13) in order for Eqs. (20) and (21) to be valid. This term \( \propto \alpha (\bar{n} / \tau_n + \bar{p} / \tau_p) \), whereas \( \bar{n} / \tau_n \) and \( \bar{p} / \tau_p \) are on the order of \( \bar{n} / \tau_n \) and \( \bar{p} / \tau_p \), by Eqs. (20) and (21), if \( \alpha L \ll 1 \). Thus, if \( \alpha L \ll 1 \), the relevant term can be ignored, and Eqs. (28) and (29) can be solved, in this limit, to yield

\[
I_{PMX} = \frac{1}{2} e I_o B (\mu_n^H + \mu_p^H) \alpha L \left[ \eta_n (L_{on} - L_{on} e^{-\varepsilon-o} \right]
\]

\[
+ \eta_p (L_{op} - L_{op} e^{-\varepsilon-o}) \right]
\]

(35)

If \( L_{on} = L_{om} = L_{on} \) \( L_{op} = L_{op} \) then

\[
I_{PMX} = \frac{1}{2} e I_o B (\mu_n^H + \mu_p^H) \alpha L (1-e^{-\varepsilon-o}) (\eta_n L_n + \eta_p L_p)
\]

(36)

\[
= \frac{1}{2} e I_o B (\mu_n^H + \mu_p^H) \alpha (1-e^{-\varepsilon-o})
\]

\[
\times \left( \frac{\eta_n}{1+S_{on} \tau_n/L} + \frac{\eta_p}{1+S_{on} \tau_p/L} \right) \frac{n p \tau_n + n p \tau_p}{n p \tau_n + n p \tau_p}
\]

(37)

where, again, \( D_n = k T \mu_n / e \) and \( D_p = k T \mu_p / e \). Similarly, for \( \alpha L \ll 1 \), \( \hat{G} \) becomes

\[
\hat{G} = e I_o (1-e^{-\varepsilon-o}) (\eta_n \mu_n \tau_n + \eta_p \mu_p \tau_p)
\]

\[
= e I_o (1-e^{-\varepsilon-o}) (\mu_n (1-b^2) \tau_p)
\]

(38)

where \( \tau_{PC} = (\eta_n \tau_n + b \eta_p \tau_p) / (1+b) \), defined in analogy with Zitter's\(^\circ\) \( \tau_{PC} \). For \( \alpha L \ll 1 \), it is noted that \( I_{PMX} \sim \alpha^2 \), while \( \hat{G} \sim \alpha \), by Eqs. (37) and (38), respectively. The PME current depends upon \( \alpha \) more strongly since it arises from the gradients of the carrier concentrations, whereas the photoconductivity is determined by the totals of the concentrations.

### III. EXPERIMENT

The experiments were performed on a dc Hall-effect apparatus, designed for high-resistance (-10\(^{12} \) \( \Omega \)) measurements, similar to the apparatus...
described in Ref. 9. Sample resistances were about $10^2$ Ω or less. The monochromatic light intensity at the sample was estimated to be about $5 \times 10^{14}$ photons/cm²·sec, constant over the spectral range. Appropriate filters were used to minimize higher-order light in the diffraction pattern. Typical electric fields of about 1 V/cm were used for the PC measurements, and a magnetic field of 18 kG was used for the PME measurements. Nonlinear field effects were small.

The two samples were cleaved from Cr-doped GaAs(100) wafers to approximate dimensions of 10 x 5 x 0.4 mm. Sample A was one of the most "n-type" of a large group of GaAs:Cr crystals which had been previously examined, and sample B one of the most "p-type." Their respective Fermi levels were 0.645 and 0.699 eV from the conduction band. The assignment of carrier type is nebulous in most GaAs:Cr samples because of mixed conductivity. In fact, nearly all such crystals have $p > n$, but yet have negative Hall coefficients. These phenomena are discussed in detail elsewhere.

The data are presented in Fig. 1. Here $\tilde{\sigma} = \tilde{G}/d$ is the additional conductivity in the light. The dark conductivities are also noted in the figure. For convenience, we have plotted the measured PME current, $I_{\text{PME}}$, rather than $I_{\text{PME}}$ itself, the normalized current per unit width. (Here $w_d \approx 4.8$ mm, and $w_b \approx 6.0$ mm, if normalization is desired.) The plot of $\alpha$ is crudely extracted from Fig. 2 of Ref. 12 and is meant only to approximate the spectral response of the absorption constant for "pure GaAs."

### IV. ANALYSIS

We first consider the intrinsic (above-band-gap) PC and PME responses, for which Eqs. (30) and (31) should apply. Suppose we hypothesize that $\tau_n = \tau_p$. Since $\eta_n \approx \eta_{p}$ in this region, it follows that $n \approx p$, because $n, p \gg n_0, p_0$, respectively (i.e., $\tilde{\sigma} \approx \tau_n$). Then $D_n^* = D_p^* = D_p = 2D_p / (D_n + D_p) \approx 18.1$ cm²/sec for sample A, and 18.8 cm²/sec for sample B. (The mobilities were calculated by means of a mixed-conductivity analysis). Now, it is apparent from Fig. 1 that $\tilde{G}$ and $I_{\text{PME}}$ do not vary with light energy nearly as strongly as $\alpha$, which suggests, according to Eqs. (30) and (31), that $\alpha L_0 \approx 1$. (This condition necessarily makes $\alpha L \gg 1$, since $L > L_0$). Then Eq. (34) gives $\tau_n \approx 6.6 \times 10^{-4}$ and $\tau_p \approx 5.9 \times 10^{-4}$ sec, which leads to $L_n \approx (D_p \tau_p) \approx 1.1 \times 10^5$ μm, and $L_p \approx 3.3$ μm. We can check these results directly from Eqs. (30) and (31) by using our approximate value of $I_0$, and assuming that $\eta \approx 1$. The results of this are $L_{oA} \approx 0.29$ μm, $\tau_n \approx 1.8 \times 10^{-7}$ sec, and $L_{OB} \approx 4.1$ μm, $\tau_p \approx 7.2 \times 10^{-9}$ sec. A comparison of these calculations reveals that an assumption of $\tau_n \approx \tau_p$ is probably correct for sample B, but almost certainly not correct for sample A, since the above results for sample A are inconsistent.

A second, presumably more precise, analysis can be carried out by relaxing the assumption, $\alpha L_0 \gg 1$, and then plotting $I_{\text{PME}}$ vs $\alpha^2$, and $\tilde{G}/I_{\text{PME}}$ vs $\alpha^2$. The first plot has an x axis intercept of $-L$, and the second, $-L_0$, according to Eqs. (30) and (31). For sample A, the results are $L \approx 2.2$ μm, $L_0 \approx 1.1$ μm which leads to $S_n \tau_n / L = S_p \tau_p / L \approx 1$, or $S_n \tau_n \approx S_p \tau_p \approx 2.2$ μm. The extraction of $L$ and $L_0$ from such plots is valid, however, only if the mobilities and lifetimes are independent of $h\nu$, which may not be the case at our light intensity. At any rate, this value of $L$ differs considerably from our first estimate and thus the correct value is in doubt. It is still possible to get an approximate value of $\tau_n$ for this sample from Eq. (31) by realizing that $\mu_n \gg \mu_p$ for GaAs, and, for an "n-type" sample, $\tau_n \approx \tau_p$, giving $\mu_n \tau_n \gg \mu_p \tau_p$ then $\tau_n = 2 \times 10^{-7}$ sec.

For sample B, a plot of $I_{\text{PME}}^* \alpha^2$ vs $\alpha^2$ gives $L = 4$ μm, in good agreement with the previous values.
Unfortunately, $\dot{C}$ does not decrease as $\alpha$ increases, making a plot of $\dot{C}/I_{\text{PME}}$ vs $\alpha^2$ virtually meaningless. The problem here may again be a spectral dependence of one or more of the quantities $\tau_n$, $\tau_p$, $\mu_n$, and $\mu_p$. However, the previous analyses gave consistent values for $\tau$ and $L$, i.e., $\tau_B \approx 6 \times 10^9$ sec and $L_B = 3.4 \, \mu m$. To the accuracy of this experiment, $L_{OB} \approx L_B$, suggesting that $S_{\text{PME}}/L_B \ll 1$.

We now turn to the extrinsic (below-band-gap) photoexcitation. Here the analysis must be more qualitative, because we no longer can assume $\eta_n = \eta_p$. A detailed discussion of the origins of the photoconductivity has been given elsewhere, but one of the most interesting features of the present data is the seeming complementary nature of the PC and PME data. That is, the curves for $I_{\text{PME}}^B$ and $\delta^B_p$ have many similar features, as do the curves for $I_{\text{PME}}^A$ and $\delta^A_p$. This is not too surprising in view of the fact that the photoconductivity is generally thought of as a majority carrier effect, and the PME current as a minority carrier effect. For example, the PC spectrum for sample $A$, an $n$-type sample, has only a shoulder at $0.90 \, eV$, but the PME spectrum for this sample has a sharp rise at this energy. This might suggest a hole excitation threshold at $0.90 \, eV$ and, indeed, this can be shown to be the case by a mixed-conductivity analysis. Conversely, a known electron excitation threshold, near $1.1 \, eV$, is not seen in the PC spectrum of sample $B$, a $p$-type sample, but is clearly seen in the PME spectrum of this sample. Such behavior would be predicted from Eqs. (37) and (38), because $I_{\text{PME}}$ depends directly upon the excitation efficiencies $\eta_n$ and $\eta_p$, whereas in $\dot{C}$ these efficiencies are weighted by the carrier lifetimes. In an $n$-type GaAs sample this effect is further enhanced because $\mu_n > \mu_p$.

In the small-signal region (i.e., $\delta < \sigma_{\text{dark}}$) we expect variations in both $I_{\text{PME}}$ and $\dot{C}$ to be mainly due to variations in the absorption, through the parameters $\alpha$, $\eta_n$, and $\eta_p$, because $\mu_n$, $\mu_p$, $\tau_n$, and $\tau_p$ should be approximately equal to their dark values. As $\alpha$ increases to the point at which $\alpha^2 > 1$, $\dot{C}$ loses its strong dependence upon $\alpha$, but $I_{\text{PME}}$ does not. Thus, the measurement of $I_{\text{PME}}$ in the extrinsic region gives a convenient qualitative description of $\alpha$. To determine $\alpha$ quantitatively, one may use

$$ \text{Eq. (37) if the other parameters are known. For sample } B \text{ we have calculated } n, p, \mu_n, \mu_p \text{ at a few values of } h\nu \text{ in the extrinsic region, and find that } D^* \text{ varies only from about } 66-71 \, \text{cm}^2/\sec, \text{ for energies up to } 1.3 \, eV, \text{ if } \tau_n \text{ is assumed equal to } \tau_p, \text{ as was found in the intrinsic region. Then, if } S_{\text{PME}}^B/L, S_{\text{PME}}^A/L \ll 1, \text{ if } \tau \text{ is about the same as that in the intrinsic region, and if } \eta_n + \eta_p \approx 1 \text{ (i.e., all absorption due to the photoexcitation of holes and electrons), we find that } \alpha_s \approx 9 \, \text{cm}^2 \text{ at } h\nu = 1.0 \, eV. \text{ For sample } A, \text{ if we assume that } \tau_n > \tau_p, \text{ and } \tau_n \approx 2 \times 10^{-7} \text{ sec in the extrinsic as well as in the intrinsic regions, then, at } 1.0 \, eV, \alpha_s \approx 5 \, \text{cm}^2. \text{ Although these values of } \alpha_s \text{ and } \sigma_{\text{dark}} \text{ are only approximate, they are consistent with literature values, which range from } 2-12 \, \text{cm}^{-1} \text{ for Cr-doped GaAs crystals.}^{14-16}$

V. SUMMARY

We have calculated the photoconductivity and photomagnetoelectric effects in semiconductors under both intrinsic and extrinsic photoexcitation. The former case has already been thoroughly investigated and our results agree with those in the literature. The extrinsic case differs in that we must allow for different excitation rates of holes and electrons. The results are applied to semi-insulating Cr-doped GaAs and show that the impurity PME effect complements the impurity PC effect in this material, because the former responds to minority carrier excitation while the latter responds to majority carrier excitation.

---