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ABSTRACT

Timmerman, Kathleen. M.S. Comp Sci., Department of Computer Science and Engineering, Wright
State University, 2012. A Hardware Compact Genetic Algorithm for Hover Improvement in an
Insect-Scale Flapping-Wing Micro Air Vehicle.

Wing and airframe damage to insect scale micro air vehicles potentially cause signifi-

cant losses in pose and position control precision. Although one can imagine many possible

means of adapting the flight controllers to restore precise pose and position control, severe

limits on computational resources available on-board an insect sized vehicle render many

of them impractical. Additionally, limits on sensory capability degrade any such vehicle’s

ability to critique its own performance. Any adaptive solutions one would propose to re-

cover flight trajectory precision, therefore, would require a resource light implementation,

preferably without need for relatively expensive floating-point operations, along with the

capability to assess control quality via relatively infrequent and possibly imprecise point

estimates of vehicle pose and position.

This thesis will expand on previous work that employed an adaptive oscillator as a

component of an altitude controller inside a simulated insect-scale flapping-wing micro air

vehicle. In that work, it was demonstrated that an adaptive oscillator could learn novel

wingbeat patterns unique to the capability of specific, possibly damaged, wings. These

wingbeat patterns would restore the relationships between control outputs and wing mo-

tion; and thus; restore correct whole-vehicle action. In that earlier work, the core of the

adaptive oscillator was an evolutionary algorithm (EA) that operated as a mutation driven

stochastic hill climber. In this work, we explore the use of and the potential benefits of an

EA variant that operates as a crossover driven schema/hyperplane sampler. For this work

we selected the Compact Genetic Algorithm (cGA), as it possess an efficient hardware-

level implementation and is clearly a crossover-driven hyperplane sampler. The thesis will

present experimental results from which one may assess the relative performance of this

style of genetic search as well as speculate upon its potential utility for more complex
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flight control problems.
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Introduction

Micro Air Vehicles (MAV) possess a multitude of potential uses including surveillance in

crowded areas, navigation of wreckage of a natural disaster, and traversing terrain not pass-

able by ground vehicles. The recent first flight of an insect-scale Flapping-Wing Micro Air

Vehicle (FW-MAV) in 2008 [17], has increased interest in the design and development of

similarly scaled flapping-wing vehicles. However, the small size of these vehicles intro-

duces a number of unique challenges.

Even slight errors in manufacturing will affect vehicle performance. Along with man-

ufacturing faults, the vehicle may sustain damage while in flight. Even small amounts of

damage to the wings and airframe can produce up to 1000% error in pose and position

control precision [13]. Although there are many possible solutions to adapting the altitude

controllers to restore pose and position control, the vehicle size severely limits the compu-

tational resources available on-board. Additionally, limits to sensory capability diminish

the vehicle’s ability to critique its own performance. These limitations render many tra-

ditional solutions impractical. Any proposed adaptive solution would need to possess a

resource-light implementation, entail few or no floating-point operations, while determin-

ing control quality through infrequent and possibly imprecise point estimates of vehicle

pose and position.

This thesis will expand upon previous work that employed an adaptive oscillator as a

component of an altitude controller inside a simulated insect-scale FW-MAV [7] [14] [8]. In

the previous work it was demonstrated that an adaptive oscillator could learn distinct wing
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beat patterns unique to the capability of specific, possibly damaged wings. These wing beat

patterns can restore the relationships between control outputs and the production of desired

net forces and torques by the wings for hover control of the vehicle, correcting whole

vehicle action. In previous work, the core of the adaptive oscillator was an Evolutionary

Algorithm (EA) that operated as a mutation driven stochastic hill climber. In this thesis,

the potential benefits of an EA variant that operates as a hyperplane sampler is examined.

The Compact Genetic Algorithm (cGA) [12] is an exclusively crossover-driven hyper-

plane sampler EA that possess an efficient hardware-level implementation [15]. For these

reasons, this work considers cGA as a candidate for the learning core inside the existing

adaptive oscillator component. The cGA represents the population as percentages rather

than storing the exact population at any given point in time. The result is a significant

reduction of memory space needed even in a fairly small genome [12]. In the case of a

controller for a FW-MAV, wherespace efficiency is an issue, the cGA offers an interesting

alternative to other hyperplane sampling algorithms.

This thesis will present experimental results from which one may assess the relative

performance of a hyperplane sampling genetic search as well as speculate upon its potential

utility for more complex flight control problems. This thesis is divided into five chapters.

Chapter 2 provides the background material and brief overview of topics that should clarify

terminology used throughout the remainder of the thesis. It also reviews current literature

in the field. Chapter 3 discusess the methodology along with analysis techniques and adap-

tations to the cGA. Chapter 4 contains the experiment data, and chapter 5 contains the

conclusion as well as comments on future work.
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Background

This chapter summarizes previous work as well as defines the terminology used throughout

the remainder of this thesis. It begins with background information on the type of algorithm

that will be applied to the vehicle and then continues on to give a description of the vehicle

on which the experiments were run. It concludes with a discussion on a previously tested

algorithm and the issues with that algorithm.

2.1 Evolutionary Computing

Evolutionary Computing (EC) is a field of computational study inspired by natural selec-

tion [2]. EC methods maintain a population of candidate solutions and apply successive

rounds of reproduction, variation, and selection of fittest candidates to move the average

quality of solutions upward. Once many members of a population attain sufficiently high

quality, it is presumed that one member of that population would suffice as a solution. EC

encompasses many different algorithms, with the three main variants being genetic algo-

rithms [10], evolution strategies [6], and evolutionary algorithms [3]. These algorithms

can be envisioned as consisting of the following component parts: representation, evalua-

tion function, parent selection, variation operations, survivor selection, initialization, and

termination [2].

EC algorithms start with an initialization process to create an initial population of pos-

sible solutions. Then the algorithm will loop until the termination criteria is met. As shown

3



Figure 2.1: Basic Evolutionary Computing Algorithm [2]

in Figure 2.1, the loop begins with a population of possible solutions. Next parent selection

is applied in order to determine which solutions may be used to create new solutions. This

step is usually followed by the variation operations which create new possible solutions.

The solutions are then evaluated and survivor selection is typically applied to maintain a

constant population size. The termination criteria is then tested to see if the loop should

terminate. Once the loop terminates, the best solution in the end population is used.

2.1.1 Representation

Each possible solution is called a candidate solution or individual. In its encoded form,

which is the representation of the solution operated upon by the EA, it is called a genotype.

Genotypes can be decoded into actual problem solutions, or phenotypes, via a mapping
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function.

Each genotype is made up of loci. Generally, a loci represents one phenotypical com-

ponent (or characteristic) of the candidate solution. Each locus is made up of different

possibilities called alleles. All of the alleles concatenated together would represent the

whole genotype. The alleles are encoded in various ways depending on the type of EA

being used. Genetic Algorithms generally employ bit-strings to represent a genotype with

identified sub-strings in each candidate encompassing alleles. Evolution Strategies and

Evolutionary Programming generally employ arrays of real values to represent a genotype

where specific array elements represent allele values directly. Note that in some cases, espe-

cially in Evolution Strategies, some alleles actually represent search algorithm parameters.

This thesis will not be taking advantage of coding of search parameters on a genotype, but

it is mentioned for completeness, and possible future consideration. Because representa-

tion has an impact on evolutionary search and correct choices for other components of an

EA, proper solution coding is critical and is often determined on a case-by-case basis.

2.1.2 Evaluation Function

The evaluation function, also called the fitness function, is a method for testing how suc-

cessful a solution is at solving the current problem. Each generation, cadidate individuals

are evaluated via the fitness function, and a quality score, or fitness, is assigned to each.

That score is the value being optimized by the entire algorithm. In this work, every geno-

type to be evaluated will be decoded into a phenotype. Control parameters for the adaptive

oscillator will be extracted from the decoded phenotype and provided to the adaptive os-

cillator. Flight will be simulated for a set period of time using the desired settings and a

quality score will be returned to the EA. This process is not dissimilar to processes used to

evaluate electro-mechanical device performance in any number of automated optimization

pursuits.
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2.1.3 Parent Selection

Parent selection is a process that determines which individuals in the population can be

included in the pool of possible candidates to undergo variation operations. This process

differs from algorithm to algorithm. One common method, fitness-proportuonate selection,

is to select individuals based on some probabilistic measure of an individual’s fitness level

compared to the fitness level of other individuals in the population. This method gives

higher selection probabilities to individuals with better fitness scores. By the selection of

more fit individuals, the overall population should increase in fitness as time progresses.

Another common method for parent selection is tournament selection. In tournament

selection multiple individuals (usually two) are randomly selected from the population. The

individuals then enter a tournament against each other where the winner is the individual

with the best fitness score. That individual is then entered into the pool of candidates for

variation operations. As in the first method, the overall population should increase in fitness

as time progresses, since the more fit individuals are being added to the pool.

An algorithm could apply a universal parent selection process that selects every in-

dividual in the population to be in the pool of possible candidates to undergo variation

operations. While this is a selection process in the sense that individuals are selected to

enter the pool, it applies no selection pressure (preferential selection of fitter individuals).

Therefore, this selection process would not tend to increase the overall population’s fitness.

When this method is used, the selection pressure needs to be applied elsewhere in the algo-

rithm, typically by a survivor selection method, as will be defined later in the document.

When an individual within the pool is actually selected to undergo a variation opera-

tion, that individual gains the title of parent. The solution that is derived from the parent is

referred to as the child or offspring. The term child could also refer to an individual that did

not undergo a variation operation but was still selected to survive into the next population.

6



2.1.4 Variation Operations

Variation operations are used to create new individuals by either combining features of

two or more candidate parents (recombination) or by creating randomly modified copies of

candidate parents (mutation). In practice, there exists a huge variety of recombination and

mutation operations. This chapter will focus only on canonical and representative operators

in each category.

Recombination

Recombination is a variation operation that takes multiple parents, typically 2, and uses a

combination of their genomic material to make a child. The child will presumably then

exhibit a combination of the parents’ features.

Discrete recombination techniques choose one or more points in a genome and, in

the case of two-parent crossover, swap the information on one side of that break point

(one-point crossover) or between the break points (multi-point crossover). Intermediary

crossover will generally complete some arithmetic averaging of all the alleles in two or

more parent genomes. In this work, we will be discussing discrete recombination methods

exclusively.

As already implied, there are various ways of implementing discrete recombination.

What is common to all of them is the idea of choosing division points and swapping genetic

material from genome to genome in and among regions defined by these points. A key

distinction in practice between EAs in the style of a genetic algorithm (GA) and EAs in the

style of an Evolutionary Program (EP) or an Evolution Strategy (ES) is that GAs will divide

genomes at any point of the string, even within loci, and EP/ES will choose division points

at locus boundaries. Proponents of GA approaches often claim the ability to swap partial

alleles as an advantage and have developed a "schema theory" to add some credibility to

their claims. Although some aspects of schema theory are still controversial, it is still

often worth considering if EAs that operate using only abilities entailed in schema theory

7



Figure 2.2: 1-Point Crossover

analysis (E.G. hyperplane sampling) can function well in certain problem environments.

Such consideration in the context of a specific flight control adaptation problem is one

objective of this thesis.

A simple one-point crossover technique takes the same location on two parents and

cuts the genome encoding. Note that in a GA, this cut point would be at any location on

the candidate bit strings while in an EP/ES it would be at a strict locus boundary. Then

one-point crossover takes the first portion from parent A and combines it with the second

portion from parent B to create the first child. Then it takes the first portion from parent B

and combines it to the second portion of parent A to create a second child as demonstrated

in Figure 2.2. While this is a very basic crossover example, the number of points of division

can be increased to the number of equal to the number of bits minus one (for GA strings)

or the number of alleles minus one (for crossover that occurs only on allele boundaries).
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When there is a division after each possible break point, it is called a uniform crossover.

With uniform crossover, a probability is applied to each parent genome. If each parent is

equally likely to supply each allele, the probability for each parent genome being choosen

is 1/k, where k is the number of parents. A higher probability could be applied to a genome

in order to increase the likelyhood that one parent will be choosen to supply the allele over

other parents. One important thing to note with crossover is that in some sense, no new

information can be introduced into the population. All children resulting from crossover

represent re-shufflings of information already inherent in the population.

Mutation

Mutation is a variant operation that takes one parent and creates one child by randomly

changing some genomic material. Naturally, the specific form of a mutation operation is

highly constrained by the genome representation. In most cases, a mutation operation is

implemented by choosing some basic unit of genomic material (usually a single bit in a GA

and a single locus in an ES/EP), assigning a probability that each one of these units might

change, and applying a defined change to that unit randomly with the assigned probability

whenever a mutation operation is called. Different forms of mutation choose different

subsets of genomic material, different probability distributions to govern mutation events,

and different types of changes to occur when mutation events are triggered. In EP/ES, the

basic unit of mutation is the locus and the change is usually to add a random value drawn

from a normal distribution with mean zero and some constant standard deviation [2]. In

GAs, the basic unit of mutation is the individual bit and the change is usually to invert the

bit’s value with some probability [2].

Users of ES/EP methods often consider mutation to be a primary and critical compo-

nent of their algorithms [3] [?]. Generally, they view evolutionary search as hill climbing

to areas of better performance by sampling the region the population already occupies and

then moving population members to better locations. In this context, mutants are "random

9



Figure 2.3: Bit Mutation

probes" sent out by parents to sample other regions. Users of GA methods often consider

mutation to be a secondary and often disruptive, but necessary, evil [10]. In their view,

GAs function by sampling subspaces and exponentially increasing the relative representa-

tion of "good substrings" in the population entirely through interactions of recombination

and selection. Mutation is seen as a means of restoring good substrings that are lost through

accident rather than as a means of actually conducting search. Which view is more correct,

or even if the question about correctness is even well-formed, is still a matter of debate in

many circles.

This thesis concerns itself with a variation of the Genetic Algorithm that does not at

all employ mutation. Therefore, we will not consider mutation in any further detail here.
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2.1.5 Survivor Selection

Survivor Selection is a selection process that determines which individuals will be included

in the population for the next iteration of the algorithm. Many of the methods used for

parent selection have similar methods for survivor selection. However, survivor selection

is applied after the variation operations, selecting individuals from the pool of candidates

for the variation operations and the children produced.

A example of a common tournament style survivor selection operation selects a parent

and its offspring to enter a tournament against each other. The winner of the tournament is

the individual with the best fitness score. That individual survives into the next population.

It is common to use a survivor selection process when the variation operations produce

many children, inflating the population size. Traditionally the population size is kept at a

constant throughout the algorithm. If the variant operations increased the size of the pop-

ulation, survivor selection can be used to decrease the population size back to the original

number.

As in Parent Selection, an algorithm may choose to use a universal selection method

for survivor selection. In this case, all the individuals are selected and return to the pop-

ulation. Since this supplies no selection pressure, it is typically only used if the parent

selection process applies the selection pressure.

2.1.6 Initialization

Initialization is the process of creating the individuals for the initial population. While the

population can be seeded to fit specific constraints, typically it is just seeded by randomly

generated individuals. By seeding to specific constraints, a bias is introduced. This bias

could impact the results of the algorithm. Rather than seeding to benefit certain solutions,

it is generally considered preferable to seed the population from a uniform random distri-

bution over the solution space and allow the EA to work to a solution on its own [2].
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2.1.7 Termination

An algorithm can have multiple termination conditions, halting when any one of them is

met. Some common termination conditions include: an acceptable solution was found, the

population converged, or the algorithm has run for a predetermined amount of time. A

population is considered to have converged when the diversity in the candidate solutions

has decreased to below a predetermined level.

2.2 Genetic Algorithms

This work will employ an algorithm called the Compact Genetic Algorithm, which is a

variant on the Genetic Algorithms (GAs) introduced by Holland [2]. This section will

focus on specific characteristics of the GA in anticipation of full discussion of the specific

variant used in this work.

2.2.1 Representation

As previously mentioned, GAs traditionally encode the genotype as bit-strings. These bit-

string contains identifiable sub-strings that make up the loci of the genome. The substrings

need to be decoded into a phenotype for interpretation. This decoding can vary from al-

gorithm to algorithm. The Simple Genetic Algorithm (SGA) [2], which will serve as a

standing example throughout this section, follows this representation.

Table 2.1shows an example of an SGA with bit-string representation of six individu-

als. For this example, the algorithm will maximumize the summation of two integer values.

The genotype is a bit-string of 10 numbers. When this genome is decoded into its pheno-

type, the first five bits encode the first value and the second five bits encode the second

value.
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Table 2.1: SGA Summation Example of Fitness and Fitness Proportional
String Individual Value Value Fitness Probability Random Expected Actual

Number 1 2 level Num Range Count Count

1 1001110101 19 21 40 0.21 0 - .21 1.27 2
2 0010101101 5 13 18 0.10 .21 - .31 0.57 0
3 1001010101 18 21 39 0.21 .31 - .52 1.24 1
4 0101100110 11 6 17 0.09 .52 - .61 0.54 1
5 0101010111 10 23 33 0.17 .61 - .78 1.05 1
6 1100110001 25 17 42 0.22 .78 - 1 1.33 1

2.2.2 Evaluation Function

As explained previously, the evaluation function is a way of measuring the fitness of the

individual. In order to evaluate individual solutions, theygenerally must be decoded from

their genotype type to their phenotype. In Table 2.1 the individuals are decoded into their

two integer values. Once they are decoded, the summation can be taken of the two values

to determine the fitn“ess score.

2.2.3 Parent Selection

GAs use a variety of parent selection methods. One common parent selection method is

the fitness proportional method. Fitness proportional selection is the method used by SGA.

For this method, think of a roulette wheel that is spun every time a parent is needed. Each

slot in the wheel represents an individual that could be selected as a parent. The size of the

slot for the individual is proportional to the fitness level of the individual.

To encode the fitness proportional method, the first step is to determine the size of

each slot. This is done by dividing the fitness level of the individual by the summation

of all fitness levels to calculate that individual’s probability. In Table 2.1 the sum of all

the fitness levels is 189. Therefore, each probability is found by dividing the individual’s

fitness by 189.

Once the probabilities are determined, a range for randomly generated numbers that
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Table 2.2: SGA Summation Example of 1-Point Crossover
String Individual Crossover Offspring Offspring Value Value Fitness

Number Point Number 1 2 Level

5 01|01010111 2 0101110101 1 11 21 32
1 10|01110101 2 1001010111 2 18 23 41
4 010110011|0 9 0101100111 3 11 7 18
6 110011000|1 9 1100110000 4 25 16 41
1 100111|0101 6 1001110101 5 19 21 40
3 100101|0101 6 1001010101 6 18 21 39

Table 2.3: SGA Summation Example of Mutation
Offspring Offspring Offspring Value 1 Value 2 Fitness
Number after Crossover after Mutation 1 2 Level

1 0101110101 0101110111 11 23 34
2 1001010111 1001010111 18 23 41
3 0101100111 0101100111 11 7 18
4 1100110000 1100110001 25 17 42
5 1001110101 1000110101 17 21 38
6 1001010101 1001010101 18 21 39

select that individual can be created. This range represents the size of this individuals slot

on the roulette wheel. Table 2.1 shows that the range starts where the last individual’s range

ends, the first individual’s starting at zero. The range goes from the start value through the

sum of the start value plus the probability for that individual. Once a range has been

created for each individual, random numbers are generated for however many offspring are

needed. SGA will create a number of offspring equal to the size of the population. The

expected count for how often an individual is chosen as a parent can be calculated then by

multiplying the probability for the individual by the population size.

2.2.4 Variation Operations

GAs may use a variety of both recombination and mutation methods. The SGA applies both

recombination and mutation. The recombination method used is one point crossover. Table

2.2 shows the results of one point crossover in the running example. After the crossover
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Figure 2.4: Uniform Crossover

is complete, the summation of the fitness levels of this population has been increased from

189 to 211. Note that the break point is not limited to between the fifth and sixth bit (the

locus division) as is typically required in EP or ES. Splitting in the middle of the loci is

generally a characteristic of GAs.

If a uniform crossover were used, every bit position would have a chance of inheriting

from each parent. A uniform crossover could have been completed as in Figure 2.4. A

random number is generated for each bit location. If the random number is greater than a

preset value, typically .5, then child one gets parent one’s allele. Otherwise, child one gets

parent two’s allele. Child two gets the remaining bit for each bit location. With uniform

crossover, there is no linkage between bits.

Once crossover is complete the individuals undergo mutation in SGA as shown in

Table 2.3. A common form of mutation generates a random number for each bit. If that

number is smaller than the mutation rate, the bit changes value; a 0 becomes 1 and a 1

becomes 0. This type of mutation is referred to as bit flip. Table 2.3 shows the effect

of bit flip mutation on the example. Variation operations do not always improve individual

scores. It is the selection pressure that typically increases the population’s fitness over time.

The mutation on offspring number 5 in Table 2.3 actually decreases that individuals score.

Mutation is still important because it can introduce new values into the population. Note
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how all the individuals have a 1 in the final bit location. Without mutation, a 0 could never

be re-introduced into this bit location. Mutation rates are traditionally kept small to keep

the population from constantly shifting. If the individuals are shifting too much due to

mutation, the algorithm may struggle to converge on a solution.

2.2.5 Survivor Selection

A variety of survivor selection methods exist for determining who continues into the next

population. These methods tend to be based on either fitness or age. An example of a

fitness based survivor selection method would be a tournament selection. The parent would

compete against the offspring and the more fit individual would survive into the next round.

An age based method might let an individual survive for a maximum of 50 generations, and

then automatically remove it from the population.

SGA uses a generational survivor selection method. It replaces the entire population

with offspring produced from the variation operations. Note that this does not apply any

selection pressure. The selection pressure is applied during the fitness proportional selec-

tion process for determining parents. The offspring after mutation in Table 2.3 are the

individuals that would make up the population in the next generation.

2.3 Compact Genetic Algorithm

The work will employ the Compact Genetic Algorithm (cGA) [12]. The cGA is a variation

of the GA, and as with other many other GAs, it can be viewed as having representation,

evaluation function, parent selection, variant operations, survivor selection, initialization,

and termination. However, unlike most GAs, the cGA’s representation makes some of the

steps in the process less evident.

16



Figure 2.5: Creating an Individual with cGA

2.3.1 Representation

The cGA has a unique representation. Rather than having a population of individuals,

cGA has a single probability vector. The probability vector stores a probability value for

each bit in the bit string of the solution. These stored probabilities are the probabilities

that the solution contains a 1 in that bit versus the probability that the solution contain

a 0. If the probability vector was used to create n individuals, the population of created

individuals would have the same ratio of zeros to ones in each bit location as a population

of n individuals stored in the traditional way. Therefore, the values in the probability vector

also represent the realative frequency of the bit values within the simulated population.

Figure 2.5 shows how the probability vector is used to create an individual. A num-

ber is randomly generated for each bit position. If the random number is larger than the
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probability vector value than the individual has a 1 in that bit position. If it is smaller the

individual has a 0 in that bit position.

Consider the summation problem used in the SGA example. The bit-string was ten bits

with two sub-strings of five bits each. The sub-strings could be converted to a phenotype

of two integer values. Those values could be added together to determine the fitness level

of the candidate solution. The goal was to maximize the summation. This same problem

will now be explored using the cGA rather than the SGA.

For the summation problem, the cGA will use a probability vector that stores ten

probability values; one for each bit location. Rather than randomly generating individuals

to create a starting population, the cGA will initialize the probability vector so that all the

probabilities are 50%. This creates equal chance of a one or zero being chosen when an

individual is created from the probability vector.

2.3.2 Parent Selection

Table 2.4: cGA Summation Example of Solution Creation (Parent Selection)
Bit Location 1 2 3 4 5 6 7 8 9 10

Probability Vector 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
Random Value Set 1 0.83 0.98 0.75 0.31 0.43 0.41 0.90 0.65 0.81 0.14

Candidate Solution 1 1 1 1 0 0 0 1 1 1 0
Random Value Set 2 0.51 0.19 0.18 0.42 0.84 0.96 0.32 0.37 0.56 0.98

Candidate Solution 2 1 0 0 0 1 1 0 0 1 1

Since a population of candidate solutions is not actually being stored, there is no parent

selection as described in the GA section. Rather than choosing parents, two individuals

are created as described in the representation section. Since the individuals are created

randomly, with no favoritism given to more fit individuals, there is no pressure on parent

selection.

For the summation problem, the cGA will generate two sets of 10 random numbers.

Those numbers will be compared to the probability vector to create the individual. Table
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2.4 shows the creation of two candidate solutions.

2.3.3 Evaluation Function

Table 2.5: cGA Summation Example of Evalutaion Function
Individuals Value 1 Value 2 Fitness Level (Summation)

1110001110 28 14 42
1000110011 17 19 36

At this point in the algorithm, two candidate solutions exist. These solutions are eval-

uated just as they are in other GAs. Table 2.5 shows the evaluations of the individuals

created in Table 2.4. The individuals are decoded into their phenotype integer values and

then summed to get the individual fitness scores.

2.3.4 Survivor Selection

Table 2.6: cGA Summation Example of Survivor Selection when n=16
Bit Location 1 2 3 4 5 6 7 8 9 10

Original Prob Vector 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
Tournament Winner 1 1 1 0 0 0 1 1 1 0

Tournament Loser 1 0 0 0 1 1 0 0 1 1
Adjustment Direction - 1 1 - 0 0 1 1 - 0

New Prob Vector 0.50 0.44 0.44 0.50 0.56 0.56 0.44 0.44 0.50 0.56

The cGA applies selection pressure durring the survivor selection process. It uses a

tournament based survivor selection method. The two candidates that are generated and

evaluated compete against each other. The probability vector is then updated to reflect the

candidate with the better score.

If the bit in the winner is different than the bit in the loser at a location, then the

probability vector gets adjusted for that bit location. Let n be the simulated population

size. The probability being stored for the bit location is decreased by 1/n if the winner’s bit
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is a 1. Decreasing the value stored in the probability vector, makes it more likely that the

randomly generated number will be larger than the probability. If it is larger it becomes a 1

in the bit-string for the individual being created. Therefore, by decreasing the value in the

probability vector, it mimicks a population that has more 1’s at that bit location. Simillarly,

the probability vector is increased by 1/n if the bit for the winner is 0. This makes the

probability vector reflect a population with more 0’s at that bit location. The probability

vector is not adjusted when the bit is the same value for both individuals, since there is no

way of determining if the bit value at that location was beneficial. Once the probability

vector has been updated, both candidate solutions can be deleted.

Table 2.6 shows the adjustments being made to the probability vector for the sum-

mation problem. First, the direction of the adjustment is determined. For the Adjustment

Direction column, a ’1’ means that the probability vector needs to be decreased, a ’0’ means

it needs to be increased, and a ’-’ means that the two bits were the same in both candidates

so no changes are made. The bottom row of the table shows the new adjusted probability

vector when the simulated population size is assumed to be sixteen.

2.3.5 Variant Operations

Variation operations are not used in the traditional sense in the cGA. Since individuals are

created when they are needed rather than stored, no operations are needed to create new

individuals. However, because of how the probability vector is updated, the cGA mimics

uniform crossover but has no mutation.

The cGA selects the bit value of any individual in the simulated population every time

an individual is created. There is no linkage between the bits selected. Selecting a 1 for the

first bit value has no impact on what is selected for the remaining bit locations. This lack

of linkage between bits is a characteristic of uniform crossover. Like other recombination

techniques, the individuals created by cGA can only contain values that are already present

in the population at that bit location.
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Once the probability vector holds a percentage of 0, a created individual will always

have a 1 at that bit location (the randomly generated number will always be larger). When

the probability vector contains a probability of 1, the created individual will always gen-

erate a 0 at that bit location. Once one of these two conditions are met, that bit location

is said to have converged. There is no new way of introducing the opposing value back

into that bit location once it has converged. The introduction on new legal values into the

population is a characteristic of mutation. Since cGA does not have this characteristic, it

can be concluded that cGA mimicks the use of only recombination.

2.3.6 Initialization and Termination

The cGA initializes the population by setting every percentage in the probability vector to

50%. This is equivalent to randomly generating a population since no preference is being

given to having a 1 or a 0 in any bit location. The cGA terminates when every bit location

in the probability vector has converged. Once every bit location has converged there is only

one possible solution that can be created. That solution is the final solution found by the

cGA to the problem proposed.

2.3.7 Hardware Characteristics for cGA

The cGA has a efficient hardware implementation given in [1] [9]. Also, a traditional GA

needs m x n bits of memory to hold the population where m is the length of the bit string

for one individual and n is the size of the population. Since the cGA stores the population

as a probability vector instead of a series of bit strings, the memory usage is reduced to

m x log2 n [12]. This reduction in memory usage makes it possible to represent larger

populations on a very small vehicle.
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2.4 The Vehicle Schematics and Control Dynamics
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Figure 2.6: Vehicle Schemantics

The vehicle used throughout these experiments is based on the first at-scale robotic

insect to achieve flight [17]. This section will first discuss the physical features of the

vehicle and then it will solve world hunger and be generally awesome, with no extra cancer.

2.4.1 vehicle features

A conceptual schematic of the vehicle that achieved flight [17] is shown in Figure 2.6. The

top view, shows the angle [+φ,−φ] through which the two wings. The wings are also able

to move through an angle of α under the plane of [+φ,−φ] as shown in the side view.

As the wings beat they will produce forces and torques that move the vehicle. If

the vehicle was paused at a given moment of time, and all the forces and torques were

calculated, these would be the instantaneous forces and torques. Resuming the vehicle,

allowing the wings to move one more degree, and then pausing the vehicle again in order

to measure all the forces and torques will result in that moments instantaneous forces and

torques. Repeatedly resuming the vehicle, moving the wings one more degree, and pausing
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again to measure the instantaneous forces and torques of the vehicle over ten degrees would

result in a list of the forces and torques over that ten degree movement. The average of those

forces and torques could then be taken, resulting in the ten degree average of forces and

torques on the vehicle. Rather than doing this over 10 degrees, this could be completed

over an entire wing flap, starting with the wings at the upstroke position +φ, moving the

wings through the downstroke to the position of −φ, and continuing the movement through

the upstroke so the wings end at the forward position again of +φ. The average of this

list of forces and torques taken over an entire wing beat is called the cycle average of the

forces and torques. While the vehicle will move throughout the entire wingbeat, due to

the symmetry of the vehicle, all the torques and forces will cancel on a cycle average basis

except for a single upward force [5] [15].

2.4.2 Altitude Commanding Tracking Controller

Figure 2.7: Basic Control of Constrained Hover: The Altitude Command Tracking Con-
troller

In Figure 2.7 the box labeled Plant Dynamics represents the forces and torques created
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by the wing flaps on the vehicle. The first box in the Plant Dynamics part of the figure

represents the motion of the wings. The wing motion creates a force. Since we will be

looking at the vehicle over an entire wing beat, the cycle average of forces and torques will

result in a single upward force. That produced force can be divided by the mass of the plane

resulting in the acceleration. Once the acceleration has been calculated, it is summed with

gravity in order to calculate the net acceleration. One the acceleration is calculated, the

velocity can be found by integrating once. The position can be found by integrating again.

Once the actual position is calculated, it is time to move on to the Altitude Command

Tracking Controller.

The Altitude Command Tracking Controller begins by taking in the actual position

and comparing it to the desired position (the summation circle in the lower right corner

of figure 2.7). The difference of these to values is the error between current position and

desired position. Next, the desired force is calculated taking into consideration the error in

current position, the velocity of the vehicle (so the desired position is not approached too

quickly), and the gravitational force. This force cannot be applied directly; this force is the

desired net force resulting after the cycle average of the next wing beat. Since it cannot

be applied directly, the net force is run through a vehicle model [4]. The vehicle model

is a system of equations specific to the vehicle that are used in order to determine at what

frequency the wings should be moved in order to produce the desired net force over the next

wing beat. Once the frequency is calculated, it is provided to the oscillator. The oscillator

applies the frequency to a cosine function which creates the wing motion, resulting in the

desired net force. Note that both wings will move identically and that the cycle ZOH box

constrains the wing flap frequency update to start of each wing beat. The frequency will be

updated when both wings return to the far forward position φ = 1.
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2.5 Augmented Vehicle

The altitude command tracking controller described works well for undamaged vehicles.

However, it does not work well for damaged vehicles. The vehicle model described above

is specific to the undamaged vehicle. Once the vehicle is damaged this model is no longer

accurate, resulting in the calculated frequency that is applied by the oscillator, not being

able to flap the wings in such a way that produces the desired net force. The Vehicle Model

also assumes symmetry of the vehicle that on a cycle average produces only an upward mo-

tion. But the damage causes asymmetry in the vehicle, resulting in more forces and torques

on the vehicle than just the upward force over the cycle average. By altering the wings

so that they can follow independent waveform shapes and frequency, vehicle symmetry no

long assumed. From this the cycle average benefit of a single force can be re-introduced.

[5] [15] use this methodology in previous work. [7] [14] proposed replacing the simple

split-cycle oscillator in Figure with an adaptive oscillator that could learn these new inde-

pendent wing motions to complete this restoration. These oscillators would accept the same

frequency and shape parameters from the vehicle model, but would contain an evolution-

ary algorithm to learn wing motion shapes that will produce correct forces and torques in

a possibly damaged vehicle. Rather than attempting to create an adaptive controller, which

would require a great deal of resource, the goal was to create an adaptive plant that was

more compliant with the vehicle model inherent in the pre-derived flight controller [8].

2.6 Adaptive Oscillator

The augmented adaptive oscillator replaces the simple cosine oscillator with an Evolvable

and Adaptive Hardware (EAH) [11] oscillator that learns new waveforms that better pro-

duce the desired forces and torques. Figure 2.8 shows a schematic for a drop in replace-

ment for the oscillator in Figure 2.8 which still intakes the calculated wing frequency.
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Figure 2.8: Adaptive Oscillator Schematic

This oscillator breaks the wingbeat down into 256 positions and uses an internal library of

pre-computed basis waveforms to look up wing positions. Eight wing positions are looked

up in the internal library lookup table. The indices for the lookup table are provided by

the Evolutionary Computation Algorithm. This section will first discuss the lookup table.

The on-board learning algorithm is the focus of this thesis and will be discussed in the

Methodology chapter.

2.6.1 Lookup Table

The lookup table of positions is a pre-computed library created by using the following four

basis functions:

φA(x) = cos(x) (2.1)

φB(x) = (cos(x) + cos(3x))/2 (2.2)
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φC(x) = (2cos(x) + cos(3x))/3 (2.3)

φD(x) = (4cos(x) + cos(3x))/5 (2.4)

The basis functions were designed to minimize the amount of hardware and computational

power required for implementation [7]. For these equations the wings are fully forward at

the beginning and end of each wing beat. Each equation is primarily a cosine wave with

possibly some smaller cosines of faster frequencies superimposed, and they encapsulate

non-power of two multiples and divides into the table, simplifying on board mathematics.

Figure 2.9: The Sixteen Composite Up/Down Stroke Basis Functions

The lookup table inside the oscillator stores sixteen classes of pre-computed functions

that are all the possible combinations of upstrokes and downstrokes of equations (1) âĂŞ

(4) as shown in Figure 2.9. The function AA is an upstroke computed with (1) and a

downstroke computed with (1). BD is an upstroke computed with (2) and a downstroke
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computed with (4). Note that the diangle is the four original equations. Each of the sixteen

composite up/down stroke waveforms come in 256 time-shifted varieties in which the low-

ermost bottom trough of the function is time shifted along the x-axis [14]. In all, therefore,

there are 4096 distinct basis functions. Each of these 4096 basis functions contain the 256

positions that the wing should move to over the next wing beat. The Adaptive Oscillator

will look up eight values for each wing and take the average of those eight values. The

learning algorithm optimizes these sixteen indices (eight per wing) used for the lookup ta-

ble by using an Evolutionary Computation Algorithm. The algorithm used for this work

is the focus of this thesis and will be discussed in the Methodology chapter. Below is a

learning algorithm that was tested in previous work.

2.7 MAV_MiniPop

The MAV_MiniPop algorithm was created as a possible solution to the exact problem be-

ing addressed in this thesis [7] [14] [8]. This algorithm most closely represents the EA and

ES branches of EC [3] [6].The MAV_MiniPop algorithm is a mutation based algorithm that

uses stochastic hill climbers to solve the precision control problem. The evaluation is per-

formed by running the proposed solution through the simulator. In between evaluations, the

simulator runs the current best solution found in an effort to re-stabilize the FW-MAV and

to have more accurate scores for the candidate solutions. Each individual in the population

becomes a parent. The parent undergoes mutation in order to create the child. The child

then is evaluated by the simulator. If the child’s score is better than the parent, it replaces

the parent in the population. In addition to this, the algorithm creates a hypermutant. If

the hypermutant scores better than the worst solution, it replaces the worst solution. This

algorithm was tested on both the one degree of freedom problem and the two degree of

freedom problem.
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Motivation and Methodology

This chapter discusses the motivation behind this thesis. It covers the methodology and

define terminology used in the next chapter, Experimental Results.

3.1 Motivation

In previous work [7] [14] [8] stochastic hill climbers were employed to restore precision

pose and position contol in a simulated insect-scale FW-MAV. This thesis will look at the

results of using a hyperplane sampling algorithm instead of a stochastic hill climber. This

section will cover the difference between stochastic hill climbers and hyperplane samplers.

3.1.1 Stochastic Hill Climbers

Consider the search space as terrain where the optimal solution is the highest peak on

the terrain. Stochastic hill climbers generally work by starting in a location, randomly

sampling the area around them with probes, and progressing to the best solution [2]. They

continue an upward climb to the highest peak by continuously examining the vicinity. This

method of optimization has several features. It can have smaller population sizes than the

hyperplane samplers described in the next section. Stochastic hill climbers can converge to

a peak relatively quickly. They are likely to get stuck on the closest local optimum, since

they have a limited view of the search space.
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3.1.2 Hyperplane Samplers

A hyperplane is an area in the search space that has specific characteristics [16]. An exam-

ple of a very basic hyperplane would be the hyperplane of individuals with a zero in their

first bit location. Every individual in the population who has a zero for their first bit would

reside on this hyperplane. While this is a very basic hyperplane, hyperplanes can be much

more complex, combining any number of characteristics that a single individual within the

population could theoretically have. Individuals can reside on more than one hyperplane.

Hyperplane sampling relies on the fact that as the algorithm runs, the population as a

whole should be becoming more fit. Therefore as the algorithm runs, the hyperplanes with

more desirable characteristics should become more populated.

Figure 3.1: Hyperplane Cube Example [16]

Consider this problem based off an example in [16]. The search space is a 3 bit

30



solution represented as a cube in Figure 3.1. The possible solutions are 000, 001, 010,

011, 100, 101, 110, and 111. The order of a hyperplane is determined by how many

bits are explicitly stated [16]. 1*1 would be a 2-order hyperplane, where the * can be

replaced with either a 1 or 0. This search space has six 1-order hyperplanes. The cube

has a front hyperplane of 0** and a back hyperplane of 1**. The bottom of the cube is

another hyperplane created by *0* and the top of the cube is a fourth hyperplane created

by *1*. The final two 1-order hyperplanes are the right side **0 and the left side **1. Just

considering these six hyperplanes, each individual resides on three of them.

When the population is created, individuals should be spread out over the search space,

having approximately equal representation on all six of these 1-order hyperplanes. Assume

that the characteristic represented by *1* has a greater advantage in solving this problem.

The entire population should gradually move to the hyperplane *1*. Likewise, if 0** is

a better characteristic for solving the problem then 1**, over time the population should

move to the 0** hyperplane. As the algorithm runs, the representation on *1* and 0**

should increase. A product of individuals moving to these two1-order hyperplanes is that

the 2-order hyperplane of 01* should also have an increased representation. Hyperplane

sampling claims that the hyperplanes with more representation have the more desirable

characteristics and represent a more optimal solution to the problem [16].

In order for hyperplane sampling to work, the population needs to be large enough

to cover all the 1-order hyperplanes. Since hyperplane sampling uses crossover and not

mutation, once no individual resides on a 1-order plane, that characteristic can never enter

the population again. Also, once the 1-order hyperplane is no longer represented in the

population, any 2 or greater order hyperplane that built off of that hyperplane, can no

longer be reached. Therefore, it is important to watch for early convergence in hyperplane

sampling algorithms. Usually a large population size can help prevent early convergence.
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3.2 Methodology

The intent of this thesis is begin the exploration of the impact of hyperplane sampling

algorithms through the use of the Compact Genetic Algorithm (cGA) designed by Harik,

Lobo, and Goldberg [12] on pose and position control precision in simulated Insect-Scale

Flapping-Wing Micro Air Vehicles. The cGA is described in detail in chapter 2. This

section will define the various level of difficulties of the problem and cover termination

and parameter settings used for the experiments. It will also define terms specific to the

experiments that will be used in the following chapters.

3.2.1 Problem Refinement: Degrees of Freedom

This thesis examines the pose and position control precision problem in Insect-Scale Flapping-

Wing Micro Air Vehicles. The experiements are run over simplified versions of the orginal

hover control problem by limiting the degrees of freedom (DoF) for the vehicle.

In the one degree of freedom (1-DoF) problem, the FW-MAV behaves as if it were

attached to two vertical wires. This limits the movement of the vehicle to altitude; yaw,

pitch, roll, sideways, forward, and backwards movement are all impeded as shown in Figure

3.2. This is used to test initial concept in a simplified environment. An acceptable solution

to the 1-DoF problem causes the vehicle to hover within .001 meters of the desired height.

The two degrees of freedom (2-DoF) problem adds roll to the vehicle movement in

addition to the altitude, making the problem more complicated. The vehicle no longer

moves as if attached to two wires, but rather moves as if attached to a single wire as shown

in Figure 3.3. The vehicle can move up and down the wire and rotate about the wire. An

acceptable solution to the 2-DoF problem is that the summation of hover error and altitude

error is less than .05 units of error measurement. The vehicle altitude error is measured in

meters and the roll is measured in radians. Therefore, if the altitude is perfect, the roll of

can be off by .05 radians. If the roll is perfect the alititude can be off by up to 5 cm. While
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Figure 3.2: Vehicle Limitations in 1 - DoF Problem

this is a very simplistic way of analyzing the multi-objective function, it was used at this

time in order to establish a proof of concept. In future work, this can be re-evaluated.

3.2.2 Compact Genetic Algorithm for the FW-MAV

This subsection will cover termination details, parameter setting details, and additional

features added to the cGA for tracking the progress of the algorithm.

Termination

For this experiment, the cGA terminates under three different conditions. The algorithml

terminates if an acceptable solution is found. The algorithm terminates when a maximum

number of evaluations is reached. This termination criterion works as a timeout in case the

33



Figure 3.3: Vehicle Limitations in 2 - DoF Problem

algorithm struggles to find a solution. The algorithm terminates when complete conver-

gence on an unacceptable solution is reached, meaning all probabilities in the probability

vector have reached either 0 or 1. Since the algorithm implements only recombination and

not mutation, if this occurs the population has no hope of reaching an acceptable solution.

Setting this as a termination criterion simply speeds up the experiment run time. The most

salient criterion in these initial experiments is flight time required to achieve an acceptable

solution.

Parameter Settings

Figure 3.4 shows the pseudocode for the cGA as used in the experiments. The first parame-

ter N, represents the population size. The experiments were run on all simulated population
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Figure 3.4: Pseudocode for the Compact Genetic Algorithm as implemented for hover
control in a Flapping Wing Micro Air Vehicle

sizes of 2k where k is every value from 2-18 inclusive; cGA most efficiently simulates pop-

ulations of sizes that are a power of 2. The number of wing beats (WB) per evaluation will

be set to 100 wing beats. This is kept at a constant in all experiments performed regardless

of the DoF. The maximum number of evaluations before the experiment times out (MAX-

EVALS) varies depending on the number of DoF. In the 1-DoF problem, the MAXEVALS

is set to 20,000, which is approximately 4 hours of flight time. In the 2-DoF problem,

MAXEVALS is increased to 160,000, which is approximately 40 hours of flight time.

Algorithm Tracking

35



In order to track the progress of the algorithm, the best candidate solution found is stored

as the champion. When this individual reaches an acceptable solution the experiment is

considered a success. The champion is used throughout the algorithm as part of the evalu-

ation function in order to stabilize the vehicle. It also augments the evaluation method. By

running this solution in-between individuals being tested, a bad solution for one individual

should not impact the fitness score of another individual. The champion score is updated

each iteration of the algorithm.

The champion is seeded with the lookup values for the cosine function during initial-

ization. This seeding is due to the fact that the vehicle control unit is designed to work with

the cosine function on an undamaged vehicle.

3.2.3 Terminology

This is a summary list of terms that will be used in explaining the results. While some of

these terms have previously been defined, they are included here for an easy reference.

An acceptable solution is an individual that meets a minimum standard of success

at solving the precision pose and position control problem. In a 1-DoF problem that is

being within .001 meters of the desired height. In a 2-DoF problem that means have a

combined altitude and roll error of less than .05 units error measurement. The altitude

error is measured in meters and the roll error is measured in radians.

Convergence is a measure of the amount of diversity in the population. Complete

convergence means that every individual in the population has exactly the same bit-string.

The higher the convergence percentage, the more similar all the individuals in the simulated

population are.

Error is the absolute measurement of the difference from where the vehicle is and

where the vehicle would ideally be. For 1-DoF this is simply a measurement of how far

off the altitude is in meters. For 2-DoF the distance off the roll is also measured in radians.

The error in 2-DoF is the summation of altitude error and roll error.
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Time or flight time is the amount of time the vehicle would have been in flight. Note

this is not simulation time but how long the physical vehicle would have had to been in the

air.

3.3 Possible Algorithm Additions

There are numerous adaptions that can be applied to a genetic algorithm in an attempt to

increase the success of the algorithm. These adaptations have a wide range of implementa-

tions as well as a wide range of impacts. This section discusses some of these adaptions.

3.3.1 Islands Model

The islands model divides the simulated population up, acting like the individuals reside on

several different islands [2]. Then each island acts as its own simulated population, evolv-

ing in parallel to the other islands. By using islands the simulated population is able to

converge to several different spots, and if one portion of the simulated population quickly

converges to a locally optimum solution, the entire simulated population will not necessar-

ily be caught at that location.

Whenever the island model is used, it is common to use a migration technique [2].

Migration is the process of moving individuals from one island to another island. What

happens when the individual migrates into the population varies from one algorithm to

the next. When an individual migrates, it may draw the population towards it location.

Migration can help prevent a population from getting stuck in a local optimum. Migration is

often implemented similarly to mutation. There is a migration rate. If a randomly generated

number is above the rate, then the individual will move to another island. Along with the

rate of migration, another parameter that can be altered is the number of islands.

For the cGA implementation each island could have its own probability vector. When
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an individual migrates, it could greatly influence that islands probability vector by modify-

ing each probability to be 25% more likely to produce the same allele. A global champion

could be used to keep track of the best individual created throughout all the islands, and a

local champion could hold the best event for the individual island. When a migration event

occurs, the global champion could be the individual that migrates into the island.

3.3.2 Hypermutation

As discussed in the background, the cGA only implements crossover; it does not have any

form of mutation. Therefore, another technique that could be added to the algorithm for

some of the experiments is hypermutation. This could be completed with cGA by using it in

combination with the island model. When the island model is being used, a hypermutation

event could cause the island to be completely reset. The probability vector for that island

could be reset to all probabilities of 50%. The local champion could also randomly reset

as well. With this implementation, if the island had reached the best solution so far, that

solution will still reside in the global champion.

Hypermutation could also be implemented in cGA by randomly generating an indi-

vidual with no bias for generating a 1 versus generating a 0 for each bit location. If that

individual is better than the global champion, it could effect the probability vector to favor

its alleles.
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Experimental Results

This chapter will show the results that were obtained by applying algorithm discussed in

the previous chapter. The results from the 1-DoF experiments will be given first, followed

by the results for the 2-DoF experiments.

4.1 Compact Genetic Algorithm for Altitude Control (1-

DoF)

The first results displayed are the results from the Compact Genetic Algorithm (cGA) as

described in section 3.2 The Learning Algorithm on the 1-DoF problem of hover control.

Using the simulator described in chapter 2, more than 100,000 independent experi-

ments were run on the cGA, locating an acceptable solution 92.17% of the time. An ac-

ceptable solution is defined as a solution in which the champion solution managed to hover

the vehicle within .001 meters of the target height. Unacceptable solutions are experiments

that failed to find an acceptable solution within the hard coded time limit of approximately

4 hours. This does not mean that an acceptable solution could not have been found if the

algorithm was given more time. While the algorithm could have terminated due to early

convergence, it never did.

Table 4.1 shows the percentage of success broken down by population size. Each

population size was tested on more than 6000 independent experiments. From the table
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Table 4.1: Percentage Acceptable Solutions Found
Simulated cGA Number Acceptable Non-Acceptable
Population Size Experiments Solutions Solutions

4 6066 93.69% 6.31%
8 6066 94.06% 5.94%
16 6066 93.46% 6.54%
32 6066 93.40% 6.60%
64 6066 94.00% 6.00%
128 6066 93.37% 6.63%
256 6066 92.61% 7.39%
512 6066 92.40% 7.60%
1024 6066 92.69% 7.31%
2048 6066 92.30% 7.70%
4096 6066 91.96% 8.04%
8192 6066 90.61% 9.39%
16384 6066 90.71% 9.29%
32768 6066 90.79% 9.21%
65536 6066 90.09% 9.91%
131072 6066 90.19% 9.81%
262144 6066 90.51% 9.49%

one can see that the yield percentages were in the low to mid 90’s. The decrease in yield

percentage as the population grew larger can be understood by reviewing how the proba-

bility vector gets altered. Every evaluation, the each probability in the probability vector

gets altered by a maximum of 1/n, where n is the size of the population. Since we have a

set maximum number of evaluations, 20,000, and at larger population sizes we are forcing

smaller steps to be taken, it is not surprising that the algorithm struggles more to converge

to an acceptable solution. The experiments that are classified as unacceptable solutions still

maintained hover control that only lacked in the amount of positional precision. This "safe

fail" behavior is consistent with behavior identified and explained in previous work[13].

Table 4.2 shows the amount of time it took the algorithm to achieve a minimally

acceptable solution as defined above. For this table, experiments with non-acceptable so-

lutions were excluded. The means, the medians, and the 75th percentile were included.

The table reveals that the average time to achieve an acceptable solution is approximately
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Table 4.2: Time in Minutes to Find the Solution for Experiments that Yielded Acceptable
Solutions

Simulated cGA Number
Population Size Experiments Mean Median Q3

4 5683 44.24 22.91 59.96
8 5706 44.09 23.27 58.42
16 5669 44.67 26.76 59.07
32 5666 45.08 25.40 59.91
64 5702 45.22 22.96 60.05
128 5664 45.25 26.45 60.57
256 5618 46.63 28.97 62.05
512 5605 48.26 30.01 64.60
1024 5622 49.10 32.19 67.55
2048 5599 49.70 30.64 69.40
4096 5578 51.05 29.21 71.42
8192 5497 52.35 29.42 75.40
16384 5503 51.20 27.75 70.97
32768 5508 51.80 29.54 72.03
65536 5465 50.94 32.82 71.23
131072 5471 52.36 30.10 72.52
262144 5491 50.97 29.46 69.82

50 minutes. Since these vehicles would most likely be used in shorter flights, a smaller

learning time is desirable.

Figure 4.1 shows the boxplot of time needed to solve this problem. For this boxplot

and all future boxplots in this thesis, the boxplot has the following interpretation. The lines

of the box represent the first quartile, the second quartile (median), and the third quartile.

The outer lines represent 3 interquartile ranges from the box (IQR). Items outside of 3 IQR

are marked with ’o’. While there seems to be a wide range of times needed for the final

quarter to finish, some needing more than three times the average flight time, there is not a

huge variation among the first three quarters.

Figure 4.2 shows the boxplot of error on runs that yielded acceptable solutions, mean-

ing an error value of less than .001 meters. As expected, most of the error values were be-

tween .0005 meters and .001 meters, since the experiment terminates once the acceptable

solution is found. However, the fact that some solutions were producing errors of less than
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Figure 4.1: The Flight Time Needed to Find an Acceptable Solution for Experiments that
Yielded an Acceptable Solution

.0001 meters gives validation to basis functions being used in the lookup table and the idea

that altering the wing flapping motion can correct for error damage.

Figure 4.3 shows the convergence levels on the experiments that yielded acceptable

solutions. Since the experiments terminate when a solution is found, it is expected that

the populations would not be more converged. If the experiment was allowed to continue

to run, it would be expected that the population would continue to be pulled towards the

acceptable solution, eventually converging.

Figure 4.4 shows the convergence of non-yield experiments; non-yield referring to

experiments that terminated with unacceptable solutions. The general trend is that larger

populations are less converged than smaller populations when the experiment terminates.

This is to be expected because the size of step that can be taken with each evaluation is
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Figure 4.2: The Ending Error for Experiments that Yielded an Acceptable Solution

inversely proportional to the size of the population. The fact that it is easier for smaller

population sizes to converge could contribute to the fact that smaller population sizes re-

sulted in higher yield percentages Also, with maximum convergence percentages being

30%, premature convergance is not the reason an acceptable solution was not found.

4.2 Compact Genetic Algorithm for Altitude and Roll Con-

trol (2-DoF)

This section examines the same algorithm as the previous section except on the 2-DoF

problem. The cGA as written does not appear to be a strong enough algorithm to solve

the 2-DoF problem. Of the 1,700 independent experiments run over simulated population
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Figure 4.3: The Ending Percent of Population Converged for Experiments that Yielded an
Acceptable Solution

sizes ranging from 22 to 218 (100 experiments per population size), not a single experiment

terminated with an acceptable solution. However, even with that being the case, the "safe

fail" described in the previous section still held true.

It is important to note that the conditions that needed to be met in order to terminate as

an acceptable solution were the same conditions used in [14]. In [14], the MAV_MiniPop

algorithm managed to find a solutions nearly 100% of the time [14]. Therefore, the accept-

able solution criteria existed; the algorithm just failed to locate it. While it could be argued

that the cGA could have found a solution if allowed to run longer than the 40 hours of flight

time before the timeout, the amount of time needed would have been impracticle for the

user.

While the algorithm as proposed in [12] did not work for the 2-DoF problem, by
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Figure 4.4: The Ending Percent of Population Converged for Experiments that did not
Yield an Acceptable Solution

making modifications to the algorithm, the algorithm might be better able to solve this

problem. These proposed modifications can be added without losing some of the benefits

of the original algorithm. These modifications will be explored in the next chapter.
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Conclusion and Future Work

This chapter begins with a review of the results in the previous chapter and attempts to

extract insight into the benefits of hyperplane sampling. The second section of this chapterl

contains an introduction into algorithm modifications that are intended to be looked into

with future work, and the reasoning behind them.

5.1 Conclusion

Table 5.1: Comparison of cGA and MAV_MiniPop
1-DoF 2-DoF

cGA MAV_MiniPop cGA MAV_MiniPop

Yields Percent 90-95 near 100 0 near 100
Mean Times on Yield (minutes) near 60 less than 10 N/A near 60

This thesis explored the possibility of using the Compact Genetic Algorithm (cGA)

for two primary reasons: the algorithm had already been shown to be a hardware efficient

evolutionary algorithm implementation and it allowed for explicit recombination to be ex-

amined in the hover control problem for an insect-scale flapping-wing micro air vehicle

(FW-MAV).

While the cGA algorithm managed to solve the one degree of freedom hover control

problem, it was less efficient than the MAV_MiniPop in percentage of acceptable solutions

found and time needed to find a solution. Table 5.1 shows a comparison of percentage
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yield and time needed to find an acceptable solution for the MAV_MiniPop compared to

the cGA. On the one degree of freedom problem, the MAV_MiniPop solution had near 100

percent yields [7] where the cGA algorithm only produced in the low ninty percent yields.

Similarly, the amount of time needed by the MAV_MiniPop was on average less than 10

minutes [7] where the time needed for the cGA ranged from 44 to 53 minutes. When the

two degrees of freedom problem is considered, the difference between the two algorithms

becomes even more apparent. While the MAV_MiniPop yields percentages near 100%

again and finds solutions in an average of 60 minutes [14], the cGA algorithm failed to ever

produce an acceptable solution. The MAV_MiniPop clearly performs better than the cGA

algorithm.

The cGA still has a benefit in storing the simulated population sizes by a bounding of

log2 (n) rather than n. Also, stochastic hill climber algorithms that have small population

sizes can have a problem with prematurely converging. The genetic algorithms implicit

parallelism might help reduce the reliance on mutation events as a preventitive measure for

early convergence.

From previous work [7] [14] [8], it has been observed that there are probably many

acceptable solutions to the problem within the search space. At a minimum, the search

space is reflected upon itself several times, since the average of eight lookup indices is

used. The insignificance of the order of the lookup indices causes the search space to be

reflected. If it is the case that there are many acceptable solutions, it could help explain

why a stochastic hill climber algorithm outperformed the hyperplane sampler algorithm.

Stocastic hill climbers in general converge more quickly than hyperplane samplers. In a

situation with many quality locations, converging quickly on an acceptable location would

not be unlikely. However, in the case of hyperplane sampling with slower convergence,

especially in larger population sizes, the solution might continuously be pulled around the

search space. In future work, modifications to the cGA algorithm will attempt to converge

the simulated population more quickly to see if that improves yields and flight time to find
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an acceptable solution.

Future work will attempt to better balance the observed exploration and exploitation

strengths of cGA and MAV_MiniPOP respectively. Fortunately, the hardware cost of such

a hybrid approach is still bounded by log2 n and is completely feasible in the time and

space restricted realities we face with insect-scale flapping-wing micro air vehicles.

5.2 Future Work

5.2.1 Elitism Modification

The Elitism Adaptation is very similar to the cGA algorithm, with one change. Rather

than generating two candidates each evaluation and making the two candidates compete,

the algorithm only produces one candidate each evaluation, and then forces that candidate

to compete against the champion. This adaptation will cause convergence to happen more

quickly. As described in the conclusion, the reason this quicker convergence is desired is

because it is believed that the search space contains many acceptable solutions. The Elitism

Adaptation makes the cGA algorithm more closely mimic the MAV_MiniPop Algorithm’s

ability to converge much more quickly.

5.2.2 Island Modification

After seeing the results of a mutation only solution in MAV_MiniPop and the results of

a recombination only solution in the cGA code, future work should test some balance

between the two variation operations. The Island Adaptation that is proposed will use the

cGA probability vector for storage as well as a similar update step. Rather than updating

by 1/n where n is the population size, the Island Adaptation will update its individual island

probability vector by 1/k, where k is the number of individuals on that island. The value of

k can be calculated by dividing n by the number of islands, causing each island to have the
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same number of individuals. By using this storage system, the algorithm keeps the hyper

plane sampling by recombination. Also by keeping the representation of cGA, the memory

reduction of m x log2 n is kept. However, since a probability vector is needed for each

island the resulting memory needed is j x m x log2 k where j is the number of islands, m is

the size of the bit string, and k is the number of individuals on a given island. The algorithm

could also try the Elitism Adaptation described above, only generating one candidate and

testing it against the local champion (the best solution found by that individual island).

Since islands are bring used in this variation, immigration from one island to another

would be allowed. The immigration rate would be a parameter that would need to be tested

at various settings. The proposed way of handling an immigration event is to have the

global champion (the best solution found on any island) immigrate into the island, shift

each probability in the islands probability vector to be twenty five percent more likely to

produce the global champion. The large impact of the migration of the global champion

can be important in pulling the population towards a good solution, especially if the island

produced the global champion, but then underwent a hypermutation event that now has the

island preforming poorly.

By using islands in this adaptation, a smaller population can be simulated on each

island to make convergence easier without the large worry of early convergence. When one

island prematurely converges, other islands are still able to hunt for a solution, so the entire

algorithm is not stuck waiting on a rare hypermutation event to start the algorithm moving

again.

In addition to adding islands, the Island Adaptation can also add a hypermutation

event. The hypermutation event is another event that has a parameter set rate that would

need to be tested at various settings. When a hypermutation event occurs, the island is

essentially reset. The island’s individual probability vector is reset to all fifty percent, and

the local champion is reset to a random solution. If the local champion was also the global

champion, that solution would still remain within the global champion; if an immigration
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event occurred, that solution would be used to greatly alter the islands probability vector

again.

In order to gain the benefits of both cGA as well as the MAV_MiniPop algorithms, the

proposed Island Adaptation hybrid algorithm would use both mutation and recombination,

as well as the probability vectors of the cGA. When run, these experiments would need to

cover a range of mutation rates, immigration rates, and number of islands.

5.2.3 Consistent Manufacturing Error Modification

The Consistent Manufacturing Error Adaptation attempts to exploit the faults created dur-

ing manufacturing. Whenever there is manufactoring fault due to manufacturing error, it

is reasonable to assume that the impact to the vehicles will be consistent across the entire

batch of FW-MAV. For example, an error in the mold used, would produce an identical type

of damage in each vehicle produced by the faulty mold. This adaptation attempts to use

this consistency to speed up the solution optimization.

Rather than storing the damages as a single type of error that is randomly generated

to represent a combination of manufacturing faults and sustained damage, the Consistent

Manufacturing Error Adaptation will store two types of error. The first will be a randomly

generated error for sustained damage, and the second will be an error that is applied to all

vehicles in the current experiment. Each experiment will try to modify multiple vehicles at

once, in order to find acceptable solutions for each vehicle. However, while each vehicle

will be running an algorithm independently, occasionally the vehicles will use wireless

communication to pass the individual vehicle’s best solution to the other vehicles. The

passed solution would then compete with the vehicle’s champion on the next evaluation,

and if the passed solution is better, it will then replace the vehicle champion. After that the

vehicle will continue with its independent algorithm until another communication event

occurs. When an algorithm passes its champion out to the other vehicles, its independent

algorithm is in no way affected, other than the slight pause taken to send the information
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out.

Since part of the damage on one vehicle is identical to part of the damage on another

vehicle, it is not unreasonable to assume that a solution that compensates for all the damage

on one vehicle is likely to compensate for at least some of the damage on another vehicle,

making the Consistent Manufacturing Error Adaptation a reasonable adaptation to test in

the future. This adaptation does not rely on a specific algorithm being used on the vehi-

cle. If this adaptation works well, it can be updated with the best independent algorithm

known to date. Parameters that would need to be tested at various values throughout the

experiments are the rate of communication events and the number of vehicles in each ex-

periment. Preliminary testing of the Consistent Manufacturing Error Adaptation using the

Elitism Adaptation modification has shown promising results.
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