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ABSTRACT 

 

Neelam Shinde. M.S., Department of Microbiology and Immunology,  

Wright State University, 2012. Establishment of a quiescent infection of HSV-1 in L929 

fibroblasts using a mitotic inhibitor and IFN-. 

 

The goal for this study was to determine if a quiescent infection of HSV-1 could be 

induced in murine fibroblasts L929 by treating them with the anti-mitotic agent 5-fluoro 

2’deoxy uridine (FUDR) alone and with interferon-. Since neurons are post-mitotic and 

exhibit a lower metabolic rate than other cells, fibroblasts were treated with FUDR to 

induce a post-mitotic state. The cell cycle arrest of fibroblasts would decrease the 

thymidylate metabolism and impair HSV-1 replication. An evaluation of cytopathic 

effects of FUDR was used to determine the optimal concentration which arrests cell 

growth and inhibits viral replication. Image J program developed by NIH was used to 

analyze images of cultured L929 cells. In initial experiments cells showed protection 

from cytopathic effects of HSV-1 when treated with FUDR and IFN-. To determine 

whether the virus was in a quiescent state in L929 cells attempts were made to rescue 

viable virus from these cells. The FUDR+ IFN- + HSV-1 treated L929 cells were co-

cultured with Vero cells or lysate from L929 cells was added to Vero cells. Viral plaques 

indicating viral rescue were observed after 48hrs.of incubation by staining the cells with 

crystal violet, indicating that HSV-1 was in a silent state in these treated L929 cells. 
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Hoechst staining was performed to detect the apoptosis in the cells treated with FUDR 

and IFN-. Approximately one third of the population of treated L929 cells showed 

protection against viral apoptosis compared to virus infected control at 12 hrs. post-

infection. No difference was observed at 6 hrs. post- infection. RT-PCR analysis was 

conducted at 6, 10 and 16 hrs. post infection with HSV-1 at 2 multiplicity of infection to 

detect expression of ICP0 (infected cell protein) and LAT (Latency associated transcript) 

viral transcripts. LAT expression was observed at 16 hrs. in the infected control. 

Immuno-staining was used to detect HSV-1 ICP0 protein in treated L929 cells and virus 

infected control. A significant difference was observed, with higher expression of ICP0 in 

virus infected control than in cells treated with FUDR and IFN. Image J was used to 

merge images of actin stained and ICP0 stained cells. In these asynchronous fibroblast 

cultures treated with FUDR about 5- 10% cells replicate in the presence of FUDR.  

Four percent of the cells in the FUDR treated population showed ICP0 staining, as 

expected. A quiescent infection of HSV-1 was established in L929 cells treated with the 

mitotic inhibitor and maintained in a medium supplemented with IFN-. LAT was not 

detected in treated cells. 
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INTRODUCTION 

Herpes Simplex Virus (HSV) is a double stranded DNA virus that belongs to 

Herpesviridae family. It infects its host through both lytic and latent infection. HSV-1 

and -2 usually infect via the oral or genital mucosa and replicate in the stratified 

squamous epithelium. The virus enters into the sensory nerve fibers via the stratified 

squamous epithelium and then by retrograde transport to the cell body of the neuron in 

the dorsal root ganglion (DRG), adjacent to the trigeminal ganglion (Cunningham et al., 

2006). In these sensory ganglia, HSV establishes a lifelong persistent infection (latency). 

However, reactivation of the virus may occur due to physical or emotional stress or UV 

irradiation, causing recurrent disease (Johnson et al., 2008). HSV-1 establishes latency in 

the sensory neurons, namely trigeminal ganglia (Perng et al., 2009). During latency the 

viral replicative functions are shut down and infectious virus particles are not detected 

(Bloom et al., 2010). 

HSV-1 latency is a complex virus host interaction the molecular basis of which is not 

well understood. Neuron, virus and the host immune system together play a role in 

regulating and maintaining latency of HSV-1 (Toma et al., 2008). Type I interferons 

(IFN-α and IFN-β) act as the first line of defense against many viral infections. IFN- 

Type II interferon, prevents HSV-1 reactivation by inhibiting the immediate early gene 

ICP0 (Mossman et al., 2010). As a defense mechanism, HSV-1 exerts an anti-interferon 

effect by activating the protein suppressor of cytokine signalling-1(SOCS-1) as seen in 
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infected keratinocytes (Frey et al., 2009). In contrast, the fibroblast cell line L929 pre-

treated with IFN- was protected against HSV-1 with a minimal increase in SOCS-1. 

IFN-α can induce a quiescent HSV-1 infection in porcine trigeminal ganglia neurons 

(Regge et al., 2010). A quiescent infection of HSV-1 in cultured cells could provide an 

important means of studying the molecular aspects of in vivo latency (Mcmohan et al., 

2008). We proposed to develop a model system wherein we could mimic the environment 

of a neuronal cell and study HSV-1 infection cycle. Fibroblasts cell lines were chosen for 

the study based on the earlier observations by Frey et al., 2009. 

 

The hypothesis of this study was that a quiescent infection of HSV-1 could be 

induced in murine fibroblasts (L929 and A.2R.1) by treating them with anti-mitotic 

agent FUDR and IFN-. 

 

Fibroblast cell lines were treated with varying concentrations of FUDR to determine the 

lowest effective concentration required to induce a post-mitotic state. Lytic HSV-1 

infection was demonstrated by cytopathic effects (CPE) and quiescent infections were 

monitored for inhibition of CPE. Nuclear staining was performed to determine if L929 

cells treated with FUDR and IFN-γ were being protected from apoptosis after infection 

with HSV-1. As LAT is the only viral transcript produced during the latent state of HSV-

1 (Bloom et al., 2010), RT-PCR was used to determine the presence of LAT in these cells 

under the defined experimental conditions. When the virus enters a latent state the genes 



 

2 
 

for lytic infection are not transcribed (Bloom et al., 2010). Immunofluorescence staining 

was used to detect HSV-1 ICP0 protein indicative of replicating virus. 
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LITERATURE REVIEW 

HSV-1 INFECTION CYCLE: 

HSV-1 can establish both productive and latent infections. Productive infection with 

HSV-1 leads to formation of epithelial lesions such as cold sores (Jackson et al., 2003). 

HSV-1 is known to infect about 60-80% people worldwide (Cunningham et al., 2006). It 

causes encephalitis and ocular herpes which is a major cause of blindness in the Western 

world (Cunningham et al., 2006). Virus attaches to the host cell surface by envelope 

glycoproteins gC, gB, gD, gH and gL. Glycoproteins gE and gI are involved in cell-cell 

dissemination (Rajcani et al., 2000) (Fig1). After entry into the cell, the nucleocapsid 

associates with transporter protein dynein and reaches the nuclear pore (Dodding et al., 

2011). Dynein is a molecular motor associated with microtubules (cytoskeletal filaments) 

and is involved in the retrograde transport of HSV-1 to the cell body of neuron 

(Diefenbach et al., 2008). However, Kinesins are another type of motor proteins 

associated with microtubules involved in the anterograde transport of HSV-1 the from the 

neuronal cell body towards axon tips (Diefenbach et al., 2008). 

Viral replication in the nucleus occurs in association with localized complexes nuclear 

domain 10 (ND10) and promyelocytic leukemia associated bodies (PML) (Rajcani et al., 

2000). HSV-1 genes are grouped into three kinetic classes (α, β, ) based on their time of 

expression in a lytic cycle. The alpha genes are the immediate early genes α 0, α 4, α 27, 

α 22 and α 22 (1-2 hpi and maximum protein synthesis at 2-4 hpi), β-early or delayed 
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early (3-7 hpi) and gamma are late genes. The major immediate early proteins necessary 

for lytic events are infected cell protein (ICP0, 4, and 27) (Rajcani et al., 2000). ICP0 and 

ICP4 are viral trans-activators for expression of early and late genes. 

  

Figure 1: HSV-1 attachment and entry into host cell (Adapted from 

http://darwin.bio.uci.edu/~faculty/wagner/hsv4f.html). 

 

IMMUNE RESPONSE TO HSV-1 

Host immune response mediated by CD8+ and CD4+ T-cells plays a crucial role in 

limiting the virus at initial stages or later by preventing reactivation. Using a murine 

http://darwin.bio.uci.edu/~faculty/wagner/hsv4f.html
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model of genital infection, Johnson and his colleagues (2008) showed that CD4+ T cells 

are involved in clearance of HSV-1 from sensory ganglia and spinal cords. CD4+ T cells 

are also essential for priming of CD8+ T-cells during primary response to HSV-1 

infection (Rajasagi et al., 2009). CD8+ T-cells are the cytotoxic effector cells in HSV-1 

infection and they control infection by exocytosis of lytic granules or by secretion of 

cytokines IFN- and TNF-α (Sheridan et al., 2007). CD8+ T-cells also control the 

maintenance of latency and prevent reactivation of HSV-1. In ex-vivo cultures of latently 

infected ganglia, IFN- and granzyme B secreted by CD8+ T cells inhibited  HSV-1 

reactivation by degrading ICP4 protein (crucial for lytic events) (Knickelbein et al., 

2008).  

  

INTERFERON RESPONSE  

IFN- exerts its effects through IFN- receptor (IFNGR) composed of two subunits 

IFNGR-1 and IFNGR-2. When a homodimer of IFN- binds to the receptor complex, 

JAK2 gets phosphorylated and it transphosphorylates JAK1. IFN- receptor is in turn 

phosphorylated promoting binding and activation of STAT1. IFN-/IFNGR1/STAT1 

complex is internalised and translocated to nucleus where it binds to interferon response 

element of target gene (Eriksen S. E., 2005). SOCS-1 is an inhibitor of janus kinase 

activity (Vuong et al 2004) and downregulates IFN- expression in keratinocytes (Frey et 

al., 2009). IFN-α 1 plasmid transfection of mouse fibroblasts L929 lead to reduced viral 

load and viral gene expression (Noisakran et al., 2000). Treatment of  human fibroblast 

(FB) cells with β and gamma interferon in combination and individually inhibits 
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replication of HSV-1 (Peng et al., 2007). Similar observations were made by Sainz and 

Halford (2002) using Vero cells pre-treated with IFN-α, β and gamma and then infected 

with HSV-1. Thus IFN- is effective in limiting HSV-1 infection. In neuronal cells CD8+ 

T-cells, which are a major source of cytokine IFN-, persist at the site and therefore 

prevent virus replication or reactivation from latency (Hendricks et al., 2005). 

Despite effective immune response by the host against HSV-1, it survives in the host. 

Virus tries to evade these immune mechanisms by counteracting IFN α/β signaling. 

ICP27 protein of HSV-1 in detectable amounts in cells leads to secretion of heat stable, 

protease sensitive IFN-α antagonizing protein which negates the effects of IFN-α 

(Johnson et al, 2010). ICP0 also counteracts STAT 1-mediated interferon protection, 

thereby permitting lytic infection.  

 

LATENCY AND REACTIVATION 

HSV-1 latency is characterized by down-regulation of lytic phase genes as the genome 

enters a circular form and persists in a non-replicative state in the neuronal cells (Fig 2). 

Although sensory neurons provide a permissive environment for viral replication, HSV-1 

is able to establish latency in a few neuronal cells (Thompson et al., 2001). Latent 

infections are characterized into three phases: establishment, maintenance and 

reactivation. Establishment of latency results from restricted viral gene expression which 

may depend upon the host cell type. As the HSV-1 genome persists in a quiescent state in 

neurons, low level of replication may occur to maintain the virus (Wagner and Bloom., 

1997). The latent state is characterized by absence of detectable HSV-1 antigen, minimal 
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transcription of productive cycle genes, and high expression of latency-associated 

transcripts (LATs) in a subpopulation (one third) of infected neurons (Millhouse et al.,  

2000). Reactivation of virus occurs under conditions of stress or due to immune 

incompetence which results in detectable amounts of infectious virus particles in the host 

(Wagner and Bloom., 1997). 

Latency associated transcript (LAT) is the only major transcript produced during latency, 

other viral products can be detected during establishment of latency. ICP4 transcripts 

were found in mouse ganglia latently infected with HSV-1 (Coen et al., 1995). Inman, 

Perng and colleagues (2001) demonstrated that LAT promotes survival of neuronal cells 

(N2A) transfected with plasmid expressing LAT. Similar observations were made by 

Thompson et al., (2001). The major reason for survival of the latently infected neurons 

may be due to the role of LAT in preventing apoptosis of cells. ICP0 plays a critical role 

in modulating the lytic-latent cycle of HSV-1. ICP0 promoter activity is repressed in the 

presence of IFN- in latently infected trigeminal ganglia neurons (Hendricks et al., 2005).  

 

LAT prevents viral induced apoptosis in neuronal cells (Perng et al., 2000). Peng et al., 

(2002) showed that LAT inhibits caspase-8 and caspase-9- induced apoptosis in neuro 2A 

cells. Since several small regions of LAT sequence are in antisense configuration to 

ICP0, LAT may also influence reactivation of HSV-1 to some extent. Two types of LAT 

transcripts 1.5kb and 2.0kb are detected in cultures of trigeminal ganglia. 2 kb LAT 

transcript was detected in ex-vivo cultures of trigeminal ganglia (Hill et al., 1996, 

Deshmane et al., 1993).  
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Figure 2: Molecular features of HSV-1 lytic and latent infections (Adapted from 

Bloom et al., 2010). 

 

CHROMATIN STATE DURING LATENCY 

Epigenetic control regulates lytic and latent events (Bloom et al., 2010). Viral genome 

forms an episomal structure inside neuronal cell nucleus and LAT is the only transcript 

produced in this state. Lytic genes remain in the transcriptionally repressed form. LAT is 

associated with acetylated histone H3, a euchromatin marker; while the lytic genes 

ICP0/ICP4 are associated with heterochromatin markers (Bloom et al., 2010). Chromatin 

associated with LAT is found to be facultative and thus it changes state during 

reactivation.  
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MODELS TO DEMONSTRATE LATENCY 

Latent infection has been studied in animal models such as mice, rabbit and guinea pig. 

Latent infections were established but reactivation is not achieved successfully in these 

models (Wagner et al., 1997). Stringent animal safety protocols and cost of maintenance 

limit the use of animal models. Studying the expression of genes during latent phase and 

the genome structure in that state could be carried out effectively in a cell-culture model. 

Various cell culture models have been established to study latency of HSV-1. A long 

term quiescent infection of HSV-1 was established in rat pheochromocytoma (PC12) 

cells following differentiation with nerve growth factor (Su et al., 1999). Quiescent 

infection of HSV-1 was established in normal human diploid fibroblasts by McMohan 

and Walsh., (2008). The cells were serum starved and elevated temperature (40.5
0
C) was 

used to maintain the virus in a dormant state.  

 

Vierbuchen et al., (2010) converted fibroblasts to functional neurons by transfecting them 

with lentiviruses expressing neural-lineage specific transcription factors Ascl1, Brn2, and 

Myt1l. Similarly, a successful effort was made by Yoo and his colleagues (2011) using 

micro-RNA to convert fibroblasts to neuronal cells. Human primary fibroblasts are 

preferred cells over keratinocytes or lymphoid cells to study latency due to their lower 

metabolic state more closely resembling the neurons (Hancock et al., 2006). Murine L929 

fibroblasts are also used to study HSV-1 latency as they are susceptible to the cytopathic 

effects of HSV-1 and show protection when transfected with an IFN-α construct (Harle et 

al., 2002).  
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Since sensory neurons are post-mitotic cells and cellular proteins required for HSV-1 

replication are not synthesized viral replication is impaired in these cells. Therefore, the 

treatment of fibroblasts with a mitotic inhibitor (FUDR) to limit cell cycle progression 

was our goal in the present study. Auer et al., (1970) showed that only 10% of the 

population L929 cells from an asynchronous culture replicated in the presence of FUDR. 

Cells were arrested into G1 and early S-phase. The cell cycle time for L929 cells in 

culture is approximately 30 hrs. and at this time about 80-90% cells are in G1 and S-

phases (Dolznig et al., 2004). Petrowsky et al., 2001 demonstrated that replication of wild 

type HSV-1 was impaired in the presence of 10nM of FUDR. PC-12 cells differentiated 

with nerve-growth factor and FUDR survived infection with HSV-1 (Moxley et al., 

2002). 

 

MODE OF ACTION OF 5-FLUORO 2-DEOXY URIDINE (FUDR): 

Roobol et al., 1989 studied the metabolic pathway and target of 5-fluoro 2-deoxy uridine 

in L1210 leukemia cells. 5-fluoro 2-deoxy uridine is transported through the cell 

membrane and becomes phosphorylated to FdUMP which binds to thymidylate 

synthetase and inhibits DNA synthesis leading to cell cycle arrest in the S-phase. In non-

replicating neurons in the central nervous system there is low level of thymidylate 

metabolism (Lee et al., 1991). FUDR also acts as a substrate for thymidine kinase which 

converts it to FdUMP which inhibits DNA synthesis (Figure 3). The wild type strains of 

HSV-1, including HSV-1 Syn 17+ used in the present study, are capable of producing 

enough thymidine kinase to replicate (Lee et al., 1991). Wild type HSV-1 strain F 
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showed impaired replication in the presence of FUDR (Petrowsky et al., 2001). The 

action of FUDR on murine L929 cells was studied by Auer et al., (1970), who found that 

DNA synthesis was blocked in early G1 and early S-phases. Approximately 10% of cell 

population replicated even in the presence of FUDR (18 hrs.) which might be the cells in 

late S or early G2 phase. FUDR is a drug of choice due to its reversible nature. This was 

demonstrated in a study by Roobol et al., (1984) who found that inhibitory effect of 

FUDR can be reversed by addition of thymidine. Dubbs and Kit (1964) showed that 

FUDR (0.01 µg/ml) mediated inhibition of L-M cells treated for 6 or 24 hrs. was reversed 

by an exogenous supply of thymidine.   
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Figure 3: Metabolic pathways and targets of fluoro-pyrimidines. Stars indicate 

targets of 5-fluoro 2-deoxy uridine –thymidylate synthetase and thymidine kinase. 

(Adapted from Roobol et al., 1989).



 

13 
 

MATERIALS AND METHODS 

CELL LINES-  

L929 (CCL-1, ATCC) fibroblast cells (clone of L strain derived from the connective 

tissue of C3H mouse). 

Vero cells (CCL-81, ATCC).  

The cell lines were cultured in a standard medium prepared from Dulbecco’s Modified 

Eagles Medium (DMEM) supplemented with 10% heat inactivated bovine calf serum and 

gentamicin solution (50 µg/ml of medium). Cells were grown and maintained in 100mm² 

cell culture plates and incubated at 37⁰C and 5% CO2 in a humidified incubator. 

Maintenance medium was prepared from DMEM plus 2% calf serum. Growth medium 

and culture plates were purchased from Fisher Scientific, Pittsburgh, PA. 

Virus: 

Herpes Simplex Virus-1 strain Syn 17+ (Dr.Nancy Sawtell, Children’s Hospital Medical 

Center, Cincinnati, OH) was propagated in the lab. Vero cells were grown in 75cm² flask 

and confluent monolayer was infected with HSV-1 at 0.1 multiplicity of infection (moi). 

Cells were examined and harvested along with medium when cytopathic effect (cells 

were rounded and detached from the bottom of the flask) was evident 3-5 days post-

infection. Medium was stored as virus stock in 100 ul aliquots at -80⁰C. Plaque assay was 

performed using Vero cells to titrate the virus.  
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Anti-mitotic agent:  

FUDR (Fisher scientific, Pittsburgh). A stock solution was prepared in sterile distilled 

water at concentration of 1mg/ml and maintained at 2 to 8⁰C for 2 weeks. Dilutions were 

freshly made prior to use. 

Nerve growth factor- β (Sigma Aldrich) was stored at -20⁰C in 10 ul aliquots. 

Interferon-gamma- Dilutions (25 to 200 units/ml) were prepared in maintenance medium. 

 

Cytopathic effects (CPE) assay: 

An assay was performed to analyze cytopathic effects of HSV-1 on cells pre-treated with 

5-fluoro 2’deoxy uridine (FUDR) and interferon gamma (IFN- ). Two different 

protocols were used to perform the assay.  

Protocol 1:  

Cells were plated on 96, 12 or 48 well cell culture plates at a seeding density of 2.5 X 10
4 

to 3.0 X 10
4 

cells/ml as per experimental requirement and grown overnight in DMEM 

with 10% calf serum. The assay was performed using L929 cells initially. Cells at 70-

80% confluence were treated with 5-fluoro 2’ deoxy uridine at concentrations ranging 

from 160 µg/ml to 5 µg/ml of medium plus nerve growth factor-β (100 ng/ml) for 2 days. 

Cells were rinsed with maintenance medium (Frey et al., 2009) and treated with 

interferon-gamma at 100, 75, 50 and 25 units/ml for 24 hrs. Post IFN-  treatment cells 

were infected with HSV-1 at multiplicity of infection of 0.1 and incubated for 2 hours 
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(time for virus adsorption) at 37
0
C. After 2 hours the medium containing residual virus 

was aspirated and cells were incubated at 37
0
C for 48 hrs. in DMEM with 10% calf 

serum. Dilutions of FUDR, IFN- and HSV-1 were prepared in DMEM containing 2% 

calf serum (maintenance medium). To examine the cytopathic effects after 48 hours, cells 

were rinsed with phosphate buffered saline (pH 7.4), fixed with 10% formalin for 10 

mins at room temperature and stained with 0.5% crystal violet for 5 mins. Plates were 

rinsed with water, air dried overnight and scanned using an HP ScanJet 5300C. Scans 

were analyzed by Image J program provided by National Institute of Health. Experiments 

were performed in triplicates. 

 

Protocol 2: 

Slight modifications were made in the first protocol after analyzing the initial results. 

L929 cells were plated in 12 well plates in 10% DMEM and allowed to grow overnight to 

70-80% confluence. They were then treated with FUDR at 5 and 10 µg/ml (concentration 

determined from results of first assay) for 1, 2, 3 or 6 hrs. respectively. Virus infection 

was carried out at 0.1 multiplicity of infection and cells were incubated for 48 and 72 hrs. 

A second experiment was run where cells treated with FUDR (treatment time was 

decided based on first experiment) were maintained in medium containing IFN- at 25, 

50, 75 and 100 units/ml post HSV-1 infection. Virus was dispensed at 0.1 moi in all 

experiments and incubation period varied from 48 to 72 hours post infection. Dilutions of 

FUDR, IFN- and HSV-1 were prepared in DMEM containing 2% calf serum (Frey et al., 

2009). Results were analyzed as per protocol1 (Page 14). 
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Rescue experiment (Plaque assay): 

Based on the observations of CPE assay, about 90% of cells treated with FUDR and IFN-

  were protected from the cytopathic effects of HSV-1 as seen by absence of viral 

plaques. To determine if the virus was silenced in these cells, we performed a plaque 

assay using Vero cells. Experiment was carried out using L929 cells as per protocol 2, 

with a minor modification. After treating the cells with FUDR and infecting them with 

HSV-1 for 48 hours, the original medium was removed from cells and Vero cells in 

DMEM/10% calf serum were overlayed at a density of 0.1 X 10
6
 cells/ml. The cells were 

incubated at 37
0
C and 5% CO2 for 24 hours. After 24 hours medium was replaced with 

overlay medium containing methyl cellulose (Fisher Scientific, Pittsburgh, PA) and 

incubated further for 24- 48hrs to determine plaque formation. A control experiment was 

run alongside without overlaying Vero cells and plate was incubated till the end of the 

rescue experiment. Both plates were stained with 0.5% crystal violet to stain the survived 

cells and were scanned using HP Scan Jet 5300C. Scans were analyzed by Image J 

program provided by National Institute of Health. 

A second rescue experiment was performed to reconfirm the results of first rescue 

experiment. L929 cells were lysed by two freeze thaw cycles and lysate was added on a 

monolayer of Vero cells. After adsorption for 2 hrs. the medium containing lysate was 

aspirated and fresh DMEM/10% calf serum was added to Vero cells. Plaques were 

observed after 48 hrs. incubation.  
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Hoechst staining: 

To determine if cells treated with FUDR were protected from apoptotic effects of HSV-1, 

we performed a nuclear staining experiment. L929 cells were grown overnight on 

coverslips in DMEM containing 10% calf serum in a 6 well plate. The following day 

cells were treated with FUDR at 5 or 10 µg/ml for 3 hours. Cells were rinsed with 

DMEM after 3 hours and infected with HSV-1 at 10 moi. Virus was incubated with the 

cells for 2 hours at 37 
0
C. After adsorption the medium was replaced with either 10% 

DMEM (for control) or 2% DMEM + IFN- (100 units/ml) and cells were incubated for 

6, 8 or 12 hours at 37 
0
C. After incubation cells were rinsed with 1X PBS (pH 7.4) and 

fixed with 1:1 methanol : acetone at -20 for 10 mins. Fixative was aspirated and cells 

were rinsed with 1X PBS three times five minutes per wash. Hoechst stain was added to 

the cells at 0.5 µg/ml concentration for 10 mins in dark. Finally cells were rinsed two 

times with 1X PBS. The coverslips were then mounted on glass slides using mounting 

medium Vectashield (Vector Labs) and then sealed with nail polish. The slides were 

analyzed using fluorescence microscopy.  

RT-PCR:  

Cells were plated into 100mm culture dishes at seeding density of 0.1X10
6
 cells/ml and 

grown in DMEM containing 10% calf serum. At 70% confluence cells were treated with 

FUDR at 5 and 10 µg/ml concentration for 3 hours. The medium was removed after 

incubation, cells were washed with DMEM and fresh medium containing 10% calf serum 

(for control cells) or medium containing IFN- (200 units/ml) was added and cells were 

incubated at 37
0
C for 6, 10 and 16 hours.  
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RNA extraction:  

RNA was extracted from cells at 6, 10, and 16hrs. post infection. RNA was isolated by 

using Rneasy mini kit (Qiagen) as per manufacturer’s instructions. 50µl of RNA was 

eluted and stored at -80 
0
C till further use. Integrity of isolated RNA was checked by 

electrophoresis on 1% agarose gel. Ethidium bromide was added to the gel. RNA samples 

were added in separate wells and gel was run at 95 volts. Bands were visualized under 

UV light and image was captured using Fuji LAS-3000 camera. 

RT-PCR: 

5µl of extracted RNA was amplified using Verso one step RT-PCR kit 

(Thermoscientific). A total reaction volume of 50 µl was used for 40 cycles and the 

thermal cycling was program used as per manufacturer’s instructions: cDNA synthesis at 

50
0
C for 15 mins., thermostart activation at 95

0
C 15 mins., denaturation 95

0
C for 20 sec., 

annealing 55
0
C for 30 sec., extension at 72

0
C for 1 min and a final extension at 72

0
C for 

5 mins. The amplified product was resolved by agarose gel electrophoresis. 1% agarose 

gel was prepared. Ethidium bromide was added in the gel which was run at 95 volts. 

Bands were visualized under UV light and image was captured using Fuji LAS-3000 

camera. 

Immunostaining: 

L929 cells were grown overnight on coverslips in DMEM containing 10% calf serum in a 

6 well plate. The following day cells were treated with FUDR at 5µg/ml for 3 hours. 

Cells were rinsed with DMEM after 3 hours and infected with HSV-1 at 5 moi. Virus was 

incubated with the cells for 2 hours at 37 
0
C. After adsorption the medium was replaced 



 

19 
 

with either 10% DMEM (for control) or 2% DMEM with or without IFN- (100 units/ml) 

and cells were incubated for 4, 8 or 16 hours at 37 
0
C. After incubation cells were rinsed 

with 1X PBS (pH 7.4) and fixed with 4% paraformaldehyde for 15 mins. Fixative was 

aspirated and cells were rinsed with 1X PBS three times five minutes per wash. Cells 

were then permeabilized with 0.2% tritonX for 10mins and then washed with 1X PBS 

3X5 mins. After  permeabilization cells were blocked with 3% BSA for 1hour at room 

temperature. The primary mouse ICP0 antibody was prepared in the blocking buffer at a 

dilution of 1:25000 and then it was applied to each coverslip. The coverslips were placed 

in a humidified chamber cell side down and allowed to incubate at 4
o
 C overnight. 

Coverslips were transferred back to the dishes next day and washed 3 times with 0.5% 

BSA. Fluorescent-labeled (FITC) secondary antibody anti-goat IgG diluted 1:100 and 

Texas red conjugated phalloidin diluted 1: 100 were added to cells. Cells were allowed to 

incubate for 3 hours in dark at room temperature. Coverslips were transferred back to the 

dishes and washed 2 times with 0.5% BSA.  Hoechst stain was added to the cells at 0.5 

µg/ml concentration for 10 mins in dark. Finally cells were rinsed two times with 0.5% 

BSA. The coverslips were then mounted on glass slides using mounting medium 

Vectashield (Vector Labs) and then sealed with nail polish. The slides were analyzed 

using fluorescence microscopy. 
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RESULTS 

Determining minimum effective dose of 5-Fluoro 2-deoxy uridine (cytopathic effects 

inhibition assay): 

 

 Cytopathic effects assay was performed to determine the appropriate dilution of FUDR 

to be used to treat cells. It was important to determine the concentration of FUDR which 

would only arrest the cell cycle without causing cytotoxicity to L929 cells. In figures 4, 6, 

and 8, higher concentrations of FUDR (160, 80, 40, 20, 10, and 5 µg/ml respectively) in 

addition to IFN- (25, 50, 75, 100 units/ml) were added to the L929 cells. Following 

infection with HSV-1 at 0.1moi only 20-25 % cell survival was observed. Viral plaques 

were seen in HSV-1 infected control, but very few cells were observed in the FUDR and 

IFN- treated wells. Pixel density as measured by Image J showed approximately 20% 

cell survival (figures 5 and 7) with higher concentrations and about 30- 40% (fig 9) 

survival with 10 or 5 µg/ml concentrations of FUDR.  
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Figure 4: Effects of Fudr at higher concentration (160 and 80µg/ml) on survival of 

L929 cells. Cell density was sparse in the center of the wells (3-10) treated with 

FUDR and IFN-γ and infected with HSV-1. Control wells (11-12) also showed few 

surviving cells. These higher concentrations of FUDR were toxic to cells and 

induced cell death. 
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Figure 5: Effects of Fudr at higher concentration (160 and 80µg/ml) on survival of 

L929 cells. Higher concentrations induced cell death as seen by only 20-25% cells 

survival. % Pixel density was normalized against uninfected control. FUDR treated 

group showed significant differences in cell survival relative to HSV-1 infected 

control. *P<0.001 by ANOVA. % Pixel density was used as a measure of cell 

survival. 

 

 

 

 

* 

* 
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Figure 6: Action of FUDR at 20 and 40 µg/ml on survival of L929 cells. Viral 

plaques were obserevd in HSV-1 infected control (well 2). Cell density was sparse in 

the center of the wells (3-10) treated with FUDR and IFN-γ and infected with HSV-

1. Control wells (11-12) treated with FUDR alone also showed few surviving cells. 

These concentrations of FUDR were also toxic to cells similar to Fig. 4.  
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Figure 7: Effects of FUDR at 20 and 40 µg/ml. FUDR was toxic to cells at these 

concentrations and thus only about 10-15% cell survival was observed. % Pixel 

density was normalized against uninfected control. FUDR treated group showed 

significant differences in cell survival relative to HSV-1 infected control *P<0.001 by 

ANOVA. % Pixel density was used as a measure of cell survival. 

 

 

 

 

 

 

* 

* 



 

25 
 

 

Figure 8: Effect of FUDR at concentrations of 10 and 5µg/ml on survival of L929 

cells. Viral plaques were observed in HSV-1 infected control (well 2). Few cells were 

observed in wells treated with FUDR, IFN-γ, and HSV-1 treated wells (3 to 10) 

similar to FUDR treated control (wells 11 and 12). The cell density of FUDR treated 

was increased compared to higher concentrations as seen in fig 4 and 5. 
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Figure 9: Effects of FUDR at 10 and 5 µg/ml. There was a little increase in cell 

survival about 30-40% compared to higher concentrations in fig 5 and 7. % Pixel 

density was normalized against uninfected control. FUDR treated groups showed 

significant differences in cell survival relative to HSV-1 infected control *P<0.001 by 

ANOVA. % Pixel density was used as a measure of cell survival. 

 

  

2.5 and 1.25 µg/ml were also used, which showed improved cell survival (data not 

shown). These results indicated that treatment of FUDR even at lower concentrations for 

a prolonged period (2 days) lead to cell death. For subsequent experiments, 5 and 10 

µg/ml concentrations were selected for shorter exposure times.  

Comparison of varying exposure times of FUDR treatment:  

Treatment of cells with FUDR for 2 days resulted in death of L929 cells, treatment time 

was reduced to 6, 3, 2 and 1 hr. respectively (data not shown). Cytopathic assay was 

performed to determine the optimum FUDR exposure time required to arrest cell growth. 

* 
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After infection with 0.1 moi of HSV-1, medium was replaced with 10% DMEM (for 

control) and 2% DMEM for FUDR treated cells. Cell survival was analyzed at 48 and 72 

hrs. post infection. Fewer viral plaques were observed in cells treated with FUDR for 2 or 

3hrs. ( Fig 10, 12) compared to HSV-1 infected control. A higher cell density was also 

seen in FUDR treated controls where treatment time was 2 or 3 hrs. (Figure 10 and 12). 

 

Figure 10: Comparison of FUDR treatment periods on L929 cells (48 hrs. pi.). Cells 

were treated with FUDR for 2, 3or 6 hrs. and then infected with HSV-1. Higher cell 

density and fewer plaques were observed when cells were treated with FUDR for 2 

or 3 hrs. FUDR treatment for 6 hrs. reduced the cell density by about 40-50%. 

 

An increase in the survival of L929 cells was observed when the treatment time of FUDR 

was reduced to 2 and 3 hrs. L929 cells treated with FUDR for 6 hrs. showed reduced cell 

density and lower cell survival after HSV-1 infection which was similar to FUDR treated 
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control cells (Fig. 10). The reason for reduced cell density for 6 hrs. treatment time may 

be because of the cytotoxic effects rendered by FUDR prior to HSV-1 infection. This was 

evident from fewer plaques in cells treated with FUDR. 

 

 

 

Figure 11: Comparison of FUDR treatment periods on L929 cells (48 hrs. pi.). There 

was a significant increase in the cell survival when time of FUDR treatment (10 and 

5µg/ml) was reduced to 2 or 3 hrs. About 80-90% cell survival was observed in cells. 

(% Pixel density was normalized against uninfected control). *P<0.05 by ANOVA. 

% Pixel density was used as a measure of cell survival. 

 

 

  

  

* 

* 
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Figure 12(a, b): Effect of varying treatment periods of FUDR on L929 cells without 

IFN- (72 hrs. pi.) Treatment of L929 cells for 6 hrs. with FUDR resulted in almost 

40-50% cell death. Treatment of L929 cells with FUDR for 2 or 3 hrs. showed 

increased protection of cells against HSV-1. (% Pixel density was normalized 

against uninfected control). Cells survival in treatment groups was significantly 

increased compared to HSV-1 control even at 72 hrs. post infection (*P<0.05 by 

ANOVA). % Pixel density was used as a measure of cell survival. 

 

 

 

 

 

* 

* 

(a) 

(b) 
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Combined effect of FUDR and IFN- on survival of L929 cells after HSV-1 

infection: 

In the cytopathic effects assay performed with higher concentrations of FUDR (Fig 4, 6, 

and 8) maximum cell death about 70% was observed. To mimic the natural infection in 

neurons cells were also treated with IFN-.  After treatment with FUDR for 3 hrs (time 

arbitrarily selected after analyzing results in Fig. 11 and 12). Cells were infected with 

HSV-1 at 0.1 moi, after adsorption for 2 hrs., the medium was replaced with 2% DMEM 

supplemented with IFN- at 50, 75, 100, and 200 units/ml. Fig.13 (Frey et al., 2009). 

 

Figure 13: Effect of FUDR (3 hrs.) and IFN- on survival of L929 cells after HSV-1 

infection. Few viral plaques were observed in cells treated with FUDR and IFN-γ at 

100 and 200 units/ml (wells 7 to 14) as compared to HSV-1 infected control (well 2).  

L929 cells displayed protection from cytopathic effects of HSV-1 when treated with 

FUDR ( 5µg/ml) for 3 hrs and maintained in IFN-γ (100 or 200 units/ml) post HSV-1 

infection. 
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Figure 14: Effect of FUDR (3 hrs.) and IFN- on cell survival after HSV-1 infection. 

About 90% cells survival was observed after HSV-1 infection in cells treated with 

FUDR and IFN-γ. % Pixel density was normalized against uninfected control. 

FUDR and IFN-γ treatment groups showed significant increase in cell survival 

relative to HSV-1 infected control *P<0.001 by ANOVA.        Indicates cell group 

not significantly different from uninfected control. % Pixel density was used as a 

measure of cell survival. 

 

 

                        

 

* 
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Figure 15: Virus rescue by overlaying Vero cells. Viral plaques were observed in 

L929 cells overlayed with Vero cells *P= 0.004 (a) and on Vero cells to which lysate 

from L929 cells was added *P<0.001 by ANOVA (b). % Pixel density was 

normalized against uninfected L929 + Vero (a) and Vero (b) control cells. Viral 

plaques were indicative of virus rescue from L929 cells. % Pixel density was used as 

a measure of cell survival. 

* 

    L929(L)           L+F+I+ V      L+F+I+V+ Vero 
Vero  

              Vero        Lysate from L929 + Vero   

(b) 
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HOECHST STAINING :  

  

Figure 16: Hoechst staining to detect apoptosis at 6 hrs. post infection. L929 cells 

were grown overnight on coverslips and then treated with FUDR for 3 hrs. Cells 

were then infected with HSV-1 at 10 moi and then incubated in medium with IFN-. 

At 6 and 12 hrs. post infection nuclear staining with Hoechst was performed. At 6 

hrs. post infection no difference in nuclear morphology was observed in L929 

uninfected control and FUDR + IFN-γ treated cells. Some atypical staining was 

observed in both groups as indicated by arrows. Bar markers indicate 50 µm size. 

 

No differences in nuclear morphology were evident at 6 hrs. post infection (Fig. 16). 
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HOECHST staining (12 HRS POST INFECTION)  

 

Figure 17: Hoechst staining to detect apoptosis at 12 hrs. post infection. Cells were 

treated in the same way as in Fig. 16. At 12 hrs. post infection about 80-90% cells 

were lysed in the virus infected control. About one third of the cells treated with 

FUDR + IFN-γ survived HSV-1 induced apoptosis. Bar markers indicate 50 µm size. 

 

 

About 80% cells were lysed in the HSV-1 infected control at 12 hrs. post infection. 

Approximately one-third of the population of cells survived the cytopathic effects of 

HSV-1 in the FUDR + IFN-γ treated group (Fig. 17). In natural HSV-1 infection neurons 

are protected from apoptotic effects of HSV-1 because of the presence of LAT transcripts  

(Perng et al., 2000). These observations suggest that quiescent herpes virus infection 

occurred in one-third or less of the treated fibroblasts. 
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Detection of latency associated transcript (LAT) and ICP0 by RT-PCR: 

RT-PCR analysis was conducted to analyze expression of HSV-1 LAT in L929 cells 

treated with FUDR and IFN- and infected with HSV-1 at 2 moi. Analysis was performed 

at 6, 10 and 16 hours post-infection. LAT expression was observed in untreated HSV-1 

infected L929 cells at 16 hours post-infection but not in cells treated with FUDR and 

IFN-. No expression was seen at 6 and 10 hours (data not shown) post-infection in 

control or experiment. 

RT-PCR (6hrs. post infection) and 16hrs. post infection: 

 

   a        b 

Figure 18: RT-PCR analysis of L929 cells at 6 (a) and 16 (b) hrs. post-infection. No 

LAT expression was observed at 6 hours post infection (a). At 16 hrs. post infection 

LAT expression was observed as displayed by 149 bp product (b). Arrows indicate 

positions of GAPDH control (a and b) and LAT (b). 
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Detection of ICP0 by immunofluorescence staining: 

L929 cells treated with FUDR and IFN- were infected at 5 moi with HSV-1 and 

immuno-staining with antibody against HSV-1 ICP0 protein and phalloidin against Actin 

was performed at 4, 8 (data not shown) and 16 hrs. post infection. Cells were observed 

under fluorescent microscope and two images were taken per field. Two different filters 

were used to take images for one field because secondary antibodies used had different 

fluorescent labels (FITC and Texas red). Three fields were observed for each condition 

per experiment and 3 experiments were performed for each time point. Nuclear 

expression of ICP0 expression was observed as fluorescent dots.  Actin expression was 

observed in all cells. A marked difference in the number of cells expressing ICP0 protein 

was observed as expected in HSV-1 infected control and other groups. Approximately 

15-17% cells in HSV-1 infected control and 4% treated cells showed ICP0 protein 

expression. A difference in the morphology of cells was also observed:  normal cell 

morphology was maintained in at least one-half of the cells treated with FUDR and IFN-γ 

compared to HSV-1 infected control. Cells in HSV-1 infected control were rounded 

because of the cytopathic effects of HSV-1. 
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Figure 19: HSV-1 ICP0 expression at 4 hours post-infection (Green- ICP0 staining, 

Red- Actin) (a, b, c) HSV-1 control (d, e, f) L929+FUDR+HSV-1 (g, h, i) L929+ 

FUDR+ HSV-1+ IFN-.  Nuclear expression of ICP0 was observed in HSV-1 

infected control and cells treated with FUDR alone or in combination with IFN-γ. 

Bar markers indicate 50 µm size. 
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Figure 20: HSV-1 ICP0 expression at 16 hours post-infection (Green- ICP0 staining, 

Red- Actin) (a, b, c) HSV-1 control (d, e, f) L929+FUDR+HSV-1 (g, h, i) L929+ 

FUDR+ HSV-1+ IFN-. Nuclear expression of ICP0 was observed in infected control 

and in a few cells treated with FUDR and IFN-γ.  Bar markers indicate 50 µm size. 
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a. Spindle shaped cells                                b. Rounded cells 

   

c. Long projections  

 

Figure 21: L929 cell morphology at 16 hours post-infection (Red- Actin). (a) 

Uninfected control (b) HSV-1 control (c) FUDR + IFN-+ HSV-1 treated cells. Cells 

treated with FUDR and IFN-gamma retained normal cell morphology as in (a) but 

some cells showed longer projections (c). The cells in HSV-1 infected control (b) 

were rounded due to cytopathic effects of HSV-1. Arrows are showing distinct cell 

morphology. Bar markers indicate 50 µm size. 

 

 

Since IFN- protected L929 cells from the viral cytopathic effects,  normal cell morphology was  

retained in these cells treated with FUDR and IFN-. 
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DISCUSSION 

HSV-1 undergoes a latent infection in a few sensory neurons (Millhouse et al. 2000). 

Latent infection is characterized as a non-productive state where genes for lytic cycle are 

repressed. Viral latency associated transcript is the only viral gene transcribed during this 

silent state (Millhouse et al., 2000). Schang et al., (2002) suggest that sensory neurons are 

post-mitotic and do not allow viral replication, in contrast to Sawtell’s contention that 

sensory neurons have a permissive environment for HSV-1 replication. Schang et al., 

(2002) contend that these quiescent neurons lack cellular factors required for productive 

infection. Cyclin dependent kinases (cdk) 1 and 2 are not present in quiescent neurons, 

which limits replication of HSV-1 (Schang et al., 2002). Cdk 2 is required for cell cycle 

progression into S phase, while cdk1 allows cell to proceed into mitosis (Schang et al., 

2002). Role of cyclin dependent kinase 5 in association with p35 in preventing HSV-1 

replication was demonstrated by Haenchen et al., (2010). Cdk5 plays a role in the 

adhesion, migration, and differentiation of lens and corneal epithelial cells and its activity 

is, in part, regulated by p35 (Haenchen et al., 2010).  Absence of p35 impairs ocular 

replication of HSV-1 in mice (Haenchen et al., 2010). 

In the present study FUDR was toxic at higher concentrations (160, 80, 40 20 µg/ml 

respectively) concentrations as displayed by CPE. Only 20 to 30% cell survival was 

observed in cells treated with FUDR due to its cytotoxic effects.  As FUDR leads to 

inhibition of DNA synthesis and repair, cells treated with the mitotic inhibitor die 
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eventually as they cannot replicate or repair DNA (Auer et al., 1970). L929 fibroblasts 

treated with lower concentrations (5 and 10 µg/ml respectively) of 5-fluoro 2’deoxy 

uridine (FUDR) showed protection from cytopathic effects of HSV-1 compared to 

untreated HSV-1 control cells. As FUDR treatment time was reduced to 3 hrs. and 

concentration of FUDR was low (5µg/ml) survival of cells increased to about 80 to 90% . 

Quiescent HSV-1 in L929 cells was rescued by two methods: cells were co-cultured with 

Vero cells, or lysed by freeze thaw method and lysate was added to a monolayer of Vero 

cells. Plaques were observed after 48 hrs. incubation. Viral plaques on Vero cells 

indicated that L929 cells harbored viable virus in them and was rescued from them on 

Vero cells. Cell survival decreased by about 30% in L929 cells overlayed with Vero cells 

compared to uninfected  L929+ Vero cell control. The reduction in cells survival was due 

to cytopathic effects of rescued HSV-1 form L929 cells. 

 

The effect of FUDR is reversible by exogenous supply of thymidine or serum in the 

medium (Roobol et al., 1984).  For future studies, lower concentrations (nM 

concentrations) could be used to maintain cells in FUDR containing medium till the end 

of the experiment which might keep the cells in the state of arrest for a longer period.  

HSV-1 induces apoptosis due to lytic events in non-neuronal cells but becomes latent in 

neurons. Viral production of LAT in neurons prevents apoptosis (Branco et al., 2005). 

Hoechst staining showed that a minor population of L929 cells was protected from 

apoptotic effects of HSV-1 in the presence of FUDR alone as well as FUDR and IFN- 

compared to HSV-1 infected control L929 cells at 12 hrs. post-infection. As a high 
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multiplicity of infection (10 moi) was used to induce apoptosis of cells, very few cells 

survived HSV-1 infection under these experimental conditions. Another possible reason 

could be that cells treated with FUDR reversed the inhibitory effects to resume the 

normal cell cycle leading to cell death. However, at 6 hrs. post infection, little difference 

was seen in the nuclear morphology except for a few cells which showed atypical 

staining (nucleus looked like a bright spot). A flow-cytometric analysis to detect the 

presence of apoptotic proteins in L929 cells treated with FUDR and HSV-1 could be 

conducted in future. This quantitative analysis performed using antibodies against 

apoptotic proteins like caspase 8 or caspase 9 would be useful in detecting if latent HSV-

1 infection was established in L929 cells (Henderson et al., 2002). 

 

These initial studies were indicative of a silent infection of HSV-1 in L929 cells. The 

quiescent infection established in these cells did not lead to establishment of HSV-1 

latency (as no LAT transcripts were detected in experimental groups). LAT (latency 

associated transcript) is expressed during a latent infection in neurons (Thompson et al 

2001). ICP0 is a lytic gene but due to its genomic configuration being anti-sense with 

LAT, it is detected during viral reactivation (Perng et al., 2010). In our experimental cells 

LAT or ICP0 could not be detected by RT-PCR analysis conducted at 6 and 10 hrs. post 

infection. At 16 hrs. post infection LAT was detected in HSV-1 infected L929 control 

cells but not in treated cells. Cell counts taken after termination of experiment showed 

that number of FUDR treated cells decreased by 20-30% by the end of the experiment. 

The sub-population which did not withstand treatment regime might be the one harboring 

latent HSV-1 and hence no transcripts were found in the remaining cells. Another 
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possible reason could be that there could be other neural lineage specific factors 

responsible to establish a latent HSV-1 infection in neurons. Therefore only FUDR and 

IFN- γ treatment of cells did not result in establishment of latency as hypothesized. In 

natural infection very few neurons (one third) express detectable LAT in latently infected 

cells (Su et al., 1999). It may also be possible that a low level of LAT was expressed in 

some of the L929 cells treated with FUDR and IFN- which could not be detected by RT-

PCR analysis (RT-PCR kit detected 1pg -1µg of RNA). In a similar kind of study by Su 

et al., (1999) where a quiescent infection of HSV-1 was established in PC-12 cells, LAT 

transcripts were detected by southern hybridization in cells where no LAT was found by 

RT-PCR analysis. Use of fluorescence in-situ RNA hybridization assay or in-situ PCR 

performed at a single cell level would confirm the possibility of low level of LAT 

expression.  

 

Fluorescence microscopy for ICP0 displayed a significant difference in the protein 

expression in control and treated cells. The number of cells showing ICP0 positive 

staining in the FUDR treated cells was in accordance with the previous studies on L929 

cells. Auer et al., (1970) using L929 cells showed that only 10% of the population of cells 

from an asynchronous culture replicated in the presence of FUDR. Cells were arrested 

into G1 and early S-phase. The cell cycle time for L929 cells in culture is approximately 

30 hrs. and at this time about 80-90% cells are in G1 and S-phases (Dolznig et al., 2004). 

Our results indicated that approximately 17% of the cells in control and 4% of the cells in 

treated groups expressed ICP0.  In the present study the time at which cells were treated 
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with FUDR was the same as used by Auer et al., (1970) 5% cells were probably expected 

to show protein expression in presence of FUDR which was observed in our experiment. 

 A silent infection of HSV-1 was established in L929 cells using FUDR alone and with 

IFN-. Latency could not be established under these conditions, although primary 

features of a latent infection were observed. First, viable virus in L929 cells was observed 

in rescue experiments.  Second, a notable difference was seen in the number of cells 

expressing ICP0 protein in treated cells compared to HSV-1 infected control. As 

discussed earlier, level of LAT expression might be low and thus could not be detected 

by RT-PCR. This important feature of latency might be confirmed by analysis of a single 

cell using in situ hybridization assay and thus would support further evaluation of the 

chromatin state of virus. A chromatin immuno-precipitation assay using L929 cells 

treated with FUDR and IFN- would permit a dissection of the virus genome association 

with the fibroblast chromatin. A heterochromatin state is observed with viral lytic genes 

and a euchromatin state associated with LAT is indicative of viral latency (Bloom et al., 

2010). Chromatin modifiers could be used to treat the cells before infection with HSV-1, 

which would support the establishment of latency in these cells. Using the experimental 

approach of  Vierbuchen et al., (2010), a neuronal phenotype could be induced in 

fibroblasts and HSV-1 latency can be studied.
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