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ABSTRACT

Greenewald, Kristjan H., M.S.Egr, Department of Electrical Engineering, Wright State Univer-
sity, 2012 .Prediction of Optimal Bayesian Classification Performancefor LADAR ATR .

We consider the problem of LADAR ATR classifier performance prediction in the presence of

arbitrary nuisance parameters including but not limited topose. We use several noise models for

both range images and point clouds that are significantly more accurate and complex than the Gaus-

sian models used by previous non-Monte Carlo prediction methods. Two accurate new methods of

efficiently predicting the optimum Bayesian classificationperformance are then derived, and applied

to the noise models. Advantages of these methods include significant gains in accuracy for medium

to high noise levels and the ability to handle target near symmetry. Extensions are developed for

multiple targets and predicting the performance of classifiers designed using incorrect noise models.

We also derive several simple analytic approximations for the behavior of the probability of error

as important sensor and noise parameters vary. Finally, we verify the accuracy of our predictions

using Monte Carlo simulations.
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Chapter 1

Introduction

ATR performance prediction is an essential goal in the development of ATR theory. For many

applications, it is of particular interest to be able to approximate the performance of the optimum

classifier, in order to provide a computationally inexpensive method of evaluating the relative quality

of proposed ATR algorithms, or to provide direction how to adjust system parameters in order to

improve an ATR system. Other applications include sensor management, for which it is important

that the ATR system is able to know how ATR performance will beaffected as parameters change,

so as to better select those parameters. For this thesis, theATR performance metric of interest

is the probability of correct classification, which, unfortunately, is relatively difficult to compute

exactly in realistic situations. This is primarily due to the presence of unknown nuisance parameters

such as target pose that have significant effects on the appearance of the target. This aspect of the

problem also makes performance evaluation using Monte Carlo simulations particularly expensive

in most cases. Thus, the primary challenge of ATR performance prediction lies in incorporating

these nuisance parameters into the prediction in an accurate and computationally efficient manner.

A variety of imaging sensors are used for ATR. With improved FLASH LADAR technology,

LADAR sensors are increasingly being used to perform ATR, especially when other sensors such

as radar are unable to definitively identify the target. LADAR sensors provide high-resolution,

albeit noisy, three-dimensional images of the side of the target visible from the LADAR sensor, thus

making it a desirable choice for ATR tasks that involve distinguishing similar targets.

1



1.1 Motivation

In this thesis, we focus on the prediction of the classification performance of LADAR ATR. In

general, the ATR problem consists of identifying the class of a target in a given image. A list of

possible target classesL = {α1, ..., αM} are known to the algorithm, and hypothesis testing is used

to determine which class the target belongs to, or if it is from an unknown class. The distribution of

the noisy image given a particular target typically varies as a function of a set of nuisance parameters

that are unknown to the classifier. Since the exact pose and position of the observed target have a

significant impact on the observed image and are not available to the classifier, the pose and position

of the target are important nuisance parameters in virtually all ATR scenarios. Other common

nuisance parameters are related to target configuration.

Previous work in LADAR ATR performance prediction under nuisance parameters has made

use of the Laplace approximation [1, 2], which involves a simple modification of the threshold on

the likelihood ratio test to correct for uncertainty in different nuisance parameter estimates for dif-

ferent targets. This approximation holds for the asymptotic case where noise levels decrease to zero.

To make use of this approximation, techniques have been developed using numerical techniques to

compute the Cramer-Rao bounds and similar measures for the pose parameters involved in LADAR

range images and other imagery [3–7]. For similar imaging sensors, performance prediction has

also been done using information theoretic quantities [8] to bound the performance, although these

bounds tend to not be tight. Moreover, these methods so far have focused on overly simplistic noise

models, which ignore anomalous pixels and cross range blurring and noise, thus overestimating the

probability of correct classification. They also make inaccurate assumptions, such as that no rota-

tional near symmetries are present in the target. In addition, these methods focus on range images

only, in spite of the fact that point clouds are increasinglybecoming the LADAR image format

of choice. As a result, Monte Carlo methods are typically used to evaluate performance. These

methods are time consuming and thus make it difficult to get accurate performance predictions.

2



1.2 Contributions

We focus on obtaining more realistic and accurate predictions of LADAR performance. First, we re-

view the LADAR noise modeling and image synthesis literature and develop more accurate LADAR

noise models for both range images and point clouds, while ensuring that they remain simple enough

to obtain noise pdfs, along with some simplified models that allow for closed form solutions. Pro-

posed noise models with increased accuracy include a Geigermode anomaly model, a point cloud

noise model, and finite receiver beamwidth and beam divergence noise models. To make it easier

for analysis to be performed while retaining anomalous pixels, a model of anomalous pixels as ran-

dom deletions is also used. These noise models were implemented in a modified LADAR imagery

synthesis software package.

Secondly, we derive improved methods of predicting performance. We consider two new meth-

ods of predicting the performance of the optimal Bayes classifier with arbitrary pixel noise. Since

the Bayesian classifier is theoretically optimal, the predictions are an approximation to the upper

bound of performance for all algorithms for the same problem. The first method is a simple ex-

tension of the method in [1] for arbitrary noise and increased accuracy. The second method is a

new method that selects the threshold adjustment in a way that involves an unbiased approximation

of the Bayesian integral, thus correcting the bias of the first method. Both methods significantly

outperform the Laplace approximation methods, with the second method outperforming the first,

frequently by a large margin, especially in high noise situations. The computational complexity of

the prediction remains quite low, and is roughly the same as that of performing one Bayesian clas-

sification of an observed target. A multiple target extension of these methods is then developed, as

well as important extensions for the computation of the performance of Bayesian classifiers derived

using incorrect noise models. Finally, a method of improving the accuracy of the predictions is pre-

sented, where, by gradually increasing the prediction complexity, greater accuracy can be achieved.

Both of these proposed prediction methods are then applied to each of the noise models considered.

Simple analytic and near analytic techniques of approximating the variation of the probability

of error with respect to the parameters of sensor resolution, probability of anomaly, sensor elevation

angle, and noise variance are then considered. As opposed toprevious results [2], many of these

3



techniques are based on extrapolating from the predicted performance at one value of the parameter

to the performance at another value. This allows an accurateperformance prediction method to be

used to predict the performance at one or more points on the performance curve, and then these

simpler approximations can be used to efficiently fill in the rest of the curve. As a result, these

methods may be more useful in that by extrapolating from a known point on the curve, the error due

to the simplifying assumptions is mitigated as opposed to attempting to compute the entire curve

using the assumptions with no reference to more accurate prediction methods.

1.3 Thesis Outline

The remainder of the thesis is organized as follows. In Chapter 2, we review the relevant literature

and discuss LADAR ATR and the LADAR sensor and models for it. In Chapter3, we develop and

present the noise models used in this thesis. In Chapter4, we discuss the existing Laplace approx-

imation Bayesian prediction method, and present our two prediction methods and their extensions.

In Chapter5, we consider methods of efficiently implementing the various parts of our prediction

methods. Chapter6 derives the application of these new methods to the noise models presented

earlier. In Chapter7, approximate analytic results for the performance variation due to common

parameter variations are considered. Chapter8 presents some experimental results for the Bayesian

prediction methods and compares them to Monte Carlo simulation results to verify the accuracy of

the predictions. Finally, in Chapter9, we present some additional prediction results, focusing on

the variation of performance with various parameters and the influence of nuisance parameters and

statistical difference to LADAR ATR performance. We present our conclusions in Chapter10.

In this thesis, we use the following notation. Scalars are denoted by italic letters, such asa.

Vectors are denoted by underlined variables, such asa, and matrices by boldface capital letters,

such asA. Sets are denoted by script capitals, such asA. Matrix inverse is denoted byA−1, and

transpose is denoted byAT .

4



Chapter 2

Background

In this chapter, the background information and literaturereview necessary for the development of

this thesis is presented. In Section2.1, the automatic target recognition (ATR) problem is intro-

duced. A brief discussion of typical ATR classification methods is presented in Section2.2. ATR

performance prediction is introduced in Section2.3, along with some relevant performance predic-

tion methods used for non-LADAR ATR. Section2.4 presents a review of existing LADAR ATR

performance prediction methods. Next, the LADAR sensor is introduced and described in Section

2.5, and a survey of LADAR noise models is presented in Section2.6.

2.1 Automatic Target Recognition

There are many challenges in ATR. Since the targets of interest are present in a frequently complex

scene, the targets must be detected and segmented from the background, and ATR classification must

thus be robust to segmentation errors and obscuration. Due to the enormous variation of background

scenes, as well as the large number of non-targets and confusers that are somewhat similar to targets

of interest, the classifier must also determine if the observed target is not a member of the set of

targets it can classify.

The presence of nuisance parameters is a major issue with ATR, since from a classification

standpoint the distribution of each class varies dramatically with many nuisance parameters, espe-

5



cially for pose [1, 2]. Nuisance parameters are parameters that affect the distribution of the image

of each class. Common nuisance parameters are target position and orientation. Other nuisance

parameters include configuration, or within class variability. Because of these nuisance parameters,

basic likelihood ratio classifiers are typically not directly applicable. As a result, other methods of

classification have been developed.

2.2 Target Classification

The theoretically optimal method for classification of targets in the presence of nuisance parameters

is the Bayesian maximum a posteriori (MAP) classifier [9]. It, however, has historically been too

complex to implement in practice due to the necessity of integrating out the nuisance parameters

from the observed image likelihood functions for each class. This integral must frequently be cal-

culated numerically, using a noise model and a model of the target appearance. As a result, several

approximations to the Bayesian integral have been employed, such as the Laplace approximation [1]

to simplify the calculation.

In practice, however, the Bayesian approach is frequently not the most straightforward. Noise

models are frequently overly simplistic [1] and priors on the nuisance parameters must be se-

lected. Further complicating the situation is the fact thatthe background is completely unknown, so

Bayesian methods cannot take it into account.

As a result, other techniques of classification have been developed. One of the earliest methods

applied to ATR was the generalized likelihood ratio test (GLRT) which involves substituting the

MLE of the nuisance parameter vector into the likelihood foreach hypothesis and computing their

ratios to the threshold. Invariance and other feature-based techniques are often used as well [10–

12]. The invariance approach is feature based, in that it selects several functions of the detected

target, and uses these values to classify it instead of the entire image [10]. To avoid having to

work with nuisance parameters, invariant features are selected, that is, they are chosen such that

they ideally do not vary with nuisance parameter value. Regardless of the choice of features, since

the distributions of the feature vectors is usually difficult to derive analytically, the distributions
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are typically estimated using an appropriate dataset and a classifier designed. When models of the

targets are available, features based on “distances” to these models can also be used [11,12].

2.3 ATR Performance Prediction

In this section, we examine previous work with ATR performance prediction. ATR performance

prediction is an important aspect of ATR theory, in that it enables ATR systems to be designed more

efficiently using the insights and estimates provided, as well as providing a benchmark with which

to compare ATR algorithm performance.

Classifier performance is typically measured by the probability that the classifier commits an

error [13]. This includes the conditional error probability, which is the probability that an error

is made given that the true target is targetα with a particular set of nuisance parameters, and the

unconditional error probability, which is the overall probability that an error will occur. Methods

of predicting classifier performance reviewed here includeinformation-theoretic bounds, Laplace

approximation methods, and individual algorithm predictions.

In [1], Grenander, Srivastava, and Miller consider the problem of classifier performance pre-

diction for ATR. Since the Bayesian classifier is optimal in the sense that it minimizes the resulting

probability of error, they predict the performance of the Bayes MAP classifier, with the nuisance

parameters removed from the hypothesis likelihood functions by integration. The integration of

the nuisance parameters for the Bayesian classifier createsa likelihood ratio that is the ratio of two

random integrals. Since all parts of the integrand are correlated, determining the exact pdf of the

integrals is difficult to do analytically in most cases. The authors thus seek an approximation. The

authors propose a prediction method that they demonstrate is asymptotically correct as the noise

variance approaches zero. For the binary classification scenario, it is based on creating a simple

likelihood ratio between the true target with the true values of the nuisance parameters and the in-

correct target with the nuisance parameters that maximize the likelihood of the true target given

the incorrect target.We discuss the derivation of this prediction method in a later chapter based on

approximating the Bayesian integral using the Laplace low-noise approximation.
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In [8], Jain, Moulin, Miller, and Ramchandran apply information-theoretic bounds on proba-

bility of error to the problem of optical image ATR. The system model used by the authors is that

the image is composed of a target corrupted by clutter and pixel noise. To obtain the bounds on the

probability of error, the authors turn to the standard information-theoretic distance measures in the

Ali-Silvey class [8]. They focus primarily on the Chernoff distance, which provides an upper bound

on both conditional probabilities of error. Two methods forobtaining a upper bound on the proba-

bility of error for detection under nuisance parameters arepresented. It is found by experiment that

the upper bounds do indeed hold, but are not very tight, especially for one CAD target considered. A

very simple asymptotic prediction is also shown, and it greatly outperforms the Chernoff results in

terms of accuracy. Finally, Jain et al. extend these resultsto multi-target ATR. This approximation

is not valid for the case where more than two of the targets arerelatively close together. The authors

then use the Chernoff bound to bound the probabilities of error, and derive an upper bound for the

Chernoff distance in the form of a double integral with respect to the nuisance parameter space.

In [14], Garber and Zelnio consider ATR performance prediction for radar. Their method is

based on communication theory techniques relating to sensor and target “capacity” to obtain a rough

approximation to the probability of error. Their results are derived for the binary template matching

of scattering centers in radar range profiles of the target. Their results achieve a rough estimate of

performance, as the predicted curves are generally within an order of magnitude of the truth.

In [15], Vore considers SAR ATR performance for the case where the parameters of the classi-

fier’s model-based target distributions are incorrect. Theauthor makes the simplifying assumption

that the image distributions can be viewed as observation vectors that are complex Gaussian, and

then derives the probability of error when the classifier is based on incorrect target means and co-

variances. In all cases, the predicted error rates are off byat least a factor of two.

2.4 LADAR ATR Performance Prediction

Due to its high resolution and its provision of 3-D information, LADAR provides a rich dataset for

target recognition. Many algorithms have been proposed andstudies performed for LADAR ATR
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classification. In this section, we focus on target classifier performance and nuisance parameter

estimation performance.

Yen and Shapiro in [2] derive asymptotic expressions for LADAR ATR performance predic-

tion. Their method is based on the Laplace approximation method used in [1] to predict the perfor-

mance of the optimal Bayesian classifier. The recognition problem considered is the identification

of targets with random pose with a uniform prior. Their LADARmodel assumes IID pixel noise

and composed of a mixture of a Gaussian pdf and a uniform pdf, where the uniform pdf models the

anomalies in the imagery. To simplify their analysis, however, the authors assume that the range

interval is so short that the probability of anomaly can be approximated as zero, thus effectively

returning to the AWGN noise model of [1].

The authors then use the AWGN Laplace approximation in [1] to obtain the conditional proba-

bility of error, that is, the probability of error given thatthe true target has a particular set of nuisance

parameters unknown to the classifier.

To obtain the unconditional probability of error, that is, the probability of error given that

the nuisance parameters take on random values according to auniform prior, the authors use the

exponential approximation of the Q function and the unconditional error results. The authors also

derive an expression for the variation of the probability oferror with changes in sensor resolution

for FLIR. They assume that the pixel observations remain independent, and the resolution is high

enough that nearby pixels have virtually the same noiselesspixel value, which is either one or zero.

Using this and the asymptotic unconditional error probability, they obtain an approximate analytic

result.

Koksal and Shapiro in [7] consider analytic approximations to the Hilbert-Schmidtbound on

orientation estimation using both LADAR and FLIR. Since orientation angle is not a flat Euclidean

space, the Cramer Rao bound on estimation performance is notvalid. Instead, a Lie group represen-

tation should be used to capture the inherent periodicity. The appropriate MMSE estimator can then

be created by minimizing the Hilbert-Schmidt norm associated with the parameter space. The mean

squared error achieved by this estimator is the minimum possible, and the authors refer to it as the

Hilbert-Schmidt bound. They consider a specific blocks-world target (e.g. composed of rectangular
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blocks only, all in the same orientation). Using the standard coherent LADAR model with the as-

sumption that all anomalies can be perfectly identified, they were able to analytically calculate the

Cramer Rao bound on the orientation estimation for the target, and using this, compute an analytical

approximation to the Hilbert-Schmidt bound for LADAR, up toa constant which depends on the

target geometry. All the analytical results were compared with Monte Carlo simulation results and

found to be reasonably accurate.

In [3], Dixon and Lanterman consider the numerical calculation of Cramer Rao bounds on

ground target pose estimation for laser radar. They use the same Gaussian and uniform mixture

noise model as proposed by [2]. Since anomalies do not provide any information about the target,

they ignore them in their derivation. To the nuisance parameter of angular orientation considered by

Koksal and Shapiro, they add the nuisance parameters of(x, y) ground position as the parameters to

be estimated. For the Gaussian noise model, they derived a method of using synthetically generated

LADAR imagery, log-likelihood function evaluation, and computation of derivatives using finite

differencing to obtain the Fisher information matrix. The authors then used this method to numer-

ically compute the CRLBs for CAD model targets, as a functionof range and orientation angle. It

was found that the CRLB decays with target range from the sensor, and varies significantly with

orientation angle. The authors then use this observation toargue that invariant ATR methods must

therefore be suboptimal.

2.5 LADAR

2.5.1 Sensor Description

LADAR sensors create pixel-based images of stationary scenes [16]. The pixel values are the mea-

sured range along an angle-angle line of sight from the sensor [16]. The range information is ob-

tained by emitting a short pulse from the sensor to the scene,detecting the reflection, and measuring

the resulting time of flight, which is then used to obtain a range measurement based on the speed

of light [16]. Except for synthetic aperture LADAR [17], which we do not consider, cross-range
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resolution is obtained by limiting the field of view of the individual receivers or the laser beam, thus

limiting the area of the scene whose reflections can reach thesensor [16].

There are several types of LADAR sensors. In this thesis, we focus on the use of range images

and point clouds only, as is commonly done with LADAR performance prediction [2, 3]. These

observations are corrupted by noise due to a variety of factors such as laser speckle, sensor timing

noise, shot noise, and atmospheric turbulence [17–20]. One of the characteristic features of LADAR

noise is the presence of dropouts and anomalies [19–21]. Since the images are formed by detecting

reflected light from the scene, it is quite common for an individual pixel range measurement to be

lost because the sensor failed to detect the reflected light,or to become an anomaly because back-

ground light was detected instead of the true reflected light, resulting in the measurement having

nothing to do with the true range [19–22]. To reduce anomalies and limit the extent of the ob-

served scene, LADAR sensors also employ range gates, thus blocking all detections that are outside

a specified interval of range values that constitute the “range ambiguity interval” [19–22].

2.5.2 Types of LADAR

LADARs generally use one of two methods to obtain range measurements [16,22]. The first type,

which is also the oldest, is called scanning LADAR [16]. In this method, the laser beam sequen-

tially scans over the region of interest, sending out pulsesat specified intervals, usually creating a

rectangular raster pattern. For each pulse, the reflected laser light is detected using a single receiver.

Since the beam is scanned, very high cross-range resolutioncan be achieved.

Most modern LADARs are flash LADARS. Flash LADARs achieve cross-range resolution

using an array of receivers closely spaced in angle [22]. Instead of scanning the laser beam across

the scene, the laser pulse illuminates the entire scene. When the reflected pulse returns, each receiver

detects the portion of the laser beam that reflected off the small portion of the scene at which it was

pointed [17,22]. The area of this region is limited by the beamwidth of the receiver.As this method

allows multiple pixel observations to be measured at the same instant, the speed at which images

can be produced is considerably higher than that of scanningLADAR [ 22, 23]. This comes at the

cost of cross-range resolution limited by the APD spacing onthe array.
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The array of APDs on a flash LADAR is usually relatively small (e.g.16×16 or 64×64) [24],

and insufficient for many image processing tasks. As a result, flash LADARS are frequently used

to take a large number of successive images of the scene over ashort period of time. These small

images are then combined into a large image with a much highernumber of pixels.

Geiger-mode direct-detection LADARs use Geiger-mode photon-counting avalanche photodi-

odes (APDs) to detect individual photons reflected from the scene [20,23,25,26]. A primary benefit

of using these APDs is that the light detection sensitivity,and thus the detection probability, of

the LADAR is significantly higher than it would be for coherent-detection LADAR or older direct

detection LADAR [19]. This allows the LADAR to be used at greater ranges and lowerlaser pow-

ers, but on the other hand, results in an increased likelihood that background light will be detected,

thus creating anomalous pixels. Furthermore, Geiger-modeLADARs are typically used as a flash

LADAR instead of as a scanning LADAR, which is the primary imaging method used for coherent

LADARs.

Geiger-mode APDs have the characteristic property that after they are activated, they fire as

soon as the first photon impacts its surface, and then cannot detect another photon for some time

[20,23]. This is opposed to the coherent LADAR detectors, which record the reflected light intensity

for the entire time interval, and select the highest intensity point for its range measurement [21].

As might be expected, this can cause Geiger-mode LADAR to have significantly higher anomaly

rates, thus usually requiring multiple images taken in succession to properly resolve the scene [22].

Secondly, this results in anomalies being biased towards the region of the range interval closest to

the sensor [20,23].

2.5.3 Output Image Types

LADAR sensors measure both range and intensity information[17]. The range information is typ-

ically output either as a 2-D range image, for which each pixel corresponds to a different line of

sight emanating from the sensor, and whose value is equal to the measured range to the scene, or

as a 3-D point cloud [1,2,22]. The lines of sight are typically arranged so that the angular spacing

between pixels is such that a uniform grid is formed [1,2].
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The 3-D point cloud image presents the same data presented ina range image, but for each pixel

computes the(x, y, z) position of the observed point in the scene, computed from the pixel’s range

value and the known line of sight associated with the pixel [18]. The added benefit of using this

type of image is that it is easier to fuse a series of LADAR images together to form one 3-D image,

as is frequently done in modern LADAR image formation, especially for flash LADAR [18,25].

2.6 LADAR Noise

2.6.1 Noise Models for Performance Prediction

In the LADAR performance prediction literature, it is common to use noise models associated with

coherent scanning LADAR [2, 3, 7, 21, 27, 28]. A range image noise model that models the image

as composed of independently distributed pixels is typically used. Some of these are anomalies and

some of these are noisy measurements of the true associated range. The occurrence of an anomaly

is modeled as being Bernoulli distributed with a specified probability of anomalyα for each pixel

determined by the sensor parameters, the range, and the atmospheric state [3]. Anomalous pixels are

caused by false detections occurring due to background radiation or detector noise, and thus have no

relation to the true distance to the scene. This model modelsanomalous pixels as being uniformly

distributed between the limitsa andb of the sensor range gate. A non-anomalous pixel is modeled as

being Gaussian distributed with mean equal to the true rangevalue and a given (constant) variance

determined by the sensor parameters [3,27].

This gives an overall distribution of thekth pixel sk of the image to be

p (sk) = αu(sk) +
1− α√
2πσ2

exp

{

−(sk − sk)
2

2σ2

}

(2.1)

where

u(t) =











1
b−a a < t < b

0 otherwise
(2.2)
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andsk is the mean of thekth pixel and[a, b] is the range interval set by the sensor, andσ is the

standard deviation of the Gaussian component.

This formulation assumes thatσ ≪ (b − a), sk − a ≫ σk, andb− sk ≫ σ such that the

integral of the Gaussian portion of the pdf outside of the interval [a, b] is essentially zero.

Although this noise model is a reasonable one for coherent LADAR, advances in LADAR

technology have resulted in the development of photon-counting LADAR imagers, which tend to

produce point clouds rather than range images [22,29]. The model is somewhat simplistic as well.

For example, it assumes that cross-range noise is negligible. This is not accurate [17], however, for

high pixel densities and results in image edges being sharper than in reality [17]. This results in an

overestimation of the ability to estimate the pose of the target.

Some authors further simplify this noise model for performance prediction by setting the prob-

ability of anomaly to zero [2,3], or, for Hilbert Schmidt bound analysis, by approximatinganomalies

as random deletions [7].

2.6.2 Noise Models for Image Synthesis

In [21,23], the authors consider the detection statistics for Geigermode LADAR. Their analysis is

based on the sensor parameters and the assumption that the range interval is short enough that once

a photon is detected by a Geiger-mode APD, the APD cannot detect a second photon until the next

image. The detection statistics are not the only source of noise. The local oscillator of the sensor

and the behavior of the APD also introduce Gaussian noise.

Atmospheric turbulence is also a factor in LADAR noise, especially at long range. As the laser

beam and its reflection travel through the air, turbulence diverts and spreads the beam slightly, and

slightly attenuates it as well [17, 18, 30]. Complex simulation methods using a series of Gaussian

phase screens have been developed to model this [17,18]. Others have claimed that for most situ-

ations it is sufficient to model turbulence effects as a reduction in the probability of detection and

as causing beam broadening [17, 30]. This last approximation is based on the fact that the range

return is a detection from a particular point illuminated bythe beam, with the exact point randomly
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selected according to the average returned power. As a result, random deflection of the beam is

essentially equivalent to a wider beam on average [17].

The fact that each receiver has a finite beamwidth introducesuncertainty as to the point of

the target from which the detected return photon is received[17, 18]. The probability distribution

function of the points in the field of view that may be the returning point is determined by the average

returned power density from each point, which is in turn determined by the receiver attenuation

associated with each angular portion of the beam, the angle of arrival, atmospheric attenuation, and

the reflectance of the scene [17, 18]. In the case of Geiger mode noise, the nature of the detector

affects this as well since it results in closer portions of the target being more likely detected.

One proposed method of discretely simulating this effect isto divide each receiver beamwidth

into a number of sections [17,18]. A certain proportion of the returned power response is associated

with each section. The range associated with each section isthen calculated, as well as any other

relevant parameters, and the probability of each section being chosen is determined [17,18]. This is

then converted into a range pdf, to which is added any other noise such as anomalies and Gaussian

range noise. As this is fairly simple to implement as a mixture distribution, this is the basis of our

finite beamwidth noise models.
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Chapter 3

LADAR Noise Models

In this chapter, we introduce and develop the LADAR noise models that our performance prediction

methods will be applied to in this thesis. First, we introduce the concept of using a random pixel

deletion model as an approximate model of anomalous pixels.We then present several noise models

of varying accuracy and complexity for both coherent and Geiger-mode LADAR range images.

Finally, we discuss noise models for 3-D LADAR point clouds.The actual noise model used in

a particular problem will be a function of the type of LADAR imager under consideration and

the desired tradeoff between accuracy, ease, and computational speed of the implementation in a

performance prediction setting.

The general imaging model is as follows. Consider the case where a LADAR imageI is a set

of N pixels. For a range-image LADAR model, where the value of each pixel is the appropriate

measured range to the scene,I = {s1, ..., sN}. For a point cloud model, where the value of each

pixel is the(x, y, z) coordinates of a measured scene point,I = {s1, ..., sN}, where eachsk is

a (3 × 1) vector. Let the noiseless imagesIi(θ) corresponding to target hypothesisHi with nui-

sance parametersθ have pixelssk,i(θ), k = 1, ..., N . Thus, assuming hypothesisHi and nuisance

parametersθ, the pixel observationssk are distributed according to some distribution

p(I|Ii(θ),Hi, θ) (3.1)
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A common feature of these approximate models is the assumption that the noise associated

with each pixel is independent of that of the other pixels. This assumption is fairly standard in

LADAR performance prediction [1–3,7,31] and ensures that the attractive mathematical properties

of independence, such as pdf separability and simple computation of the pdf of added variables

of known distributions, can be employed to reduce the computational complexity of associated

operations.

3.1 LADAR Image Synthesizer

For generating all noiseless images, we use a modified version of the GTRI LADAR Simulator

software [32]. This software generates noiseless LADAR images using efficient CAD model 3-D

projection computation techniques. The open-source software runs in a MATLAB application, and

can generate synthetic LADAR images of targets and scenes inarbitrary poses and from arbitrary

viewing parameters. For the generation of noiseless images, our chief modification of the software

was the addition of the capability of generating long sequences of images with the pose parameters

slowly incremented. This capability is crucial for the computation of the performance predictions

discussed in this thesis.

The software was also modified so as to be able to generate noisy LADAR images using a

variety of noise models. Sensor imaging models implementedinclude Gaussian blurring, atmo-

spheric attenuation, additive Gaussian noise, anomalous pixel noise for both Geiger and linear mode

LADAR, random finite beamwidth effects via Gaussian mixturedistributions, and any combination

of the above.

A sample noiseless range image of an urban scene viewed from the air is shown in Figure3.1.

3.2 Noise Models

In this section, we discuss noise models for LADAR. As Gaussian range jitter is always present in

LADAR, each of the noise models presented here is based on a mixture of a Gaussian pdf with some
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Figure 3.1: Noiseless256 × 256 pixel range image of urban scene. Longer ranges are red
and shorter ranges are blue.

anomaly distribution model. We discuss the typical coherent LADAR noise model, a Geiger-mode

LADAR model, and a simpler random deletions model for anomalous pixels and use this to create

overall noise models. Finally, we introduce a model for cross range noise applicable to each of the

anomalous pixel models.

3.2.1 Gaussian Noise with Anomalies - Coherent LADAR

For coherent-detection LADAR and range images, we use the noise distribution proposed by Shapiro

and Green [27,28], and used by others in the literature [2,3,7,21]. In this noise model, each range

image pixel is distributed according to a pdf that is a mixture of a uniform pdf and a Gaussian.

This model is also accurate for linear-mode direct detection LADARs [21, 23]. The uniform pdf

models the anomalous pixels, which are caused by random laser speckle [2,21], while the Gaussian

pdf models the pixels that are observing the scene. The Gaussian noise is caused by random local

oscillator shot noise [2, 21]. It is assumed that the noise distribution for each pixel isindependent
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of that of every other pixel. This assumption is valid for thecase where the LADAR pixel spacing

is large enough that the laser speckle is virtually uncorrelated from pixel to pixel. Following the

general scenario where all noise parameters can vary from pixel to pixel, the pdf of thekth pixel

under hypothesisHi is given by

p (sk|Hi) =











αk,i

b−a +
1−αk,i√

2πσ2
k

exp
{

− (sk−sk,i(θ))
2

2σ2
k

}

a < sk < b

0, otherwise

(3.2)

whereαk,i is the probability that thekth pixel is anomalous given theith hypothesis,σk is the

standard deviation of the Gaussian distribution for thekth pixel, anda andb are the limits of the

range ambiguity interval (ramb = b− a) of the LADAR.

A range image of the scene in Figure3.1corrupted by coherent or linear mode direct detection

LADAR noise is shown in Figure3.2. Note the presence of the uniformly distributed anomalous

pixels scattered through the image. The probability of anomaly is αk = 0.15,∀k, and the range

swath is very short to show the uniform distribution of the anomalies. The image colormap is

somewhat truncated so as to preserve the appearance of the scene, resulting in the saturation of

some of the anomalies.

3.2.2 Gaussian Noise with Anomalies- Geiger mode LADAR

Due to the nature of Geiger-mode LADAR, it has a somewhat different pdf associated with its

anomalous pixels as opposed to either coherent LADAR or linear mode direct detection [19,21,21,

23]. We develop a model for it using range images only.

We use the models proposed in [21, 23] for the detection statistics of Geiger mode LADAR.

Every range interval has some probability that a photon willenter the APD at the associated time,

given that the APD is still looking for photons. Photon sources include laser reflection from the

target, background light (e.g., from the sun), and dark current inside the APD.

We assume that the Geiger-mode APDs fire with the arrival of a single photon [21,23]. As a

result, under a Poisson model [23], the probability of at least one photon arriving at a given bin is
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Figure 3.2: Scene corrupted by mixture of Gaussian and uniform distributions, according to
the specifications of the simple coherent LADAR noise model.The probability of anomaly
is 0.15.

1−e−λ, whereλ depends on a variety of physical parameters and isλ0τb for no target andλt+λ0τb

for a target reflection present in a given range bin, whereτb is the time length of each bin. Since if

a photon is detected at a closer range bin no detection can occur at a farther bin, the probability of a

detection in a given range bin is the product of the probability that at least one photon arrives with

the probability that no earlier range bin has had a detection.Thus, the probability that the true target

is detected, wheres is the true range of the target, is [21]

ρk = exp

(

−2sk
c

λ0

)

[1− exp (−λt − λ0τb)] (3.3)

and the probability of a false detection at a bin closer to thesensor than the target is [21]

Pfa,1(r) = exp

(

−2r

c
λ0

)

[1− exp (−λ0)] , a < r < sk (3.4)
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Using this, the probability of a false detection in a bin atr, behind the target is

Pfa,2(r) =

(

1− Pd
exp (−λt − λ0τb)

[1− exp (−λt − λ0τb)]

)

exp

(

−2(r − sk)

c
λ0

)

(3.5)

× [1− exp (−λ0τb)] , sk < r < b

where[a, b] is the range swath of interest to the sensor.

Extrapolating from the detection statistics results in [21,23], we use these equations to deter-

mine the probabilities of anomaly and the anomalous measurement distribution. We extrapolate to

infinitely small bins. This is accurate assuming that the binlength is small compared to the gate

lengthτg, that is,τb ≪ τg. The pdf of the anomalies occurring closer and farther than the target are

thus

pa(sk) =
P

(k)
a1 p̂(sk, sk) + P

(k)
a2 p̌(sk, sk)

P
(k)
a1 + P

(k)
a2

, a < sk < b (3.6)

where from (3.4) and (3.5) respectively,

p̂(s, s) =











γ1 exp(−βs) a < s < s

0 otherwise
(3.7)

p̌(s, s) =











γ2 exp(−βs) s < s < b

0 otherwise

and

β = 2λ0/c, γ1 =
β

e−βa − e−βsk
, γ2 =

β

e−βsk − e−βb
(3.8)

The probabilities of the different components are then

α
(1)
k,i = 1− exp (−βsk,i) (3.9)

α
(2)
k,iα

(2)
k,i = exp (−βsk,i) exp (−λt) [1− exp (−β(b− sk,i))] (3.10)
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Let the total probability of anomaly then be denoted by

αk,i = α
(1)
k,i + α

(2)
k,i (3.11)

The location of the detection varies based on the length of the LADAR pulse, since photons

from the reflection can arrive anytime during the returned pulse [21]. In addition, random local

oscillator time jitter causes additional Gaussian range noise [26].

As a result, the pdf associated with Geiger mode LADAR is a mixture of a Gaussian pdf,

two truncated exponential pdfs, and dropouts or random deletions. A dropout occurs when no bin

observes a photon. We set the pixel value to the maximum rangeb when a dropout, or deletion,

occurs. Note that if multiple possible targets are present,more exponential pdfs are required, and

multiple Gaussian distributions may be present. We do not discuss this here since the extension

using the mixture pdf model is clear. The complete pixel pdf is given by

p (sk|Hi) = α
(1)
k,i p̂(sk) + α

(2)
k,i p̌(sk) (3.12)

+
ρk,i

√

2πσ2
k

exp

{

−(sk − sk,i(θ))
2

2σ2
k

}

+ P
(k,i)
del δ(sk − b), a < sk ≤ b

where the probability of deletion is

P
(k,i)
del = 1− αk,i − ρk,i (3.13)

The Gaussian noise tends to be correlated with all other pixels in a particular image [26],

although the number of pixels in a Geiger-mode Flash LADAR tends to be low. Although it is

possible to use the correlation model for our performance prediction methods, we use the IID pixel

model due to a lack of simple models for the correlation in theliterature. This assumption will result

in pessimistic performance prediction.

Figure 3.3 shows the scene of Figure3.1 corrupted by Gaussian noise with Geiger-mode

anomalies according to the pdf (3.12). Note the higher concentration of anomalous pixels in the

region where the scene has a longer range, due to the fact thatearly scene objects limit the length of
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the high likelihood region of the anomaly pdf. The parameters are chosen such that the probability

of anomaly without any object in the scene is 0.15 and the probability of pixel deletion is 0.05.

The actual probabilities vary from pixel to pixel based on the associated ranges. The atmospheric

attenuation was also exaggerated so as to show its effect of increasing the anomaly likelihood at

greater ranges.
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Figure 3.3: Geiger mode LADAR noise including anomalies, deletions, and Gaussian
noise. Probability of anomaly 0.15 and probability of deletion 0.05, both defined in the
absence of a target.

3.2.3 Gaussian Noise with Random Deletions

Assume as before that the noise for each pixel is independent, with thekth having a Gaussian non-

anomalous pdf underHi and nuisance parameters with mean0 and covarianceΣk,i and a probability

of deletionαk,i(θ). LetA = RK ⊂ CK , whereRK is the set of realK-dimensional vectors. The

use ofCK is arbitrary, and is only needed to allow pixels to take on values in sets disjoint fromA.

Given hypothesisHi, thekth pixel is deleted with probabilityαk,i(θ). If the pixel is not deleted, it
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has the distribution

p(sk|Hi) =
1

√

(2π)K |Σk,i|
exp

{

−1

2

(

sk − sk,i
)T

Σ
−1
k,i

(

sk − sk,i
)

}

(3.14)

To obtain a pdf for this model, let the deleted pixels be modeled as pixels which take on values

from a uniform distributionu(sk) = 1/|B| on the setB, which is any set inCK disjoint fromA thus

eliminating the possibility of confusion. The notation|B| indicates the volume ofB. The setsA,B

must not change with hypothesis. This gives pixel pdfs of theform

p (sk) =























1−αk,i(θ)√
(2π)K |Σk,i|

exp
{

−1
2

(

sk − sk,i
)T

Σ
−1
k,i

(

sk − sk,i
)

}

sk ∈ A

αk,i(θ) sk ∈ B

(3.15)

By independence, this gives an image pdf of

p (I|Hi, θ) =

N
∏

k=1

p (sk|Hi, θ)

As the setB is the same for every hypothesis, it has no effect on the likelihood ratio. As a result,

the volume|B| is arbitrary. For convenience, we take the limit as|B| → ∞, thus making the

likelihood of any realization of a deleted pixel infinitesimal without actually affecting the probability

of deletion.

This noise model allows the incorporation of finite beamwidth uncertainty to some degree, in

that a 3-D covariance can be selected to approximate the distribution derived using a more accurate

technique. This, and the ability to model point clouds obtained from very large numbers of individ-

ual images, are the primary reasons we introduce separate point cloud models instead of converting

point clouds to range images.

3.2.4 Finite beamwidth effects

For each of the noise models considered so far, the only noisehas been range noise. This creates

the false impression that the outline of the target as measured by the LADAR is very clean except
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for discretization effects. This is frequently not the case, however, especially at large ranges, due to

finite beamwidth effects.

As discussed above, each receiver in a LADAR has a finite beamwidth, and thus can receive

laser reflections from any point in a small portion of the fieldof view. The exact point off of which

a received photon has reflected is random, with a probabilitydensitygk(x, y) related to the power

cross-section of the LADAR beam. This can be converted into apixel (range) pdfgr(sk). Regardless

of the point observed, the range measurement is corrupted byGaussian noise with varianceσ2
k. In

order to implement this, we discretize the range pdf by dividing the cross-section into regions with

roughly the same range values and converting the associatedprobability into a range probability

density function. This is then convolved with the Gaussian noise pdf. Alternatively, the range pdf

could be obtained directly, or a Gaussian mixture pdf could be fit to it.

For our model, we use a Gaussian mixture model, for either range images or point clouds. This

is to enable the use of the Gaussian and mixture pdf results tobe derived later. As a result, the

non-anomalous range distribution forK dimensional pixels is

pna(sk|Hi) =

R
(k,i)
m
∑

r=1

wr,k
√

(2π)K |Σr,k|2
e
− 1

2
(sk−µ

r,k
)TΣ

−1
r,k(sk−µ

r,k
)

(3.16)

wherewr,k is the associated probability for each portion,µ
r,k

is the mean, andΣr,k is the variance.

This distribution can be used with the appropriate anomaly pdf pa (deletion, uniform, or exponen-

tial) and probability of anomaly, giving

p(sk) = αk,ipa(sk|k) + (1− αk,i)pna(sk|k) (3.17)

whereαk,i is the probability of anomaly as before. For point clouds,pa should correspond to the

deletion model.

As an example, Figure3.4 shows noisy images corrupted by linear mode direct detection

LADAR finite beamwidth effects and anomalous distributions. The Gaussian noise is IID regardless

of the value ofr. The half power beamwidth is approximately 2 pixels wide on the focal plane array

in both cases.
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Figure 3.4: Linear mode LADAR noise including anomalies, deletions, finite beamwidth
effects, and Gaussian noise. Probability of anomaly 0.15 and probability of deletion 0.05,
both defined in the absence of a target.
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Chapter 4

Bayesian Classification Performance

Prediction

4.1 Introduction

It can be shown that the Bayesian likelihood ratio test is theclassifier with the smallest probability

of error [13]. We therefore attempt to predict the asymptotic performance of the Bayesian classifier

under nuisance parameters, as the image noise variance approaches zero. The classifier is given an

image of a target of unknown class and pose in a scene, and its task is to decide which of a set of

target classes the target is a member. The image is corruptedby noise of known parameters, and

perfect noiseless images of the targets in the scene for every value of the nuisance parameters are

assumed available. The performance of this classifier will then be an asymptotic upper bound on

the performance of any classification algorithm.

We first review the prediction method presented in [1]. We then derive two more methods

of prediction. The first of these methods is an extension of the method presented in [1, 2] with

the Laplace approximation replaced by numeric integration. The second method proceeds along

a similar line to the first, but modifies the numeric integrandin such a way as to remove a bias

inherent in the first method. This method requires the evaluation of an expectation, which must be

analytically obtainable and is so for every noise type discussed in this thesis. Due to the nature of
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the prediction methods, an added diagnostic benefit is that the methods compute the approximate

performance in such a way that the effects of the nuisance parameters on performance are separately

computed from the effect of the minimum statistical distance between the targets, and the effects

that individual nuisance parameters have on performance are clearly distinguishable.

The remainder of this chapter is organized as follows. Section 4.2 introduces the Bayesian

classifier under nuisance parameters. Section4.3 presents the commonly used method for predict-

ing the asymptotic performance of the classifier. Sections4.4and4.5describe two new algorithms

for predicting asymptotic performance. A method of gradually increasing the prediction accuracy,

especially when in the presence of target symmetries, at thecost of increasing computational com-

plexity is introduced in Section4.7.1Section4.7.2extends the binary classification results to the

M -ary classification scenario. An extension for the case where the classifier uses an incorrect noise

model is described in Section4.7.3.

4.2 General Bayesian Hypothesis Testing under Nuisance

Parameters

Consider a binary classification scenario. Let the hypotheses that the observed imageI is an image

of Target 0 or Target 1 on an identical background be denoted by H0 andH1, respectively. Fur-

thermore, let there be an(m × 1) vectorθ of nuisance parameters, such as pose and location, that

are unknown to the classifier but have an effect on the distribution of the image. Let the probabil-

ity density functions (pdf) of the observed image given hypothesisHi and nuisance parametersθ

be denoted byp(I|Hi, θ). Let fi(θ), i ∈ {0, 1} be the priors on the nuisance parameters for the

two hypothesesH0 andH1, respectively. Then, the probability density function of imageI given

hypothesisHi is obtained by integrating out the nuisance parametersθ:

p(I|Hi) =

∫

S
p(I|Hi, θ)fi(θ)dθ (4.1)
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Following Bayesian hypothesis testing, the optimal classifier maximizes the posterior probability

by comparing the ratio of the probabilities given each hypothesis to a threshold.

L(I) = log
p(I|H1)

p(I|H0)

H1

>

<

H0

log
P (H0)

P (H1)
≡ log ν (4.2)

whereP (Hi), i = 1, 2 are the prior probabilities of each target occurring in the scene, andL(I) is

the loglikelihood ratio.

Predicting the performance of this optimal classifier involves finding the distribution of the log-

likelihood ratioL(I). Finding this exactly is typically intractable, necessitating either Monte Carlo

methods or approximations. We follow the latter method. Thefinal goal is to find the probabilities

of errorP (Dk|Hi), i 6= j whereDk denotes the event that the classifier has made the decision that

the observed image belongs toHk.

4.3 Method of Grenander et. al.

The method of Grenander et. al. in [1] and others [2,6,8] starts by interpreting the pdf of the image

as an image with multi-dimensional pixel values corrupted by noise, such as additive Gaussian

noise. LetI be the vector of pixel values in the image, andIi the similarly vectorized underlying

noiseless image.K-dimensional pixels are treated as sets ofK pixels for this representation. Then,

the model is that

I = Ii + n (4.3)

wheren is a noise vector. Note that no assumption of independence between pixels is made. As a

result, the analysis in this and subsequent sections also applies to image models containing multi-

dimensional pixels, as is the case for 3-D LADAR point clouds. This is because (for example) aK

dimensional model withN pixels is equivalent to a model ofKN pixels, with each coordinate of

the actualK dimensional pixel being assigned to an equivalent scalar pixel. LetP = E[nn′] be the
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(KN×KN) matrix giving the expectation of the products of the elements of the noise vector. Next,

let theKN eigenvalues of this matrix be given byλp, p = 1, ...,KN . Furthermore, let the noise be

parameterized by a variableσ, such thatλp = λp(σ), in such a way thatlimσ→0 λp(σ) = 0,∀n. This

parameter will be used exclusively for proving results for the asymptotic behavior of the prediction

methods to be presented, and does not imply any loss of generality. As a result, the power of the

noise goes to zero asσ → 0. Assume further that the ratios of the expectations to the associated

standard deviations all approach zero asσ → ∞, that is,limσ→∞
E[n(σ)]√

detP
= 0. This guarantees that

the probability of error decays to 0.5 asσ increases.

Let the noiseless model images for hypothesisHi and poseθ be denoted asIi(θ). Let the

noiseless truth image for hypothesisH0, with nuisance parametersθ = θtrue be denoted byI∗
0 =

I0(θtrue). The noiseless model images are the images that would be the truth image if the true

hypothesis wereHi and the true pose wereθ. By “noiseless,” we mean the image such that

Ii(θ) = arg max
I

p(I|Hi, θ) (4.4)

It is desired to predict the performance in such a way that thepredicted performance is asymptoti-

cally equal to the true performance as the pixel noise variances all approach zero. This is because as

the noise level decreases and becomes small, the probabilities of error become quite small, necessi-

tating a highly accurate prediction in order to be able to preserve meaningful relative accuracy. In

contrast to this, errors are more tolerable for high noise, since the probabilities of error are on the or-

der of 0.5, and in most cases it is sufficient to know that the performance is poor, further decreasing

the need for high accuracy for this noise variance region. For this type of prediction, we employ the

concept of asymptotic equality [1]. We use the notationx(σ) ∼ y(σ) if x andy are asymptotically

equal asσ → 0, that is,limσ→0
x(σ)
y(σ) = 1. This indicates that the error, orx− y, also converges to

0 as desired. It can be shown thatx(σ) ∼ y(σ) implies log(x(σ)) ∼ log(y(σ)) [1].

The authors of [1] prove that the prediction method they propose is accurate asσ → 0 (i.e., the

predicted probability of correct classification is asymptotically equal to the true value) provided that

consistency of inference is enforced. Consistency of inference is achieved when the noiseless image

Ii(θ) is more likely givenHi, θ than any other image for allσ. Since the authors of [1] consider
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only zero-mean Gaussian noise, they use the corresponding special case and define consistency of

inference to be

Ii(θ1) 6= Ik(θ2), ∀ i, j, θ1, θ2 s.t.i 6= j or θ1 6= θ2 (4.5)

For our analysis, a more general result is required. We thus define consistency of inference to hold

when

[i, θi] = argmax
j,θk

p(Ii(θi)|Hk, θk, σ),∀i, θi, σ (4.6)

which clearly implies Grenander’s definition in the case of Gaussian noise, for which is was origi-

nally defined, although it is slightly more restrictive. When this applies, asσ → 0, the support of

p(I|Hi, θ) as a function ofi andθ converges to the true values for the distribution ofI. Consistency

of inference should never be an issue with real targets, due to the nature of pixel noise.

The authors of [1] then proceed to derive an asymptotically accurate approximation to the log-

likelihood ratio test, with the goal of obtaining a performance approximation that can be computed

in an efficient manner. First, asymptotically approximate the integrands of (4.1) for purposes of

performance prediction to be

p(I|Hi, θ)fi(θ) ∼ p(I|Hi, θ
∗
i )
p(I∗

0|Hi, θ)fi(θ)

p(I∗
0|Hi, θ

∗
i )

(4.7)

where

θ∗i = argmax
θ

p(I∗
0|Hi, θ)fi(θ) (4.8)

since for the asymptotic case the likelihood ratio is dominated by the performance when the targets

are closest as measured by the likelihood function. Using this, consistency of inference, and (4.4),

it is clear thatθ∗0 = θtrue.

This gives the asymptotic approximation to the Bayesian integrals (4.1) to be

∫

S
p(I|Hi, θ)fi(θ)dθ ∼ p(I|Hi, θ

∗
i )

p(I∗
0|Hi, θ

∗
i )

∫

S
p(I∗

0|Hi, θ)fi(θ)dθ (4.9)
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4.3.1 Approximation of Bayesian Integral using Laplace’s method

Grenander proposes to approximate the integral in the righthand side of (4.9) using Laplace’s

method. This method applies for the asymptotic case asσ → 0. In essence, Laplace’s method

approximates the functionlog p(I∗
0|Hi, θ)fi(θ) as a parabola centered on its maximum pointθ∗i ,

with second derivatives determined by the second derivatives of the function atθ∗i . This technique

is commonly used for obtaining asymptotic approximations of integrals or moments [1,33,34].

Using Laplace’s method, it can be shown [1] that under certain regularity conditions on the

likelihood function, that

∫

S
p(I∗

0|Hi, θ)fi(θ)dθ ∼ (2π)m/2

√

√

√

√

(2σ2)m

det
(

Ëi(I∗
0, θ

∗
i , σ)

) (4.10)

where

Ei(I, θ, σ) = −2σ2 (log p(I|Hi, θ) + log fi(θ)) + ce (4.11)

wherece is a constant,Ei is the Gibb’s energy function associated with the likelihood, andËi

denotes the Hessian matrix ofEi as a function ofθ. Interestingly, the Cramer-Rao bound onθ is

Ëi
2σ2 , which appears in the expression for the approximate integral. This indicates that, as expected,

the accuracy of estimating the nuisance parameters has a direct effect on classifier performance.

Substituting the expression in (4.10) into (4.9) and then into the likelihood ratio (4.2) and taking

the logarithm, the following pseudo loglikelihood ratio test results.

L′(I) = log
p(I|H1, θ

∗
1)

p(I|H0, θ
∗
0)

H1

>

<

H0

log ν ′ (4.12)

where

ν ′ = ν

√

√

√

√

√

det
(

Ë1(I∗
0, θ

∗
1, σ)

)

det
(

Ë0(I∗
0, θ

∗
0, σ)

) (4.13)

The authors of [1] then proceed to predict the distribution of this test for IID Gaussian pixel
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noise. They show thatL′(I) is Gaussian distributed. Using this, it is a straightforward Q-function

evaluation to obtain the probability of error. We will describe the computation of the predicted

probability of error in Section4.6.

4.4 Method of Noiseless Integration: Eliminate Laplace

Approximation

While the method of Grenander is asymptotically correct, itis more important to be able to pre-

dict the performance for larger noise powers. In particular, for the Laplace approximation of the

integrand as a Gaussian pulse to be valid, the noise level must be very small, and the resulting prob-

ability of correct classification very high. Consider the case of two ground targets shown in Figures

4.1 and4.2, with a nuisance parameterθ of horizontal angular pose. As an example showing the

non-Gaussian shape of the integrand for reasonable noise levels, a plot ofp(I
∗

0|H1,θ)f1(θ)

p(I∗

0|H1,θ∗1)
(the ap-

proximating integrand in (4.9)) as a function of target horizontal pose angleθ for Gaussian noise

and a low noise level (SNR≈ 44dB, where the signal power is measured as the root sum squared

error betweenI∗
0 andI1(θ

∗
1)) resulting inPcc = .9995 is shown in Figure4.3. In addition, a plot

for the same integrand for very high noise (SNR≈ −20dB), resulting in performance near 50%

is shown in Figure4.4, also showing the poorness of the Gaussian approximation for high noise.

Note in the plot that the curve does not decay to zero, and the two tails do not decay to the same

value. The result given by the Laplace approximation will vary greatly depending on the choice

of the points to sample in order to obtain a value for the second derivative of the logarithm at the

maximum point, since the true second derivative is obviously inadequate. Since the Gaussian ap-

proximation is not as accurate as may be desired for reasonable noise levels, we seek to remove

this approximation. Noiseless LADAR images can be generated for arbitrary nuisance parameters

quickly using available software, allowing for the direct evaluation of the required conditional pdfs.

Hence, the approximating integral on the right side of (4.9) can be evaluated numerically. We refer

to this method as the Noiseless Integration Method (NIM).
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Figure 4.1: View of Tank CAD model from simulated LADAR sensor location.

When the integrals are evaluated, the approximate likelihood test becomes

L(I) ∼ p(I|H1, θ
∗
1)p(I

∗
0|H0, θ

∗
0)
∫

S p(I∗
0|H1, θ)f1(θ)dθ

p(I|H0, θ
∗
0)p(I

∗
0|H1, θ

∗
1)
∫

S p(I∗
0|H0, θ)f0(θ)dθ

H1

>

<

H0

ν (4.14)

which is again equivalent to a threshold adjustment

L′ = log
p(I|H1, θ

∗
1)

p(I|H0, θ
∗
0)

H1

>

<

H0

log ν ′

34



0 50 100 150 200 250

50

100

150

200

250

Figure 4.2: View of Sedan CAD model from simulated LADAR sensor location.

where now

ν ′ = ν
p(I∗

0|H1, θ
∗
1)
∫

S p(I
∗
0|H0, θ)f0(θ)dθ

p(I∗
0|H0, θ

∗
0)
∫

S p(I
∗
0|H1, θ)f1(θ)dθ

(4.15)

4.5 Unbiased Integration Method

Although the method described in Section4.4 is asymptotically correct, the approximation of the

Bayesian integrand by the integrand whenI = I∗
0 (Equation (4.14) is biased in general, since

E[f(x)] 6= f(E[x]) in general. We desire to continue, however, with the threshold adjustment

approximation technique as that used by Grenander et. al. and by the Method of Noiseless Inte-

gration because the reduction of the approximation to a merechange in threshold for the pseudo-

log-likelihood ratio (4.12) is particularly attractive due to its ease of implementation, as will be

discussed in Chapter5. We therefore seek to derive an improved approximation method.
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Figure 4.3: Plot of the approximating integrand with respect to angular pose (in degrees)
for noise standard deviation of 0.02. Note that the curve hasa significantly non-Gaussian
shape, indicating that the Laplace approximation is not sufficiently accurate for this rela-
tively low noise level.

As noted above and in [1], the goal of the approximations in Sections4.3and4.4is to obtain an

asymptotically correct approximation to the log-likelihood ratio by adding a constant to the pseudo

log-likelihood ratio in (4.12). In other words, a constantν ′ is obtained such that

lim
σ→0

log

(

ν

ν ′
p(I|Hi, θ

∗
i )

p(I|H0, θ
∗
0)

)

− log

(

∫

S p(I|Hi, θ)fi(θ)dθ
∫

S p(I|H0, θ)f0(θ)dθ

)

= 0 (4.16)

regardless ofI, using the appropriate equivalent expression for asymptotic equality in the log do-

main. The thresholdν ′ is not selected, however, based on any considerations regarding the rate at

which the error asymptotically converges to zero. Since theapproximation in Section4.4 is biased,

it is quite likely that the error is also biased as it converges to zero. This is not desirable, since the

goal of the prediction method is to predict the performance for as large a range ofσ as possible. As
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Figure 4.4: Plot of the approximating integrand with respect to angular pose (in degrees)
for noise standard deviation of 0.5. Note that the curve has asignificantly non-Gaussian
shape, indicating that the Laplace approximation is not sufficiently accurate for high noise
levels.

a result, we seek approximations that result in errors near zero for as large a value ofσ as possible.

Since the threshold adjustmentν ′ has no way of independently modifying the the expectation and

variance of the pseudo log-likelihood ratio, and since in the log domain the threshold adjustment

is an additive constant, it is reasonable to try to obtain aν ′ for which the expected error is zero,

consideringI as a random variable. This is reasonable since in the log domain the log-likelihood

ratio is of course created by taking the difference between two log-likelihoods.

This is further supported intuitively by the fact that for large numbers of independent pixels, the

Central Limit Theorem (with some assumptions on the nature of the pixel pdfs) gives the result that

the pseudo log-likelihood ratio is close to Gaussian distributed. Since the true log-likelihood ratio

is asymptotically equivalent, it must also be asymptotically nearly Gaussian distributed. Hence, the
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distributions should not be heavily skewed, so that the expectation should be near the high likelihood

region, thus ensuring that the error incurred should be nearzero most of the time if the expected

error is zero.

To obtain an expectation of zero, we must have that

E

[

log

(

ν

ν ′
p(I|Hi, θ

∗
i )

p(I|H0, θ
∗
0)

)

− log

∫

S p(I|Hi, θ)fi(θ)dθ
∫

S p(I|H0, θ)f0(θ)dθ

]

= 0 (4.17)

or

E

[

log(Cip(I|Hi, θ
∗
i ))− log(

∫

S
p(I|Hi, θ)fi(θ)dθ)

]

(4.18)

− E

[

log(C0p(I|H0, θ
∗
0))− log(

∫

S
p(I|H0, θ)f0(θ)dθ)

]

= 0

whereCi/C0 = ν/ν ′. Dividing ν ′ up in this manner allows us to separate the problem into two by

seekingC0 andCi such that

E

[

log(Cip(I|Hi, θ
∗
i ))− log(

∫

S
p(I|Hi, θ)fi(θ)dθ)

]

= 0 (4.19)

E

[

log(C0p(I|H0, θ
∗
0))− log(

∫

S
p(I|H0, θ)f0(θ)dθ)

]

= 0

which will achieve the overall zero expected error in a completely equivalent manner.

It is very difficult, however, to obtain the expectation of the log of a likelihood integral for most

pdfs of interest, due to the nonadditivity of the terms inside the logarithm. This problem is somewhat

related to that of computing the distribution of the sum of lognormal random variables, for which

exact solutions are intractable [35,36]. We thus seek to move the expectation inside the integral, so

as to be able to move the expectation inside the integral and exploit any pixel independence, thus

making the problem tractable.

We thus use a moment matching technique [36] to approximate the Bayesian integral itself

instead of its logarithm. That is,

E

[∫

S
p(I|Hi, θ)fi(θ)dθ − Cp(I|Hi, θ

∗
i )

]

= 0 (4.20)

38



If the expected error in the likelihood domain is zero and thetruth and the approximation are asymp-

totically equal for every value ofI as desired, the expected error in the log-likelihood domainwill

be asymptotically small. This approach is equivalent to approximating via moment matching, and is

in some ways based on a similar principle as the approach of [36] to the problem of approximating

the discrete sum of IID lognormal random variables by a single lognormal.

Solving (4.20) for C gives

C =

∫

S E [p(I|Hi, θ)] fi(θ)dθ

E[p(I|Hi, θ
∗
i )]

(4.21)

This gives an approximation to the Bayesian integral

∫

S
p(I|Hi, θ)fi(θ)dθ ∼ p(I|Hi, θ

∗
i )

∫

S E[p(I|Hi, θ)]fi(θ)dθ

E[p(I|Hi, θ
∗
i )]

(4.22)

which the following theorem proves to be asymptotically accurate. We refer to this approximation

method as the Unbiased Integration Method (UIM).

Theorem 1 The approximation in (4.22) is asymptotically correct, that is

∫

S
p(I|Hi, θ)fi(θ)dθ ∼ p(I|Hi, θ

∗
i )

∫

S E[p(I|Hi, θ)]fi(θ)dθ

E[p(I|Hi, θ
∗
i )]

(4.23)

The proof is given in AppendixA.

This approximation is then substituted into the Bayesian likelihood ratio (4.2) as was done in

(4.14) resulting in

L′ = log
p(I|H1, θ

∗
1)

p(I|H0, θ
∗
0)

H1

>

<

H0

log ν ′ (4.24)

where the threshold adjustmentν ′ is now given by

ν ′ = ν
E [p(I|H1, θ

∗
1)]
∫

S E [p(I|H0, θ)] f0(θ)dθ

E [p(I|H0, θ
∗
0)]
∫

S E [p(I|H1, θ)] f1(θ)dθ
(4.25)
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The calculation of the expectation in (4.22) will be discussed in Chapter5 and can be less

straightforward than the calculation of the integrands in (4.15), but the resulting prediction is sig-

nificantly more accurate, especially when the noise level isincreased.

As with the method of Grenander, if computational limitations require, the Laplace approx-

imation can be used for this method as well. It can be shown that for Gaussian noise, this gives

identical results to Grenander’s method.

4.6 Prediction of Probability of Error

Having computed the threshold adjustmentν ′ for the pseudo loglikelihood ratio test using one of

the three prediction methods (4.13),(4.15),(4.38), it remains to compute the probability of error. The

pseudo loglikelihood ratio is given by

L′ = log
p(I|H1, θ

∗
1)

p(I|H0, θ
∗
0)

H1

>

<

H0

log ν ′ (4.26)

Hence, the predicted probability of errorP (D1|H0) for this test can be calculated as

P (D1|H0) ∼
∫ ∞

log ν′
p(l|H0)dl

so long as the pdf ofL′, denoted byp(l|H0) = p(L′ = l|H0), can be derived or numerically

calculated. The accuracy of this method will be limited by the accuracy of the numerical integrations

performed. This prediction is asymptotically equal to the true probability of error.

4.7 Extensions

In this section, we discuss several extensions of the the Noiseless Integration Method (NIM) and

Unbiased Integration Method (UIM) prediction methods. First, a multimodal extension is consid-
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ered where multiple “pseudo loglikelihoods” are used to approximate the full Bayesian likelihood

ratio test, as opposed to the single pseudo LLR test. This method allows for increased prediction

accuracy. Second, an extension is considered that allows the prediction of different types of error

probabilities in theM -ary target classification scenario. Finally, we consider the prediction of the

performance of Bayesian classifiers derived using incorrect noise models and/or parameters.

4.7.1 Multi-modal Extension of NIM and UIM

Due to the symmetries of some targets, it is common that the likelihood as a function of the nuisance

parameters is multi-modal. For example, most civilian vehicles, especially sedans, have a roughly

similar appearance from above after a 180 degree rotation. In this case, the likelihood as a function

of angular pose is multi-modal. If the noise level is high enough, the contribution to the Bayesian in-

tegrals from the secondary peak of the function (located at roughly 180 degrees from the true angle)

is significant. The methods developed up to this point would integrate the appropriate integrand over

the entire nuisance parameter space and use the result to adjust the likelihood ratio test threshold,

using the likelihood ratio at the primary peak of the function. This essentially approximates the inte-

gral as highly correlated with the random value of the integrand at the primary peak. This is a quite

good approximation when the region for which the integrand is of significant magnitude is solely

in the neighborhood of the primary peak. The presence of secondary peaks, however, increases the

chance that portions of the integrand with significant magnitude will be slightly uncorrelated. Thus,

in order to improve the prediction accuracy, we propose to use the random likelihoods at several

nuisance parameter values, instead of only at the primary peak. In other words, for the Unbiased

Integration Method, the approximating integral derived above

∫

S
p(I|Hi, θ)fi(θ)dθ ∼ p(I|Hi, θ

∗
i )

∫

S E[p(I|Hi, θ)]fi(θ)dθ

E[p(I|Hi, θ
∗
i )]

is replaced with the approximation

∫

S
p(I|Hi, θ)fi(θ)dθ ∼

Wi
∑

w=1

p(I|Hi, θ
(w)
i )

∫

Sw,i
E[p(I|Hi, θ)]fi(θ)dθ

E[p(I|Hi, θ
(w)
i )]
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whereSw,i are disjoint sets such thatθ(w)
i ∈ Sw,i and∪Wi

w=1Sw,i = S, and usingWi random samples

located atθ(w)
i in the approximation. For asymptotic accuracy, the choice of θ(w)

i should include

θ∗i . It is natural that the other points be chosen at the secondary peaks, although this method is not

limited by this. The ranges for each partial integral would typically be chosen so that points are as-

sociated with the peaks closest to them. The most natural boundaries between sets would lie along

the local valleys between the peaks. For asymptoticity, it is required that all integrals not containing

θ∗i approach zero asσ → 0. For appropriately chosenSw,i andθ(w)
i , the approximation should be-

come increasingly accurate as theWi increase. It is also clear from the nature of the approximation

that assumingp(I|Hi, θ) is a continuous function ofθ, arbitrary approximation accuracy can be

achieved forWi sufficiently large, at the expense of rapidly increasing computational complexity.

This approximation thus gives an gives an approximate likelihood ratio test of

L′ = log









∑W1
w=1 p(I|H1, θ

(w)
1 )

∫

Sw,1
E[p(I|H1,θ)]f1(θ)dθ

E[p(I|H1,θ
(w)
1 )]

∑W0
w=1 p(I|H0, θ

(w)
0 )

∫

Sw,0
E[p(I|H0,θ)]f0(θ)dθ

E[p(I|H0,θ
(w)
0 )]









H1

>

<

H0

log ν (4.27)

and the probability of error is found using the pdf ofL′ as before.

Of course, this multi-modal approach is also applicable to the NIM. As the derivation closely

follows that for the UIM, only the end result is given here. The approximating likelihood ratio is

given by

L′ = log









∑W1
w=1 p(I|H1, θ

(w)
1 )

∫

Sw,1
p(I∗

0|H1,θ)f1(θ)dθ

p(I∗

0|H1,θ
(w)
1 )

∑W0
w=1 p(I|H0, θ

(w)
0 )

∫

Sw,0
p(I∗

0|H0,θ)f0(θ)dθ

p(I∗

0|H0,θ
(w)
0 )









H1

>

<

H0

ν (4.28)

Since this multi-modal method requires the computation of the pdf of a function ofW0 +W1

correlated random variables, it is more expensive to compute than the prediction methods using a

single approximating random sample. As a result, theWi should be kept small to preserve compu-
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tational efficiency. Typically, the number of random samples used will be limited to the number of

distinct peaks in the Bayesian integrand, as determined by the approximate symmetries of the target

relative to the nuisance parameters used.

4.7.2 Extension to M-ary Classification

So far, we have only considered the case of binary classification. More realistic ATR scenarios

almost always involve classification amongst multiple possible classes. We thus extend the results

up to this point to the case ofM possible target classes [2].

Let theM classes be denoted by hypothesesHi, i = 0, ...,M − 1. The optimum Bayesian

classifier is given by

i = argmax
iD

P (I|HiD)P (HiD) (4.29)

wherei is the index of the selected hypothesis.

It is desired to calculate the confusion matrixC of the system. The confusion matrix consists

of the probabilities that hypothesisi is selected when in fact hypothesisj is the truth.

Cij = P (Di|Hj), ∀i, j (4.30)

where as beforeDi indicates that the classifier selectedHi.

To computeCij , first note that the classifier in (4.29) dictates thatDi will occur if and only if

P (I|Hi)P (Hi)

P (I|Hj)P (Hj)
> 1, ∀j 6= i (4.31)

Following the techniques of Sections4.3, 4.4 or 4.5, the likelihood ratio tests in (4.31) can be

approximated after taking the logarithm as

Lij = log p(I|Hi, θ
∗
i )− log p(I|Hj, θ

∗
j ) > log ν ′ij,∀j 6= i (4.32)

whereν ′ij is the appropriate threshold adjustment as dictated by one of the three methods just men-

tioned.
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For notational simplicity, let

Li =

[

Li1 ... Li,i−1 Li,i+1 ... Li,M−1

]T

(4.33)

be a vector containing each of the log-likelihood ratiosLij, ∀j 6= i.

Let p(Li|Hℓ) be the joint pdf of the log-likelihood ratiosLij, ∀j 6= i given thatHℓ is true.

Then, let regionA = ∩M−1
j=0,j 6=i[Lij > ν ′ij]. Then,

P (Di|Hℓ) =

∫

A
p(Li|Hℓ)dLi (4.34)

The most difficult part of this method is finding the joint pdf of the log-likelihood ratios. For

Gaussian noise it is straightforward to derive the joint pdfby obtaining the mean and covariance

since each log-likelihood ratio is a linear combination of Gaussian variables ( [2] and see below).

For other types of noise, it is usually possible to approximate the pdf of the log-likelihood ratios as

Gaussian for a large enough number of pixels, due to the Central Limit Theorem and independence

of each pixel’s noise. This approximation simplifies the task, since only the mean and covariance

would need to be calculated, probably using numerical techniques.

4.7.3 Extension to Incorrect Classifier Noise Models

Due to the complexity of accurate noise models and the need toestimate noise model parameters, it

is frequently the case that an ATR classifier is based on simplified noise models or slightly incorrect

noise parameters [15]. To evaluate whether or not the use of the incorrect noise model is tolerable,

it is important to be able to predict the performance of the classifier derived optimally for the wrong

noise model when it is applied to data using the true noise model. We thus present methods of doing

this using the NIM and UIM. Letpt(·) indicate the true noise model pdf, andpc(·) the noise model

pdf used by the classifier. The priors used are those of the classifier’s noise model. Let the threshold

computed for this prediction scenario beν ′.

We first consider the Noiseless Integration Method. As the thresholdν ′ is computed using the

noiseless likelihood values, the likelihood functions should be those dictated by the incorrect model,
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and the noiseless image be determined by the true noise model. That is, following4.15,

ν ′ = ν
pc(I∗

0,t|H1, θ
∗
1)
∫

S pc(I
∗
0,t|H0, θ)f0(θ)dθ

pc(I∗
0,t|H0, θ

∗
0)
∫

S pc(I
∗
0,t|H1, θ)f1(θ)dθ

(4.35)

where

θ∗i = argmax
θ

pc(I∗
0,t|Hi, θ)fi(θ)I∗

i,t = arg max
I

pt(I|Hi, θ
∗
i ) (4.36)

andθ∗0 is the true nuisance parameters of the target.

The pseudo log likelihood ratio should be derived using the classifier noise model, but its

resulting distribution is determined using the true distribution of the sample images. Therefore,

probability of errorP (D1|H0) for this classifier can be calculated as

P (D1|H0) ∼
∫ ∞

log ν′
p(l|H0)dl

where from (4.27)

p(l|H0) = p(L′
c(I) = l|pt(I|H0, θ

∗
0)) (4.37)

andL′
c(I) is the pseudo loglikelihood ratio used in (4.26) computed using the classifier pdfspc.

Next the Unbiased Integration Method is considered. The expectation in the threshold adjust-

ment is the expectation of the likelihood given the true target distribution. Thus, the likelihood for

which the expectation is computed is that given by the classifier noise model, but the true distribu-

tion is used as the underlying distribution with which the expectation is calculated.

ν ′ = ν
E [pc(I|H1, θ

∗
1)|pt(I|H0, θ

∗
0)]
∫

S E [pc(I|H0, θ)|pt(I|H0, θ
∗
0)] f0(θ)dθ

E [pc(I|H0, θ
∗
0)|pt(I|H0, θ

∗
0)]
∫

S E [pc(I|H1, θ)|pt(I|H0, θ
∗
0)] f1(θ)dθ

(4.38)

As a result, the Unbiased Integration Method is capable of integrating the knowledge of the cor-

rect noise model into the calculation of the threshold adjustment, whereas the Noiseless Integration

Method is not. Hence, as will be seen, the Unbiased Integration prediction tends to greatly outper-

form the Noiseless Integration method for this type of problem. The pseudo log likelihood ratio

distribution is computed in the same way as for the NoiselessIntegration Method.
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Chapter 5

Implementation

In this chapter, we discuss our implementation of the derived Bayesian performance prediction

methods in realistic scenarios with arbitrary noise and nuisance parameters.

5.1 Computing the Integrals

5.1.1 Method of Grenander

As the method of Grenander uses the Laplace approximation toevaluate the required integrals to

find ν ′ (4.13), the second derivatives of the logarithms of the integrands need to be found at the

peaks, as described in the derivation of the method. The required second derivative in (4.12) can

be obtained using finite differencing the expression in (6.11) about the true pose for Target 0 and

about the pose of closest approach for Target 1 using the method of [3]. The spacing of the points

used to perform the finite differencing can be selected as desired, keeping in mind that the use of the

second derivative in this method is based on the assumption that the function is close to a Gaussian

pulse, and that rapid variations of the function about its overall trajectory are not important. For

our experiment, 5 points evenly and symmetrically spaced around the maximum point were used,

with the outermost points chosen such that they had values approximately 90% of the value of the

maximum point. The pose of closest approach is the pose for which the likelihood of Target 1 given
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Target 0 in its true pose is maximized.

5.1.2 NIM and UIM

In order to compute the thresholdν ′ for either the Noiseless Integration Method (NIM) or the Un-

biased Integration Method (UIM), deterministic likelihood integrals found in (4.15) or (4.38) must

be computed numerically. To do this, the integrands need to be evaluated for a set of discrete val-

ues ofθ, chosen in such a way that the resulting numerical integral will have the desired accuracy.

Each of these points requires the rendering of a noiseless LADAR image corresponding to selected

target and pose. Since the logarithms of the curves to be integrated are asymptotically quadratic

and thus have a clearly defined peak, we use simple optimization techniques that are able to avoid

local maxima to determine the peak and the width of the portion of the integrand that has sufficient

magnitude. Using this, we then determine the desired spacing of the sample points, typically using

a specified number of points.

The integrand (4.15) required by Section4.4can be straightforwardly evaluated, since it simply

involves calculating the likelihood of one noiseless imagegiven that a different noiseless image is

true, which is done by a direct evaluation of the pdf of the noise.

The expectations in the integrands (4.38) for the Unbiased Integration Method are more dif-

ficult to evaluate. In several cases of interest (see Section3), the expectations can be calculated

analytically, allowing the integrands to be calculated by afunction evaluation. If an analytic ex-

pression is unavailable, it is possible to obtain the expectations via numerical integration. However,

this is of course computationally expensive, and will likely result in the prediction algorithm not

significantly outperforming Monte Carlo integration in terms of computational complexity. Thus,

the Unbiased Integration Method should not be used when the required expectations cannot be ana-

lytically calculated and the method of Section4.3or the Method of Noiseless Integration should be

used instead.

Once the integrands have been evaluated for a number of discrete values ofθ, the requiredR-

dimensional integrals ((4.22) or (4.9), whereR is the dimension ofθ) can be approximated by per-

forming numerical integration. Since the integrands asymptotically become Gaussian functions [1],
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we found it natural to use Gaussian interpolation and extrapolation to perform the numerical inte-

gration instead of the linear interpolation used by the ubiquitous trapezoidal rule, so as to keep the

required integrand evaluations to a minimum. For portions of the tail for which Gaussian interpo-

lation is impossible due to the positive second derivative of the logarithm, exponential interpolation

was used instead. In our experience, these interpolation techniques are significantly more accurate

than linear interpolation for the computation of the integral.

As this numerical integration is computationally identical to the likelihood integral in the

Bayesian classifier, the computational complexity of this portion of the prediction is on the same

order of magnitude of the performance of one Bayesian ATR operation.

5.1.3 Selection of Samples for Multi-Dimensional Numerical Integra-

tion

In order to perform the requisite multi-dimensional integration to obtain the threshold adjustment,

it is necessary to determine the location and spacing of the needed samples. Since the integrands

to compute the threshold adjustments asymptotically have aGaussian shape, the integrands almost

always have a general peaked shape with low tails, although with near symmetries in the target

several peaks can develop. As a result, for efficient sampling, frequently only the neighborhood of

the peaks needs to be sampled. The location and width of this neighborhood is not known a priori,

with the exception of the location of the primary peak for thetrue target, which of course is located

at the true pose based on our assumption of consistency of inference.

Thus, for this type of efficient sampling to be performed, an optimization-based technique to

discover the location of these peaks and their size is required. Since the integrand is a likelihood

or an expectation of a likelihood, we work in the log likelihood domain, so as to be able to find the

peak even if the initial guess has a rather low magnitude. Forour experiments, we used an algorithm

based on a fusion of gradient descent and iteratively fittinga quadratic function to a samples that

gradually converge on the peak. The latter addition was needed to avoid the large number of local

maxima. Note that it is not critical for our methods to find theexact maximum at this stage, because

the entire peak will be sampled once its region for integration is determined. We found the width
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of the peak by using the a quadratic fit to get an initial estimate and then expanding the width until

the samples indicated that the magnitude of the function wassufficiently small. Other methods

applicable to the finding of the peak include MCMC based methods, such as that proposed in [37],

which we do not discuss further.

Once the region over which to integrate is found, it remains to evenly sample over the region.

In some cases, it may be possible to approximate the multidimensional integral associated with each

peak as separable into the product of one dimensional integrals along lines through the overall peak

of the integrand and parallel to the coordinate axes. This would allow the reduction in the number of

samples by allowing the sampling along only a set of mutuallyperpendicular lines. This method for

finding the regions over which to integrate was found to be reasonably robust in our experiments,

and converged at a reasonable rate.

5.2 Computing the Pseudo LLR PDF

The remaining task in calculating the performance using thethreshold adjusting methods is to derive

the pdf of the pseudo log-likelihood ratio on the left side of(4.12). This pdf will then be used

to compute the probability of error using the separately computed thresholdν ′. It is possible to

analytically derive this for the case of Gaussian noise and some other noise types. For most types

of noise, however, it is not possible to obtain a closed form expression for the pdf. We present two

possible approaches of approximating the required pdf, using the model that the noise for each of

theN pixels are independently distributed. First, let there beN K-dimensional pixels in the image

I, each denoted assk, l = 1, ..., N .

The independence of the pixels allows the decomposition of the pseudo LLR into a sum of the
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individual pixel LLRs.

L′(I) = (log p(I|H1, θ
∗
1)− log p(I|H0, θ

∗
0)) (5.1)

=

N
∑

k=1

(log p(sk|H1, θ
∗
1)− log p(sk|H0, θ

∗
0))

=

N
∑

k=1

L′
k(sk)

One method relies on approximating the pdf as Gaussian. Since the pixel noises are indepen-

dent, theL′
k are a set ofN independent random variables. As a result, the Central Limit Theorem

comes into effect forN sufficiently large, allowing the pdf to be approximated by a Gaussian dis-

tribution. Since the pixels are not IID, the additional assumption that the Lindeberg condition holds

is required [8]. In this case, the mean and variance of the distribution canbe found by adding the

means and variances of the log-likelihood ratioL′
k(sk) associated with each pixel, thus uniquely

determining the pdf of the overall log-likelihood ratioL′(I).

E
[

L′(I)
]

=

N
∑

j=1

E
[

L′
k(sk)

]

(5.2)

Var
[

L′(I)
]

=
N
∑

k=1

Var
[

L′
k(sk)

]

This gives the simple expression for the probability of error

Pe ≈ Q

(

ν ′ − E[L′(I)]
√

Var[L′(I)]

)

(5.3)

where as beforeν ′ is the threshold computed using one of the prediction methods.

If this method cannot be applied, the second proposed methodis to calculate the pdf numer-

ically. The pdfs of the log-likelihood ratios for each pixelcan be found using the noise pdf and

the inversion method. Since the pixel noises are independent, the overall pdf can then be found by

numerically convolving each of the pixel level pdfs. Difficulties with this method are that the pixel

pdfs tend to contain impulses, which may require relativelylarge numbers of points to describe ac-

curately. On the other hand, the convolution operation can be done quite efficiently by convolving
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the pdfs in a hierarchical fashion and downsampling as the functions become oversampled as they

become smoother and smoother.

The last method is to compute the probability of error directly using a Monte Carlo simulation.

Since the simulation involves no nuisance parameter uncertainty, it can be done quite efficiently and

robustly. Moreover, it is clear that this simulation is muchmore efficient than is the Monte Carlo

simulation of the entire ATR system, since no Bayesian integrals are required in the simulation.

5.3 Approximating the Accuracy of the Prediction

For almost any prediction of any type of performance, it is critical to know how accurate the predic-

tion is. For the problem under consideration, a situation may arise where high prediction accuracy

is required, thus necessitating an approximation of the accuracy of the chosen prediction method.

Since arbitrary accuracy can be achieved using the multi-modal approximation technique dis-

cussed in Section4.7.1 for a sufficiently largeRi, we propose the following method of approxi-

mating the accuracy of a prediction of probability of error.First, compute the prediction using the

method whose accuracy is being tested. Next, compute the prediction with using the multi-modal

technique with smallRi and appropriately selected random samples. IncreaseRi, reselect the points

and recompute the prediction. Continue increasing until the predicted values begin to converge, with

a threshold determined by the required accuracy of the errorcalculation. The probability of error to

which this series has converged is then used as the true performance, and the difference between this

and the prediction using the method under test gives the estimated prediction error. Of course, to

ensure that a false convergence is not achieved, it is critical that the locations of the approximating

random samplesθ(w)
i for the multi-modal prediction are always chosen so that they are approxi-

mately evenly spaced throughout the portion of the regionS for which the relevant integrand is

large enough to contribute meaningfully to the integral.

Note that since the accuracy of a prediction should vary smoothly with the variation of the

ATR scenario parameters, it is only necessary to determine the more accurate prediction for a few

parameter values in order to estimate the error over the relevant range of parameter values for which
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the prediction will be computed.
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Chapter 6

Application to LADAR Noise Models

This chapter applies the prediction methods of Chapter4 to the noise models of Chapter2.6. To

calculate the prediction using either method, the threshold ν ′ (or the weightsν ′ir) and the pseudo

LLR pdf p(l|H0) of L′ must be computed. Once these are found, the probabilities oferrors can be

found using (4.27) or (4.34).

For each method, theν ′ or ν ′ir are computed by the integration of certain functions. Hence,

in order to apply the prediction methods to each noise model,we must derive the integrands. The

integrands (excluding the priorsfi, which are specified directly) for the method of Grenander and

the NIM (4.10),(4.15) are given by

p(I∗
0|Hi, θ) (6.1)

for all i andθ. As this is merely the likelihood function for each noise model, it can be computed

using the defining likelihood function and the appropriate rendered model image.

For the UIM, a different quantity is needed for the integrand(4.38). This is given by the

expectation

E [p(I|Hi, θ)|H0, θ
∗
0] (6.2)

Moreover, all the models presented in Chapter2.6have independent pixel distributions. Hence, we

have that

E [p(I|Hi, θ)|H0, θ
∗
0] =

N
∏

k=1

E [p(sk|Hi, θ)|H0, θ
∗
0] (6.3)
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In this chapter, we thus derive the quantity

E [p(sk|Hi, θ)|H0, θ
∗
0] (6.4)

for each noise model to complete the prediction. This is given by

E [p(sk|Hi, θ)|H0, θ
∗
0] =

∫ ∞

−∞
p(sk|Hi, θ)p(sk|H0, θ

∗
0)dsk (6.5)

where the true underlying distribution ofsk is used.

Moving to the pdf of the pseudo loglikelihood ratio (4.26),

L′ = log
p(I|H1, θ

∗
1)

p(I|H0, θ
∗
0)

H1

>

<

H0

log ν ′

For some noise models it is possible to analytically computeits pdf. Hence, in this chapter, we also

derive the pdf ofL′ where possible.

6.1 Noise Model Components

In this section, we apply the Bayesian performance prediction methods discussed up to this point

to several simple noise models. These results will be used asbuilding blocks for the prediction

using the specifically LADAR noise models discussed in the next section. First, we will predict the

performance of multi-dimensional arbitrary Gaussian noise that is independent from pixel to pixel.

Secondly, we will derive prediction results for general mixture PDF models. Finally, we will use a

general random pixel deletion model.
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6.1.1 Gaussian Noise

Since Gaussian noise is part of many of the LADAR noise modelsdiscussed in this thesis, it is

necessary to be able to predict performance using the Gaussian noise model. These results will then

be applied to the several LADAR noise models that utilize Gaussian noise.

Consider the case where the imageI hasK dimensional pixels with a pixel noise model that is

additive independent Gaussian noise with(K ×K) covarianceΣk,i under hypothesisHi for each

pixel k = 1, ..., N . This covariance can vary from pixel to pixel and as a function of hypothesis

and nuisance parameter values, that isΣk,i = Σk,i(θ). Then, the likelihood function is a product of

K-dimensional Gaussian pdfs. Thus, assuming hypothesisHi and nuisance parametersθ, the pixel

observationssk are distributed asN (sk,i(θ),Σk,i), giving an overall image likelihood of [9]

p(I|Hi, θ) =
1

((2π)K |Σk,i(θ)|)N/2
(6.6)

× exp

{

−1

2

N
∑

k=1

(sk − sk,i(θ))
T
Σk,i(θ)

−1(sk − sk,i(θ))

}

UIM Integrand Calculation

For UIM, in order to computeν ′ in (4.38) it is necessary to find an expression for the expectation

E[p(I|Hi, θ)|H0, θ
∗
0]. Using the expression in (6.6), we have

E[p(sk|Hi, θ)|H0, θ
∗
0] = (6.7)

1

(2π)K
√

|Σk,i||Σk,i|

∫ ∞

−∞

[

exp

{

−1

2
(sk − sk,i(θ))

T
Σ

−1
k,i (sk − sk,i(θ))

}

· exp
{

−1

2
(sk − s∗k,0)

T
Σ

−1
k,0(sk − s∗k,0)

}]

dsk

=
1

(2π)K
√

|Σk,i||Σk,0|

∫ ∞

−∞
exp

{

−1

2

(

(sk −A
−1
k µ

k
)TAk(sk −A

−1
k µ

k
) + ξk

)

}

dsk
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where

Ak = Σ
−1
k,i +Σ

−1
k,0 (6.8)

µ
k
= Σ

−1
k,isk,i(θ) +Σ

−1
k,0s

∗
k,0

ξk = −µT
k
A

−1
k µ

k
+ s∗Tk,0Σ

−1
k,0s

∗
k,0 + sk,i(θ)

T
Σ

−1
k,isk,i(θ)

sinceΣk,i is symmetric by definition. Using the standard result for theintegral of a Gaussian curve,

this results in

E[p(I|Hi, θ)|H0, θ
∗
0] =

exp
{

∑N
k=1 ξk

}

(2π)KN/2

√

∏N
k=1 |Σk,i||Σk,0||Ak|

(6.9)

As can be seen from the LADAR noise models discussed so far, a useful special case of the

Gaussian noise model is the case whereΣk,i = Σk,0, ∀k. When this is the case, the expression in

(6.9) simplifies to

E[p(sk|Hi, θ)|H0, θ
∗
0] =

1

(2(2π)K |Σk|)N/2
exp

{

−1

4

(

s∗k,0 − sk,i(θ)
)T

Σ
−1
k

(

s∗k,0 − sk,i(θ)
)

}

(6.10)

Pseudo LLR Distribution for Equal Covariance

Once the modified thresholdν is obtained, it remains to find the pdf of the pseudo LLRL′(I) =

−2|Σ| = E1(I, θ∗1,Σk,1)−E0(I, θ∗0,Σk,0).

In order that theL′ will be Gaussian distributed, we consider only the case for whichΣk,1 =

Σk,0,∀j. This case will be sufficient for the noise models that will beconsidered. Thus, we ab-

breviate the pixel covariance as merelyΣk = Σk,i, i = {0, 1}. This gives a log-likelihood (6.6)
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of

Ei(I, θ,Σk) = −2 log
1

√

(

(2π)KN
∏N

k=1 |Σk|
)

(6.11)

+

N
∑

j=1

(sk − sk,i(θ))
T
Σ

−1
k (sk − sk,i(θ))

Thus, the log likelihood ratio forH1 at poseθ1 andH0 at poseθ0 is given by

L′(I, θ0, θ1) = log
p(I|H1, θ1)

p(I|H0, θ0)
(6.12)

=− 1

2

N
∑

j=1

(sk − sk,1(θ))
T
Σ

−1
k (sk − sk,1(θ))

+
1

2

N
∑

j=1

(sk − sk,0(θ))
T
Σ

−1
k (sk − sk,0(θ))

=−
N
∑

j=1

(sk,0(θ0)− sk,1(θ1))
T
Σ

−1
k sk

+
1

2

N
∑

j=1

(

sk,0(θ0)
T
Σ

−1
k sk,0(θ0)− sk,1(θ1)

T
Σ

−1
k sk,1(θ1)

)

Since thesk are Gaussian,L′(I) is also Gaussian with mean and variance

E[L′(I, θ0, θ1)] =−
N
∑

j=1

(sk,0(θ0)− sk,1(θ1))Σ
−1
k s

∗(j)
0 (6.13)

1

2

N
∑

j=1

(

sk,0(θ0)
T
Σ

−1
k sk,0(θ0)− sk,1(θ1)

T
Σ

−1
k sk,1(θ1)

)

Var[LLR(I, θ0, θ1)] =
N
∑

j=1

(sk,0(θ0)− sk,1(θ1))
T
Σ

−1
k (sk,0(θ0)− sk,1(θ1))

6.1.2 Mixture PDF

Consider the case of noise pdfs composed of mixtures of otherpdfs. This will allow the use of

more complex noise models by decomposing the noise pdfs intomixtures of simple distributions,

for which the required moments are already derived. This model will be useful later for LADAR
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noise models incorporating more accurate random cross-range noise models.

Assume that the noise for each pixel is independent. Supposethat the pdfp (sk|Hi, θ) of

thekth pixel givenHi and nuisance parametersθ is a mixture ofR component pdfspr(sk|Hi, θ),

r = 1, ..., R. To ensure generality, the number of componentsR is a function ofi, j, andθ, that is,

R = R(i, k, θ), with the functional dependencies left out for simplicity of notation. The weights

associated with each pdf component are denoted aswr, r = 1, ..., R. Again, thewr are functions of

i, k, andθ, orwr = wr(i, k, θ). By total probability, it is necessary that
∑R

r=1 wr = 1.

This gives a pixel pdf of

p (sk|Hi, θ) =
R
∑

r=1

wrpr(sk|Hi, θ) (6.14)

The complete image pdf is the product of the individual pixelpdfs by independence.

p (I|Hi, θ) =
N
∏

k=1

p (sk|Hi, θ) (6.15)

The UIM requires the evaluation of the expectation of this likelihood function for each pixel

given the true distribution (H0, θ
∗) of the same form but possibly different parameters. This isgiven

by

E [p (sk|Hi, θ) |H0, θ
∗
0] =

R0
∑

r0=1

R1
∑

ri=1

w0,r0wi,riE [pri(sk|Hi, θ)|pr0(sk|H0, θ
∗
0)] (6.16)

wherepri is therith component of the mixture distribution underHi and appropriate nuisance pa-

rameters,Ri denotes the number of components, andwi,ri denotes therith corresponding weights.

This result follows from the linearity of the expectation operator.

Hence, if the required expectation is available for a certain distribution, then the expectation

can be calculated for any distribution formed using mixtures of that distribution. This fact is useful

since highly complex noise pdfs can be approximated by mixtures of simpler distributions.
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6.1.3 Random Deletions

In LADAR imagery, anomalous pixels (described in Chapter2.6) are a significant factor. These

pixels are pixels that occur randomly throughout the image,and typically have pdfs that contain little

to no information about the actual target. As a result, some have used a reasonable approximation

that these pixels are to be treated as deleted pixels [7]. In essence, this is an approximation that

assumes that virtually all anomalous pixels can be identified and removed by the classification

algorithm, and the pdf of the anomalous pixels provides no, or at least negligible information about

the target. Given that anomalous pixels are typically distributed approximately uniformly over the

entire range interval, these assumptions should be accurate in most cases [7]. This approximation is

attractive from a prediction standpoint because it simplifies the required calculations considerably

for most types of false alarms, especially when computing the expectations required for the Method

of Unbiased Integration. In AppendixB, we demonstrate, as an example, that the Gaussian noise

with random deletions model is asymptotically equivalent to the coherent LADAR model. In a later

section, we will also provide experimental verification of the accuracy of using the deletion model

as an approximation for a uniformly distributed anomaly model.

This model should also be useful in the modeling of obscuration effects. If an object between

the target and the sensor is obscuring part of the target, it is sometimes the case that the obscuring

object is known to not be part of the target due to its distancefrom the target, as determined by

the use of a detection algorithm [38]. If this is not the case, then the effect of the obscuring object

would be highly dependent on its shape, and thus should be included in the CAD models for the

rendering of the noiseless imagery determining the target image distributions. An example scenario

with obscuring objects that are equivalent to deletions would be one for which a high tree canopy

is between the target and the sensor [38]. Leaves or branches in the canopy obscure many of the

LADAR pixels, but not all [38]. Since the leaves are much higher than the target, there is virtually

no chance of mistakenly associating them with the target dueto the extremely low likelihood that

target pixels would have such large errors, given reasonable sensor noise levels [38]. If this is indeed

so, it is clear that the obscured pixels can be modeled as deletions with minimal error [8]. Moreover,

the true distribution of the obscuring objects is probably not known a priori, thus further suggesting
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the use of a deletion model. Thus, random obscuration can be modeled using this method of random

deletions with probabilities of deletions that may vary across the image, depending on the desired

model.

Assume as before that the noise for each pixel is independent, with the kth pixel having a

non-anomalous pdf underHi and nuisance parametersθ of pna (sk|Hi, θ) over the setA and a

probability of deletionαk,i(θ). Thus, the noise model is

p (sk|Hi, θ) =











(1− αk,i(θ)) pna (sk|Hi, θ) sk ∈ A
αk,i(θ)
|B| sk ∈ B

(6.17)

The expectation of this pdf given the true hypothesisH0 at the true nuisance parametersθ∗ is

required for the Method of Unbiased Integration. This is given by

E [p (sk|Hi, θ) |H0, θ
∗] = (1− αk,0(θ

∗)) (1− αk,i(θ))E [pna (sk|Hi, θ) |H0, θ
∗] (6.18)

where we let|B| approach infinity with no change to the model. This choice is based on the fact

that the volume ofB has no effect on the actual likelihood ratio, and has the added benefit that it

prevents deleted pixels from penalizing the likelihood ratio. This incorrect penalty results because

the expectation, being additive, would not cancel out the anomalous probabilities as happens with

the true likelihood ratio. The lack of cancelation results from the unbiased nature of the approxima-

tion for ν. If the anomalous likelihood is made overly large by collapsing B, this in effect shifts the

impulse associated with the anomalies in the pdf of the likelihood far in the positive direction, thus

artificially increasing the expectation of the likelihood and destroying the accuracy of the approxi-

mation of the remainder of the pdf. This is important becausethe remainder of the pdf is the only

portion that affects the overall likelihood ratio.

The pixel likelihood ratio between hypothesesi0 andi1 at nuisance parameter values ofθ0 and
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θ1 respectively is given by

L′
k(sk|θ0, θ1) = log

p (sk|Hi1 , θ1)

p (sk|Hi0 , θ0)
(6.19)

=











log
(1−αk,i1

(θ1))
(1−αk,i0

(θ0))
pna(sk|Hi1

,θ1)
pna(sk|Hi0

,θ0)
Pixel not deleted

log
αk,i1

(θ1)

αk,i0
(θ0)

Pixel deleted

and by independence the complete likelihood ratio is

L′(I|θ0, θ1) =
N
∑

k=1

L′
k(sk|θ0, θ1) (6.20)

To do performance prediction, the pdf ofL′ is needed. First, the pdf ofL′
k needs to be obtained.

Let p(k)L,na(ℓ) be the pdf of the non-anomalous single pixel log-likelihoodratio

L′
k,na(sk|θ0, θ1) = log

pna (sk|Hi1 , θ1)

pna (sk|Hi0 , θ0)
(6.21)

The distribution ofL′ is of course its distribution given the imageI is of the true hypothesisH0

with the true nuisance parametersθ∗. This pdf is typically easier to obtain than the pdf of the

log-likelihood ratio for the complete noise including false alarms since the relevant noise pdfs are

simpler for most noise models. Then, the pdf ofL′
k(sk|θ0, θ1) is given by

p
(k)
L (ℓ) = (1− αk,0(θ

∗)) p(k)L,na

(

ℓ− log

(

1− αk,i1(θ1)

1− αk,i0(θ0)

))

(6.22)

+ αk,0(θ
∗)δ

(

ℓ− log

(

αk,i1(θ1)

αk,i0(θ0)

))

and by independence the pdf of the complete LLR can be obtained using

pL(ℓ) = p
(1)
L (ℓ) ∗ ... ∗ p(N)

L (ℓ) (6.23)

where∗ denotes convolution. This result will likely reduce the computational burden in computing

the requiredLLR pdf for the case that the pdf of the non-anomalous LLR can be analytically

calculated, e.g. for the Gaussian noise with anomalous pixels model. This is because it provides an

approximation for which the pdfs of the per pixel LLRs can be analytically calculated, eliminating
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the need for the use of numerical methods to determine the pdfs based on the pdfs of the underlying

pixel distributions.

Alternatively, if the number of pixels in the image is sufficiently high such that the Central

Limit Theorem applies, the distribution of the LLR can be approximated as Gaussian. We thus only

need to specify its mean and variance. LetEna(k) be the expectation ofL′
j,na(sk|θ0, θ1) andσ2

na(k)

its variance. From (6.22), we have that

EL(k) = (1− αk,0(θ
∗))Ena(k) + αk,0(θ

∗) log

(

αk,i1(θ1)

αk,i0(θ0)

)

(6.24)

σ2
L(k) = (1− αk,0(θ

∗)) σ2
na(j)

+
(

(1− αk,0(θ
∗))− (1− αk,0(θ

∗))2
)

E2
na(j)

(

αk,0(θ
∗)− αk,0(θ

∗)2
)

(

log

(

αk,i1(θ1)

αk,i0(θ0)

))2

− 2 (1− αk,0(θ
∗))Ena(j)αk,0(θ

∗) log

(

αk,i1(θ1)

αk,i0(θ0)

)

whereEL(k) andσL(k) are the complete LLR pixelwise expectation and standard deviation. Using

these and the independence of the pixels, we of course have that the overall expectation and variance

are

EL =
∑

k

EL(k)

σ2
L =

∑

k

σ2
L(k)

which thus determine the Gaussian pdf approximation to the LLR given that of the nonanomalous

LLR.

Using this, we have that the pseudo-loglikelihood based prediction of the performance is given

by (4.26)

P (D1|H0) ≈ Q

(

ν ′ − E[L′]
√

Var[L′]

)

(6.25)

whereν ′ is determined by one of the three prediction methods.

62



Performance with Constant Probability of Anomaly

Suppose now that theα are constant overi, k, θ, which is frequently approximately the case. This

gives from (6.24) that

EL = (1− α)Ena (6.26)

σ2
L = (1− α) σ2

na

where

Ena =
∑

k

Ena(k)

σ2
na =

∑

k

σ2
na(k)

are the moments of the pseudo LLR when the probability of anomaly is zero. The thresholdν ′ is

computed using the expectation, now given by

E [p (sk|Hi, θ) |H0, θ
∗] = (1− α)2 E [pna (sk|Hi, θ) |H0, θ

∗] (6.27)

Sinceν ′ depends on the ratio of integrals of this function, and the only effect that varying the prob-

ability of anomaly has is to scale the integrand evenly, the variation of the probability of anomaly

does not affectν ′, that isν ′(α) = ν ′.

The probability of error is then given by (4.27)

P (D1|H0) ≈ Q

(

ν ′ − (1− α)Ena
√

(1− α) σ2
na

)

(6.28)

whereν ′ is a constant. The simplicity of this expression is one of theprimary reasons for using the

Random Deletion anomaly model.
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6.2 LADAR Noise Models

In this section, we apply the performance prediction methods discussed in this paper to several more

realistic LADAR noise models.

We discuss two common LADAR noise models here: the typical coherent LADAR noise

model, the Geiger-mode noise model, a simpler Gaussian noise with random deletions model, and

a more complex noise model incorporating finite-beamwidth effects.

6.2.1 Gaussian Noise with False Alarms - Coherent LADAR

From Chapter3, the pdf of thekth pixel is given by

p (sk|Hi) = (6.29)














αk,i

b−a +
1−αk,i

(

Q

(

a−sk,i(θ)

σk

)

−Q

(

b−sk,i(θ)

σk

))√
2πσ2

k

exp
{

− (sk−sk,i(θ))
2

2σ2
k

}

a < sk < b

0 otherwise

For the Unbiased Integration Method, the expectation of this pdf given the true hypothesisH0

at the true nuisance parametersθ∗ is required. The required expectation is that of the individual

hypothesized pixel likelihood given the true distributionof the pixel. Combining the results for

mixture pdfs (6.16) and the results for Gaussian noise (6.10), we have

E [p (sk|Hi, θ) |H0, θ
∗] (6.30)

=

∫ ∞

−∞
p (sk|Hi, θ) p (sk|H0, θ

∗) dsk

=
αk,i(1− αk,0) + αk,0(1− αk,i)− αk,iαk,0

(b− a)

+
(1− αk,i)(1 − αk,0)

(

Q
(

2a−sk,i(θ)−s∗k,0
σk

)

−Q
(

2b−sk,i(θ)−s∗k,0
σk

))

(

Q
(

a−sk,i(θ)
σk

)

−Q
(

b−sk,i(θ)
σk

))(

Q
(

a−s∗k,0
σk

)

−Q
(

b−s∗k,0
σk

))√

4πσ2
k

× exp

{

−
(s∗k,0 − sk,i(θ))

2

4σ2
k

}
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where the first term is found by

∫ b

a

1

(b− a)2
dsk =

1

b− a
(6.31)

for the uniform component expectation given the true uniform and

∫ b

a

1

b− a

1
(

Q
(

a−sk,i(θ)
σk

)

−Q
(

b−sk,i(θ)
σk

))√

2πσ2
k

exp

{

−(sk − sk,i(θ))
2

2σ2
k

}

dsk =
1

b− a

(6.32)

for the expectation of the uniform component given the Gaussian component and vice versa.

6.2.2 Gaussian Noise with Geiger mode anomalies

In Section3.2.2the pixel noise pdf for Geiger mode LADAR was expressed as

p (sk|Hi) = αk,ipa(sk) + ρk,ipg(sk|Hi, θ) + P
(k,i)
del δ(sk − b), a < sk < b

where

pg(sk|Hi, θ) =
1

√

2πσ2
k

e
− (sk−sk,i(θ))

2

2σ2
k a < sk < b

pa(sk|Hi, θ) =











α
(1)
k,i

αk,i
γ
(k,i)
1 exp(−βsk) a < sk < sk,i(θ)

α
(2)
k,i

αk,i
γ
(k,i)
2 exp(−βsk) sk,i(θ) < sk < b

with the parameters defined in Section3.2.2.

To implement the Unbiased Integration Method we need the expectation

E [p (sk|Hi, θ) |H0, θ
∗
0] (6.33)

The pixel pdf is a mixture of four distributions. We thus makeuse of the Mixture pdf results

in Section6.1.2in (6.16). Note that the component weighted byPdel is a deletion, and is treated
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accordingly. Using this method, we obtain the result that

E[p (sk|Hi, θ) |H0, θ
∗
0] =αk,iαk,0Eai,a0 + αk,0ρk,iEa0,ni (6.34)

+ αk,iρk,0Eai,n0 + ρk,0ρk,iEn0,ni

where the deletions do not factor into the expectation as noted in Section6.1.3and where from

(6.10)

En0,ni = E[pg(sk|Hi, θ)|pg(sk|H0, θ
∗
0)] =

1
√

2(2π)σ2
k

exp











−

(

s∗k,0 − sk,i(θ)
)2

4σ2
k











(6.35)

Also, it can be shown

Eai,a0 = E[pa(sk|Hi, θ)|pa(sk|H0, θ
∗
0)] =

α
(1)
k,iα

(1)
k,0

αk,iαk,0
ζ(a, κ1, 1, 1) (6.36)

+
α
(j1)
k,i α

(j2)
k,0

αk,iαk,0
ζ(κ1, κ2, j1, j2)

+
α
(2)
k,iα

(2)
k,0

αk,iαk,0
ζ(κ2, b, 2, 2)

where ifsk,0(θ) > sk,i(θ), j1 = 2, j2 = 1 and otherwisej1 = 1, j2 = 2, κ1 = min(sk,0(θ), sk,i(θ)), κ2 =

max(sk,0(θ), sk,i(θ)), and

ζ(x, y, j, ℓ) =
γ
(k,i)
j γ

(k,0)
ℓ

2β
(e−2βx − e−2βy) (6.37)
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Finally,

Eaj ,nℓ
= E[pa(sk|Hj, θj)|pg(sk|Hℓ, θℓ)] = E[pg(sk|Hℓ, θℓ)|pa(sk|Hj , θj)] (6.38)

=
α
(1)
k,i

αk,i

×
(

γ
(k,i)
1 eβ(βσ

2/2−sk,ℓ(θ))

(

Q

(

a− sk,ℓ(θ) + βσ2

σ

)

−Q

(

sk,j(θ)− sk,ℓ(θ) + βσ2

σ

)))

+
α
(2)
k,i

αk,i

×
(

γ
(k,i)
2 eβ(βσ

2/2−sk,ℓ(θ))

(

Q

(

a− sk,ℓ(θ) + βσ2

σ

)

−Q

(

sk,j(θ)− sk,ℓ(θ) + βσ2

σ

)))

6.2.3 Gaussian Noise with Random Deletions

For this noise model, each pixel is either kept or deleted, asdetermined by Bernoulli random vari-

ables associated with each pixel. If the pixel is not deleted, it is corrupted by additiveK-D Gaussian

noise with specified covariance. Thekth pixel is distributed according to

p (sk) =











1−αk

(2π)K/2|Σk|1/2
e−

1
2(sk−s∗k,0)

T
Σ

−1
k (sk−s∗k,0) sk ∈ A

αk
|B| sk ∈ B

(6.39)

whereαk is the probability that thekth pixel is deleted andΣk is the covariance matrix of each

pixel.

For this noise type, the UIM can be used since the required expectations can be obtained

analytically using the method described in Section6.1.3using (6.18) and the Gaussian noise results

derived in Section6.1.1in (6.10).

The use of the random deletion model in this case is particularly attractive from an implemen-

tation standpoint because, as will be seen, it allows for thedistribution of the image likelihood ratio

to be determined analytically, unlike for the coherent LADAR model. As a result, calculations of

error probability are much simpler and faster. In addition,the simplicity of the model lends itself to

analytic approximations of performance as a function of system parameters, as will be seen.

67



6.2.4 Finite beamwidth effects

This section discusses performance prediction using the approximate model for finite beamwidth

effects introduced in Section3.2.4. The non-anomalous distribution is given by

pna(sk|Hi) =

R
(k,i)
m
∑

r=1

wr
√

(2π)K |Σr|
e−

1
2
(sk−µ

r
)TΣ

−1
r (sk−µ

r
) (6.40)

wherewr is the associated probability for each portion,µ
r

is the mean, andΣr is the variance. This

distribution can be used with the appropriate anomaly pdfpa (deletion, uniform, or exponential) and

probability of anomaly, giving

p(sk) = αkpa(sk) + (1− αk)pna(sk) (6.41)

The anomalous distributionpa can be either that of coherent LADAR (uniform), the random deletion

model, or of Geiger mode LADAR.

For the method of unbiased integration, the expectation

E [p (sk|Hi, θ) |H0, θ
∗
0] (6.42)

is required. Since this model is a mixture of Gaussian pdfs and an anomalous pdf, the mixture

pdf model results can be used along with the Gaussian noise results and the Gaussian noise plus

anomalies results. From the mixture pdf results (6.16),

E [p (sk|Hi, θ) |H0, θ
∗
0] =

(1− αk,i)(1 − αk,0)

R0
∑

r0=1

R1
∑

ri=1

w0,r0wi,riE [pri(sk|Hi, θ)|pr0(sk|H0, θ
∗
0)]

+ (1− αk,i)αk,0

Ri
∑

ri=1

w1,r1E [pri(sk|Hi, θ)|pa(sk|H0, θ
∗
0)]

+ αk,i(1− αk,0)

R0
∑

r0=1

w0,r0E [pa(sk|Hi, θ)|pr0(sk|H0, θ
∗
0)]

+ αk,iαk,0E [pa(sk|Hi, θ)|pa(sk|H0, θ
∗
0)]
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where

pri(sk|Hi, θ) =
e
− 1

2
(sk−µ

ri
)TΣ

−1
ri

(sk−µ
ri
)

√

(2π)K |Σri |
(6.43)

The expectations in the first sum in the expectation can be found using the Gaussian results in (6.10)

and the expectations in the remaining terms are given in the derivations in (6.30), (6.18), or (6.34)

depending on the anomaly model.
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Chapter 7

Analytic Approximations for the

Dependence of Performance on Major

Parameters

7.1 Asymptotic Resolution Dependence for Independent

Pixel Noise

In [2], Yen and Shapiro derive an approximation for the asymptotic behavior of the probability of

error as a function of increasing FLIR sensor resolution, using the performance prediction presented

in [1] and a Gaussian noise model. We use a similar method to obtaina somewhat more general

result that is applicable to LADAR and can incorporate the more accurate prediction methods pre-

sented above.

We consider the case that the pixel density increases to infinity. First, let there be a reference

pixel configuration consisting ofN = Nref pixels. Now, let the number of pixelsN vary. Assume

that asN changes, the relative distribution of the densities of the pixels over the sensor focal plane or

planes remains constant, and the region imaged does not change. In other words, the pixel spacings

for the new configuration are chosen such that for each of the original Nref pixels, exactlyN/Nref
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of the new pixels in its immediate neighborhood can be uniquely assigned to them, to within one

pixel (due to required quantization). For example, consider the case where theNref pixels are

evenly spaced over a focal plane with spacing∆ref . Then, asN varied, the pixel spacing would

remain even, with spacing∆ ≈ ∆ref

√

Nref/N .

It is desired to approximate the behavior of the likelihood ratio asN varies while all noise and

true nuisance parameters remain constant. Assume that the noise from pixel to pixel is independent

regardless ofN . Model the noiseless scene as viewed from the sensor with a continuum of pixels as

being piecewise continuous. Assume also that the noise distribution parameters are only spatially

dependent and vary piecewise continuously. The discontinuities, if they exist, would correspond to

sharp boundaries, such as that between the target and the background. AsN → ∞, the differences

between the values of pixels separated by a constant number of pixels approaches zero. The same

is true for the noise parameters. Assuming that the likelihood functionp(sk|Hi, θ) for a particular

pixel is continuous with respect to the noise parameters andsk, we thus have that

lim
N→∞

p(s(k1)|Hi, θ) = p(s(k2)|Hi, θ) (7.1)

with k1 andk2 defined such thatk1 remains in the same location and the location ofk2 is separated

from that ofk1 by a constant number of pixel widths, all of which must be approaching zero by our

assumptions. Further details as to this aspect of the derivation can be found in [2].

Based on the above discussion, we propose the approximation

p(I(N)|Hi, θ,N) =

N
∏

k=1

p(sk(N)|Hi, θ,N) ≈
Nref
∏

k=1

(p(sk(Nref )|Hi, θ,Nref ))
N/Nref (7.2)

= p(I(Nref )|Hi, θ,Nref )
N/Nref

thus ignoring quantization effects which may occur forN not an integer multiple ofNref . This

approximation is a generalization of the approximation in [2], in which the authors show that the

approximation is asymptotically correct asNref , N → ∞.

We now turn to apply this largeN approximation to the various prediction methods in this

thesis. All methods require the determination ofθ∗1(N), which is the value ofθ∗1 determined at a
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sensor resolution ofN . The authors of [2] show that

lim
N→∞

θ∗1(N) = θ∗1(∞) (7.3)

so we make the asymptotic approximation thatθ∗1(N) = θ∗1(Nref ). For the method of Grenander,

we also make the assumption that the nuisance parameter priors are uniform, that is thefi(θ) are

constant. Using this, the threshold adjustment for the Laplace approximation method (4.12) is

approximated as

νlaplace(N)− log ν =
1

2
log

det
(

Ë1(I∗
i , θ

∗
1, σ,N)

)

det
(

Ë0(I∗
i , θ

∗
0, σ,N)

) (7.4)

≈1

2
log

N
Nref

det
(

Ë1(I∗
0, θ

∗
1, σ,Nref )

)

N
Nref

det
(

Ë0(I∗
i , θ

∗
0, σ,Nref )

)

=νlaplace(Nref )− log ν

since (4.11)

Ei(I, θ, σ,N) = −2σ2 (log p(I|Hi, θ,N) + log fi(θ)) + c

and where dependence onN is shown explicitly.

For the Noiseless Integration Method and the Unbiased Integration Method, using (7.2), the

approximate threshold adjustments are given by (4.15) (for arbitrary nuisance priors)

ν ′(N)/ν =
p(I∗

0(N)|H1, θ
∗
1, N)

∫

S p(I∗
0(N)|H0, θ,N)f0(θ)dθ

p(I∗
0(N)|H0, θ

∗
0, N)

∫

S p(I∗
0(N)|H1, θ,N)f1(θ)dθ

(7.5)

≈ p(I∗
i (Nref )|H1, θ

∗
1, Nref )

N/Nref
∫

S p(I∗
0(Nref )|H0, θ,Nref )

N/Nref f0(θ)dθ

p(I∗
0(Nref )|H0, θ

∗
0, Nref )

N/Nref
∫

S p(I∗
0(Nref )|H1, θ,Nref )

N/Nref f1(θ)dθ
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and (4.38)

ν ′(N)/ν =
E [p(I(N)|H1, θ

∗
1, N)]

∫

S E [p(I(N)|H0, θ,N)] f0(θ)dθ

E [p(I(N)|H0, θ
∗
0, N)]

∫

S E [p(I(N)|H1, θ,N)] f1(θ)dθ
(7.6)

≈ E [p(I(Nref )|H1, θ
∗
1, Nref )]

N/Nref
∫

S E [p(I(Nref)|H0, θ,Nref )]
N/Nref f0(θ)dθ

E [p(I(Nref )|H0, θ
∗
0, N)]N/Nref

∫

S E [p(I(Nref)|H1, θ,Nref )]
N/Nref f1(θ)dθ

respectively. For these equations, it can be seen that to computeν ′(N) having already computed

ν ′(Nref ), it is only necessary to take a power of the previously evaluated likelihood portions of the

integrand and recompute the integral.

It remains to compute the pdf of the log-likelihood ratioL′ = log(p(I(N)|H1, θ
∗
1, N)) −

log(p(I(N)|H0, θ
∗
0, N)) given the true distribution (determined byH0, θ

∗
0) of the image (4.12).

Since the case of largeN is being considered and the pixel noises are independent, the pdf ofL′

asymptotically approaches a Gaussian asN → ∞ by the Central Limit Theorem. This approxi-

mation is very good, since the convergence to a Gaussian pdf is almost always quite fast [9], and

most LADAR images have large numbers of pixels. As a result, we need only obtain the mean and

variance ofL′ to specify its pdf. From (7.2),

E[L′(N)] =E[log(p(I(N)|H1, θ
∗
1, N))|H0, θ

∗
0, N ] (7.7)

− E[log(p(I(N)|H0, θ
∗
0, N))|H0, θ

∗
0, N ]

=E[log(p(I(Nref )|H1, θ
∗
1, Nref )

N/Nref )|H0, θ
∗
0, Nref ]

− E[log(p(I(Nref )|H0, θ
∗
0, Nref )

N/Nref )|H0, θ
∗
0, Nref ]

=
N

Nref
(E[log(p(I(Nref )|H1, θ

∗
1, Nref ))|H0, θ

∗
0, Nref ]

−E[log(p(I(Nref )|H0, θ
∗
0, Nref ))|H0, θ

∗
0, Nref ])

=
N

Nref
E[L′(Nref )]
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and

Var[L′(N)] =Var[log(p(I(N)|H1, θ
∗
1, N))|H0, θ

∗
0, N ] + Var[log(p(I(N)|H0, θ

∗
0, N))|H0, θ

∗
0, N ]

(7.8)

=
N

Nref
(Var[log(p(I(Nref )|H1, θ

∗
1, Nref ))|H0, θ

∗
0, Nref ]

+Var[log(p(I(Nref )|H0, θ
∗
0, Nref ))|H0, θ

∗
0, Nref ])

=
N

Nref
Var[L′(Nref )]

by the independence of the new pixels.

As a result, the approximate probability of error is given by

P (D1|H0, N) ≈ Q





ν ′(N)− N
Nref

E[L′(Nref )]
√

N
Nref

Var[L′(Nref )]



 (7.9)

which, as we have seen, is asymptotically correct asσ → 0, N,Nref → ∞.

To increase the simplicity of the prediction equation, in the case where the priors are uniform

we propose using the threshold adjustment approximation for the method of Grenander (7.4) to ob-

tain ν ′(N) = ν ′(Nref ) regardless of the method used to computeν ′(Nref ). This is asymptotically

valid since all the approximation methods are asymptotically equivalent asσ → 0. In effect, this is

equivalent to fitting Gaussian curves to the integrands usedto computeν ′(Nref ) in such a way that

the value of the integrals, and thusν ′(Nref ), are preserved. These Gaussian curves would then be

used in the computation of the approximateν ′(N) using (7.5) or (7.6) which of course reduces to

the desiredν ′(N) = ν ′(Nref ). This gives

P (D1|H0, N) ≈ Q





ν ′(Nref )− N
Nref

E[L′(Nref )]
√

N
Nref

Var[L′(Nref )]



 (7.10)

If it is desired to obtain the error in the probability prediction inherent in the smoothness assumption

for the image, it can be found by computingE[L′(N)] andVar[L′(N)] and substituting in for

the probability of error. This avoids having to recomputeν ′(N), thus limiting the computational
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expense. This error computation may be practicable in the case where the prediction is computed

for a range of resolution values, since it would be computed at only a few points to verify the validity

of the smoothness assumption for the curve.

7.2 Analytic Approximations for Gaussian Noise with Anoma-

lies

In this section, we derive results for the Gaussian noise with anomalies model only. The simplicity

of the Gaussian noise plus random deletions model lends itself to analytic analysis. Hence, as it is

asymptotically equivalent to the coherent LADAR model, anda reasonable approximation of most

anomaly models, we use the Gaussian noise with random deletions model for all derivations in

this section. In this section, we have the goal of obtaining analytic or near analytic results for the

variation of performance with various relevant parameters.

7.2.1 Probability of Anomaly Dependence

In this subsection, we apply the scaling properties of the probability of anomaly for the random

deletion model derived in Section6.1.3 to other anomaly models, such as the coherent LADAR

model. We propose computing the mean, variance, and threshold of the pseudo log likelihood ratio

test at a reference pointαref for the accurate anomaly model using one of the accurate prediction

methods, and then using this point to create an approximation of the performance curve that would

result from varying the probability of anomalyα in the neighborhood of that point. This would be

useful in determining what effects changes in the anomaly rate will have on performance, in order

to aid rapid system design. We assume that theαi0 = αi1 . Using reference pseudo loglikelihood

momentsEref , σref , and reference thresholdν ′ref computed for reference anomaly rateαref , we

have the approximation, using (6.28), that the probability of error as a function ofα is

P (D1|H0) ≈ Q





ν ′ref − 1−α
1−αref

Eref
√

1−α
1−αref

σ2
ref



 (7.11)
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This provides a simple approximation to the variation of classification performance with anomaly

rate.

Since for many cases the range swath is long enough and anomaly rate low enough that anoma-

lies can be modeled as random deletions, this prediction is widely applicable to approximating per-

formance variation as a function of anomaly rate for other anomaly based models, as well as for

varying clutter levels. This type of analysis is important,since the anomaly rate is primarily deter-

mined by the receiver sensitivity, transmission power, andlength of the range swath, as well as the

clutter density, all of which are important system parameters.

7.2.2 Noise Covariance Dependence

First, we consider dependence on the Gaussian noise covariance, assuming that the covariances

do not change between models. Let the parameterσ be such that all the terms of all covariance

matrices are proportional toσ2, that isΣk = Skσ
2. We consider the variation of performance asσ

varies. From Section6.1.1, we have (6.13) that the Gaussian only pseudo log likelihood ratio has

the following moments:

E[L′(I, θ0, θ1)] =−
N
∑

j=1

(sk,0 − sk,1)
T S

−1
k

σ2
s∗k,0

+
1

2

N
∑

j=1

(

sk,0
T S

−1
k

σ2
sk,0 − sk,1

T S
−1
k

σ2
sk,1

)

Var[L′(I, θ0, θ1)] =
N
∑

j=1

(sk,0 − sk,1)
T S

−1
k

σ2
(sk,0 − sk,1)

For simplicity of notation, let

µL =−
N
∑

k=1

(sk,0 − sk,1)
T
S
−1
k s∗k,0 (7.12)

+
1

2

N
∑

k=1

(

sk,0
T
S
−1
k sk,0 − sk,1

T
S
−1
k sk,1

)

σ2
L =

N
∑

k=1

(sk,0 − sk,1)
T
S
−1
k (sk,0 − sk,1)

76



Furthermore, since the non anomalous Gaussian loglikelihood is inversely proportional to the

Gaussian covariance, which is in turn proportional toσ2, its Hessian with respect to the nuisance

parameters must also be proportional toσ2. Since this is true for both target loglikelihoods, the

threshold adjustmentνlaplace for the method of Grenander does not change withσ. Hence, we

assume that the threshold adjustment is constant regardless of prediction method, in a similar way as

done in Section7.1. To improve accuracy, we use a reference pointσref for which the performance

has been predicted using one of the threshold adjustment methods, giving a thresholdν ′ref .

Using the results from Section6.1.3, we then have, assuming the anomaly ratesPa do not vary

with k, the approximate probability of error to be (7.13)

P (D1|H0) ≈ Q





ν ′ref − (1− α)µL

σ2
√

(1− α)
σ2
L

σ2



 (7.13)

which explicitly gives an analytic expression for the variation of performance with both anomaly

rate and Gaussian noise level, sinceν ′ref , µ, σL are all constants. This noise level variation result

is clearly also applicable for nonuniform anomaly rates, but is not shown for clarity. As the only

approximations required for this result are that the threshold does not vary withσ and that the

Central Limit Theorem can be used, this result is asymptotically correct as the noise level goes to

zero and the number of pixels increases to infinity, assumingrelevant Central Limit requirements

are met. The first result is due to the approximation’s basis in the method of Grenander, which is

asymptotically accurate. The latter result is due to the requirements for the asymptoticity from the

Central Limit Theorem and its extensions.

7.2.3 Elevation Angle Dependence

Next, we derive approximate variation results for sensor elevation angleφ for range images only, on

a flat ground plane. Define the elevation angle to be the angle between the sensor line of sight and

the ground plane. It is necessary to obtain a simple expression for the variation of the statistics of the

pseudo loglikelihood ratio. For the Gaussian noise with random deletions model, these only depend

on the variation of the distance between the predicted pixelvalues under the different hypotheses.
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For most ground targets viewed from the air, the visible surfaces of the targets tend to be parallel

to the ground plane. In addition, the dominant pixels from a separability standpoint will be those

with the maximum difference between the hypothesis predictions, which will usually occur where

one hypothesis says that the pixel is on the top of the target,and the other that it is on the ground

plane. As the top of the target is usually parallel to the ground, this suggests that we approximate the

average variation of the difference in hypothesized valuesfor the pixels as the two model surfaces

are locally horizontal. As the elevation angle varies, then, this would mean that the difference in

pixel hypothesis values would vary as1/ sinφ, using the far field approximation. That is,

1

Ntarg

N
∑

j=1

(s
(φ)
k,0 − s

(φ)
k,1)

2 ≈ sin2 φref

sin2 φ

1

Ntarg,ref

N
∑

k=1

s
(φref )
k,0 − s

(φref )
k,1 )2 (7.14)

whereNtarg,ref andNtarg are the numbers of pixels for which the pixel difference is nonzero for

φref andφ respectively. As the variation in loglikelihood is approximated to be due entirely to a

single multiplicative constant, the threshold adjustmentνlaplace found using Grenander’s method

does not change. Hence, we approximate the threshold as constant with respect to elevation angle.

It remains to determine the variation of the number of pixelson target, that is, the number

for which the difference in hypothesized values is nonzero.We consider low elevation angles and

high elevation angles separately. For low elevation angles, portions of both the side and top of the

target are visible. Hence, it is reasonable to approximate the number of pixels as unchanging with

elevation angle. This approximation is exact for a cylindrical target. As a result, this gives the

variation of the moments of the pseudo LLR with zero probability of anomaly to be

E[L′|φ] ≈ sin2 φref

sin2 φ
E[L′|φref ] (7.15)

Var[L′|φ] ≈ sin2 φref

sin2 φ
Var[L′|φref ]

This gives an approximate probability of error for arbitrary probability of anomaly to be, using the
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Central Limit Theorem

P (D1|H0) ≈ Q













ν ′ref − (1− α)
µref

σ2

sin2 φref

sin2 φ
√

(

(1− α)
σ2
ref

σ2

sin2 φref

sin2 φ

)













(7.16)

where

µref = −
N
∑

j=1

(s
(φref )
k,0 − s

(φref )
k,1 )s

(∗,φref )
k,0 +

1

2

N
∑

j=1

(

s
(φref )
k,0

2
− s

(φref )
k,1

2
)

(7.17)

σref
2 =

N
∑

k=1

(s
(φref )
k,0 − s

(φref )
k,1 )2

andν ′ref is computed atφref .

For high elevation angles, the majority of the image of the target is of the flat top surface.

Hence, the variation in the number of pixels on target can be approximated by the variation in the

apparent area of a horizontal flat plate, using the far field approximation. This approximation is

asymptotically correct as the height of the target goes to zero. This indicates that the number of

pixels on target should be proportional tosinφ. This clearly gives the approximate probability of

error

P (D1|H0) ≈ Q









ν ′ref −
(

(1− α)
µref

σ2

sinφref

sinφ

)

√

(1− α)
σ2
ref

σ2

sinφref

sinφ









(7.18)

Experiments will be run in a later section to verify the accuracy of these approximations.
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Chapter 8

Bayesian Experimental Results for

LADAR Noise

In this chapter, we present experimental results for the three prediction methods discussed for each

of the noise models considered. Various binary sets of targets are used. The nuisance parameter for

each of these experiments was target azimuth angle for purposes of illustration.

Each experiment involves the computation of Monte Carlo simulation results for the actual

Bayesian classifier, and the evaluation of the Method of Noiseless Integration and Method of Unbi-

ased Integration predictions. For the Gaussian range noisemodel, the method of Grenander is also

used for comparison. Performance curves are generated for arelevant range of noise levels in each

case, making sure that the curve includes both high and low performance regions. The accuracy of

the predictions is then evaluated and compared for each noise type.

8.1 1-D Gaussian Noise

For this section and some following, we use the tank from Figure 4.1 as targetH0, and the sedan

from Figure4.2as targetH1.

An experiment was performed to evaluate the relative performance of each of the methods de-

scribed in this paper. A binary classification scenario consisting of two targets on a flat ground plane
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being imaged by a LADAR sensor was considered. The LADAR image was modeled as being a

2-dimensional range image of the scene, corrupted by one-dimensional IID Gaussian pixel range

noise of zero mean and varianceσ2. The two targets are a tank and a sedan, shown in Figures4.1

and4.2respectively. The tank corresponds to the true hypothesisH0 and the sedan to the alternative

hypothesisH1. Synthetically generated noiseless LADAR imagery was usedin the evaluation of

the prediction formulas derived above. This was accomplished using the GTRI LADAR Simula-

tor software [3], which is able to efficiently generate synthetic noiselessLADAR imagery for any

desired set of pose parameters. The only nuisance parameterconsidered was angular pose with a

uniform prior from−π/2 to π/2 for numerical convenience. The predictions of the probability

of error givenH0 is true for each prediction method as a function ofσ/dmin are shown in Figure

8.1, wheredmin denotes the minimum root sum squared error over the nuisanceparameter space

between the true noiseless image and the target forH1. Normalization bydmin gives the minimum

statistical distance resulting from usingσ, thus providing a sort of dominant SNR. For this set of

targets,dmin = 0.18. The prediction using the method of Grenander is shown in red, that using

the NIM is shown in green, and that using the UIM is shown in black. The method of Grenander

is shown only for this noise type because is was originally derived only for Gaussian noise. For

evaluation of the accuracy of these methods, a plot of the empirical performance of the Bayesian

classifier is also shown in blue. The empirical performance was found using 1 million Monte Carlo

runs for each noise level, using synthetically generated imagery.

It can be seen from the plot that, as expected, it appears thatall three methods are asymptot-

ically accurate asσ → 0, and are less accurate as the noise increases. As might be expected, the

method of Grenander fails for high noise. In opposition to this, the two new methods do not diverge

from the truth as the noise increases. The NIM performs worseof the two new methods, but signifi-

cantly better than the method of Grenander. In particular, it remains within approximately 0.1 of the

true probability of correct classification for all noise levels. The method with the best performance

is the UIM. It is better than the NIM at every noise level, and remains within 0.01 of the truth for

all but the highest noise levels.

An important aspect of Bayesian classification is that for equal priors the conditional error

81



10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Normalized Noise Std Dev σ/d
min

P
ro

ba
bi

lit
y 

of
 E

rr
or

 

 

Monte Carlo
Grenander
NIM
UIM

Figure 8.1: Probability of error givenH0 is true as a function of normalized noise standard
deviationσ/dmin. Monte Carlo simulation results shown in blue, method of Grenander
shown in red, NIM shown in green, and UIM shown in black.

probabilities saturate at 50% as the noise level increases without bound. As is seen in the figure, the

prediction based on the method of Grenander does not exhibitthis behavior, while the two methods

introduced here do. This ensures that our methods will be accurate on both sides of the noise curve,

whereas the method of Grenander is only accurate on the low-noise side. Note also that the NIM

and the UIM differ considerably for high noise, but not as much for low noise. This indicates that

the accurate choice ofν ′ is much more critical for prediction in high noise than in low[2].

8.2 1-D Gaussian with Anomalies- Coherent

For this experiment, we use the Tank and Civic as targets, anduse the noise model of Section6.2.1.

For this scenario, the probability of anomaly was chosen to be 0.2. Both the Unbiased Integration

and Noiseless Integration Methods are used to predict the performance. To calculate the required

LLR pdf for the predictions, we use numeric integration. TheMonte Carlo results were generated

using2× 104 runs. The results are shown in Figure8.2.
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As can be seen, the UIM performs much better than does the NIM.The NIM performs rea-

sonably well for lower noise levels, but then becomes highlypessimistic for high noise, with error

peaking around .13. The UIM is accurate to within approximately .03 in absolute probability of er-

ror for all noise levels, performing slightly worse than forGaussian noise alone but still quite good.

Since the Laplace approximation method must always be worsethan the NIM, this experiment con-

firms that the UIM is the most accurate prediction method for this problem.
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Figure 8.2: Performance prediction for coherent LADAR noise model. Probability of er-
ror givenH0 is true as a function of Gaussian noise standard deviationσ. Monte Carlo
simulation results shown in blue, NIM shown in green, and UIMshown in black.

8.3 1-D Gaussian Noise with Geiger-mode Anomalies

In this section, we show experimental results for the Gaussian noise with Geiger mode LADAR false

alarms model. The targets are the Civic in9.1and Avalon in9.2, with the true target being the Civic.

The nuisance parameter is azimuth angle, with a uniform prior over−π toπ. Parameters are chosen
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such that the overall probability of detection is approximately 0.75, the probability of deletion 0.07,

the probability of early anomaly approximately 0.16, and the probability of late anomaly 0.016. The

early and late range swaths are approximately of equal length. The probability of a received photon

at the correct range is 0.9, hence the result that the late anomaly probability is about one tenth that

of the early anomaly probability. This causes a discontinuity in the pdf. For this experiment, we

vary the Gaussian noise standard deviation only while maintaining the anomaly distribution, with

the range swath long enough that the Gaussian noise distribution does not begin “overflowing.” As

a result, as the noise level increases, the relative height of the anomaly pdf relative to the Gaussian

pdf increases, thus accentuating the effect of the pdf discontinuity, as will be seen.

The results showing the probability of error as a function ofGaussian noise standard deviation

are shown in Figure8.3. The Monte Carlo results using1 × 104 simulations are shown in blue,

the Noiseless Integration prediction in green, and the UIM prediction in black. The NIM is quite

poor, however. This is because the integrand is evaluated atthe noiseless value of the image, which

is exactly where the pdf discontinuity lies. Hence as the nuisance parameter varies slightly, large

numbers of pixels move across the discontinuity, thus causing large spikes in the integrand and

destroying the prediction. It can be seen, on the other hand,that the UIM prediction performs quite

well. This is due to the fact that it does not evaluate the likelihood function at a particular image

value, but instead computes an expectation, which is of course not subject to the discontinuity effect

which damages the prediction using the NIM. This indicates that the UIM is not only more accurate,

but more robust.

8.4 1-D Gaussian Noise with Random Deletions

For this experiment, the model of Gaussian noise with randomdeletions was used, with the Tank

and Civic as targets and with probability of deletion of .2. The plot of the probability of correct

classification as a function of the Gaussian noise standard deviation is shown in Figure8.4. The

Monte Carlo truth plot was obtained using2 × 104 Monte Carlo runs for each noise level. As

can be seen, the Unbiased Integration Method prediction is again quite good, and outperforms that

of the Noiseless Integration Method, especially for high noise levels. As before, the Noiseless
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Figure 8.3: Performance prediction for Geiger LADAR noise model. Probability of error
givenH0 is true as a function of Gaussian noise standard deviationσ. Monte Carlo simu-
lation results shown in blue, Method of Noiseless Integration shown in green, and Method
of Unbiased Integration shown in black. Note the poor performance of the Noiseless Inte-
gration prediction due to the discontinuity in the pdf.

Integration Method prediction works well for low noise, butthen decays too rapidly to above 0.5,

before flattening out. On the other hand, the prediction of the Unbiased Integration Method tracks

the true Monte Carlo curve quite well, with a maximum error ofaround 0.02.

8.5 3-D Gaussian Noise with Random Deletions

For this experiment, 3-D point cloud images were used with the 3-D Gaussian noise plus random

deletions model. The nuisance parameter is target angle with a uniform prior between−π/2 and

π/2 as before. The 3-D noise covariance was chosen to be

Σ =













σ2 0 0

0 σ2 0

0 0 4σ2













(8.1)

85



10
−2

10
−1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Noise Standard Deviation

P
ro

ba
bi

lit
y 

of
 E

rr
or

 

 

Monte Carlo
NIM
UIM

Figure 8.4: Performance prediction for Gaussian noise withrandom deletions. Probability
of error givenH0 is true as a function of Gaussian noise standard deviationσ. Monte Carlo
simulation results shown in blue, Method of Noiseless Integration shown in green, and
Method of Unbiased Integration shown in black.

whereσ in this case is chosen so that one-dimensional plots as a function of noise level can be

presented. The probability of detectionPa was chosen to be 0.8 as before. The results are shown

in Figure8.5. The Monte Carlo truth plot was generated using104 simulations per noise level. As

expected, the prediction using the Unbiased Integration Method is the best, with a maximum error

of 0.012. The prediction using the Noiseless Integration Method is worse, but not by as large a

margin as for range images, with a maximum error of 0.04. The good performance of the Noiseless

Integration Method is likely because the three dimensionalnoise greatly reduces the sharp variations

of the likelihood functions as functions of pose, thus making the problem easier to work with and

predict.
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Figure 8.5: Performance prediction for 3-D Gaussian point cloud noise with random dele-
tions. Probability of error givenH0 is true as a function of Gaussian parameterσ. Monte
Carlo simulation results shown in blue, NIM shown in green, and UIM shown in black.

8.6 Coherent LADAR with finite beamwidth effects

In this section, we evaluate the performance prediction accuracy for the finite beamwidth effects

noise model. The targets are the Honda Civic9.1 and Toyota Avalon9.2. The nuisance parameter

is target orientation, with a uniform prior on−π/2 to π/2. We use the coherent LADAR uniform

anomaly model, with an anomaly rate of 0.2. The image size is50 × 50 pixels. The beamwidth

of the receivers is chosen to have a half power width of about one pixel width. To implement

the finite beamwidth effect, we use a raised Gaussian beam profile and sample the 25 surrounding

pixels in the100 × 100 pixel model images, corresponding to a width of 2 pixels in the actual

image, thus allowing for the beam profile to decay from its half power width. The use of the higher

resolution image allows for greater accuracy in the discretization of the range pdf. For each pixel,

the probability that each of the 25 range values is chosen is computed using the associated power

density for that subpixel. Each of these range values is thenused as the mean of a weighted Gaussian

pdf to create a Gaussian mixture model, all with a standard deviationσ as described in the model.
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The results are shown in Figure8.6, with the Monte Carlo results shown in blue, the Noiseless

Integration prediction in green, and the Unbiased Integration prediction in black. The prediction

accuracies are typical, with the Unbiased Integration performing quite well, and much better than

the Noiseless Integration method.

For comparison, we also show the prediction results for zerobeamwidth noise in Figure8.7.

It can be seen that the performance is signficantly better than for the finite beamwidth case for low

noise. This is as expected, since it involves less uncertainty in range. As the noise level increases, the

performance difference decreases due to the fact that the difference in the possible ranges becomes

less significant due to the very large noise power.

Finally, we show the results for the case where the true noiseis distributed according to the

finite beamwidth effects, but the classifier incorrectly uses the zero beamwidth noise model with the

same value ofσ. This is an example of the common case that, for speed, the classifier uses a simple

noise model, but the actual noise is known to be much more complex. The results are obtained using

the method of Section4.7.3and are shown in Figure8.8. The Unbiased Integration prediction is

quite good. The Noiseless Integration method performs significantly worse for this scenario. This

is also as expected given that the Unbiased Integration method lends itself much more easily to the

task of prediction performance under incorrect noise models.

The performance for the incorrect noise model is significantly worse than that for when the

correct finite beamwidth model is used, especially for low noise. This is as expected, since for high

noise, the different range values become statistically closer, thus reducing the effect of the finite

beamwidth model. This shows that using too simple of a noise model for the classifier can cause

a major degradation in performance, as most systems attemptto operate in the very low error rate

region. It also indicates that accurate performance prediction for the low noise regime depends

much more on the accuracy of the imaging model than on the choice of prediction method.
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Figure 8.6: Performance prediction for finite beamwidth noise with uniform anomalies.
Probability of error givenH0 is true as a function of Gaussian noise standard deviationσ.
Monte Carlo simulation results shown in blue, Method of Noiseless Integration shown in
green, and Method of Unbiased Integration shown in black.
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Figure 8.7: Performance prediction for zero beamwidth noise with uniform anomalies, for
comparison to finite beamwidth results. Probability of error givenH0 is true as a func-
tion of Gaussian noise standard deviationσ. Monte Carlo simulation results shown in
blue, Method of Noiseless Integration shown in green, and Method of Unbiased Integra-
tion shown in black.
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Figure 8.8: Performance prediction for finite beamwidth noise with uniform anomalies.
Classifier uses incorrect zero beamwidth noise model. Probability of error givenH0 is
true as a function of Gaussian noise standard deviationσ. Monte Carlo simulation results
shown in blue, Method of Noiseless Integration shown in green, and Method of Unbiased
Integration shown in black.
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Chapter 9

Experimental Studies

In this section, we turn to the use of the prediction methods developed in this thesis for predicting

performance as functions of various parameters. In addition, we verify the accuracy of the various

extensions to the main methods described above, including the multimodal extension, the multiple

target extension, prediction using multiple nuisance parameters, and the various derived asymptotic

expressions for the variation of performance with different parameters.

In this chapter, we primarily use the targets shown in Figures 9.1 and9.2, which are a Honda

Civic and Toyota Avalon respectively, shown in noiseless range images of200 × 200 pixels for

clarity. This additional set of targets is introduced to demonstrate that these methods work on a

variety of targets. These targets are also somewhat more realistic than the previous sedan/tank pair,

in that they have a generally more similar appearance. Unless otherwise specified, the true target is

always the Honda Civic, in a pose pointing away from the sensor.

9.1 Performance for Multiple Target Classification

In this section, we verify the accuracy of our performance prediction methods for the multiple target

case. We consider a four target ATR system, with the true target being the Avalon in Figure9.2,

and the other three targets being the Civic shown in Figure9.1, a Mazda Sentra shown in Figure

9.3, and a Jeep in Figure9.4. Images of size56 × 56 pixels are used. The nuisance parameter is
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Figure 9.1: Honda Civic Model, shown in a noiseless LADAR range image.

target azimuth angle, with prior−π to π radians. The noise model is Gaussian range noise. The

results are shown in Figures9.5-9.8. Monte Carlo results were generated using3× 104 simulations

and are shown in blue. The Noiseless Integration predictionis shown in green, and the Unbiased

Integration prediction in black. The plot of the probability that the true Avalon target is selected is

shown in Figure9.5. Note the initial large probability of correct classification, which decays to near

zero as the noise level increases. This is because the Avalonis sandwiched between two targets,

the Civic and Sentra, one of which is slightly larger, and oneslightly smaller. This results in the

thresholds determining the decision rules to be drawn so as to hem in the true target, and thus reduce

its probability of correct classification as the noise becomes high.

The probability that the Civic is chosen is shown in Figure9.6. Note that the probability

increases rapidly from zero, before decreasing again as thenoise becomes very large. This is ex-

pected, since the Civic is similar to the Avalon, and in termsof size between the Avalon and Jeep.

The probability that the Sentra is chosen is shown in Figure9.7, and that for the Jeep in9.8. As

can be seen, the probability of the Jeep being chosen is initially very low, and remains so for low

noise. This is as expected, since the Jeep is the target most unlike the truth. For this region, the
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Figure 9.2: Toyota Avalon Model, shown in a noiseless LADAR range image.

probability of error is dominated by the two targets closestto the truth, the Sentra and Civic. As the

noise becomes very high, however, the probability the Jeep is chosen begins to increase. Again, this

is as expected since the increased noise hides the dissimilarities of the targets. This increase comes

at the expense of the other three targets, but especially of the Civic. This is as expected, since both

the Civic and Jeep are larger than the true target, whereas the Sentra is somewhat smaller. Hence

the Civic is allotted less of the space and loses its probability as the noise decreases the distance

between targets.

The prediction methods do not perform quite as well as with the binary case, but this is to

be expected given the larger number of degrees of freedom forthe predicted quantities. Overall,

though, the predictions are still reasonably good, especially that of the Method of Unbiased Inte-

gration. As always, the accuracy is greatest for low noise, where the prediction matters most. If

more accuracy is needed, the multimodal method of Section4.7.1can be used to achieve arbitrary

accuracy by increasing the number of approximating random samples.
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Figure 9.3: Mazda Sentra Model, shown in a noiseless LADAR range image.

9.2 Performance for Multiple Nuisance Parameters

In this section, we consider performance prediction in the presence of multiple nuisance parameters.

The Civic and Avalon targets are used with image size56× 56 pixels, with the Civic being the true

target. The three common nuisance pose parameters [3] are used, which are(x, y) position and

azimuth angle. The prior on the azimuth angle is uniform from−π/2 to π/2. The other priors

are uniform as well. Since 3-D integration is required, we use 11 by 11 by 19 grids of points

surrounding the main peak. The range of these grids are chosen using the optimization method

described in Chapter5. Numeric integration is performed using Gaussian interpolation as described

in Chapter5. The Gaussian noise with random deletions model is used, with probability of deletion

0.2.

The results are shown in Figure9.9, with the Monte Carlo results shown in blue, the Noiseless

Integration prediction in green, and the Unbiased Integration prediction in black. As expected, the

UIM prediction outperforms the NIM prediction. It can also be seen that the predictions are slightly
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Figure 9.4: Jeep Model, shown in a noiseless LADAR range image.

optimistic. This is to be expected due to the greater inaccuracy with the 3-D integration.

9.3 Target Symmetry

In this section, the performance of classifying the Civic and Avalon is considered, with the nuisance

parameter being orientation angle. The true target is assumed to be the Civic in Figure9.1. We

use images of size56 × 56. In this scenario, the targets have a similar appearance after a 180

degree rotation, thus making the necessary likelihood integrals used for recognition (4.1) and the

calculation ofν ′ bimodal.

We perform this experiment with the coherent LADAR model, with a probability of anomaly

of 0.2. The results are shown in Figure9.10. The Monte Carlo simulation results using 10000

simulations for the full width prior from−π to π are shown in blue, the prediction using the NIM

is shown in green, and the UIM prediction is shown in black. The results using the half prior of
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Figure 9.5: Performance prediction for 1-D Gaussian range noise. Probability that the
correct target (Avalon) is chosen as a function of noise standard deviation. Monte Carlo
simulation results shown in blue, NIM in green, and UIM shownin black. Note the decay
from perfect classification to very poor as noise increases.

−π/2 toπ/2 are also shown, with Monte Carlo simulation results shown inred, the NIM prediction

shown in magenta, and the UIM prediction shown in cyan. Note the degradation in performance

in moving to the more realistic prior from the half width prior. This is because the presence of

symmetries makes the recognition problem more difficult. Both prediction methods work well,

with the Unbiased Integration performing much better than the Noiseless Integration method, and

the prediction being slightly better for the half width prior due to the lack of symmetries. From the

difference in performance between the true priors it appears that if the method of Grenander were

as accurate as possible, the prediction should result in predictions that are overly optimistic by at

least 0.1. This is because the Laplace approximation assumes that the integrand has a single peak,

and thus at best can only integrate over the region near the primary peak.

Since the functions to be integrated are bimodal, we expect the multi-modal extension of the

prediction methods in Section4.7.1to improve the prediction. We test this hypothesis in the next

section.
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Figure 9.6: Performance prediction for 1-D Gaussian range noise. Probability that the Civic
is chosen as a function of noise standard deviation. Monte Carlo simulation results shown
in blue, NIM in green, and UIM shown in black. Note the rapid increase in probability
followed by a decay.

9.4 Multi-Modal Extension

In this section, the use of the multi-modal extension is demonstrated. The noise model of Gaussian

noise plus random deletions is used, with probability of deletion 0.2. The ATR problem is the

same as the full (−π to π) prior scenario in the previous section. In that section, itwas found that

the prediction using one pair of approximating samples was not as accurate as for other scenarios.

Hence, for this next experiment two pairs of approximating samples (W = 2) are used, with one

on each of the two peaks in the integrand. The probability of error as a function of noise level

is shown in Figure9.11 with the Monte Carlo results shown in blue, along with the prediction

using the Method of Noiseless Integration shown in green andthe prediction using the Method of

Unbiased Integration shown in black. It can be seen that significant improvement compared to the

single pair results of Figure9.10 has occurred for the Noiseless Integration Method as expected,

indicating that it does not do as well extrapolating out to the other mode. On the other hand, the
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Figure 9.7: Performance prediction for 1-D Gaussian range noise. Probability that the
Sentra is chosen as a function of noise standard deviation. Monte Carlo simulation results
shown in blue, NIM in green, and UIM shown in black.

Method of Unbiased Integration shows significant relative improvement for lower noise, but only

slight improvement for high noise, which is what might be expected given that it is already a better

approximation.

We then run the simulation with four approximating pairs of points (W = 4). The two addi-

tional pairs are chosen to be symmetric about the primary peak. The results are shown in Figure

9.12. It can be seen that the Unbiased Integration prediction is virtually perfect for this case, and the

Noiseless Integration prediction has improved once again.This confirms that the gradual addition

of approximating samples will increase the accuracy of the prediction.

99



10
0

10
1

10
2

10
3

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Noise standard deviation σ

P
ro

ba
bi

lit
y 

of
 S

el
ec

tio
n

 

 

Monte Carlo
NIM
UIM

Figure 9.8: Performance prediction for 1-D Gaussian range noise. Probability that the Jeep
is chosen as a function of noise standard deviation. Monte Carlo simulation results shown
in blue, NIM in green, and UIM shown in black. Note the initiallow probability, which
begins to increase as the noise becomes very high.

9.5 Asymptotic Dependence of Performance on Resolu-

tion

In this section, we consider the variation of probability oferror for a fixed noise variance as a

function of sensor resolution. The Gaussian range image noise model is used. Changes in resolution

are obtained by downsampling images of size200 × 200 pixels. The independent variable is the

number of pixels on a side for the downsampled image. The lowest resolution for which we run the

experiment is10× 10 pixels.

The results of prediction are shown in Figure9.13. The Monte Carlo results using2 × 104

simulations are shown in blue, the Method of Noiseless Integration in green, and the Method of Un-

biased Integration in black. The performance gets better rapidly as the image resolution increases,

and then saturates out at zero probability of error as expected. As expected, the predictions are

accurate, with the UIM outperforming the NIM.
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Figure 9.9: Performance prediction for 1-D Gaussian range noise with random deletions
with (x, y) position and azimuth angle uncertainty. Probability of error as a function of
noise standard deviation shown. Monte Carlo simulation results shown in blue, NIM in
green, and UIM shown in black.

We now use the simple version of the asymptotic approximation for the variation with sensor

resolution described in Section7.1 in (7.10). The results are shown in Figure9.14, with the Monte

Carlo results in blue circles and the Method of Unbiased Integration in black stars. The other six

curves are the asymptotically approximating curves based on the Unbiased Integration prediction

at each of the six points. As can be seen, the results are quitegood in the low error probability

region as desired, with the possible exception of the two curves based on the two points with the

highest error probability, for which the error is as large as0.07. The other five curves become overly

pessimistic in the high error region, but this should not be an issue since it is not desired to operate

in that region anyway. Otherwise, the error is within 0.03. Since this asymptotic prediction requires

merely the evaluation of a series of Q functions to generate the resolution curve, once one point

has been predicted, the additional error incurred with thismethod is outweighed by its very large

increase in speed.

Finally, we consider the more complex asymptotic prediction method that also requires the
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Figure 9.10: Performance prediction for Gaussian range image noise with uniform anoma-
lies. Nuisance parameter is target angle with prior−π to π. Probability of error givenH0 is
true as a function of Gaussian parameterσ. Monte Carlo simulation results shown in blue,
NIM shown in green, and UIM shown in black. Results for half prior of −π/2 to π/2 also
shown, with Monte Carlo simulation results shown in red, NIMshown in magenta, and
UIM shown in cyan. Note the degradation in performance in moving to the more realistic
prior.

threshold adjustment at the point to be predicted (7.9). As can be seen, the results are in general

significantly more accurate, although there are points where the approximation is slightly worse. All

the curves except one stay close to the Monte Carlo truth for all noise levels, unlike for the previous

method. The one exception to this is the curve based on the point with the highest error probability,

which has an overly high error prediction for almost all of the range. This is because the threshold

adjustment at that point is dramatically smaller than for the other points, since at that point, the

curve is beginning to saturate out near 0.5 error, and the integrands are becoming relatively uniform

over the angle space. For extrapolation using this point, the simpler asymptotic approximation is

more reasonable.

It thus appears that the asymptotic techniques for resolution variation developed in this thesis

provide highly efficient and reasonably accurate methods ofpredicting the performance at a certain
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Figure 9.11: Performance prediction for Gaussian range image noise with uniform anoma-
lies. Nuisance parameter is target angle with prior−π toπ, and two pairs of approximating
samples are used to predict performance. Probability of error givenH0 is true as a function
of Gaussian parameterσ. Monte Carlo simulation results shown in blue, NIM shown in
green, and UIM shown in black.

image resolution given a predicted performance at another resolution and the same noise level. This

also confirms that even fairly small images (25 pixels on a side) have high enough resolution to

apply these asymptotic techniques. This is further supported by the fact that it is not limited to any

one noise model, so long as the Central Limit Theorem applies.

9.6 Dependence of Performance on Anomaly Probability

In this section, we consider the application of the results for the variation of performance with

probability of anomaly. We use the methods of Section6.1.3.

We again use the Honda Civic and Toyota Avalon models as targets, with the nuisance param-

eter being target azimuth angle with a uniform prior from−π to π, and the image size56 × 56.

We use the Gaussian noise with random deletion model, with the noise variance held constant as
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Figure 9.12: Performance prediction for Gaussian range image noise with uniform anoma-
lies. Nuisance parameter is target angle with prior−π toπ, and four pairs of approximating
samples are used to predict performance. Probability of error givenH0 is true as a function
of Gaussian parameterσ. Monte Carlo simulation results shown in blue, NIM shown in
green, and UIM shown in black.

the probability of anomaly varies from 0 to 0.7. The results for the predictions of the Noiseless

Integration Method and the Method of Unbiased Integration are shown in Figure9.16, with the in-

dependent variable being the probability of anomaly. The Monte Carlo results are shown in blue and

are generated using2× 104 simulations, the results of the Noiseless Integration Method are shown

in green, and the results of the Method of Unbiased integration are shown in black. For some of the

range of values, the Noiseless Integration prediction is slightly better. This is likely a coincidence

resulting from the full prior and the inherent target symmetries, as it appears that this is biasing the

UIM prediction lower, and the NIM tends to have a higher errorprediction than the Unbiased Inte-

gration prediction, thus accidentally correcting for the Unbiased Integration predictions errors. This

is confirmed by the divergence of the Noiseless Integration prediction for high error probabilities.

To test the results of this approximation for other anomaly models, we repeat this experiment

using the coherent LADAR model. The noise variance is held constant as the probability of anomaly
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Figure 9.13: Performance prediction for 1-D Gaussian rangenoise. Probability of error
givenH0 is true as a function of image dimension in pixels. Monte Carlo simulation results
shown in blue, NIM shown in green, and UIM shown in black.

varies from 0 to 0.7.

The approximation for the variation of error rate with probability of anomaly given in Section

6.1.3in (7.11) is then implemented. To test this method, we use the coherent LADAR model with

the uniform anomaly distribution. The probability of anomaly is varied by varying the length of the

uniform distribution in such a way as to preserve the anomalydensity. The width of the uniform

distribution is chosen to be 20 times the Gaussian standard deviation for the lowest nonzero prob-

ability of anomaly. The only exception to this procedure fordetermining the uniform distribution

length is for the case of zero probability of anomaly, for which there is no anomaly component. For

the reference point needed to apply (7.11), we use the Method of Unbiased Integration, and gener-

ate 5 curves, each based on the reference point at a differentodd-numbered point on the complete

prediction curve, with the count starting at zero probability of anomaly. The results are shown in

Figure9.17. The Unbiased Integration prediction is shown in black, andthe five remaining curves

are the simple approximation curves generated using the reference point indicated, with the num-
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Figure 9.14: Performance prediction for 1-D Gaussian rangenoise. Probability of error
givenH0 is true as a function of image dimension in pixels. Monte Carlo simulation results
shown in blue, UIM shown in black. Other six curves use the simple resolution asymptotic
method and are numbered by the point used to generate the curve, with the points numbered
from left to right.

bering being from left to right. It can be seen that the simpleapproximation is reasonably accurate,

given the speed of computation. This confirms the usefulnessof the simple anomaly rate variation

approximation.

9.7 Performance as a Function of Sensor Elevation Angle

We now perform an experiment to find the variation of the probability of error with sensor elevation

angle. The Gaussian range noise with random deletions modelis used, with a probability of anomaly

0.2. The Civic and Avalon are used as the targets, and the elevation angle is varied from 10 degrees

to 90 degrees in steps of 10 degrees, with the azimuth angle and noise variance held constant. The

image size is again56×56 pixels. The true target was the Civic in a pose at a 45 degree angle to the

sensor line of sight, and the nuisance parameter was the target azimuth angle. The prior is uniform
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Figure 9.15: Performance prediction for 1-D Gaussian rangenoise. Probability of error
givenH0 is true as a function of image dimension in pixels. Monte Carlo simulation results
shown in blue, UIM shown in black. The other six curves use thesimple resolution asymp-
totic method and are numbered by the point used to generate the curve, with the points
numbered from left to right.

from −π to π.

The probability of error results are shown in Figure9.18. The Monte Carlo results using

2 × 104 simulations are shown in blue, and the predictions using theNoiseless Integration method

and Unbiased Integration method are shown in green and blackrespectively. It can be seen that the

performance is very good for low elevation angles and degrades quickly to about 0.25 probability

of error around 50 degrees elevation before leveling out andslightly improving. This degradation

in performance is to be expected, since low elevation anglesresult in a higher contrast between

the target and its flat ground plane background, whereas for high elevation angles, the difference

in range between the target and the background is only as large as the target height. Since the

difference in target outline is very important to the classifier, high contrast with the background, as

it improves the ability to segment the target, improves the classification performance. Due to the

nature of elevation angle, the rate of improvement in contrast quickly slows and practically stops as
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Figure 9.16: Performance prediction for 1-D Gaussian rangenoise with random deletions.
Probability of error givenH0 is true as a function of image dimension in pixels. Monte
Carlo simulation results shown in blue, NIM shown in green, and UIM shown in black.

the elevation angle increases above about 45 degrees, whichis what we observe in the results.

The simple approximate elevation angle variation results from Section7.2.3for low elevation

angles are then applied to this experiment. The assumption on which this is based is that the number

of pixels on target does not change significantly as the elevation angle varies. Four approximate

curves are generated using as reference samples the Unbiased Integration predictions for elevation

angles of 20, 40, 60, and 80 degrees, with each reference sample uniquely associated with one of

the approximating curves. The results are shown in Figure9.19. The Monte Carlo results and the

Unbiased Integration prediction are shown for clarity. Theapproximating curves are the remaining

four curves. Considering the simplicity of the approximation, the results are quite accurate. The

approximation results are very accurate for the region before the error probability levels out, but

degrade for the leveled out region where the probability of error is high as expected based on the

assumption of low to medium elevation angle. The predictions generated using reference points in

the leveled out region are more accurate than those generated farther away. This result indicates
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Figure 9.17: Performance prediction for 1-D Gaussian rangenoise with uniform anomalies.
Probability of error givenH0 is true as a function of image dimension in pixels. UIM
prediction shown in black. The five remaining curves are the predictions using the simple
method of prediction, using different points as reference points.

that this approximation to the performance variation is a reasonably accurate method of rapidly

obtaining a prediction for the performance variation with elevation angle.

The high elevation angle approximate results from Section7.2.3are then applied to the same

data. The same reference points are used, and the results areshown in Figure9.20. As expected,

the approximations for the high elevation angle region using reference points also in that region are

significantly more accurate than the was the case for the low elevation angle approximation. Also

as expected, the approximation using the low elevation angle of 20 degrees as a reference is quite

poor, in contrast to its high degree of low angle accuracy forthe low angle approximation. For the

mid level elevations, both approximate prediction methodsseem to be reasonably accurate and in

agreement. From this (if a few samples are available) it can be determined approximately what the

cutoff is between “low” and “high” elevation angles. It should be noted, though, that as most of the

variation in performance occurs in the low angle range, thisis likely to be the most interesting and

critical area, as opposed to the relatively constant high elevation angle region.

109



10 20 30 40 50 60 70 80 90
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Elevation angle (degrees)

P
ro

ba
bi

lit
y 

of
 E

rr
or

 

 

Monte Carlo
NIM
UIM

Figure 9.18: Performance as a function of sensor elevation angle in degrees. Probability of
error givenH0 is true as a function of image dimension in pixels. Monte Carlo simulation
results shown in blue, NIM in green, and UIM shown in black.

9.8 Performance as a function of Angular Pose

We consider the variation of performance with respect to thetrue value of the target azimuth angle.

We use the targets of Figures9.1 and9.2, with the former being the true target, and the elevation

angle being 40 degrees. The image is56 × 56 pixels in size. The Gaussian noise plus random

deletions noise model is used, with probability of anomaly 0.2. We use the Method of Unbiased

Integration to predict performance, calculating the LLR pdf using the Gaussian pdf approximation

since the number of pixels is large enough for the Central Limit Theorem to apply. The azimuth

angle prior is uniform from−π to π radians. We vary the azimuth angle of the true target in steps

of 0.2 degrees from 0 to 360 degrees and predict the probability of error for each. The results are

shown in Figure9.21.

As can be seen, the probability of error varies significantlywith pose, from about 0.2 to 0.4. A

view of the true target in the pose with maximum performance is shown in Figure9.22, and a view

in the pose with minimum performance in Figure9.23. As can be seen, the number of pixels on
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Figure 9.19: Performance as a function of sensor elevation angle in degrees. Probability of
error givenH0 is true as a function of image dimension in pixels. Monte Carlo simulation
results shown in blue and the Unbiased Integration prediction is shown in black. Remaining
four curves are the simple approximation curves generated using the indicated reference
points.

target is significantly larger for the image in the pose with maximum performance than in the image

in the pose with minimum performance.

A significant portion of this effect is due to variations in the number of pixels on target. First,

we show a plot of the number of pixels on target as a function ofpose angle in Figure9.24, showing

that the number of pixels on target varies widely, from about600 to 800. We then use the asymptotic

prediction for the variation of performance with resolution to generate a plot of the asymptotic

prediction of what the performance curve would be if the resolution was altered for each plot such

that the image always had the same number of pixels on the target, equal to the average number.

The results are shown in Figure9.25, with the true performance shown in blue and the performance

normalized to the same number of pixels shown in red. Note that the red curve is flatter than the

blue, but still varies considerably, indicating that a large portion the variation in performance with

azimuth is not due to changes in the number of pixels on target. The curve appears to be almost
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Figure 9.20: Performance as a function of sensor elevation angle in degrees. Probability of
error givenH0 is true as a function of image dimension in pixels. Monte Carlo simulation
results shown in blue and the Unbiased Integration prediction is shown in black. Remaining
four curves are the simple approximation curves generated using the indicated reference
points.

piecewise constant, however, indicating that the targets are easier to separate when looking at the

front of the vehicle than when looking on the back, even on a per pixel basis. To confirm this, we

show a plot (Figure9.26of the expectation of the pseudo-loglikelihood ratiolog(L′) divided by the

number of pixels on target, where it appears that the averageseparation of pixels is smaller for the

region for which the probability of error is higher. Some of this variation may be reduced by adding

in target position uncertainty to the azimuth uncertainty,but overall, from this result, it appears that

the performance of ATR algorithms should vary with pose, or they will be suboptimal.

An additional result from this experiment is the unconditional probability of error. That is,

the predictor does not know the true pose of the target, only its prior distribution. To obtain the

unconditional performance, the true pose must be integrated out. That is,

P (e|H0) =

∫

S
P (e|H0, θ)f0(θ)dθ (9.1)
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Figure 9.21: Performance prediction for 1-D Gaussian rangenoise with random deletions.
Probability of error givenH0 is true as a function of truth azimuth angle in degrees. Pre-
diction using Method of Unbiased Integration shown.

wheref0 is the prior on the true target nuisance parameters as before.

The results obtained in this subsection were derived using auniform prior, so the resulting

unconditional probability of error is 0.26. This method canbe used to find the change in perfor-

mance resulting from implementing a Bayesian classifier using the incorrect prior, by using different

priors to predict conditional performance and to do the integration to obtain the unconditional per-

formance. This is then compared to the predicted performance using the true prior.

9.9 Pixel Contributions to Performance

In this section, we examine which pixels in an image are most important to the separability of a pair

of targets. We consider a scenario where the true target is the Honda Civic in the pose shown in

Figure9.27. The image size is56×56 pixels. The alternative target is the Toyota Avalon in the same

pose. The nuisance parameter is azimuth angle. The Gaussiannoise plus random deletions model
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Figure 9.22: View of true target (Civic) in the pose for whichthe performance is best. Note
the large number of pixels on target.

was used with a probability of deletion 0.2. The noise level is chosen such that the probability of

correct classification is about 0.75.

We consider two measures of the usefulness of each pixel to the recognition task. Both are

based on Grenander’s method of predicting performance. Forthis method, the performance predic-

tion is based on two quantities, the pseudo loglikelihood ratio L′ (4.26) and the threshold adjustment

ν ′ (4.13), which is the square root of the ratio of the second derivatives of the loglikelihood func-

tions for the two targets, evaluated at a certain value of thenuisance parameter. Since loglikelihood

is additive on a per pixel basis due to independence (4.26), the two measures we consider are the

expected value of each pixel’s contributionE[L′(sk)] to the pseudo loglikelihood ratio, and the ra-

tio of the second derivatives̈Ei(sk,Hi, θ)|θ∗i of each target’s loglikelihood of the pixel of interest,

evaluated at the same point the threshold adjustment is evaluated. The first measure, by defini-

tion, measures pixel contributions to the minimum target separability over the nuisance parameter

space, and is strictly additive. The second measure measures how strongly a given pixel moves

the threshold adjustment, and in which direction. This latter measure is not additive, but gives a
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Figure 9.23: View of true target (Civic) in the pose for whichthe performance is worst.
Note the relatively small number of pixels on target.

general indication of which pixels are the most useful in determining the target’s exact pose and the

resulting effect on the performance.

A plot of the first measure is shown in Figure9.28. Positive values indicate that the expected

value of the pseudo loglikelihood ratio is biased towards the true target, with the magnitude indi-

cating the strength of that bias. It can be seen that the most important portions of the image for

recognition are along the edges of the vehicles, which is as expected, since it is there that the differ-

ences in outline occur. The most important edge regions appear to be the front and back, along with

the sideview mirror. By far the most significant region is therear bumper area, where the viewing

angle results in a significant difference in target outline.In this region the differences are made par-

ticularly large, partially because only the top part of the rear of the vehicle can be seen, and because

the low viewing angle amplifies the discontinuity between the targets trunk top and the ground.

A plot of the second measure is shown in Figure9.29. The results were obtained using 5 point

finite differencing to obtain the second derivatives. The ratio of the second derivatives is the ratio

of that for the alternative target to that of the true target.It can be seen that the pixels that have
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Figure 9.24: Number of pixels on target as function of Honda Civic azimuth pose angle in
degrees. Note that the minima and maxima correspond approximately to the maxima and
minima of the performance plot.

the most effect on the threshold adjustment are related to the side view mirrors, the front end of the

vehicle, and the trunk area. This is as expected.
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Figure 9.25: Performance prediction for 1-D Gaussian rangenoise with random deletions.
Probability of error givenH0 is true as a function of truth azimuth angle in degrees shown
in blue. The probability corrected for the number of pixels on target is shown in red.
Prediction using Method of Unbiased Integration shown.
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a function of azimuth angle.

Pixels

P
ix

el
s

10 20 30 40 50

5

10

15

20

25

30

35

40

45

50

55

Figure 9.27: View of Civic in pose used for individual pixel analysis.
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Figure 9.28: Expected value of pseudo loglikelihood ratio.Positive values indicate bias
towards true target. Note the high magnitude points along outline difference at rear bumper.
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Figure 9.29: Pixel contributions to the Laplace approximation threshold adjustment. Sec-
ond derivative of loglikelihood function of Avalon target divided by that of the true target.
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Chapter 10

Conclusion

Two new methods of predicting the performance of the Bayesian ATR classifier were presented,

the Noiseless Integration Method, and the Unbiased Integration Method. Both methods involve the

integration of two deterministic scalars across the nuisance parameter space and using the result to

adjust the threshold on a pseudo log likelihood ratio test. The first method is a simple extension

of the method of Grenander giving significantly increased prediction accuracy. The second method

is more accurate than the first as it is based on an unbiased approximation of the Bayesian inte-

gral. The new methods were then compared with the method of Grenander in an experiment, and

both of these methods outperformed the method of Grenander by a large margin. The improve-

ment in performance over the method of Grenander was found tobe especially significant when

significant target near symmetry was present, and when noiselevels are medium to high. This is

largely because the method of Grenander assumes that no target symmetry is present and because

the Laplace approximation it is based on is only reasonably accurate for low noise. This increase in

accuracy comes at an increase in computational cost. For anyprediction method, it is essential that

the computational intensity of the prediction is much less than that of a similarly accurate Monte

Carlo simulation. Each of the methods presented here can easily achieve this requirement, as the

complexity is slightly more than that of a single Bayesian recognition operation.

These new methods were then applied to several LADAR noise models of varying complexity

and accuracy, allowing for significantly more accuracy thanprovided by the simple Gaussian mod-

120



els used previously for LADAR performance prediction. Modeling capabilities added using these

models include the ability to model anomalous pixels and cross-range noise, as well as being able to

handle point clouds. From experiments, it was found that theclassification performance can be sig-

nificantly optimistic if an overly simplistic noise model isused for prediction, thus necessitating the

use of accurate noise models to accurately predict performance. To allow the derivation of more an-

alytic results, a random deletion pixel anomaly model was also used as a successful approximation

to the more accurate anomaly models.

Various extensions to these two methods were developed. A method of predicting perfor-

mance for a multiple target classification problem was developed, using the joint distribution ofM

log likelihoods and the Bayesian MAP classifier. A method of gradually increasing the accuracy

of the prediction at the cost of increasing complexity is also developed. This method provides a

smooth transition from the simplest version of the two methods introduced here and a complete

Bayesian Monte Carlo simulation. Variations of the two methods were developed for predicting the

performance of classifiers derived using incorrect noise models.

Simple analytic asymptotic expressions were then developed for the variation of the probability

of error with sensor resolution, probability of anomaly, sensor elevation angle, and noise variance.

Most of these methods require the computation of a more accurate prediction for one point along

the curve before the entire curve is generated using these methods. As a result, they are significantly

more accurate than is possible using the same simplifying assumptions but without the initial point.

These approximations were found to apply to a large range of the relevant parameter values, and to

be quite accurate for all reasonable scenarios tested.

Experiments were then run with several different target CADmodels and different noise mod-

els to generate performance curves as functions of different parameters of interest. It was found that

both the methods presented here perform quite well, especially the Method of Unbiased Integration.

Comparing the NIM and the UIM, the UIM is clearly the better prediction method, giving much

more accurate and more consistent results for high noise, being able to predict performance for

discontinuous noise pdfs, and showing significantly betteraccuracy for the case of incorrect clas-

sifier noise models. Which of these methods are selected in a given situation will depend on how
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much accuracy is required and whether or not the expectations required by the Method of Unbiased

Integration are analytically tractable.

Several additional observations were discussed. First, itwas found that the effect of the thresh-

old adjustmentν ′ is relatively small for very low noise, but becomes significant for high noise. It

was also found that for noise levels that are not very small the degree of rotational near symmetry

commonly found in common civilian targets is sufficient to cause the Laplace approximation to re-

sult in significantly inaccurate predictions, as it assumesno near symmetries are present. The use

of numerical integration causes the presence of near symmetry to affect NIM and UIM to a much

lesser degree. Finally, it was observed that accuracy in performance prediction depends heavily on

the accuracy of the noise model used. Especially for low noise, accuracy in noise modeling affects

prediction accuracy much more than does the choice of prediction method.

In conclusion, we have developed a set of improved techniques of varying complexity and

accuracy to predict the performance of LADAR ATR given CAD models of the relevant targets.

These methods were implemented for a variety of noise modelsnot previously used for performance

prediction, some of which allow for significantly higher accuracy. The prediction results were

confirmed experimentally using Monte Carlo simulations.
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Appendix A

Proof of Theorem I

In this appendix, we prove the following theorem. The approximation in (4.22) is asymptotically

correct, that is

∫

S
p(I|Hi, θ)fi(θ)dθ ∼ p(I|Hi, θ

∗
i )

∫

S E[p(I|Hi, θ)]fi(θ)dθ

E[p(I|Hi, θ
∗
i )]

As the noise level goes to zero the expectation of a function converges to the value of the

function when the noise level is zero. This is because if a random variablex(σ) with varianceσ2

has an expectationE[x(σ)] that is continuous with respect toσ

lim
σ→0

E[x(σ)]

x(0)
=

E[x(0)]

x(0)
= 1 (A.1)

As a result,

∫

S
E[p(I|Hi, θ)]fi(θ)dθ ∼

∫

S
p(I∗

0|Hi, θ)fi(θ)dθ (A.2)

E[p(I|Hi, θ
∗
i )] ∼ p(I∗

0|Hi, θ
∗
i )

which results in
∫

S E[p(I|Hi, θ)]fi(θ)dθ

E[p(I|Hi, θ
∗
i )]

∼
∫

S p(I∗
0|Hi, θ)fi(θ)dθ

p(I∗
0|Hi, θ

∗
i )

(A.3)

by the definition of asymptotic equality and the properties of the ratio of limits.
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Thus it is apparent that the Noiseless Integration Method and the Unbiased Integration Method

are asymptotically equivalent, since the right hand side ofthe equation is identical to the expression

in (4.14). Since the Noiseless Integration Method has been shown to provide an approximation that

is asymptotically equivalent to the truth [1], the Unbiased Integration Method does also.
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Appendix B

Asymptoticity of Deletion

Approximation for Coherent LADAR

Anomalies

In this appendix, it is shown that the Gaussian noise with random deletions model in Section3.2.3

is asymptotically equivalent to the coherent LADAR model inSection6.2.1 as the range swath

b − a → ∞ for constant probability of anomalyα. As the loglikelihood ratio is the quantity of

interest, we consider the difference inE[log p(sk|Hi, θ)|H0, θ
∗
0] for both of the models. This is the

expectation of each pixel’s contribution to the loglikelihood ratio, split between the two hypotheses.

Let the difference in the expectations be

δ = Ecoh[log pcoh(sk|Hi, θ)|H0, θ
∗
0]− Edel[log pdel(sk|Hi, θ)|H0, θ

∗
0] (B.1)

where the subscriptscoh anddel indicate the coherent LADAR and the random deletion models

respectively. The definitions for each noise model are givenin the sections listed above. Let the

coherent LADAR range swath be[a, b]. Let the Gaussian noise standard deviation beσ, the mean

sk,i and the probability of anomalyαi for both models and hypotheses. For the Gaussian noise

with random deletions model, let the anomaly subsetB be such that|B| = b − a for accuracy in

comparison.
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We have

δ =

∫ b

a
log(pcoh(sk|Hi, θ))

(

1− α0√
2πσ2

exp{− 1

2σ2
(sk − s

(0)
k )2}+ P

(0)
a

b− a

)

dsk (B.2)

−
∫ b

a

α0

|B| log
P

(i)
a

|B| dsk

−(1− α0)√
2πσ2

∫ b

a
log

(

(1− αi)√
2πσ2

exp{− 1

2σ2
(sk − s

(0)
k )2}

)

exp

{

− 1

2σ2
(sk − s

(0)
k )2

}

dsk

Separating this into two portions

δ1 =

∫ b

a
log

(

1− αi√
2πσ2

exp

{

− 1

2σ2
(sk − sk,i)

2

}

+
α0

b− a

)

α0

b− a
dsk (B.3)

−
∫ b

a

α0

|B|(log
αi

|B|dsk

δ2 =
∫ b

a
log

(

1− αi√
2πσ2

e−
1

2σ2 (sk−sk,i)
2

+
α0

b− a

)(

1− α0√
2πσ2

exp{− 1

2σ2
(sk − s

(0)
k )2}

)

dsk

−(1− α0)√
2πσ2

∫ b

a
log

(

(1− αi)√
2πσ2

e−
1

2σ2 (sk−s
(0)
k )2

)

exp

{

− 1

2σ2
(sk − s

(0)
k )2

}

dsk

Since the coherent loglikelihood in the region outside the area of the Gaussian peak is asymptotically

equal to1/ log(b−a) due to the rapid decay of the Gaussian portion of the likelihood, and since the

smaller likelihoods have the highest magnitude loglikelihoods and thus dominate the expectation,

and because the width of the Gaussian distribution is fixed byσ, we have that

lim
b−a→∞

δ1 = 0 (B.4)

For δ2, it also is apparent that the expressions within the logarithms converge asb − a increases.

Since the remainder of the integrands is the same, we have that

lim
b−a→∞

δ2 = 0 (B.5)

as well. Hence the two noise models are asymptotically equivalent. Note that for|sk,i − sk,i| ≫ σ,

the size ofb − a required to achieve convergence is exceedingly large, due to the rapid decay of

the Gaussian function and the nature of loglikelihood. Thisis not an issue, however, since in this
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case the statistical separability of the targets must be very high for the random deletions model,

thus creating a low probability of error. Hence it is not important that the expected loglikelihoods

converge so long as theb − a is large enough that the separability is sufficiently large in order to

maintain an absolute accuracy in predicted probability. This criterion is much easier to achieve, thus

making the approximation more useful.
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