Winter 2007

CS 765-01: Foundations of Neurocomputation

Mateen M. Rizki
Wright State University - Main Campus, mateen.rizki@wright.edu

Follow this and additional works at: https://corescholar.libraries.wright.edu/cecs_syllabi

Part of the Computer Engineering Commons, and the Computer Sciences Commons

Repository Citation
https://corescholar.libraries.wright.edu/cecs_syllabi/720

This Syllabus is brought to you for free and open access by the College of Engineering & Computer Science at CORE Scholar. It has been accepted for inclusion in Computer Science & Engineering Syllabi by an authorized administrator of CORE Scholar. For more information, please contact library-corescholar@wright.edu.
CS 765
Foundations of Neurocomputation

Instructor: Dr. M. M. Rizki
Office: 432 Russ Engineering
Phone: 775-5117
Email: mateen.rizki@wright.edu
Office Hours: Monday and Wednesday 7:30 - 8:00 PM and by appointment

Course Objectives: This course is designed to help you develop a solid understanding of neural network algorithms and architectures. At the end of this course you should be able to read and critically evaluate most neural network papers published in major journals, (e.g. IEEE Transaction on Neural Networks, Neural Networks, and Neural Computation). In addition, you should be able to implement a broad range of network architectures and learning algorithms for a variety of applications.

Prerequisites: Familiarity with multivariate calculus, linear algebra and matrix algebra.
Familiarity with algorithmic complexity concepts and programming.

Textbooks:
Required: Neural Networks A Comprehensive Foundation by Simon Haykin, Prentice-Hall, 1999
Recommended: If you are not familiar with Matlab, obtain a book on programming in Matlab such as: Mastering Matlab 7, by D. Hanselman and B. Littlefield, Prentice-Hall, 2005

Workload:
2-3 Programming / Homework Exercises 25%
1 Course Project / Presentation 25%
1 Midterm Examination 25%
1 Final Examination 25%

Topics:
Introduction to artificial neural networks Ch. 1
Overview of principles and methods of neural computing Ch. 2
Single layer networks Ch. 3
Multilayer networks Ch. 4
Radial-Basis function networks Ch. 5
Self-organizing maps and vector quantization Ch. 9
Neurodynamics Ch. 14
Recurrent networks Ch. 15
Applications of Neural Networks
Project Presentations