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ABSTRACT

Greenewald, Kristjan H., M.S.Egr, Department of Electrieagineering, Wright State Univer-
sity, 2012 .Prediction of Optimal Bayesian Classification Performafocd ADAR ATR.

We consider the problem of LADAR ATR classifier performancediction in the presence of
arbitrary nuisance parameters including but not limitegpdse. We use several noise models for
both range images and point clouds that are significantlyeraocurate and complex than the Gaus-
sian models used by previous non-Monte Carlo predictiorhots. Two accurate new methods of
efficiently predicting the optimum Bayesian classificatmmiformance are then derived, and applied
to the noise models. Advantages of these methods includéisant gains in accuracy for medium
to high noise levels and the ability to handle target nearrsgiry. Extensions are developed for
multiple targets and predicting the performance of classifilesigned using incorrect noise models.
We also derive several simple analytic approximations Hertiehavior of the probability of error
as important sensor and noise parameters vary. Finally,eni/\the accuracy of our predictions

using Monte Carlo simulations.
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Chapter 1

Introduction

ATR performance prediction is an essential goal in the dagrakent of ATR theory. For many
applications, it is of particular interest to be able to @pmate the performance of the optimum
classifier, in order to provide a computationally inexpeasnethod of evaluating the relative quality
of proposed ATR algorithms, or to provide direction how tguatlsystem parameters in order to
improve an ATR system. Other applications include sensaragement, for which it is important
that the ATR system is able to know how ATR performance wilbffected as parameters change,
SO as to better select those parameters. For this thesigsTiRReperformance metric of interest
is the probability of correct classification, which, unforately, is relatively difficult to compute
exactly in realistic situations. This is primarily due t@thresence of unknown nuisance parameters
such as target pose that have significant effects on the epmeaof the target. This aspect of the
problem also makes performance evaluation using MonteoGariulations particularly expensive
in most cases. Thus, the primary challenge of ATR performarediction lies in incorporating

these nuisance parameters into the prediction in an aecanat computationally efficient manner.

A variety of imaging sensors are used for ATR. With improvedABH LADAR technology,
LADAR sensors are increasingly being used to perform ATReemlly when other sensors such
as radar are unable to definitively identify the target. LA®Aensors provide high-resolution,
albeit noisy, three-dimensional images of the side of thgetavisible from the LADAR sensor, thus

making it a desirable choice for ATR tasks that involve digtiishing similar targets.



1.1 Motivation

In this thesis, we focus on the prediction of the classifizatperformance of LADAR ATR. In
general, the ATR problem consists of identifying the clala target in a given image. A list of
possible target class&s= {a1, ..., ays } are known to the algorithm, and hypothesis testing is used
to determine which class the target belongs to, or if it isfr@n unknown class. The distribution of
the noisy image given a particular target typically variggéunction of a set of nuisance parameters
that are unknown to the classifier. Since the exact pose asitiguoof the observed target have a
significant impact on the observed image and are not avaitatihe classifier, the pose and position
of the target are important nuisance parameters in vigtuall ATR scenarios. Other common

nuisance parameters are related to target configuration.

Previous work in LADAR ATR performance prediction undergance parameters has made
use of the Laplace approximatiof, P], which involves a simple modification of the threshold on
the likelihood ratio test to correct for uncertainty in difént nuisance parameter estimates for dif-
ferent targets. This approximation holds for the asymeptodise where noise levels decrease to zero.
To make use of this approximation, techniques have beerlapmausing numerical techniques to
compute the Cramer-Rao bounds and similar measures fooeegarameters involved in LADAR
range images and other imageB+[]. For similar imaging sensors, performance prediction has
also been done using information theoretic quantit®sd bound the performance, although these
bounds tend to not be tight. Moreover, these methods so ¥arfoaused on overly simplistic noise
models, which ignore anomalous pixels and cross rangeifijuand noise, thus overestimating the
probability of correct classification. They also make inaete assumptions, such as that no rota-
tional near symmetries are present in the target. In additttese methods focus on range images
only, in spite of the fact that point clouds are increasiniggcoming the LADAR image format
of choice. As a result, Monte Carlo methods are typicallyduseevaluate performance. These

methods are time consuming and thus make it difficult to getiate performance predictions.



1.2 Contributions

We focus on obtaining more realistic and accurate predistad LADAR performance. First, we re-
view the LADAR noise modeling and image synthesis literaimd develop more accurate LADAR
noise models for both range images and point clouds, whiarérg that they remain simple enough
to obtain noise pdfs, along with some simplified models thatwafor closed form solutions. Pro-
posed noise models with increased accuracy include a Geigde anomaly model, a point cloud
noise model, and finite receiver beamwidth and beam divesganise models. To make it easier
for analysis to be performed while retaining anomalouslpjx@model of anomalous pixels as ran-
dom deletions is also used. These noise models were imptethana modified LADAR imagery

synthesis software package.

Secondly, we derive improved methods of predicting pertoroe. We consider two new meth-
ods of predicting the performance of the optimal Bayes dlassvith arbitrary pixel noise. Since
the Bayesian classifier is theoretically optimal, the prdins are an approximation to the upper
bound of performance for all algorithms for the same problérhe first method is a simple ex-
tension of the method inl] for arbitrary noise and increased accuracy. The secontiodds a
new method that selects the threshold adjustment in a waynir@ves an unbiased approximation
of the Bayesian integral, thus correcting the bias of thé firsthod. Both methods significantly
outperform the Laplace approximation methods, with thesdanethod outperforming the first,
frequently by a large margin, especially in high noise situes. The computational complexity of
the prediction remains quite low, and is roughly the saméaisdf performing one Bayesian clas-
sification of an observed target. A multiple target extemsibthese methods is then developed, as
well as important extensions for the computation of theqrentince of Bayesian classifiers derived
using incorrect noise models. Finally, a method of imprguime accuracy of the predictions is pre-
sented, where, by gradually increasing the prediction dexity, greater accuracy can be achieved.

Both of these proposed prediction methods are then apglieddh of the noise models considered.

Simple analytic and near analytic techniques of approdirgahe variation of the probability
of error with respect to the parameters of sensor resolypiabability of anomaly, sensor elevation

angle, and noise variance are then considered. As oppogwévious resultsd], many of these
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techniques are based on extrapolating from the predictédrpgance at one value of the parameter
to the performance at another value. This allows an accpexfermance prediction method to be
used to predict the performance at one or more points on tiierpgnce curve, and then these
simpler approximations can be used to efficiently fill in tlestrof the curve. As a result, these
methods may be more useful in that by extrapolating from akngoint on the curve, the error due
to the simplifying assumptions is mitigated as opposed tengiting to compute the entire curve

using the assumptions with no reference to more accuratkcfiosn methods.

1.3 Thesis Outline

The remainder of the thesis is organized as follows. In Ghrd@ytwe review the relevant literature
and discuss LADAR ATR and the LADAR sensor and models fomtChapter3, we develop and
present the noise models used in this thesis. In Chdptee discuss the existing Laplace approx-
imation Bayesian prediction method, and present our twdigtien methods and their extensions.
In Chapter5, we consider methods of efficiently implementing the vasiparts of our prediction
methods. Chaptef derives the application of these new methods to the noiseslmgquiesented
earlier. In Chaptef7, approximate analytic results for the performance vammatiue to common
parameter variations are considered. Chafmesents some experimental results for the Bayesian
prediction methods and compares them to Monte Carlo siioolagsults to verify the accuracy of
the predictions. Finally, in Chapt&; we present some additional prediction results, focusimg o
the variation of performance with various parameters aadrtfiuence of nuisance parameters and

statistical difference to LADAR ATR performance. We preseur conclusions in Chaptdi.

In this thesis, we use the following notation. Scalars amotkl by italic letters, such as
Vectors are denoted by underlined variables, such,and matrices by boldface capital letters,
such asA. Sets are denoted by script capitals, suctadMatrix inverse is denoted b !, and

transpose is denoted by’



Chapter 2

Background

In this chapter, the background information and literatesgew necessary for the development of
this thesis is presented. In Sectidrl, the automatic target recognition (ATR) problem is intro-
duced. A brief discussion of typical ATR classification nuth is presented in Secti@2 ATR
performance prediction is introduced in SectihB, along with some relevant performance predic-
tion methods used for non-LADAR ATR. Secti@¥ presents a review of existing LADAR ATR
performance prediction methods. Next, the LADAR sensontitoduced and described in Section

2.5, and a survey of LADAR noise models is presented in Se@ién

2.1 Automatic Target Recognition

There are many challenges in ATR. Since the targets of sitare present in a frequently complex
scene, the targets must be detected and segmented frontkgednand, and ATR classification must
thus be robust to segmentation errors and obscuration.dtie enormous variation of background
scenes, as well as the large number of non-targets and eosfihait are somewhat similar to targets
of interest, the classifier must also determine if the olesbitarget is not a member of the set of

targets it can classify.

The presence of nuisance parameters is a major issue with g#i&e from a classification

standpoint the distribution of each class varies dramigtivath many nuisance parameters, espe-
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cially for pose [, 2]. Nuisance parameters are parameters that affect thédigtn of the image

of each class. Common nuisance parameters are targetopaoaitd orientation. Other nuisance
parameters include configuration, or within class varighiBecause of these nuisance parameters,
basic likelihood ratio classifiers are typically not ditgapplicable. As a result, other methods of

classification have been developed.

2.2 Target Classification

The theoretically optimal method for classification of &tsyin the presence of nuisance parameters
is the Bayesian maximum a posteriori (MAP) classifi@ [It, however, has historically been too
complex to implement in practice due to the necessity ofgiaténg out the nuisance parameters
from the observed image likelihood functions for each clagss integral must frequently be cal-
culated numerically, using a noise model and a model of tlgetappearance. As a result, several
approximations to the Bayesian integral have been emplaymith as the Laplace approximatidi [

to simplify the calculation.

In practice, however, the Bayesian approach is frequemtiyhe most straightforward. Noise
models are frequently overly simplistid][and priors on the nuisance parameters must be se-
lected. Further complicating the situation is the fact thatbackground is completely unknown, so

Bayesian methods cannot take it into account.

As aresult, other technigues of classification have beeeldped. One of the earliest methods
applied to ATR was the generalized likelihood ratio test K31 which involves substituting the
MLE of the nuisance parameter vector into the likelihooddach hypothesis and computing their
ratios to the threshold. Invariance and other featuresbésehniques are often used as waDf
12]. The invariance approach is feature based, in that it tekmveral functions of the detected
target, and uses these values to classify it instead of thieeémage [L0]. To avoid having to
work with nuisance parameters, invariant features aretalethat is, they are chosen such that
they ideally do not vary with nuisance parameter value. Riégss of the choice of features, since

the distributions of the feature vectors is usually difficial derive analytically, the distributions



are typically estimated using an appropriate dataset amakaifier designed. When models of the

targets are available, features based on “distances” se tm@dels can also be usdd [12].

2.3 ATR Performance Prediction

In this section, we examine previous work with ATR perforrmarmprediction. ATR performance
prediction is an important aspect of ATR theory, in that ileles ATR systems to be designed more
efficiently using the insights and estimates provided, dsageproviding a benchmark with which

to compare ATR algorithm performance.

Classifier performance is typically measured by the prdibalthat the classifier commits an
error [13]. This includes the conditional error probability, which the probability that an error
is made given that the true target is targefvith a particular set of nuisance parameters, and the
unconditional error probability, which is the overall peddility that an error will occur. Methods
of predicting classifier performance reviewed here inclidermation-theoretic bounds, Laplace

approximation methods, and individual algorithm predics.

In [1], Grenander, Srivastava, and Miller consider the problémlassifier performance pre-
diction for ATR. Since the Bayesian classifier is optimalhie sense that it minimizes the resulting
probability of error, they predict the performance of they@aMAP classifier, with the nuisance
parameters removed from the hypothesis likelihood funstiby integration. The integration of
the nuisance parameters for the Bayesian classifier craditadihood ratio that is the ratio of two
random integrals. Since all parts of the integrand are @ie@, determining the exact pdf of the
integrals is difficult to do analytically in most cases. Thethers thus seek an approximation. The
authors propose a prediction method that they demonssaisyimptotically correct as the noise
variance approaches zero. For the binary classificationasice it is based on creating a simple
likelihood ratio between the true target with the true valoéthe nuisance parameters and the in-
correct target with the nuisance parameters that maxinhigdikelihood of the true target given
the incorrect target.We discuss the derivation of this igtEch method in a later chapter based on

approximating the Bayesian integral using the Laplacehaige approximation.



In [8], Jain, Moulin, Miller, and Ramchandran apply informatitheoretic bounds on proba-
bility of error to the problem of optical image ATR. The systenodel used by the authors is that
the image is composed of a target corrupted by clutter arel pise. To obtain the bounds on the
probability of error, the authors turn to the standard infation-theoretic distance measures in the
Ali-Silvey class B]. They focus primarily on the Chernoff distance, which pdes an upper bound
on both conditional probabilities of error. Two methods dbtaining a upper bound on the proba-
bility of error for detection under nuisance parameterspaesented. It is found by experiment that
the upper bounds do indeed hold, but are not very tight, édpefor one CAD target considered. A
very simple asymptotic prediction is also shown, and it tiysautperforms the Chernoff results in
terms of accuracy. Finally, Jain et al. extend these resultsulti-target ATR. This approximation
is not valid for the case where more than two of the targetsedaéively close together. The authors
then use the Chernoff bound to bound the probabilities areand derive an upper bound for the

Chernoff distance in the form of a double integral with retjie the nuisance parameter space.

In [14], Garber and Zelnio consider ATR performance predictionrémlar. Their method is
based on communication theory techniques relating to samsitarget “capacity” to obtain a rough
approximation to the probability of error. Their resulte derived for the binary template matching
of scattering centers in radar range profiles of the targbeirTresults achieve a rough estimate of

performance, as the predicted curves are generally withor@er of magnitude of the truth.

In[15], Vore considers SAR ATR performance for the case where dinerpeters of the classi-
fier's model-based target distributions are incorrect. atior makes the simplifying assumption
that the image distributions can be viewed as observatictokgethat are complex Gaussian, and
then derives the probability of error when the classifierdasda on incorrect target means and co-

variances. In all cases, the predicted error rates are ddf last a factor of two.

2.4 LADAR ATR Performance Prediction

Due to its high resolution and its provision of 3-D infornmatj LADAR provides a rich dataset for

target recognition. Many algorithms have been proposedstamtles performed for LADAR ATR



classification. In this section, we focus on target clagsgerformance and nuisance parameter

estimation performance.

Yen and Shapiro ing] derive asymptotic expressions for LADAR ATR performancedic-
tion. Their method is based on the Laplace approximatiorhatktised in 1] to predict the perfor-
mance of the optimal Bayesian classifier. The recognitiablem considered is the identification
of targets with random pose with a uniform prior. Their LADARdel assumes 11D pixel noise
and composed of a mixture of a Gaussian pdf and a uniform gudrevthe uniform pdf models the
anomalies in the imagery. To simplify their analysis, hogrethe authors assume that the range
interval is so short that the probability of anomaly can bpragimated as zero, thus effectively

returning to the AWGN noise model of]|

The authors then use the AWGN Laplace approximatiod]ibg obtain the conditional proba-
bility of error, that is, the probability of error given thifie true target has a particular set of nuisance

parameters unknown to the classifier.

To obtain the unconditional probability of error, that iBgtprobability of error given that
the nuisance parameters take on random values accordingrtifoam prior, the authors use the
exponential approximation of the Q function and the uncmaial error results. The authors also
derive an expression for the variation of the probabilityeofor with changes in sensor resolution
for FLIR. They assume that the pixel observations remaiepetdent, and the resolution is high
enough that nearby pixels have virtually the same noisglies$ value, which is either one or zero.
Using this and the asymptotic unconditional error probigbithey obtain an approximate analytic

result.

Koksal and Shapiro in7] consider analytic approximations to the Hilbert-Schnidund on
orientation estimation using both LADAR and FLIR. Sinceenttiation angle is not a flat Euclidean
space, the Cramer Rao bound on estimation performance valit Instead, a Lie group represen-
tation should be used to capture the inherent periodicitg dppropriate MMSE estimator can then
be created by minimizing the Hilbert-Schmidt norm asseciatith the parameter space. The mean
squared error achieved by this estimator is the minimumiplessand the authors refer to it as the

Hilbert-Schmidt bound. They consider a specific blockstd/target (e.g. composed of rectangular
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blocks only, all in the same orientation). Using the staddarherent LADAR model with the as-
sumption that all anomalies can be perfectly identifiedy thiere able to analytically calculate the
Cramer Rao bound on the orientation estimation for the taagel using this, compute an analytical
approximation to the Hilbert-Schmidt bound for LADAR, updoconstant which depends on the
target geometry. All the analytical results were comparéti ionte Carlo simulation results and

found to be reasonably accurate.

In [3], Dixon and Lanterman consider the numerical calculatibifC@mmer Rao bounds on
ground target pose estimation for laser radar. They useadme $5aussian and uniform mixture
noise model as proposed ¥ [ Since anomalies do not provide any information about &nget,
they ignore them in their derivation. To the nuisance patena angular orientation considered by
Koksal and Shapiro, they add the nuisance parameters 9§ ground position as the parameters to
be estimated. For the Gaussian noise model, they derivedrechef using synthetically generated
LADAR imagery, log-likelihood function evaluation, andrmoputation of derivatives using finite
differencing to obtain the Fisher information matrix. Theteors then used this method to numer-
ically compute the CRLBs for CAD model targets, as a functitbnange and orientation angle. It
was found that the CRLB decays with target range from theaseasd varies significantly with
orientation angle. The authors then use this observatiangioe that invariant ATR methods must

therefore be suboptimal.

2.5 LADAR

2.5.1 Sensor Description

LADAR sensors create pixel-based images of stationaryescpB]. The pixel values are the mea-
sured range along an angle-angle line of sight from the sdéh The range information is ob-
tained by emitting a short pulse from the sensor to the saiecting the reflection, and measuring
the resulting time of flight, which is then used to obtain ageumeasurement based on the speed

of light [16]. Except for synthetic aperture LADARLY], which we do not consider, cross-range
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resolution is obtained by limiting the field of view of the imidlual receivers or the laser beam, thus

limiting the area of the scene whose reflections can reacbeihsor 16].

There are several types of LADAR sensors. In this thesis,osed on the use of range images
and point clouds only, as is commonly done with LADAR perfamoe predictiond, 3]. These
observations are corrupted by noise due to a variety of factach as laser speckle, sensor timing
noise, shot noise, and atmospheric turbuled@eZ0]. One of the characteristic features of LADAR
noise is the presence of dropouts and anomaligs?1]. Since the images are formed by detecting
reflected light from the scene, it is quite common for an iithlial pixel range measurement to be
lost because the sensor failed to detect the reflected tigld, become an anomaly because back-
ground light was detected instead of the true reflected, ligdsulting in the measurement having
nothing to do with the true rangd$-22]. To reduce anomalies and limit the extent of the ob-
served scene, LADAR sensors also employ range gates, thclgr all detections that are outside

a specified interval of range values that constitute thegeaambiguity interval” 19-22].

2.5.2 Types of LADAR

LADARSs generally use one of two methods to obtain range nreasents 16,22]. The first type,

which is also the oldest, is called scanning LADARS]. In this method, the laser beam sequen-
tially scans over the region of interest, sending out puigespecified intervals, usually creating a
rectangular raster pattern. For each pulse, the reflectedlight is detected using a single receiver.

Since the beam is scanned, very high cross-range resotiaimbe achieved.

Most modern LADARs are flash LADARS. Flash LADARs achievess-mange resolution
using an array of receivers closely spaced in angf [Instead of scanning the laser beam across
the scene, the laser pulse illuminates the entire scenen ibeeflected pulse returns, each receiver
detects the portion of the laser beam that reflected off thadl grartion of the scene at which it was
pointed [L7,22]. The area of this region is limited by the beamwidth of theereer.As this method
allows multiple pixel observations to be measured at thees@stant, the speed at which images
can be produced is considerably higher than that of scarltdi3AR [ 22, 23]. This comes at the

cost of cross-range resolution limited by the APD spacingherarray.
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The array of APDs on a flash LADAR is usually relatively smallg. 16 x 16 or 64 x 64) [24],
and insufficient for many image processing tasks. As a reffath LADARS are frequently used
to take a large number of successive images of the scene ebarigperiod of time. These small

images are then combined into a large image with a much higlaber of pixels.

Geiger-mode direct-detection LADARS use Geiger-mode @iiabunting avalanche photodi-
odes (APDs) to detect individual photons reflected from teme R0,23,25,26]. A primary benefit
of using these APDs is that the light detection sensitivétiyd thus the detection probability, of
the LADAR is significantly higher than it would be for cohetatetection LADAR or older direct
detection LADAR [L9]. This allows the LADAR to be used at greater ranges and Idassar pow-
ers, but on the other hand, results in an increased likedilibat background light will be detected,
thus creating anomalous pixels. Furthermore, Geiger-ni@d@ARs are typically used as a flash
LADAR instead of as a scanning LADAR, which is the primary giveg method used for coherent
LADARSs.

Geiger-mode APDs have the characteristic property that #fiey are activated, they fire as
soon as the first photon impacts its surface, and then camtettdanother photon for some time
[20,23]. This is opposed to the coherent LADAR detectors, whicloréthe reflected light intensity
for the entire time interval, and select the highest intgngoint for its range measuremerl].
As might be expected, this can cause Geiger-mode LADAR te ls@ynificantly higher anomaly
rates, thus usually requiring multiple images taken in easion to properly resolve the sce@g][
Secondly, this results in anomalies being biased towamlseion of the range interval closest to

the sensord0, 23).

2.5.3 Output Image Types

LADAR sensors measure both range and intensity informdti@h The range information is typ-
ically output either as a 2-D range image, for which eachlpireresponds to a different line of
sight emanating from the sensor, and whose value is equbktmeasured range to the scene, or
as a 3-D point cloud]], 2,22]. The lines of sight are typically arranged so that the aagspacing

between pixels is such that a uniform grid is formég?].
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The 3-D point cloud image presents the same data presergedmge image, but for each pixel
computes théx, y, z) position of the observed point in the scene, computed franpikel’s range
value and the known line of sight associated with the pité].[ The added benefit of using this
type of image is that it is easier to fuse a series of LADAR igmtpgether to form one 3-D image,

as is frequently done in modern LADAR image formation, eggcfor flash LADAR [18,25].

2.6 LADAR Noise

2.6.1 Noise Models for Performance Prediction

In the LADAR performance prediction literature, it is commim use noise models associated with
coherent scanning LADARZ] 3,7, 21,27,28]. A range image noise model that models the image
as composed of independently distributed pixels is typicsged. Some of these are anomalies and
some of these are noisy measurements of the true asso@aigel The occurrence of an anomaly

is modeled as being Bernoulli distributed with a specifieabpbility of anomalyo for each pixel
determined by the sensor parameters, the range, and theterix stated]. Anomalous pixels are
caused by false detections occurring due to backgroundtranior detector noise, and thus have no
relation to the true distance to the scene. This model maaemalous pixels as being uniformly
distributed between the limitsandb of the sensor range gate. A non-anomalous pixel is modeled as
being Gaussian distributed with mean equal to the true raalye and a given (constant) variance

determined by the sensor paramet&27].

This gives an overall distribution of theh pixel s;. of the image to be

_ =2
p(sk) = au(sk) + \}% exp {—%} (2.1)

where

= a<t<b
u(t) = (2.2)

0 otherwise
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ands; is the mean of théth pixel and[a, b] is the range interval set by the sensor, anid$ the

standard deviation of the Gaussian component.

This formulation assumes that < (b — a), Sy — a > oy, andb — 5 > o such that the

integral of the Gaussian portion of the pdf outside of theral [a, b] is essentially zero.

Although this noise model is a reasonable one for cohererAR, advances in LADAR
technology have resulted in the development of photon4togii ADAR imagers, which tend to
produce point clouds rather than range imag249]. The model is somewhat simplistic as well.
For example, it assumes that cross-range noise is negligitiis is not accuratelf], however, for
high pixel densities and results in image edges being shdrpa in reality [L7]. This results in an

overestimation of the ability to estimate the pose of theetr

Some authors further simplify this noise model for perfang®prediction by setting the prob-
ability of anomaly to zeroZ, 3], or, for Hilbert Schmidt bound analysis, by approximatargpmalies

as random deletiongT.

2.6.2 Noise Models for Image Synthesis

In [21, 23], the authors consider the detection statistics for Gaigede LADAR. Their analysis is

based on the sensor parameters and the assumption thatgleemterval is short enough that once
a photon is detected by a Geiger-mode APD, the APD cannottdetecond photon until the next
image. The detection statistics are not the only source isend'he local oscillator of the sensor

and the behavior of the APD also introduce Gaussian noise.

Atmospheric turbulence is also a factor in LADAR noise, esgfy at long range. As the laser
beam and its reflection travel through the air, turbulengerts and spreads the beam slightly, and
slightly attenuates it as well [, 18, 30]. Complex simulation methods using a series of Gaussian
phase screens have been developed to modelliijd§]. Others have claimed that for most situ-
ations it is sufficient to model turbulence effects as a rédndn the probability of detection and
as causing beam broadeniri7[30]. This last approximation is based on the fact that the range

return is a detection from a particular point illuminatedtbg beam, with the exact point randomly
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selected according to the average returned power. As d,resntom deflection of the beam is

essentially equivalent to a wider beam on averdgé [

The fact that each receiver has a finite beamwidth introducegrtainty as to the point of
the target from which the detected return photon is receit@dl8]. The probability distribution
function of the points in the field of view that may be the ratog point is determined by the average
returned power density from each point, which is in turn deteed by the receiver attenuation
associated with each angular portion of the beam, the amgleieal, atmospheric attenuation, and
the reflectance of the scen&7[18]. In the case of Geiger mode noise, the nature of the detector

affects this as well since it results in closer portions eftdrget being more likely detected.

One proposed method of discretely simulating this effettt divide each receiver beamwidth
into a number of sectiond¥,18]. A certain proportion of the returned power response ie@ated
with each section. The range associated with each sectiberiscalculated, as well as any other
relevant parameters, and the probability of each sectiowglmhosen is determinedT, 18]. This is
then converted into a range pdf, to which is added any othisersuch as anomalies and Gaussian
range noise. As this is fairly simple to implement as a mixtdistribution, this is the basis of our

finite beamwidth noise models.
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Chapter 3

LADAR Noise Models

In this chapter, we introduce and develop the LADAR noise elthat our performance prediction
methods will be applied to in this thesis. First, we introglilbe concept of using a random pixel
deletion model as an approximate model of anomalous piXétsthen present several noise models
of varying accuracy and complexity for both coherent andgéeimode LADAR range images.
Finally, we discuss noise models for 3-D LADAR point cloudBhe actual noise model used in
a particular problem will be a function of the type of LADAR @ger under consideration and
the desired tradeoff between accuracy, ease, and congmaktpeed of the implementation in a

performance prediction setting.

The general imaging model is as follows. Consider the casrevé LADAR imageZ is a set
of N pixels. For a range-image LADAR model, where the value ohgaigel is the appropriate
measured range to the sceffe= {si, ..., sy }. For a point cloud model, where the value of each
pixel is the(x,y, z) coordinates of a measured scene pdint= {s;,...,sy}, where eacls,, is
a (3 x 1) vector. Let the noiseless imaggg(f)) corresponding to target hypothesig with nui-
sance parametetshave pixelss, ;(¢), k = 1,..., N. Thus, assuming hypothest§; and nuisance

parameterg, the pixel observations, are distributed according to some distribution

p(Z|Z;(0), H;,0) (3.1)
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A common feature of these approximate models is the assom{iiat the noise associated
with each pixel is independent of that of the other pixels.isTdssumption is fairly standard in
LADAR performance predictionl3, 7,31] and ensures that the attractive mathematical properties
of independence, such as pdf separability and simple catipatof the pdf of added variables
of known distributions, can be employed to reduce the coatfmrtal complexity of associated

operations.

3.1 LADAR Image Synthesizer

For generating all noiseless images, we use a modified ved§ithe GTRI LADAR Simulator
software B2]. This software generates noiseless LADAR images usingieffi CAD model 3-D
projection computation techniques. The open-source sofwwuns in a MATLAB application, and
can generate synthetic LADAR images of targets and scenabitmary poses and from arbitrary
viewing parameters. For the generation of noiseless imageshief modification of the software
was the addition of the capability of generating long segesrof images with the pose parameters
slowly incremented. This capability is crucial for the camgtion of the performance predictions

discussed in this thesis.

The software was also modified so as to be able to generatg bABAR images using a
variety of noise models. Sensor imaging models implemeinteldde Gaussian blurring, atmo-
spheric attenuation, additive Gaussian noise, anomaigakrmise for both Geiger and linear mode
LADAR, random finite beamwidth effects via Gaussian mixtdigtributions, and any combination

of the above.

A sample noiseless range image of an urban scene viewed fi@airtis shown in Figur8.1

3.2 Noise Models

In this section, we discuss noise models for LADAR. As Gassange jitter is always present in

LADAR, each of the noise models presented here is based oxtarmof a Gaussian pdf with some
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Figure 3.1: Noiseles356 x 256 pixel range image of urban scene. Longer ranges are red
and shorter ranges are blue.

anomaly distribution model. We discuss the typical cohet&fDAR noise model, a Geiger-mode
LADAR model, and a simpler random deletions model for an@uslpixels and use this to create
overall noise models. Finally, we introduce a model for sn@nge noise applicable to each of the

anomalous pixel models.

3.2.1 Gaussian Noise with Anomalies - Coherent LADAR

For coherent-detection LADAR and range images, we use tise dgstribution proposed by Shapiro
and Green27,28], and used by others in the literatui 3, 7, 21]. In this noise model, each range
image pixel is distributed according to a pdf that is a migtof a uniform pdf and a Gaussian.
This model is also accurate for linear-mode direct detacti8DARSs [21, 23]. The uniform pdf
models the anomalous pixels, which are caused by randomdasekle P, 21], while the Gaussian
pdf models the pixels that are observing the scene. The Gaussise is caused by random local

oscillator shot noiseZ], 21]. It is assumed that the noise distribution for each pixéhiependent
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of that of every other pixel. This assumption is valid for ttesse where the LADAR pixel spacing
is large enough that the laser speckle is virtually uncateel from pixel to pixel. Following the
general scenario where all noise parameters can vary freeh {a pixel, the pdf of thekth pixel

under hypothesié/; is given by

2}
— a<sE<b
p(sk’Hi) _ a ZWU%

0, otherwise

(3.2)

whereqy, ; is the probability that théith pixel is anomalous given thgh hypothesisgy, is the
standard deviation of the Gaussian distribution for kkie pixel, anda andb are the limits of the

range ambiguity interval,,, = b — a) of the LADAR.

A range image of the scene in FiguBel corrupted by coherent or linear mode direct detection
LADAR noise is shown in Figur@.2 Note the presence of the uniformly distributed anomalous
pixels scattered through the image. The probability of aalgns o, = 0.15,Vk, and the range
swath is very short to show the uniform distribution of theommalies. The image colormap is
somewhat truncated so as to preserve the appearance ofeiine, sesulting in the saturation of

some of the anomalies.

3.2.2 Gaussian Noise with Anomalies- Geiger mode LADAR

Due to the nature of Geiger-mode LADAR, it has a somewhaeudfit pdf associated with its
anomalous pixels as opposed to either coherent LADAR oatingode direct detectiori 9, 21, 21,

23]. We develop a model for it using range images only.

We use the models proposed &il[23] for the detection statistics of Geiger mode LADAR.
Every range interval has some probability that a photon eviter the APD at the associated time,
given that the APD is still looking for photons. Photon sagdnclude laser reflection from the

target, background light (e.g., from the sun), and darkesurinside the APD.

We assume that the Geiger-mode APDs fire with the arrival afiglesphoton 21, 23]. As a

result, under a Poisson moded, the probability of at least one photon arriving at a givém is
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Figure 3.2: Scene corrupted by mixture of Gaussian and umifistributions, according to
the specifications of the simple coherent LADAR noise modke probability of anomaly
is 0.15.

1—e*, where\ depends on a variety of physical parameters angigfor no target and\;, + \g7

for a target reflection present in a given range bin, whgiis the time length of each bin. Since if
a photon is detected at a closer range bin no detection cam ata farther bin, the probability of a
detection in a given range bin is the product of the prohigiiliat at least one photon arrives with
the probability that no earlier range bin has had a detedtiars, the probability that the true target

is detected, whergis the true range of the target, &]]
25}
Pk = exp (-T)\()) [1 —exp (=Ar — Ao7p)] (3.3)
and the probability of a false detection at a bin closer tcs#esor than the target i2]]

Ppo (1) = exp <_2_Cr/\0> [1—exp(—XN)],a <7 <3k (3.4)
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Using this, the probability of a false detection in a bin-gbehind the target is

- exp (—A¢ — Ao7p) 2(r — 3
Fraalr) = <1 e [1—exp (=X — AoTb)]> o <_7)\0> (3:9)

X [1 —exp (—Xo7)], 5 <7 <b

wherela, b] is the range swath of interest to the sensor.

Extrapolating from the detection statistics resultsdm, R3], we use these equations to deter-
mine the probabilities of anomaly and the anomalous measemedistribution. We extrapolate to
infinitely small bins. This is accurate assuming that thelbeirgth is small compared to the gate
lengthr,, that is,7, < 7,. The pdf of the anomalies occurring closer and farther thartarget are

thus

PWp(sk,51) + P5 b(sk, 57)
Cap

Pa(sk) = , a<sp<b (3.6)

where from 8.4) and @.5) respectively,

o yiexp(—fBs) a<s<3
p(s,5) = 3.7)
0 otherwise

Yoexp(—fs) 5<s<b

0 otherwise

and

B B
B=2X\/c, m= o—Ba _ g—B” Y2 = P — (3.8)

The probabilities of the different components are then

o) =1 — exp (—F5,1) (3.9)
a,(jgagz = exp (—f5k,;) exp (=) [1 — exp (—=5(b — 5k.i))] (3.10)
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Let the total probability of anomaly then be denoted by

i = o)+ af) (3.11)

The location of the detection varies based on the lengthef#DAR pulse, since photons
from the reflection can arrive anytime during the returnets@(R1]. In addition, random local

oscillator time jitter causes additional Gaussian rangsen26).

As a result, the pdf associated with Geiger mode LADAR is atun&x of a Gaussian pdf,
two truncated exponential pdfs, and dropouts or randontidete A dropout occurs when no bin
observes a photon. We set the pixel value to the maximum ramnggen a dropout, or deletion,
occurs. Note that if multiple possible targets are presaote exponential pdfs are required, and
multiple Gaussian distributions may be present. We do retudis this here since the extension

using the mixture pdf model is clear. The complete pixel pdjiven by

p (sklHz) = ol )p(sr) + ) i(se) (3.12)
— %, (0))2 _
L Phi eXp{_(Sk szf;(ﬁ)) }+P(§kl’z)5(8k b, a<si<b
2 20 €
2o}, k
where the probability of deletion is
Péf;") =1 — ki — P, (3.13)

The Gaussian noise tends to be correlated with all otherdspirea particular imageZ2f],
although the number of pixels in a Geiger-mode Flash LADARIteto be low. Although it is
possible to use the correlation model for our performanediption methods, we use the 11D pixel
model due to a lack of simple models for the correlation inliteeature. This assumption will result

in pessimistic performance prediction.

Figure 3.3 shows the scene of Figuig1 corrupted by Gaussian noise with Geiger-mode
anomalies according to the pd3.(2. Note the higher concentration of anomalous pixels in the

region where the scene has a longer range, due to the faethatscene objects limit the length of
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the high likelihood region of the anomaly pdf. The parangetee chosen such that the probability
of anomaly without any object in the scene is 0.15 and theahitiby of pixel deletion is 0.05.
The actual probabilities vary from pixel to pixel based oa #ssociated ranges. The atmospheric
attenuation was also exaggerated so as to show its effentidasing the anomaly likelihood at

greater ranges.
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250 |8
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Figure 3.3: Geiger mode LADAR noise including anomaliedetiens, and Gaussian
noise. Probability of anomaly 0.15 and probability of delet0.05, both defined in the
absence of a target.

3.2.3 Gaussian Noise with Random Deletions

Assume as before that the noise for each pixel is independghtthe £th having a Gaussian non-
anomalous pdf undédif; and nuisance parameters with méaand covarianc&,, ; and a probability
of deletionay;(0). Let A = RE c CK, whereRX is the set of reak -dimensional vectors. The
use ofC¥ is arbitrary, and is only needed to allow pixels to take omgalin sets disjoint fromu.

Given hypothesid7;, the kth pixel is deleted with probabilityy;, ;(¢). If the pixel is not deleted, it
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has the distribution

1
—= (8% — Ek,z)T 2/;,21 (s — 31“)} (3.14)

1
$.|H;) = —————ex
Pl i) = e p{ 2

To obtain a pdf for this model, let the deleted pixels be medels pixels which take on values
from a uniform distributionu(s,,) = 1/|B| on the sef3, which is any set i€ disjoint from A thus
eliminating the possibility of confusion. The notatig8| indicates the volume dB. The sets4, B

must not change with hypothesis. This gives pixel pdfs offdinen

Lﬁ'(g) 1 = T «——1 =
VKD, eXp{ 2 (§k §k,z) Ek,z' (§k §k,z)}

Plsy) = 5, € A (3.15)
akz,i(g) S € B

By independence, this gives an image pdf of

N

p(ZIH;,0) = [ ] p (sklHi, 0)
k=1

As the set5 is the same for every hypothesis, it has no effect on theilli@el ratio. As a result,
the volume|B| is arbitrary. For convenience, we take the limit|& — oo, thus making the
likelihood of any realization of a deleted pixel infinitesihwithout actually affecting the probability

of deletion.

This noise model allows the incorporation of finite beamtidhcertainty to some degree, in
that a 3-D covariance can be selected to approximate thibdisbn derived using a more accurate
technique. This, and the ability to model point clouds atedifrom very large numbers of individ-
ual images, are the primary reasons we introduce separattecfmud models instead of converting

point clouds to range images.

3.2.4 Finite beamwidth effects

For each of the noise models considered so far, the only ma@isdoeen range noise. This creates

the false impression that the outline of the target as meddoy the LADAR is very clean except
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for discretization effects. This is frequently not the gdsmvever, especially at large ranges, due to

finite beamwidth effects.

As discussed above, each receiver in a LADAR has a finite bedtmwand thus can receive
laser reflections from any point in a small portion of the fiefdriew. The exact point off of which
a received photon has reflected is random, with a probaliétysity g, (z, y) related to the power
cross-section of the LADAR beam. This can be converted ipiael (range) pdf. (s, ). Regardless
of the point observed, the range measurement is corruptégabgsian noise with varian@%. In
order to implement this, we discretize the range pdf by digdhe cross-section into regions with
roughly the same range values and converting the asso@abdbability into a range probability
density function. This is then convolved with the Gaussiaise pdf. Alternatively, the range pdf

could be obtained directly, or a Gaussian mixture pdf coeldito it.

For our model, we use a Gaussian mixture model, for eitheygr@anages or point clouds. This
is to enable the use of the Gaussian and mixture pdf resulte werived later. As a result, the
non-anomalous range distribution far dimensional pixels is

R

Wy 1 _ szll_ -
Pralsy [ Hs) = Z @n z?\zrkyze ) Bl (3.16)

wherew,. ;, is the associated probability for each portigr),k is the mean, an&, ;, is the variance.
This distribution can be used with the appropriate anomédfypp (deletion, uniform, or exponen-

tial) and probability of anomaly, giving

p(s) = aripa(sklk) + (1 — g i)Pna(sglk) (3.17)

whereqy, ; is the probability of anomaly as before. For point clouglsshould correspond to the

deletion model.

As an example, Figur8.4 shows noisy images corrupted by linear mode direct detectio
LADAR finite beamwidth effects and anomalous distributiombe Gaussian noise is 11D regardless
of the value ofr. The half power beamwidth is approximately 2 pixels widetmfocal plane array

in both cases.
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Figure 3.4: Linear mode LADAR noise including anomaliedetlens, finite beamwidth
effects, and Gaussian noise. Probability of anomaly 0. tbpaabability of deletion 0.05,
both defined in the absence of a target.
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Chapter 4

Bayesian Classification Performance

Prediction

4.1 Introduction

It can be shown that the Bayesian likelihood ratio test iscthssifier with the smallest probability
of error [13]. We therefore attempt to predict the asymptotic perforoeanf the Bayesian classifier
under nuisance parameters, as the image noise varianagaapps zero. The classifier is given an
image of a target of unknown class and pose in a scene, arasksstto decide which of a set of
target classes the target is a member. The image is corrbgtedise of known parameters, and
perfect noiseless images of the targets in the scene foy ga&re of the nuisance parameters are
assumed available. The performance of this classifier iélhtbe an asymptotic upper bound on

the performance of any classification algorithm.

We first review the prediction method presented Ih [We then derive two more methods
of prediction. The first of these methods is an extension efrttethod presented iri,[2] with
the Laplace approximation replaced by numeric integratibhe second method proceeds along
a similar line to the first, but modifies the numeric integrandguch a way as to remove a bias
inherent in the first method. This method requires the evialnaf an expectation, which must be

analytically obtainable and is so for every noise type dised in this thesis. Due to the nature of
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the prediction methods, an added diagnostic benefit is tieattethods compute the approximate
performance in such a way that the effects of the nuisan@pers on performance are separately
computed from the effect of the minimum statistical disebetween the targets, and the effects

that individual nuisance parameters have on performareelearly distinguishable.

The remainder of this chapter is organized as follows. 8eeti2 introduces the Bayesian
classifier under nuisance parameters. Sedcti8@presents the commonly used method for predict-
ing the asymptotic performance of the classifier. Secttbdsand4.5 describe two new algorithms
for predicting asymptotic performance. A method of grabjuigcreasing the prediction accuracy,
especially when in the presence of target symmetries, atdsieof increasing computational com-
plexity is introduced in Sectiod.7.1Section4.7.2extends the binary classification results to the
M-ary classification scenario. An extension for the case w/tter classifier uses an incorrect noise

model is described in Sectiegh7.3

4.2 General Bayesian Hypothesis Testing under Nuisance

Parameters

Consider a binary classification scenario. Let the hypahdsat the observed imagas an image
of Target O or Target 1 on an identical background be denoyef{ pand H, respectively. Fur-
thermore, let there be gm x 1) vectoré of nuisance parameters, such as pose and location, that
are unknown to the classifier but have an effect on the digtab of the image. Let the probabil-
ity density functions (pdf) of the observed image given hipsis H; and nuisance parameteis

be denoted by(Z|H;,0). Let fi(0), i € {0,1} be the priors on the nuisance parameters for the
two hypothesedi, and Hy, respectively. Then, the probability density function wiaigeZ given

hypothesisH; is obtained by integrating out the nuisance parameéters

p(T|H;) = /s D(Z|H,,0)f,(6)d6 (4.1)
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Following Bayesian hypothesis testing, the optimal cfassmaximizes the posterior probability

by comparing the ratio of the probabilities given each higpsis to a threshold.

H,y
p(Z|Hy) > P(Ho) _
L(Z)=1 gp(I|H0) 3 log PO = logv (4.2)
Hy

whereP(H;), i = 1,2 are the prior probabilities of each target occurring in tbeng, and.(Z) is

the loglikelihood ratio.

Predicting the performance of this optimal classifier imeslfinding the distribution of the log-
likelihood ratio L(Z). Finding this exactly is typically intractable, necestitg either Monte Carlo
methods or approximations. We follow the latter method. fiine goal is to find the probabilities
of error P(Dy|H;), i # j whereD), denotes the event that the classifier has made the decisibn th

the observed image belongsih..

4.3 Method of Grenander et. al.

The method of Grenander et. al. itj pnd others2, 6, 8] starts by interpreting the pdf of the image
as an image with multi-dimensional pixel values corruptgdnbise, such as additive Gaussian
noise. Letl be the vector of pixel values in the image, ahdhe similarly vectorized underlying
noiseless imagel’ -dimensional pixels are treated as setgopixels for this representation. Then,
the model is that

I = L +n (4.3)

wheren is a noise vector. Note that no assumption of independertgeeba pixels is made. As a
result, the analysis in this and subsequent sections afd®spo image models containing multi-
dimensional pixels, as is the case for 3-D LADAR point clau@is is because (for example}a

dimensional model withV pixels is equivalent to a model df N pixels, with each coordinate of

the actualK” dimensional pixel being assigned to an equivalent scakel.pietP = F[nn'] be the
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(KN x K N) matrix giving the expectation of the products of the elera@fithe noise vector. Next,
let the K IV eigenvalues of this matrix be given By, p = 1, ..., K N. Furthermore, let the noise be
parameterized by a variabe such that, = X\,(o), in such away thdim,_.o A,(c) = 0, Vn. This
parameter will be used exclusively for proving results fax asymptotic behavior of the prediction
methods to be presented, and does not imply any loss of dignerss a result, the power of the

noise goes to zero as — 0. Assume further that the ratios of the expectations to tkecated

E[n(o)]

standard deviations all approach zeraras> oo, that is,lim,_, NS

= 0. This guarantees that

the probability of error decays to 0.5 asncreases.

Let the noiseless model images for hypothelisand pose) be denoted ag;(6). Let the
noiseless truth image for hypothedi&, with nuisance parametefs= 6,,.,. be denoted b{Z, =
Zo(04.4.)- The noiseless model images are the images that would beutheimage if the true

hypothesis weré{; and the true pose werk By “noiseless,” we mean the image such that
Z,(6) = arg maxp(Z|H;, 0) (4.4)

It is desired to predict the performance in such a way thaptbdicted performance is asymptoti-
cally equal to the true performance as the pixel noise veesuall approach zero. This is because as
the noise level decreases and becomes small, the proileshilfterror become quite small, necessi-
tating a highly accurate prediction in order to be able ts@ree meaningful relative accuracy. In
contrast to this, errors are more tolerable for high noisegesthe probabilities of error are on the or-
der of 0.5, and in most cases it is sufficient to know that thopmance is poor, further decreasing
the need for high accuracy for this noise variance regionttis type of prediction, we employ the
concept of asymptotic equalityt]. We use the notation (o) ~ y(o) if x andy are asymptotically
equal asr — 0, that is,lim, ¢ % = 1. This indicates that the error, @ar— y, also converges to

0 as desired. It can be shown thdt) ~ y(o) implieslog(xz(o)) ~ log(y(o)) [1].

The authors of] prove that the prediction method they propose is accuate-a 0 (i.e., the
predicted probability of correct classification is asyntigglly equal to the true value) provided that
consistency of inference is enforced. Consistency of @nfee is achieved when the noiseless image

7,(0) is more likely givenH;, § than any other image for a#t. Since the authors ofl] consider
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only zero-mean Gaussian noise, they use the corresponpiaips case and define consistency of

inference to be

Z‘(QQ # Tk(Qz% Vi, j, 01,05 sti # jorty # 0, (4.5)

For our analysis, a more general result is required. We thfiealconsistency of inference to hold
when

[ia Qz] = arg mg“xp(zz(gz) ’Hk, Qlw 0)7 vZ7 Qia g (46)

.77,]@
which clearly implies Grenander’s definition in the case aluGsian noise, for which is was origi-
nally defined, although it is slightly more restrictive. Wihis applies, as — 0, the support of
p(Z|H;,0) as a function of andd converges to the true values for the distributiolf ofConsistency

of inference should never be an issue with real targets, atreetnature of pixel noise.

The authors of]] then proceed to derive an asymptotically accurate appration to the log-
likelihood ratio test, with the goal of obtaining a performea approximation that can be computed
in an efficient manner. First, asymptotically approximdte integrands of4.1) for purposes of
performance prediction to be

p(Zo|Hi, 0) f:(8)
p(Zo|Hi, 07)

where

since for the asymptotic case the likelihood ratio is dort@ddy the performance when the targets
are closest as measured by the likelihood function. Usiigg tlonsistency of inference, andl.4),

it is clear that); = 6

true*
This gives the asymptotic approximation to the Bayesiagegirals 4.1) to be

p(Z|H;,07)

T|H;,0) f:(8)dg ~ PEinbi)
/sp(' O~ )

/S (T3 H,,0)f:(0)d 4.9)
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4.3.1 Approximation of Bayesian Integral using Laplace’s nethod

Grenander proposes to approximate the integral in the hghtl side of 4.9) using Laplace’s
method. This method applies for the asymptotic case as 0. In essence, Laplace’s method
approximates the functiolmgp(faHi,Q)fi(Q) as a parabola centered on its maximum p@éint
with second derivatives determined by the second deresidf the function af;. This technique

is commonly used for obtaining asymptotic approximatiohimtegrals or momentsl] 33, 34].

Using Laplace’s method, it can be showij fhat under certain regularity conditions on the

likelihood function, that

[ @it 050108 ~ (2 J (2077 (4.10)
s det (Ei(IO, 0r, a))
where

Ei(I7 Q’ U) = _202 (logp(I‘Hi’Q) + log fZ(Q)) + Ce (411)

wherec, is a constant,E; is the Gibb's energy function associated with the likeliipand E;

denotes the Hessian matrix 8 as a function of). Interestingly, the Cramer-Rao bound 6is

202

which appears in the expression for the approximate iateiis indicates that, as expected,

the accuracy of estimating the nuisance parameters hasd dffect on classifier performance.

Substituting the expression iA.(L0 into (4.9) and then into the likelihood rati@(2) and taking

the logarithm, the following pseudo loglikelihood raticteesults.

Hy

T|H,,07) >
L’(Z):logz( 1, 00) =y (4.12)

(I‘HO’QS) <

Hy

where

det (El(z’;,_;,o))
det (EO(Z’;, 05, a))

vV =V

(4.13)

The authors of] then proceed to predict the distribution of this test fdd Baussian pixel
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noise. They show that’(7) is Gaussian distributed. Using this, it is a straightforv@-function
evaluation to obtain the probability of error. We will daber the computation of the predicted

probability of error in Sectiod.6.

4.4 Method of Noiseless Integration: Eliminate Laplace

Approximation

While the method of Grenander is asymptotically correcis inore important to be able to pre-
dict the performance for larger noise powers. In particUiar the Laplace approximation of the
integrand as a Gaussian pulse to be valid, the noise levelbauery small, and the resulting prob-
ability of correct classification very high. Consider theeaf two ground targets shown in Figures
4.1 and 4.2, with a nuisance parametérof horizontal angular pose. As an example showing the
non-Gaussian shape of the integrand for reasonable neisks,|l@ plot of%m (the ap-
proximating integrand in4.9)) as a function of target horizontal pose angléor Gaussian noise

and a low noise level (SNR: 44dB, where the signal power is measured as the root sum squared
error betweerf(’; andZ,(07)) resulting inP.. = .9995 is shown in Figuret.3. In addition, a plot

for the same integrand for very high noise (SRR—20dB), resulting in performance near 50%

is shown in Figuret.4, also showing the poorness of the Gaussian approximatiohidgd noise.

Note in the plot that the curve does not decay to zero, anditbedils do not decay to the same
value. The result given by the Laplace approximation willyvgreatly depending on the choice

of the points to sample in order to obtain a value for the seaerivative of the logarithm at the
maximum point, since the true second derivative is obvioushdequate. Since the Gaussian ap-
proximation is not as accurate as may be desired for reakonalse levels, we seek to remove
this approximation. Noiseless LADAR images can be gendrftearbitrary nuisance parameters
quickly using available software, allowing for the diregaiation of the required conditional pdfs.
Hence, the approximating integral on the right side4o) can be evaluated numerically. We refer

to this method as the Noiseless Integration Method (NIM).
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Figure 4.1: View of Tank CAD model from simulated LADAR sensacation.

When the integrals are evaluated, the approximate likethest becomes

H,

p(Z|Hy, 07)p(To|Ho, 05) [ p(TolH1,0)f1(0)d0 >
p(Z|Ho, 05)p(Zo|H1,07) [ (TolHo,0)fo(0)d0

L(T) ~

AN

Hy

which is again equivalent to a threshold adjustment

H,

/

log v
<

I|H,, 0%)
I = log PEIHLL 61)
® P [Ho.0;)

Hy
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Figure 4.2: View of Sedan CAD model from simulated LADAR seniecation.

where now
To|Hy, 0% T |Ho, 0) fo(6)do
1/ :Vp(_g\ 1,_i)f5p(_8! 0,8) fo(0)dd (4.15)
p(Zo|Ho, 05) [ 0(Zo|H1,0)f1(0)do

4.5 Unbiased Integration Method

Although the method described in Sectidd is asymptotically correct, the approximation of the
Bayesian integrand by the integrand whHen= TS (Equation 4.14) is biased in general, since
E[f(z)] # f(E[z]) in general. We desire to continue, however, with the thrieshdjustment
approximation technique as that used by Grenander et. dlbwthe Method of Noiseless Inte-
gration because the reduction of the approximation to a rlegege in threshold for the pseudo-
log-likelihood ratio @.12) is particularly attractive due to its ease of implementatias will be

discussed in Chapté&r We therefore seek to derive an improved approximation aukth
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Figure 4.3: Plot of the approximating integrand with resgeangular pose (in degrees)
for noise standard deviation of 0.02. Note that the curveahsignificantly non-Gaussian
shape, indicating that the Laplace approximation is ndicenhtly accurate for this rela-

tively low noise level.

As noted above and iri], the goal of the approximations in Sectich8and4.4is to obtain an
asymptotically correct approximation to the log-likeldtbratio by adding a constant to the pseudo

log-likelihood ratio in @.12). In other words, a constant is obtained such that

lim log

07 T|H;,0)f:(0)do
(ozma) (]rj N D) " (19
regardless of, using the appropriate equivalent expression for asynepeofuality in the log do-
main. The threshold’ is not selected, however, based on any considerationsdiagahe rate at
which the error asymptotically converges to zero. Sinceaffproximation in Sectiod.4is biased,

it is quite likely that the error is also biased as it convertezero. This is not desirable, since the

goal of the prediction method is to predict the performarmeeas large a range of as possible. As
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Figure 4.4: Plot of the approximating integrand with resgeangular pose (in degrees)
for noise standard deviation of 0.5. Note that the curve haigrificantly non-Gaussian
shape, indicating that the Laplace approximation is ndigently accurate for high noise
levels.

a result, we seek approximations that result in errors nerar for as large a value of as possible.
Since the threshold adjustmerithas no way of independently modifying the the expectatiath an
variance of the pseudo log-likelihood ratio, and since i lttg domain the threshold adjustment
is an additive constant, it is reasonable to try to obtairi or which the expected error is zero,
consideringZ as a random variable. This is reasonable since in the log idotimna log-likelihood

ratio is of course created by taking the difference betwaenldg-likelihoods.

This is further supported intuitively by the fact that forga numbers of independent pixels, the
Central Limit Theorem (with some assumptions on the natfitkeopixel pdfs) gives the result that
the pseudo log-likelihood ratio is close to Gaussian disted. Since the true log-likelihood ratio

is asymptotically equivalent, it must also be asymptotycakarly Gaussian distributed. Hence, the
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distributions should not be heavily skewed, so that the egpien should be near the high likelihood
region, thus ensuring that the error incurred should be nelar most of the time if the expected

error is zero.

To obtain an expectation of zero, we must have that

or (L PEIHLE)N o Jsp(ZIH: 0)1:(0)d0 ]
" [1 ¢ (V’p(IIHm%)) o fsp(I\HO,Q)fO(Q)dQ} =0 (4.17)
or

b [l(’g(@p(f\ffué?)) ~ log( /S p(IrHZ-,@fi(Q)dQ)] (4.18)

s [mg(cop(zrﬂo,es» o p(z\Ho,@fo(Q)d@] 0

whereC;/Cy = v/v/. Dividing v/ up in this manner allows us to separate the problem into two by

seekingCy andC; such that

E [1og<cz-p<zrﬂi,gz>> ~tog( | p(IrHZ-,@fi(Q)dQ)} 0 (4.19)

E [logwopmﬂo,@a)) ~ log( /S p(IrHo,@fo(Q)dQ)} ~0

which will achieve the overall zero expected error in a catady equivalent manner.

Itis very difficult, however, to obtain the expectation oétlog of a likelihood integral for most
pdfs of interest, due to the nonadditivity of the terms iediae logarithm. This problem is somewhat
related to that of computing the distribution of the sum @rlormal random variables, for which
exact solutions are intractabl@g, 36]. We thus seek to move the expectation inside the integral, s
as to be able to move the expectation inside the integral gpidieany pixel independence, thus

making the problem tractable.

We thus use a moment matching technigB86] fo approximate the Bayesian integral itself

instead of its logarithm. That is,
E { [ 050 - cpime| <o (4.20)
S
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If the expected error in the likelihood domain is zero andithth and the approximation are asymp-
totically equal for every value df as desired, the expected error in the log-likelihood domaiin
be asymptotically small. This approach is equivalent taoexmating via moment matching, and is
in some ways based on a similar principle as the approacBeptq the problem of approximating

the discrete sum of IID lognormal random variables by a sihggnormal.

Solving @.20) for C gives

Js Ep(T|H;, 0)] fi(6)do

C= - (4.21)
Elp(Z|H;,07)]
This gives an approximation to the Bayesian integral
[s Elp(Z|H;,0)]fi(0)de
T|H;,0)fi(8)d0 ~ p(T|H;, 07 - 4.22
[ PO 100d0 ~ p(z| ) S (4.22)

which the following theorem proves to be asymptoticallyuaaete. We refer to this approximation

method as the Unbiased Integration Method (UIM).

Theorem 1 The approximation in (4.22) is asymptotically correct, that is

Js Elp(Z|H, )\ £:(6)d0
Elp(Z|H;,07)]

/S p(Z|H,, 0)5(8)d8 ~ p(T|H,, 07) (4.23)

The proof is given in AppendiA.

This approximation is then substituted into the Bayesikelitiood ratio 4.2) as was done in
(4.14) resulting in
Hy

p(Z|Hy,07) =

L' =log ————25
p(Z|Ho, b;)

log v/ (4.24)
<

Hy

where the threshold adjustmeritis now given by

s VE [p(Z|Hy,07)] [ E [p(Z|Ho,0)] fo(0)do
E[p(Z|Ho,85)] [ E [p(Z|1Hy,0)] f1(6)d6

(4.25)
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The calculation of the expectation iA.22) will be discussed in Chaptds and can be less
straightforward than the calculation of the integrands4ii, but the resulting prediction is sig-

nificantly more accurate, especially when the noise levielaseased.

As with the method of Grenander, if computational limitasorequire, the Laplace approx-
imation can be used for this method as well. It can be shownftineGaussian noise, this gives

identical results to Grenander’s method.

4.6 Prediction of Probability of Error

Having computed the threshold adjustmehfor the pseudo loglikelihood ratio test using one of
the three prediction method4.13),(4.15),(4.38), it remains to compute the probability of error. The

pseudo loglikelihood ratio is given by

H,

Po2bZU 7 g/ 4.26
p(Z|Ho, 05) s (4.26)

<
Hy
Hence, the predicted probability of err®(D;|Hy) for this test can be calculated as

o0

P(D1|Hy) N/ p(l|Ho)dl

log v’

so long as the pdf of’, denoted byp(I|Hy) = p(L' = I|Hy), can be derived or numerically
calculated. The accuracy of this method will be limited by #itcuracy of the numerical integrations

performed. This prediction is asymptotically equal to theetprobability of error.

4.7 Extensions

In this section, we discuss several extensions of the thedi&sis Integration Method (NIM) and

Unbiased Integration Method (UIM) prediction methods.sEia multimodal extension is consid-

40



ered where multiple “pseudo loglikelihoods” are used torapimate the full Bayesian likelihood
ratio test, as opposed to the single pseudo LLR test. Thikadetllows for increased prediction
accuracy. Second, an extension is considered that allevprtdiction of different types of error
probabilities in theM -ary target classification scenario. Finally, we consither prediction of the

performance of Bayesian classifiers derived using incomeise models and/or parameters.

4.7.1 Multi-modal Extension of NIM and UIM

Due to the symmetries of some targets, itis common thatklb&Hood as a function of the nuisance
parameters is multi-modal. For example, most civilian gkds, especially sedans, have a roughly
similar appearance from above after a 180 degree rotatiotiid case, the likelihood as a function
of angular pose is multi-modal. If the noise level is higheglo, the contribution to the Bayesian in-
tegrals from the secondary peak of the function (locatedwdhly 180 degrees from the true angle)
is significant. The methods developed up to this point watielgrate the appropriate integrand over
the entire nuisance parameter space and use the resulusi #d likelihood ratio test threshold,
using the likelihood ratio at the primary peak of the funitid his essentially approximates the inte-
gral as highly correlated with the random value of the irdedrat the primary peak. This is a quite
good approximation when the region for which the integrandfisignificant magnitude is solely
in the neighborhood of the primary peak. The presence ofnslzry peaks, however, increases the
chance that portions of the integrand with significant magta will be slightly uncorrelated. Thus,
in order to improve the prediction accuracy, we propose the random likelihoods at several
nuisance parameter values, instead of only at the primaak. p other words, for the Unbiased
Integration Method, the approximating integral derived\ab

[s Elp(Z|H;,0)) fi(0)df
E[p(Z|H;,07)]

/S D(Z|H:,0) £:(0)d0 ~ p(T|H,, 07)

is replaced with the approximation

W, Js.  Elp(T|H;,0)]f:(6)d0
oD ONCE
/S PEH D@~ 3 872
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whereS,, ; are disjoint sets such th@&w) € Sw.i andUwW;ISw,i =5, and usingV; random samples
located aiﬁz(.w) in the approximation. For asymptotic accuracy, the choi‘c@ﬁl&) should include
07. Itis natural that the other points be chosen at the secyprmks, although this method is not
limited by this. The ranges for each partial integral wouwigi¢ally be chosen so that points are as-
sociated with the peaks closest to them. The most naturaldawies between sets would lie along
the local valleys between the peaks. For asymptoticitg, iéquired that all integrals not containing
0; approach zero as — 0. For appropriately chosesi,, ; andQZ(.w), the approximation should be-
come increasingly accurate as flig¢ increase. It is also clear from the nature of the approxionati
that assuming(Z|H;, ) is a continuous function of, arbitrary approximation accuracy can be

achieved forlV; sufficiently large, at the expense of rapidly increasing potational complexity.

This approximation thus gives an gives an approximateilikeld ratio test of

H
S p(z|Hy, 0 Ssws E[p(ﬂm%}])f o |
I = log Y= - E[p(Z|H1,0;"")] log 1 (4.27)
ZWO (I|H e(w))fsw,o E[p(Z|Ho,0)] fo(0)de
w=1PLEIH0 20 Blp(Z|Ho.85")
Hy

and the probability of error is found using the pdfidfas before.

Of course, this multi-modal approach is also applicabld&NIM. As the derivation closely

follows that for the UIM, only the end result is given here. eTdpproximating likelihood ratio is

given by
. H,
w (Zo|H1,0)f1(8)d6
S (1) Hy, 6 ))fsw’lpi*o LN
L' =1lo v ' p(To|H1,6") > , 4.28)
- Wo o (TIH H(w) fs,w_’OP(TmHo,Q)fo(Q)dQ - .

Zw:lp( | 0,9 ) p(TS\Ho,ng))

Hy

Since this multi-modal method requires the computatiorheffdf of a function ofly + W,
correlated random variables, it is more expensive to coefhan the prediction methods using a

single approximating random sample. As a result,liieshould be kept small to preserve compu-
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tational efficiency. Typically, the number of random samspleed will be limited to the number of
distinct peaks in the Bayesian integrand, as determinetdogpproximate symmetries of the target

relative to the nuisance parameters used.

4.7.2 Extension to M-ary Classification

So far, we have only considered the case of binary classificatMore realistic ATR scenarios
almost always involve classification amongst multiple falesclasses. We thus extend the results

up to this point to the case @ff possible target classeg]|

Let the M classes be denoted by hypothe$gsi = 0,..., M — 1. The optimum Bayesian
classifier is given by

i = argmax P(Z|H;,)P(H;,) (4.29)
ip

wherei is the index of the selected hypothesis.

It is desired to calculate the confusion matfixof the system. The confusion matrix consists

of the probabilities that hypothesiss selected when in fact hypothegiss the truth.
Ci; = P(D;|Hj), Vi, j (4.30)

where as befor®; indicates that the classifier selectdd

To computeC;;, first note that the classifier id 29 dictates thatD; will occur if and only if

(H)) >1, Vj#i (4.31)

Following the techniques of Sectiods3, 4.4 or 4.5, the likelihood ratio tests ir4(31) can be

approximated after taking the logarithm as

Lij = log p(Z|H;,0;) — log p(Z|Hj, 05) > logv;;,¥j # i (4.32)

whereu;j is the appropriate threshold adjustment as dictated by bt dhree methods just men-

tioned.
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For notational simplicity, let

Li=| Ly .. Lij-1 Lijy1 . Liy— (4.33)

be a vector containing each of the log-likelihood ratigs, V;j # i.

Let p(L;|H,) be the joint pdf of the log-likelihood ratiog;;, Vj # i given thatH, is true.

Then, let regiotd = N2 [Li; > v];]. Then,

P(Di|H,) = /A (L Hy)dL, (4.34)

The most difficult part of this method is finding the joint pdftbe log-likelihood ratios. For
Gaussian noise it is straightforward to derive the joint pgfobtaining the mean and covariance
since each log-likelihood ratio is a linear combination @fuSsian variables @] and see below).
For other types of noise, it is usually possible to approxenthe pdf of the log-likelihood ratios as
Gaussian for a large enough number of pixels, due to the &dritnit Theorem and independence
of each pixel's noise. This approximation simplifies thekfasnce only the mean and covariance

would need to be calculated, probably using numerical tigcias.

4.7.3 Extension to Incorrect Classifier Noise Models

Due to the complexity of accurate noise models and the neestitmate noise model parameters, it
is frequently the case that an ATR classifier is based on #iegphoise models or slightly incorrect
noise parameterd §]. To evaluate whether or not the use of the incorrect noisdatis tolerable,

it is important to be able to predict the performance of tlssifier derived optimally for the wrong
noise model when it is applied to data using the true noiseandte thus present methods of doing
this using the NIM and UIM. Lep,(+) indicate the true noise model pdf, apd-) the noise model
pdf used by the classifier. The priors used are those of tlsifir’s noise model. Let the threshold

computed for this prediction scenario be

We first consider the Noiseless Integration Method. As thestiold.’ is computed using the

noiseless likelihood values, the likelihood functionsigdkdde those dictated by the incorrect model,
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and the noiseless image be determined by the true noise nidalis, following4.15

o Vpc(fat‘HlaQT) fspc(jat’HmQ)fO(Q)dQ

— " — (4.35)
pc(IO,t|H07 Qo) fs pc(IO,t|H1> 0)f1(0)do

where
07 = arg mguxpc(fat\Hi,Q)fi(Q)f;t = arg m%xpt(I\Hi,Qf) (4.36)

andgj is the true nuisance parameters of the target.

The pseudo log likelihood ratio should be derived using tlassifier noise model, but its
resulting distribution is determined using the true dittion of the sample images. Therefore,

probability of errorP(D;|H,) for this classifier can be calculated as

o0

P(D1|Hy) N/ p(l|Ho)dl

log v’

where from 4.27)
p(U|Ho) = p(Le(T) = l|pe(Z|Ho, 05)) (4.37)

andL’(Z) is the pseudo loglikelihood ratio used #.26) computed using the classifier pgfs

Next the Unbiased Integration Method is considered. Theesbion in the threshold adjust-
ment is the expectation of the likelihood given the trueeaujstribution. Thus, the likelihood for
which the expectation is computed is that given by the diassioise model, but the true distribu-

tion is used as the underlying distribution with which th@estation is calculated.

o VE [pe(ZI1H1, 07)|p:(Z|Ho, 05)] [ E [pe(Z|Ho, 0)|p:(Z|Ho, 85)] fo(8)d6 (4.38)
E [p(Z|Ho, 05)|p(Z|Ho, 85)] [ E [pe(Z|Hn, 0)|pe(Z|Ho, 05)] f1(0)d6 '

As a result, the Unbiased Integration Method is capable tefjinating the knowledge of the cor-
rect noise model into the calculation of the threshold ddjest, whereas the Noiseless Integration
Method is not. Hence, as will be seen, the Unbiased Integraiediction tends to greatly outper-
form the Noiseless Integration method for this type of peatl The pseudo log likelihood ratio

distribution is computed in the same way as for the Noisdlgegration Method.
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Chapter 5

Implementation

In this chapter, we discuss our implementation of the ddriBayesian performance prediction

methods in realistic scenarios with arbitrary noise andamie parameters.

5.1 Computing the Integrals

5.1.1 Method of Grenander

As the method of Grenander uses the Laplace approximatienaoate the required integrals to
find v/ (4.13, the second derivatives of the logarithms of the integsameled to be found at the
peaks, as described in the derivation of the method. Thereshsecond derivative id(12) can
be obtained using finite differencing the expression6iril) about the true pose for Target 0 and
about the pose of closest approach for Target 1 using theoaheth[3]. The spacing of the points
used to perform the finite differencing can be selected asadkeseeping in mind that the use of the
second derivative in this method is based on the assumptairiite function is close to a Gaussian
pulse, and that rapid variations of the function about iterall trajectory are not important. For
our experiment, 5 points evenly and symmetrically spacedrat the maximum point were used,
with the outermost points chosen such that they had valyg®xmately 90% of the value of the

maximum point. The pose of closest approach is the pose fimhvithe likelihood of Target 1 given
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Target 0 in its true pose is maximized.

5.1.2 NIM and UIM

In order to compute the threshald for either the Noiseless Integration Method (NIM) or the Un-
biased Integration Method (UIM), deterministic likelitebintegrals found in4.15 or (4.38 must
be computed numerically. To do this, the integrands neec tevaluated for a set of discrete val-
ues offl, chosen in such a way that the resulting numerical integithhave the desired accuracy.
Each of these points requires the rendering of a noiselefARAimage corresponding to selected
target and pose. Since the logarithms of the curves to bgrated are asymptotically quadratic
and thus have a clearly defined peak, we use simple optimizggchniques that are able to avoid
local maxima to determine the peak and the width of the poicthe integrand that has sufficient
magnitude. Using this, we then determine the desired spadithe sample points, typically using

a specified number of points.

The integrand4.15) required by Sectiod.4can be straightforwardly evaluated, since it simply
involves calculating the likelihood of one noiseless imggen that a different noiseless image is

true, which is done by a direct evaluation of the pdf of thesaoi

The expectations in the integrand& 38 for the Unbiased Integration Method are more dif-
ficult to evaluate. In several cases of interest (see Se8)iothe expectations can be calculated
analytically, allowing the integrands to be calculated biyrction evaluation. If an analytic ex-
pression is unavailable, it is possible to obtain the exgiexts via numerical integration. However,
this is of course computationally expensive, and will likebsult in the prediction algorithm not
significantly outperforming Monte Carlo integration inrtes of computational complexity. Thus,
the Unbiased Integration Method should not be used wheretiiired expectations cannot be ana-
Iytically calculated and the method of Secti:8 or the Method of Noiseless Integration should be

used instead.

Once the integrands have been evaluated for a number oétlisalues of, the requiredr-
dimensional integrals 422 or (4.9), whereR is the dimension of)) can be approximated by per-

forming numerical integration. Since the integrands agpitigally become Gaussian functiorfg,
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we found it natural to use Gaussian interpolation and emtegion to perform the numerical inte-
gration instead of the linear interpolation used by the uibiys trapezoidal rule, so as to keep the
required integrand evaluations to a minimum. For porticinge tail for which Gaussian interpo-
lation is impossible due to the positive second derivatiihe logarithm, exponential interpolation
was used instead. In our experience, these interpolatamigues are significantly more accurate

than linear interpolation for the computation of the intdgr

As this numerical integration is computationally identita the likelihood integral in the
Bayesian classifier, the computational complexity of ttostipn of the prediction is on the same

order of magnitude of the performance of one Bayesian AT Ratjoa.

5.1.3 Selection of Samples for Multi-Dimensional Numeridantegra-

tion

In order to perform the requisite multi-dimensional intggen to obtain the threshold adjustment,
it is necessary to determine the location and spacing of ¢eeled samples. Since the integrands
to compute the threshold adjustments asymptotically haBawssian shape, the integrands almost
always have a general peaked shape with low tails, althoutghngar symmetries in the target
several peaks can develop. As a result, for efficient sampliequently only the neighborhood of
the peaks needs to be sampled. The location and width of éigilmorhood is not known a priori,
with the exception of the location of the primary peak for thes target, which of course is located

at the true pose based on our assumption of consistencyeoéirde.

Thus, for this type of efficient sampling to be performed, gtirization-based technique to
discover the location of these peaks and their size is reduiSince the integrand is a likelihood
or an expectation of a likelihood, we work in the log likeldtbdomain, so as to be able to find the
peak even if the initial guess has a rather low magnitudeo&oexperiments, we used an algorithm
based on a fusion of gradient descent and iteratively fitirgiadratic function to a samples that
gradually converge on the peak. The latter addition wasetténl avoid the large number of local
maxima. Note that it is not critical for our methods to find th&ct maximum at this stage, because

the entire peak will be sampled once its region for integrats determined. We found the width
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of the peak by using the a quadratic fit to get an initial estinzand then expanding the width until
the samples indicated that the magnitude of the function suéficiently small. Other methods
applicable to the finding of the peak include MCMC based matheuch as that proposed B,

which we do not discuss further.

Once the region over which to integrate is found, it remainsvenly sample over the region.
In some cases, it may be possible to approximate the mubiasional integral associated with each
peak as separable into the product of one dimensional aiteglong lines through the overall peak
of the integrand and parallel to the coordinate axes. Thidavallow the reduction in the number of
samples by allowing the sampling along only a set of mutyadispendicular lines. This method for
finding the regions over which to integrate was found to bsaeably robust in our experiments,

and converged at a reasonable rate.

5.2 Computing the Pseudo LLR PDF

The remaining task in calculating the performance usingttreshold adjusting methods is to derive
the pdf of the pseudo log-likelihood ratio on the left side(4fl2). This pdf will then be used
to compute the probability of error using the separately mated threshold/. It is possible to
analytically derive this for the case of Gaussian noise amdesother noise types. For most types
of noise, however, it is not possible to obtain a closed foxpression for the pdf. We present two
possible approaches of approximating the required pdhguisie model that the noise for each of
the IV pixels are independently distributed. First, let theré\bé& -dimensional pixels in the image

Z,eachdenotedas, [ =1,...,N.

The independence of the pixels allows the decompositiohepseudo LLR into a sum of the
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individual pixel LLRs.

L'(Z) = (log p(Z|H4, 07) — log p(Z|Ho, 05)) (5.1)
N

= (log p(sy,| Hy, 87) — log p(sy| Ho, 65))
k=1

One method relies on approximating the pdf as Gaussiane $licpixel noises are indepen-
dent, theL) are a set ofV independent random variables. As a result, the CentraltlTimeorem
comes into effect forV sufficiently large, allowing the pdf to be approximated by @aGsian dis-
tribution. Since the pixels are not IID, the additional amgtion that the Lindeberg condition holds
is required §]. In this case, the mean and variance of the distributionbsafound by adding the
means and variances of the log-likelihood rafif(s;,) associated with each pixel, thus uniquely

determining the pdf of the overall log-likelihood ratid(7).

N
= E[Li(sy)] (5.2)
7=1

N
Var L' ZVar Li( sk
=1

This gives the simple expression for the probability of erro

V' — E[L'(T)]
P. =~ — 5.3
@ ( Var[L/(Z)] ) 3)

where as before’ is the threshold computed using one of the prediction method

If this method cannot be applied, the second proposed meshtodcalculate the pdf numer-
ically. The pdfs of the log-likelihood ratios for each pixen be found using the noise pdf and
the inversion method. Since the pixel noises are indepénttenoverall pdf can then be found by
numerically convolving each of the pixel level pdfs. Diffites with this method are that the pixel
pdfs tend to contain impulses, which may require relativatge numbers of points to describe ac-

curately. On the other hand, the convolution operation @addne quite efficiently by convolving
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the pdfs in a hierarchical fashion and downsampling as thetiions become oversampled as they

become smoother and smoother.

The last method is to compute the probability of error diseasing a Monte Carlo simulation.
Since the simulation involves no nuisance parameter waiogyt it can be done quite efficiently and
robustly. Moreover, it is clear that this simulation is muulre efficient than is the Monte Carlo

simulation of the entire ATR system, since no Bayesian natisgare required in the simulation.

5.3 Approximating the Accuracy of the Prediction

For almost any prediction of any type of performance, it isaal to know how accurate the predic-
tion is. For the problem under consideration, a situatioy erése where high prediction accuracy

is required, thus necessitating an approximation of tharacy of the chosen prediction method.

Since arbitrary accuracy can be achieved using the multlain@pproximation technique dis-
cussed in Sectiod.7.1for a sufficiently largeR;, we propose the following method of approxi-
mating the accuracy of a prediction of probability of errBitst, compute the prediction using the
method whose accuracy is being tested. Next, compute tlicpom with using the multi-modal
technique with smalR; and appropriately selected random samples. IncrBaseselect the points
and recompute the prediction. Continue increasing urgiptiedicted values begin to converge, with
a threshold determined by the required accuracy of the ealoulation. The probability of error to
which this series has converged is then used as the trueperice, and the difference between this
and the prediction using the method under test gives thmatd prediction error. Of course, to
ensure that a false convergence is not achieved, it isaritiat the locations of the approximating
random samplegl(.w) for the multi-modal prediction are always chosen so thay tre approxi-
mately evenly spaced throughout the portion of the redidior which the relevant integrand is

large enough to contribute meaningfully to the integral.

Note that since the accuracy of a prediction should vary shipaevith the variation of the
ATR scenario parameters, it is only necessary to deterrhi@eniore accurate prediction for a few

parameter values in order to estimate the error over theaieleange of parameter values for which
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the prediction will be computed.
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Chapter 6

Application to LADAR Noise Models

This chapter applies the prediction methods of Chagter the noise models of Chapt2r6. To
calculate the prediction using either method, the thresholor the weights/) and the pseudo
LLR pdf p(I|Ho) of L’ must be computed. Once these are found, the probabilities@fs can be
found using 4.27) or (4.34).

For each method, the’ or v/, are computed by the integration of certain functions. Hence
in order to apply the prediction methods to each noise madelmust derive the integrands. The
integrands (excluding the priorg, which are specified directly) for the method of Grenander an
the NIM (4.10),(4.15 are given by

p(Zo|H;, 0) (6.1)

for all - andf. As this is merely the likelihood function for each noise ralpdt can be computed

using the defining likelihood function and the appropriagedered model image.

For the UIM, a different quantity is needed for the integrgdd8. This is given by the
expectation

E [p(Z|H;,0)|Ho, b5) (6.2)

Moreover, all the models presented in Cha@@rhave independent pixel distributions. Hence, we

have that

2

E [p(Z|H;,0)|Ho, 03] = H (s, H;,0)|Ho, 0] (6.3)
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In this chapter, we thus derive the quantity
E[p(sg|Hi, 0)|Ho, 0] (6.4)
for each noise model to complete the prediction. This isrglve

E [p(sy | Hi, 0)| Ho, 07) = / Py Hio 0)p (s Ho, 05) s, (6.5)

—00
where the true underlying distribution ef is used.

Moving to the pdf of the pseudo loglikelihood ratié.26),

H,

/

— log v
p(Z|Ho, 05) :

<

Hy

For some noise models it is possible to analytically compatedf. Hence, in this chapter, we also

derive the pdf ofL’ where possible.

6.1 Noise Model Components

In this section, we apply the Bayesian performance prexfiathiethods discussed up to this point
to several simple noise models. These results will be usdulidding blocks for the prediction
using the specifically LADAR noise models discussed in thg section. First, we will predict the
performance of multi-dimensional arbitrary Gaussian ediet is independent from pixel to pixel.
Secondly, we will derive prediction results for general tuie PDF models. Finally, we will use a

general random pixel deletion model.

54



6.1.1 Gaussian Noise

Since Gaussian noise is part of many of the LADAR noise modislsussed in this thesis, it is
necessary to be able to predict performance using the Gausgise model. These results will then

be applied to the several LADAR noise models that utilize €3&n noise.

Consider the case where the imagkasK dimensional pixels with a pixel noise model that is
additive independent Gaussian noise Wiit x K') covarianceX;, ; under hypothesig/; for each
pixel k = 1,...,N. This covariance can vary from pixel to pixel and as a fumctié hypothesis
and nuisance parameter values, thajs = X, ;(#). Then, the likelihood function is a product of
K-dimensional Gaussian pdfs. Thus, assuming hypothiiésend nuisance parametetsthe pixel

observationg, are distributed ad/ (5, ;(0), X&), giving an overall image likelihood o8]

1
(2m) 5|20

N
X exp {—% Z(§k - Ek,i(Q))Tzk,i(Q)_l(ﬁk - Em(ﬁ))}

k=1

p(Z|H;,0) = (6.6)

UIM Integrand Calculation

For UIM, in order to compute’ in (4.39) it is necessary to find an expression for the expectation

E[p(Z|H;,0)|Ho, 65). Using the expression ir6(6), we have

Elp(sx|H;, 0)|Ho, 05] = (6.7)
(2m)K ’;k il 2k.i] /—C:; [exp {_%(ﬁk N Sk’i(g))ng’%(ﬁk - Ek’i(g))}

1 . -~ .
" exXp {_§(§k - §k,0)T2k,é(§k - §k,0)H dsy,

AEIHR)TAk(ék - AEIHR) + 51::) } dsy,

1 /°° { 1 <(
= exp ¢ =5 ((sk —
2m) 5 /13,0l k0] /-0 2

55



where

AL=31+3%4 (6.8)
1y, = T i86.:(0) + 3 05k

T A —1 T g —1—=x% — Tewe—1—
§ = — 1y Ap 1y + 8502 08k0 + 85, (0) 2 i 3k4(0)

sinceX;, ; is symmetric by definition. Using the standard result forititegral of a Gaussian curve,

this results in

exp {Z;@V:1 fk}

(2 KN/2 [TI (Sl ol | Al

Elp(Z|H;,0)|Ho, 05 = (6.9)

As can be seen from the LADAR noise models discussed so faefaluspecial case of the
Gaussian noise model is the case whejg = X, o, Vk. When this is the case, the expression in

(6.9) simplifies to

Elp(sk|H;, 0)|Ho, 85] = (Q(QW)KlyszN/z exp {—i (Bko — Ek,i(g))T =0 (8o - Ekz(g))}

(6.10)

Pseudo LLR Distribution for Equal Covariance
Once the modified threshold is obtained, it remains to find the pdf of the pseudo LLRZ) =
_2‘2’ = El(-,z’-a Q*7 zk,l) - EO(I7Q87 Zk,o)'

In order that thel’ will be Gaussian distributed, we consider only the case focw;, ; =
Y0, Vj. This case will be sufficient for the noise models that willdmmsidered. Thus, we ab-

breviate the pixel covariance as merély, = 3, ;,7 = {0,1}. This gives a log-likelihoodq.6)
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of

1

E/(T.0,5) = ~21og
(e T =)

N
+Z s, —54(0) "2y (s, — 51,4(0))
7j=1

Thus, the log likelihood ratio foff; at posed; andHy at pose),, is given by

pU|H,,0,)
p(I|Ho, 0y)

N
Z(§k - Ek,l(g))Tzlzl@k —3,1(9))

J

L/(Ia QQ7Q1) = log

NN
Il
—_

(8 — Ek,o(ﬁ))ngl(ék —3,,0(0))

+
DO | =

<
Il
A

(Sk.0(00) — 3.1 (01)) 5 s

I
'MZ

<
Il
-

(Ek,o(Qo)Tzzzlgk,o(Qo) - Ek,l(gl)Tzlzlgk,l(gl))

+
| =

Il
—

J

Since thes;, are Gaussian,/(Z) is also Gaussian with mean and variance

N
E[L'(Z,8,,0,)] = — Z(Sk,o(Qo) —3,1(61))%;, 138( /)
=1
L
B Z (3. O(GO)Tzlzlgk,O(QO) - Ek,1(Q1)T2;;1§k,1(Q1))
j=1
N
Var[LLR(Z, 0,6, Z 51.0(00) — 55.1(01) 21 (Br0(00) — 511 (01))
7j=1

6.1.2 Mixture PDF

(6.11)

(6.12)

(6.13)

Consider the case of noise pdfs composed of mixtures of qitiis: This will allow the use of

more complex noise models by decomposing the noise pdfsnittures of simple distributions,

for which the required moments are already derived. Thisehadl be useful later for LADAR
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noise models incorporating more accurate random croggeraoise models.

Assume that the noise for each pixel is independent. Supiadethe pdfp (s,|H;, ) of
the kth pixel given H; and nuisance parametetss a mixture ofR component pdf®, (s, |H;, 0),
r =1,..., R. To ensure generality, the number of componéiiis a function ofi, j, andg, that is,
R = R(i, k,0), with the functional dependencies left out for simplicitiyrmtation. The weights
associated with each pdf component are denoted.as = 1, ..., R. Again, thew, are functions of

i, k, andd, orw, = w, (i, k, ). By total probability, it is necessary thgtjle w, = 1.

This gives a pixel pdf of

R
p(sp|Hi,0) =Y wypr(sy|Hy, 0) (6.14)

r=1
The complete image pdf is the product of the individual ppefs by independence.

N
p(Z|H;,0) = [ ] p (sl Hi,0) (6.15)

k=1

The UIM requires the evaluation of the expectation of thigllhood function for each pixel
given the true distributionH, *) of the same form but possibly different parameters. Thigvsn
by

Ro Ri1
E [p (s Hi,0) |Ho, 03] = > > worowi B [pr, (551 Hi, 0)|pry (s Ho, 05)] (6.16)

ro=1r;=1

wherep,, is ther;th component of the mixture distribution undd and appropriate nuisance pa-
rameters R; denotes the number of components, and, denotes the;th corresponding weights.

This result follows from the linearity of the expectationeoator.

Hence, if the required expectation is available for a certhstribution, then the expectation
can be calculated for any distribution formed using mixéuséthat distribution. This fact is useful

since highly complex noise pdfs can be approximated by mastof simpler distributions.
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6.1.3 Random Deletions

In LADAR imagery, anomalous pixels (described in Chafeéd) are a significant factor. These
pixels are pixels that occur randomly throughout the imaged,typically have pdfs that contain little
to no information about the actual target. As a result, soeve lused a reasonable approximation
that these pixels are to be treated as deleted pixglslif essence, this is an approximation that
assumes that virtually all anomalous pixels can be idedtified removed by the classification
algorithm, and the pdf of the anomalous pixels provides nat teast negligible information about
the target. Given that anomalous pixels are typically itisted approximately uniformly over the
entire range interval, these assumptions should be aedaratost case</[. This approximation is
attractive from a prediction standpoint because it singdithe required calculations considerably
for most types of false alarms, especially when computiegettpectations required for the Method
of Unbiased Integration. In AppendB, we demonstrate, as an example, that the Gaussian noise
with random deletions model is asymptotically equivalerthie coherent LADAR model. In a later
section, we will also provide experimental verification loé taccuracy of using the deletion model

as an approximation for a uniformly distributed anomaly elod

This model should also be useful in the modeling of obscomatiffects. If an object between
the target and the sensor is obscuring part of the targetsitrinetimes the case that the obscuring
object is known to not be part of the target due to its distdnoe the target, as determined by
the use of a detection algorithr8g]. If this is not the case, then the effect of the obscuringeobj
would be highly dependent on its shape, and thus should hediedt in the CAD models for the
rendering of the noiseless imagery determining the targage distributions. An example scenario
with obscuring objects that are equivalent to deletionsld/ite one for which a high tree canopy
is between the target and the sens28].[ Leaves or branches in the canopy obscure many of the
LADAR pixels, but not all B8]. Since the leaves are much higher than the target, thelietisNy
no chance of mistakenly associating them with the targettdulee extremely low likelihood that
target pixels would have such large errors, given reasersasisor noise level8§]. If this is indeed
S0, itis clear that the obscured pixels can be modeled asafedavith minimal error §]. Moreover,

the true distribution of the obscuring objects is probatdyknown a priori, thus further suggesting
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the use of a deletion model. Thus, random obscuration carodeled using this method of random
deletions with probabilities of deletions that may varyoss the image, depending on the desired

model.

Assume as before that the noise for each pixel is independétit the kth pixel having a
non-anomalous pdf unded; and nuisance parametefsof p,, (si|H;,8) over the setd and a

probability of deletior;, ;(#). Thus, the noise model is

o (52| H:. ) = (1 — ai(0)) pna (sg|His 0) s, €A (6.17)

a8
e s B

The expectation of this pdf given the true hypothdgjsat the true nuisance parametéisis

required for the Method of Unbiased Integration. This isegiby

Ep(sg|H;, 0) [Ho, 0] = (1 — ag,0(07)) (1 — axi(0)) E [Pna (sk|Hi, 0) |Ho, 07 (6.18)

where we let 3| approach infinity with no change to the model. This choiceasddl on the fact
that the volume of3 has no effect on the actual likelihood ratio, and has the cddmefit that it
prevents deleted pixels from penalizing the likelihoodoraT his incorrect penalty results because
the expectation, being additive, would not cancel out theraalous probabilities as happens with
the true likelihood ratio. The lack of cancelation resuftsi the unbiased nature of the approxima-
tion for v. If the anomalous likelihood is made overly large by collagd3, this in effect shifts the
impulse associated with the anomalies in the pdf of theilikeld far in the positive direction, thus
artificially increasing the expectation of the likelihooddadestroying the accuracy of the approxi-
mation of the remainder of the pdf. This is important becabhseremainder of the pdf is the only

portion that affects the overall likelihood ratio.

The pixel likelihood ratio between hypothesgsindi; at nuisance parameter valueggfand
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0, respectively is given by

H; .0,
L/ Sk Q ,Q — logp(§k| 211921
(sl 61) p (8| Hig, 0)

log (1—ap,i, (0,)) pra(sg|Hi, ,0,)
— (1_0%,7;0 (Qo)) Pna(§k‘Hi0 7Q0)

log 2k ©) " pixel deleted

Ak ,ig (Qo)

(6.19)

Pixel not deleted

and by independence the complete likelihood ratio is

2

L'(I0y,0,) = ZLZ(%\QOan) (6.20)
k=1
To do performance prediction, the pdfbfis needed. First, the pdf d@f,. needs to be obtained.

Letp(’f) (¢) be the pdf of the non-anomalous single pixel log-likelihatio

Lna

Pna (ﬁk‘Hinl)

(6.21)
Pna (ﬁk‘HimQO)

L;f,na(§k |QO> Ql) = 10g

The distribution ofL’ is of course its distribution given the imadeis of the true hypothesi#/,
with the true nuisance parametets This pdf is typically easier to obtain than the pdf of the
log-likelihood ratio for the complete noise including falalarms since the relevant noise pdfs are
simpler for most noise models. Then, the pdZgf(sx|6,, 6, ) is given by

1 — g, (0
PP =1~ ak,o(Q*))pgf)m <€ — log <#@EQ;;>> (6.22)

* Qi (Ql)
+ ay0(0 5<£—log <17
0( ) Ak ig (QO)
and by independence the pdf of the complete LLR can be olataisieg

pr(t) = p(0) % ...« pM(0) (6.23)

wherex denotes convolution. This result will likely reduce the qautational burden in computing
the requiredL LR pdf for the case that the pdf of the non-anomalous LLR can ladytcally
calculated, e.g. for the Gaussian noise with anomaloudspmedel. This is because it provides an

approximation for which the pdfs of the per pixel LLRs can balgtically calculated, eliminating
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the need for the use of numerical methods to determine theladfed on the pdfs of the underlying

pixel distributions.

Alternatively, if the number of pixels in the image is suféiotly high such that the Central
Limit Theorem applies, the distribution of the LLR can be agqimated as Gaussian. We thus only
need to specify its mean and variance. Egt,(k) be the expectation af’ ,,(s./0, 0;) ando? (k)

its variance. From@.22), we have that

i (0
Er(k) = (1= r0(0")) Ena(k) + ayo(6") log <L(1)> (6.24)
Qk,ig (0o)
o1.(k) = (1= aro(@)) o4 (s)
* * #\2 ak7i1(gl) ?
+ ((1 —ago(07)) — (1 — ay0(07) ) (Oéko — ago(8) ) <log (m))
o - * ki1 (Q )
2(1 = 000(8) Bnalionae") o (52215
whereE, (k) ando (k) are the complete LLR pixelwise expectation and standaréhtien. Using

these and the independence of the pixels, we of course haviaéhoverall expectation and variance

are

Ep =Y Ep(k)
k

= oi(k)
k

which thus determine the Gaussian pdf approximation to ttie given that of the nonanomalous

LLR.

Using this, we have that the pseudo-loglikelihood basedigtien of the performance is given

by (4.2

P(D1|Ho) =~ Q (%) (6.25)

wherer/ is determined by one of the three prediction methods.
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Performance with Constant Probability of Anomaly

Suppose now that the are constant over, k, 8, which is frequently approximately the case. This

gives from 6.24) that

Ep=(1-a)En, (6.26)

of = (1-a)op,

where

are the moments of the pseudo LLR when the probability of atpiis zero. The threshold’ is

computed using the expectation, now given by
E [p (Sk|H17Q) |H0>Q*] = (1 - a)2 E [pna (Sk|H17Q) |H0>Q*] (627)

Sincer’ depends on the ratio of integrals of this function, and tHg effect that varying the prob-
ability of anomaly has is to scale the integrand evenly, @gation of the probability of anomaly

does not affect/, that isv/(a) = /.

The probability of error is then given by .27)

P(Dy|Hy) = Q (”l . O‘)E"“> (6.28)

(1 - Oé) Urzza

wherer/ is a constant. The simplicity of this expression is one ofghimary reasons for using the

Random Deletion anomaly model.
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6.2 LADAR Noise Models

In this section, we apply the performance prediction meghdisicussed in this paper to several more

realistic LADAR noise models.

We discuss two common LADAR noise models here: the typichlecent LADAR noise
model, the Geiger-mode noise model, a simpler Gaussiae mitk random deletions model, and

a more complex noise model incorporating finite-beamwidfices.

6.2.1 Gaussian Noise with False Alarms - Coherent LADAR

From ChapteB, the pdf of thekth pixel is given by

p(slH) = (6.29)

Qi 1—ap,  (se—5k,i(0))?

i _ _ (on=5k:(0))* b
b—a + (Q(afsk_’i(g))_Q(b—sk_’i(g))) = exp{ 207 } a < s <

[ [

0 otherwise

For the Unbiased Integration Method, the expectation af pllif given the true hypothesig,
at the true nuisance parametéisis required. The required expectation is that of the indigid
hypothesized pixel likelihood given the true distributiohthe pixel. Combining the results for

mixture pdfs 6.16) and the results for Gaussian noigel(), we have

E[p (sx|H;, 0) |Ho, 07] (6.30)
- / p (sk|Hi, 0) p (5| Ho, 07) dsy
_ a1 — ko) + apo(l — api) — ik

(b—a)
(1 — o) (1 — g 0) (Q 2“_5’“07(5)_%> ~Q (%}?)—EM))

(@(=%2) ~o (F9)) (o (%) - () famed
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where the first term is found by

/b LI (6.31)
L —a2 " T b—a '

for the uniform component expectation given the true unif@nd

— 5 2
e SR, L

b 1
/ab—a(Q<a—S;:(9))_Q(b—sczrg:((?)))me}(p{_ 207

for the expectation of the uniform component given the Gaanssomponent and vice versa.

6.2.2 Gaussian Noise with Geiger mode anomalies

In Section3.2.2the pixel noise pdf for Geiger mode LADAR was expressed as

p (sklHi) = agiPa(sk) + pr,ipg(sk|Hi, 0) + Péfji)5(8k —b), a<sp<b

where
| R @)?
pg(Sk‘H”H) — e 20_% a < Sk < b

2#02

o) (ki) 3

K’ﬂl exp(—ﬁsk) a < s < Sk,i(g)

Pa(skHi,0) = § ) k)
i 5T S
s exp(=fsk) Fri(0) < sk <D

with the parameters defined in Secti®2.2

To implement the Unbiased Integration Method we need the@agon

Ep (sk|Hi, ) [Ho, 0] (6.33)

The pixel pdf is a mixture of four distributions. We thus malge of the Mixture pdf results

in Section6.1.2in (6.16). Note that the component weighted By,; is a deletion, and is treated
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accordingly. Using this method, we obtain the result that

Elp (sk|Hi,8) |Ho, 05] = iotk,0Faia0 + Qk0PkiEaoni (6.34)

+ ki Pk,0Fain0 + Pr0Pk,i Enoni

where the deletions do not factor into the expectation asdhot Section6.1.3and where from

(6.10

2

* . (510~ 514(0))

EnO,m - E[pg(sk‘HhQ)‘pg(sk‘HOaQO)] = —F7/—————=€xXp 4§ — 4 P) (635)
2(2m)o? Tk

Also, it can be shown

1 (1)

« Qp i Yo
Eai,aO = E[pa(3k|Hi7Q)|pa(sk|H07Q0)] = 7((617 K1, 17 1) (636)
AL i OF.0
ool
C(k1, K2, J1,72)
A 0.0
(2) (2
"o
hi kO ((/{27 b7 27 2)
AL 0.0

where ifs; o(0) > 5ki(0), j1 = 2,j2 = 1 and otherwisg; = 1, jo = 2, k1 = min(5x,0(0), 31,i(8)), k2 =

max(Sk,0(6), 5k,i(¢)), and

(k,3) _(k,0)

Clary..8) = 2 (7 = 2 ) (6.37)
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Finally,

Ea;ng = Elpa(sk|Hj, 0;)pg(sk|He, 00)) = Elpg(sk|He, 0,)|pa(sk|Hj, 0;)] (6.38)
o)
"o
" <7§kvi)eﬁ(502/2—3k,e(2)) <Q <a — Ske(0) + ﬁ02> i (%(Q) — 5p0(6) + Bo’ ) >>
ag g
(2)
o
L Ok
QL g
X (75’“’2‘)66(602/2—@,@(9)) <Q <a - 5/@526) + /302> i (%y(é) - 51;@(6) + fo* ) >>

6.2.3 Gaussian Noise with Random Deletions

For this noise model, each pixel is either kept or deletediesrmined by Bernoulli random vari-
ables associated with each pixel. If the pixel is not delgtesl corrupted by additivéd(-D Gaussian

noise with specified covariance. Thth pixel is distributed according to

S L TR 1 o) B (24-Fh0) s, €A
’ ’ Sk,
plsy) = @ BT (6.39)

w skEB
whereqy, is the probability that théith pixel is deleted an&,. is the covariance matrix of each

pixel.

For this noise type, the UIM can be used since the require@atapons can be obtained
analytically using the method described in Secoh 3using 6.18 and the Gaussian noise results

derived in Sectiorb.1.1in (6.10.

The use of the random deletion model in this case is partiguddtractive from an implemen-
tation standpoint because, as will be seen, it allows fodistibution of the image likelihood ratio
to be determined analytically, unlike for the coherent LARModel. As a result, calculations of
error probability are much simpler and faster. In additithe, simplicity of the model lends itself to

analytic approximations of performance as a function ofesysparameters, as will be seen.
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6.2.4 Finite beamwidth effects

This section discusses performance prediction using theogjmate model for finite beamwidth

effects introduced in Sectid®i2.4 The non-anomalous distribution is given by

R(k i)

pralsulH) = 3 S

wherew, is the associated probability for each portiggj,is the mean, anl, is the variance. This

o e )5 ) (6.40)

distribution can be used with the appropriate anomalyppdtieletion, uniform, or exponential) and

probability of anomaly, giving

p(sk) = arpalsg) + (1 — ak)pna(sy) (6.41)

The anomalous distributign, can be either that of coherent LADAR (uniform), the randoretien

model, or of Geiger mode LADAR.

For the method of unbiased integration, the expectation

is required. Since this model is a mixture of Gaussian pdés amanomalous pdf, the mixture
pdf model results can be used along with the Gaussian nasd#igeand the Gaussian noise plus

anomalies results. From the mixture pdf resutd. ),

Ro R:1
(1- ak,i)(l - ak,O) Z Z Wo,ro Wi,r; 2 [pn- (sk|H;,0) ’pTo (§]€’HO,Q8)]
ro=1r;=1
R;
+ (1 = o) Z Wi B [pr, (51| Hi, 0)|pa(si| Ho, 65)]
ri=1
Ry
+ ak,i(l - ak,O) Z woﬂ“oE[ a(ﬁk‘HhQ) ’pTo (ﬁk‘H()?QEk])]
ro=1

+ ag a0 E [pa(sk|Hi, 0)|pa(sk|Ho, 05)]
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where ) .
a1t )= (s—n,)

pr(si| i, 0) T (6.43)

The expectations in the first sum in the expectation can hedffoging the Gaussian results 6110
and the expectations in the remaining terms are given inéhigations in 6.30), (6.18), or (6.34)

depending on the anomaly model.
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Chapter 7

Analytic Approximations for the
Dependence of Performance on Major

Parameters

7.1 Asymptotic Resolution Dependence for Independent

Pixel Noise

In [2], Yen and Shapiro derive an approximation for the asymptioghavior of the probability of
error as a function of increasing FLIR sensor resolutiomgithe performance prediction presented
in [1] and a Gaussian noise model. We use a similar method to oatsomewhat more general
result that is applicable to LADAR and can incorporate theeraccurate prediction methods pre-

sented above.

We consider the case that the pixel density increases tatynfkirst, let there be a reference
pixel configuration consisting oV = NV, pixels. Now, let the number of pixel¥ vary. Assume
that aslV changes, the relative distribution of the densities of ilkelp over the sensor focal plane or
planes remains constant, and the region imaged does najehlanother words, the pixel spacings

for the new configuration are chosen such that for each ofriganal N, pixels, exactlyN/N,.. ¢

70



of the new pixels in its immediate neighborhood can be urjgassigned to them, to within one
pixel (due to required quantization). For example, corsttie case where thé/,.; pixels are
evenly spaced over a focal plane with spacikg ;. Then, asN varied, the pixel spacing would

remain even, with spacing ~ A,c¢\/Nycs/N.

It is desired to approximate the behavior of the likelihoatiarasNV varies while all noise and
true nuisance parameters remain constant. Assume thabigefrom pixel to pixel is independent
regardless ofV. Model the noiseless scene as viewed from the sensor withtenaam of pixels as
being piecewise continuous. Assume also that the noisgbdititbn parameters are only spatially
dependent and vary piecewise continuously. The discatigauif they exist, would correspond to
sharp boundaries, such as that between the target and tkgrdwaied. ASN — oo, the differences
between the values of pixels separated by a constant nurhpetets approaches zero. The same
is true for the noise parameters. Assuming that the likelihfunctionp(s, | H;, #) for a particular
pixel is continuous with respect to the noise parameterssange thus have that

lim p(s*|H;,0) = p(s*2)|H;, 0) (7.1)

N—oo

with &y andks defined such that; remains in the same location and the locatiokpis separated
from that ofk; by a constant number of pixel widths, all of which must be apphing zero by our

assumptions. Further details as to this aspect of the dierivean be found ing].

Based on the above discussion, we propose the approximation

N N'ref
P(Z(N)|H;,0,N) = [ ] p(si(N)|Hi,0,N) = [[ (p(s5,(Nves)|Hi, 0, Nyey)) ¥/ Nrer - (7.2)
k=1 k=1

= p(‘[(NTef)‘H“Q7 NTef)N/NTef

thus ignoring quantization effects which may occur férnot an integer multiple ofV,..;. This
approximation is a generalization of the approximationZh ih which the authors show that the

approximation is asymptotically correct 35.¢, N — oo.

We now turn to apply this largéy approximation to the various prediction methods in this

thesis. All methods require the determinationdpf V), which is the value o7 determined at a
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sensor resolution aV. The authors of2] show that

lim 67(N) = 6(cc) (7.3)

N—oo

so we make the asymptotic approximation thatV) = 67(N,.r). For the method of Grenander,
we also make the assumption that the nuisance parametes pr® uniform, that is thg;(9) are
constant. Using this, the threshold adjustment for the a@plapproximation methodt.(L2) is
approximated as

et (EA(T;.05,0.)) (7.

Viq lace(N) —logv =7 log  —
" 2 det (Bo(T;, 0,0, N)

¥t (£1(T5. 87,0, Nvey))

1
mdet (EO(IZ 7Q67 g, Nref))

:Vlaplace(Nref) - IOg v
since @.11)
Ei(Z.8,0.N) = —20° (log p(Z|H;, 0, N) + log fi(6)) + ¢
and where dependence dhis shown explicitly.

For the Noiseless Integration Method and the Unbiased fatiem Method, using4.2), the

approximate threshold adjustments are givend$5) (for arbitrary nuisance priors)

To(N)|Hy, 00, N To(N)|Ho, 0, N) fo(8)do

o0y o = PEOHL0 M) [ pTo(0IH 0 Nfo@dD o o
p(IO(N)|H0>Q07N)fsp(IO(N)|H1>Q7N)f1(Q)dQ
. p(T:(Nref)|H17Q>{>NTEf)N/N"ef fsp(TZ(NrefﬂHO»Q»Nref)N/NTeffO(Q)dQ
p(TS(NrefNHOaQé»Nref)N/NT'ef fsp(TZ(Nref)|H1>Q>Nref)N/NTeffl(Q)dQ
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and @.39

o0 = LNV s BN o VL1
= B @) Ho 85, M) Js E @[, 6.N) @
E[p(I( Tef)|H1> NT@f)]N/NTEf fS (I( ref)|H0>9 Nref)]N/Nreff (Q)d_
E[p( ( Tef)‘HoﬂeOﬂN)]N/Nmf fSE pI( ref)’HlaiNref)]N/Nreff (Q)d

respectively. For these equations, it can be seen that tpuen’(/N) having already computed
V'(Nyer), itis only necessary to take a power of the previously evatliikelihood portions of the

integrand and recompute the integral.

It remains to compute the pdf of the log-likelihood rafi6 = log(p(Z(N)|Hy,07,N)) —
log(p(Z(N)|Hy, 05, N)) given the true distribution (determined @, 6;) of the image 4.12).
Since the case of largd' is being considered and the pixel noises are independenpdhof L’
asymptotically approaches a GaussiamVas— oo by the Central Limit Theorem. This approxi-
mation is very good, since the convergence to a Gaussiars @lfiost always quite fasg], and
most LADAR images have large numbers of pixels. As a reswdtneed only obtain the mean and

variance ofL’ to specify its pdf. From7.2),

E[L'(N)] =E[log(p(Z(N)|H1,07,N))|Ho, 05, N] (7.7)
— Ellog(p(Z(N)[Ho, 85, N))|Ho, 05, N]
:E[log(p(I(Nref)‘HhQ>{7 Nref)N/Nref)’H07€87 Nref]

- E[log(p(I(NTef)’H07Q(>§7 Nref)N/Nref)’HmQS; NTBf]

N ¥ *
:N f (E[log(p(I(Nref)’HthNref))‘HmQOa Nref]

—Elog(p(Z(Nyes)|Ho, 05, Nrey))| Ho, 05, Nyeg])

N
= E[L'(N,.
3o P ()
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and

Var[L'(N)] =Var[log(p(Z(N)|H1, 07, N))|Ho, 05, N + Var[log(p(Z(N)|Ho, 85, N)) | Ho, 05, N]

(7.8)
N ¥ *
“Nos (Var[log(p(Z(Nreg)|Hi, 01, Nrey)) Ho, 05, Nreg]
+Var[log(p(Z(Nyeg)|Ho, 85, Nreg)) | Ho, 09, Nrey))
- Narll/ ()]
by the independence of the new pixels.
As a result, the approximate probability of error is given by
V/(N) - N],\,[ E[L/(Nref)]
P(D1|Hp,N) = Q —— (7.9)
Vo VarlL (Nrey)

which, as we have seen, is asymptotically correct as 0, N, N,y — oo.

To increase the simplicity of the prediction equation, ia tase where the priors are uniform
we propose using the threshold adjustment approximatiothéomethod of Grenander.@) to ob-
tain/(N) = v/(N,.s) regardless of the method used to computéV,.r). This is asymptotically
valid since all the approximation methods are asymptdyieguivalent agr — 0. In effect, this is
equivalent to fitting Gaussian curves to the integrands tssedmputer’ (N, ) in such a way that
the value of the integrals, and thu§N,.;), are preserved. These Gaussian curves would then be
used in the computation of the approximaté/N) using (7.5 or (7.6) which of course reduces to

the desired/(N) = v/(N,.y). This gives

ref
Vo Var L/ (Neey)]

(7.10)

V(Nyer) — XFE[L(N,,
P(DIHO’N)%Q(< 7~ =Bl m)

If it is desired to obtain the error in the probability pregha inherent in the smoothness assumption
for the image, it can be found by computirdgi L’ (N)] and Var[L'(N)] and substituting in for

the probability of error. This avoids having to recomputéN), thus limiting the computational
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expense. This error computation may be practicable in the wdoere the prediction is computed
for a range of resolution values, since it would be computealy a few points to verify the validity

of the smoothness assumption for the curve.

7.2 Analytic Approximations for Gaussian Noise with Anoma-

lies

In this section, we derive results for the Gaussian noisk aromalies model only. The simplicity
of the Gaussian noise plus random deletions model lendbtitssenalytic analysis. Hence, as it is
asymptotically equivalent to the coherent LADAR model, angasonable approximation of most
anomaly models, we use the Gaussian noise with random atedetnodel for all derivations in

this section. In this section, we have the goal of obtaininglyic or near analytic results for the

variation of performance with various relevant parameters

7.2.1 Probability of Anomaly Dependence

In this subsection, we apply the scaling properties of tlabability of anomaly for the random
deletion model derived in Sectichl1.3to other anomaly models, such as the coherent LADAR
model. We propose computing the mean, variance, and tHdeshthe pseudo log likelihood ratio
test at a reference point..; for the accurate anomaly model using one of the accurateqiad
methods, and then using this point to create an approximafithe performance curve that would
result from varying the probability of anomadyin the neighborhood of that point. This would be
useful in determining what effects changes in the anomaéywall have on performance, in order
to aid rapid system design. We assume thatathe= «;,. Using reference pseudo loglikelihood
momentsE.r, o..r, and reference thresholg . computed for reference anomaly raig.;, we

have the approximation, using.28), that the probability of error as a function efis

l1—o 2
1—Qpey Jref

V7/“ef B 1—1;—1ch7‘3]£
P(D1|Hp) = Q (7.11)
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This provides a simple approximation to the variation osification performance with anomaly

rate.

Since for many cases the range swath is long enough and anmatelow enough that anoma-
lies can be modeled as random deletions, this predictiondslyapplicable to approximating per-
formance variation as a function of anomaly rate for othemaaly based models, as well as for
varying clutter levels. This type of analysis is importasitice the anomaly rate is primarily deter-
mined by the receiver sensitivity, transmission power, lendth of the range swath, as well as the

clutter density, all of which are important system paramsete

7.2.2 Noise Covariance Dependence

First, we consider dependence on the Gaussian noise aosriassuming that the covariances
do not change between models. Let the parametee such that all the terms of all covariance
matrices are proportional t&, that isX;, = S,02. We consider the variation of performancecas

varies. From Sectiof.1.1, we have 6.13 that the Gaussian only pseudo log likelihood ratio has

the following moments:

N -1
N s
E[LN(Z,0,0,)] = — Z(§k,0 - §k,1)Tﬁ§k,O

j=1
1 S S
+3 S5h0 Sk — Sk1l —5 Sk
2 ) 0-2 ) 2 )
j=1
N g-1
Var[L'(1,6,,6,)] = Z(Sk 0~ Sk 1)T%(Sk,o —35.1)
j=1
For simplicity of notation, let
N
L = — Z@k,o - 3k,1)TSEIEZ,0 (7.12)
k=1
L
+5 Z (S50 Sk 'S0 — 5k1 " Sk 'Sk)

k=

N
- - \Tq-1/= _
of, = Z(ﬁk,o —551)" Sy, (Sko0 — 3k1)
k=1

—_
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Furthermore, since the non anomalous Gaussian logliladii@ inversely proportional to the
Gaussian covariance, which is in turn proportionabtg its Hessian with respect to the nuisance
parameters must also be proportionalbto Since this is true for both target loglikelihoods, the
threshold adjustment;,;,.. for the method of Grenander does not change withHence, we
assume that the threshold adjustment is constant regauafipsediction method, in a similar way as
done in Sectior7.1 To improve accuracy, we use a reference pejpt for which the performance

has been predicted using one of the threshold adjustmehbagtgiving a threshold;ef.

Using the results from Sectidhl.3 we then have, assuming the anomaly rad@gslo not vary

with &, the approximate probability of error to be.13

EL
2

V7/“ef_ (1-«

L
(1-a)%

P(D1[Ho) ~ Q (7.13)
which explicitly gives an analytic expression for the viida of performance with both anomaly
rate and Gaussian noise level, singe,, u, o, are all constants. This noise level variation result
is clearly also applicable for nonuniform anomaly rateg, ibunot shown for clarity. As the only
approximations required for this result are that the tho&bsldoes not vary withe and that the
Central Limit Theorem can be used, this result is asymgliyicorrect as the noise level goes to
zero and the number of pixels increases to infinity, assumetayant Central Limit requirements
are met. The first result is due to the approximation’s basthé method of Grenander, which is
asymptotically accurate. The latter result is due to theiregqents for the asymptoticity from the

Central Limit Theorem and its extensions.

7.2.3 Elevation Angle Dependence

Next, we derive approximate variation results for sensevatlon angles for range images only, on
a flat ground plane. Define the elevation angle to be the amgleden the sensor line of sight and
the ground plane. Itis necessary to obtain a simple expreési the variation of the statistics of the
pseudo loglikelihood ratio. For the Gaussian noise witldcan deletions model, these only depend

on the variation of the distance between the predicted pixieles under the different hypotheses.
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For most ground targets viewed from the air, the visibleane$ of the targets tend to be parallel
to the ground plane. In addition, the dominant pixels fronepasability standpoint will be those
with the maximum difference between the hypothesis priedist which will usually occur where
one hypothesis says that the pixel is on the top of the taaget,the other that it is on the ground
plane. As the top of the target is usually parallel to the ghuhis suggests that we approximate the
average variation of the difference in hypothesized vafaeshe pixels as the two model surfaces
are locally horizontal. As the elevation angle varies, theis would mean that the difference in

pixel hypothesis values would vary agsin ¢, using the far field approximation. That is,

=z

Y (0)12 sin” ¢ 1 (Sref)  —(bres)
ref —=\Pref =\ Pref)\2
E ~ 5 S (7.14)
1 sin? ¢ Niarg, ref 11 k.0 k, )

Ntar ._
]—1

whereNyq,q.rer and Nyq,q are the numbers of pixels for which the pixel difference iszero for
orey and ¢ respectively. As the variation in loglikelihood is appnmxted to be due entirely to a
single multiplicative constant, the threshold adjustmapy;... found using Grenander’s method

does not change. Hence, we approximate the threshold asnbwnsth respect to elevation angle.

It remains to determine the variation of the number of pixaistarget, that is, the number
for which the difference in hypothesized values is nonz&ke. consider low elevation angles and
high elevation angles separately. For low elevation anglegions of both the side and top of the
target are visible. Hence, it is reasonable to approxinfeentimber of pixels as unchanging with
elevation angle. This approximation is exact for a cylindritarget. As a result, this gives the

variation of the moments of the pseudo LLR with zero prolighif anomaly to be

BIL16) = gL gy, (7.15)

Var[L/|¢] ~ %V r[L|6yes]

This gives an approximate probability of error for arbigrarobability of anomaly to be, using the
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Central Limit Theorem

in2
/ o o Href SID (z’r'ef
Vref (1 Oé) o2 sin2 g

Uge i 2¢T'€
(-0 Ze )

P(D1|Hop) = Q (7.16)

where

N
*7 re re — re 2
trer ==Y (5o —ma e + < Z( (0re)® _ g0rer) > (7.17)

J=1

N
0'7«€f2 — Z(gl(joref) . E](j’ref))?

k=1 7
andv,, , is computed ab, ..

For high elevation angles, the majority of the image of thrgdhis of the flat top surface.
Hence, the variation in the number of pixels on target cangmecaximated by the variation in the
apparent area of a horizontal flat plate, using the far fiefgr@pmation. This approximation is
asymptotically correct as the height of the target goes to.z&his indicates that the number of
pixels on target should be proportionalsim ¢. This clearly gives the approximate probability of

error

;U"ref Slnd)'ref
Vier = <(1 —a)TE W)

Ores SN Gre
\/(1—0[) 02f sind)f

Experiments will be run in a later section to verify the aemyrof these approximations.

P(D1|Ho) = Q (7.18)
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Chapter 8

Bayesian Experimental Results for
LADAR Noise

In this chapter, we present experimental results for theetiprediction methods discussed for each
of the noise models considered. Various binary sets oftauaye used. The nuisance parameter for

each of these experiments was target azimuth angle for pespaf illustration.

Each experiment involves the computation of Monte Carlousition results for the actual
Bayesian classifier, and the evaluation of the Method of &less Integration and Method of Unbi-
ased Integration predictions. For the Gaussian range nuiskel, the method of Grenander is also
used for comparison. Performance curves are generateddtevant range of noise levels in each
case, making sure that the curve includes both high and lofenpeance regions. The accuracy of

the predictions is then evaluated and compared for eack hgis.

8.1 1-D Gaussian Noise

For this section and some following, we use the tank from feidul as targetH,, and the sedan

from Figure4.2 as targetH; .

An experiment was performed to evaluate the relative perdmice of each of the methods de-

scribed in this paper. A binary classification scenario stimg) of two targets on a flat ground plane
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being imaged by a LADAR sensor was considered. The LADAR ienags modeled as being a
2-dimensional range image of the scene, corrupted by anerdiional 11D Gaussian pixel range
noise of zero mean and varianeé. The two targets are a tank and a sedan, shown in Figutes
and4.2respectively. The tank corresponds to the true hypothiésiand the sedan to the alternative
hypothesisH;. Synthetically generated noiseless LADAR imagery was uisdte evaluation of
the prediction formulas derived above. This was accomgtisiising the GTRI LADAR Simula-
tor software 8], which is able to efficiently generate synthetic noisele8OAR imagery for any
desired set of pose parameters. The only nuisance paraooetsidered was angular pose with a
uniform prior from —= /2 to =/2 for numerical convenience. The predictions of the prolitgbil
of error givenH is true for each prediction method as a functiorv¢fl,,,;,, are shown in Figure
8.1, whered,,;,, denotes the minimum root sum squared error over the nuigaeneeneter space
between the true noiseless image and the targetffoNormalization byd,,.;,, gives the minimum
statistical distance resulting from usiag thus providing a sort of dominant SNR. For this set of
targets,d,,;, = 0.18. The prediction using the method of Grenander is shown intreat using
the NIM is shown in green, and that using the UIM is shown ircklaThe method of Grenander
is shown only for this noise type because is was originallsved only for Gaussian noise. For
evaluation of the accuracy of these methods, a plot of theramapperformance of the Bayesian
classifier is also shown in blue. The empirical performanas feund using 1 million Monte Carlo

runs for each noise level, using synthetically generateatjany.

It can be seen from the plot that, as expected, it appearsliithtee methods are asymptot-
ically accurate ag — 0, and are less accurate as the noise increases. As might betespthe
method of Grenander fails for high noise. In opposition is,tthe two new methods do not diverge
from the truth as the noise increases. The NIM performs wafrige two new methods, but signifi-
cantly better than the method of Grenander. In particulagnnains within approximately 0.1 of the
true probability of correct classification for all noise éds. The method with the best performance
is the UIM. It is better than the NIM at every noise level, aethains within 0.01 of the truth for

all but the highest noise levels.

An important aspect of Bayesian classification is that fanakgriors the conditional error
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Figure 8.1: Probability of error giveH, is true as a function of normalized noise standard
deviationo /d,,;,. Monte Carlo simulation results shown in blue, method ofr@areler
shown in red, NIM shown in green, and UIM shown in black.

probabilities saturate at 50% as the noise level increaghswt bound. As is seen in the figure, the
prediction based on the method of Grenander does not exhibibehavior, while the two methods
introduced here do. This ensures that our methods will berate on both sides of the noise curve,
whereas the method of Grenander is only accurate on the ¢diseside. Note also that the NIM
and the UIM differ considerably for high noise, but not as mémr low noise. This indicates that

the accurate choice of is much more critical for prediction in high noise than in If#y.

8.2 1-D Gaussian with Anomalies- Coherent

For this experiment, we use the Tank and Civic as targetsusadhe noise model of SectiérR.1

For this scenario, the probability of anomaly was choseret0.8. Both the Unbiased Integration
and Noiseless Integration Methods are used to predict tfferpgance. To calculate the required
LLR pdf for the predictions, we use numeric integration. Tente Carlo results were generated

using2 x 10* runs. The results are shown in Fig@&.
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As can be seen, the UIM performs much better than does the N&.NIM performs rea-
sonably well for lower noise levels, but then becomes higidgsimistic for high noise, with error
peaking around .13. The UIM is accurate to within approxehat03 in absolute probability of er-
ror for all noise levels, performing slightly worse than ®aussian noise alone but still quite good.
Since the Laplace approximation method must always be vibasethe NIM, this experiment con-

firms that the UIM is the most accurate prediction methodtig problem.
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Figure 8.2: Performance prediction for coherent LADAR eaisodel. Probability of er-
ror given Hy is true as a function of Gaussian noise standard deviatioMonte Carlo
simulation results shown in blue, NIM shown in green, and Wihéwn in black.

8.3 1-D Gaussian Noise with Geiger-mode Anomalies

In this section, we show experimental results for the Gamssoise with Geiger mode LADAR false
alarms model. The targets are the Civi®ihand Avalon in9.2, with the true target being the Civic.

The nuisance parameter is azimuth angle, with a unifornr prier —r to 7. Parameters are chosen
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such that the overall probability of detection is approxieha0.75, the probability of deletion 0.07,
the probability of early anomaly approximately 0.16, arg phobability of late anomaly 0.016. The
early and late range swaths are approximately of equalliefigite probability of a received photon
at the correct range is 0.9, hence the result that the latmalggorobability is about one tenth that
of the early anomaly probability. This causes a discontynin the pdf. For this experiment, we
vary the Gaussian noise standard deviation only while raminty the anomaly distribution, with
the range swath long enough that the Gaussian noise diftribdoes not begin “overflowing.” As
a result, as the noise level increases, the relative hefghe@anomaly pdf relative to the Gaussian

pdf increases, thus accentuating the effect of the pdf disuaty, as will be seen.

The results showing the probability of error as a functioaiissian noise standard deviation
are shown in Figur®.3. The Monte Carlo results usingx 10* simulations are shown in blue,
the Noiseless Integration prediction in green, and the Utbtijetion in black. The NIM is quite
poor, however. This is because the integrand is evaluatis aioiseless value of the image, which
is exactly where the pdf discontinuity lies. Hence as thesanie parameter varies slightly, large
numbers of pixels move across the discontinuity, thus ogukirge spikes in the integrand and
destroying the prediction. It can be seen, on the other ithatithe UIM prediction performs quite
well. This is due to the fact that it does not evaluate thdilik®d function at a particular image
value, but instead computes an expectation, which is ofseoniot subject to the discontinuity effect
which damages the prediction using the NIM. This indicates the UIM is not only more accurate,

but more robust.

8.4 1-D Gaussian Noise with Random Deletions

For this experiment, the model of Gaussian noise with randelations was used, with the Tank
and Civic as targets and with probability of deletion of .ZheTplot of the probability of correct
classification as a function of the Gaussian noise standaritibn is shown in Figur&.4. The
Monte Carlo truth plot was obtained usifggx 10* Monte Carlo runs for each noise level. As
can be seen, the Unbiased Integration Method predictiogamajuite good, and outperforms that

of the Noiseless Integration Method, especially for higlisedevels. As before, the Noiseless
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Figure 8.3: Performance prediction for Geiger LADAR noised®l. Probability of error
given H, is true as a function of Gaussian noise standard deviatidvionte Carlo simu-
lation results shown in blue, Method of Noiseless Integrathown in green, and Method
of Unbiased Integration shown in black. Note the poor pentoice of the Noiseless Inte-
gration prediction due to the discontinuity in the pdf.

Integration Method prediction works well for low noise, liben decays too rapidly to above 0.5,
before flattening out. On the other hand, the prediction efinbiased Integration Method tracks

the true Monte Carlo curve quite well, with a maximum erroaaund 0.02.

8.5 3-D Gaussian Noise with Random Deletions

For this experiment, 3-D point cloud images were used with3D Gaussian noise plus random
deletions model. The nuisance parameter is target angfeanimiform prior between-7/2 and

/2 as before. The 3-D noise covariance was chosen to be

o2 0 0
0 0 402
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Figure 8.4: Performance prediction for Gaussian noise raitislom deletions. Probability
of error givenH, is true as a function of Gaussian noise standard deviatidtonte Carlo
simulation results shown in blue, Method of Noiseless Irgggn shown in green, and
Method of Unbiased Integration shown in black.

whereo in this case is chosen so that one-dimensional plots as &idonaf noise level can be
presented. The probability of detectidy was chosen to be 0.8 as before. The results are shown
in Figure8.5. The Monte Carlo truth plot was generated uslig simulations per noise level. As
expected, the prediction using the Unbiased Integratiothbtkis the best, with a maximum error

of 0.012. The prediction using the Noiseless Integratiorthide is worse, but not by as large a
margin as for range images, with a maximum error of 0.04. Tdulgerformance of the Noiseless
Integration Method is likely because the three dimensianale greatly reduces the sharp variations
of the likelihood functions as functions of pose, thus mgkime problem easier to work with and

predict.
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Figure 8.5: Performance prediction for 3-D Gaussian pdoua noise with random dele-
tions. Probability of error givert/, is true as a function of Gaussian parameteMonte
Carlo simulation results shown in blue, NIM shown in greerd &IM shown in black.

8.6 Coherent LADAR with finite beamwidth effects

In this section, we evaluate the performance predictionraoy for the finite beamwidth effects
noise model. The targets are the Honda C8/itand Toyota Avalor®.2. The nuisance parameter
is target orientation, with a uniform prior oA /2 to 7/2. We use the coherent LADAR uniform
anomaly model, with an anomaly rate of 0.2. The image siZ# ig 50 pixels. The beamwidth
of the receivers is chosen to have a half power width of aboet mixel width. To implement
the finite beamwidth effect, we use a raised Gaussian beafiteprod sample the 25 surrounding
pixels in the100 x 100 pixel model images, corresponding to a width of 2 pixels ia #ctual
image, thus allowing for the beam profile to decay from it$ palver width. The use of the higher
resolution image allows for greater accuracy in the digzagon of the range pdf. For each pixel,
the probability that each of the 25 range values is choseangated using the associated power
density for that subpixel. Each of these range values isuked as the mean of a weighted Gaussian

pdf to create a Gaussian mixture model, all with a standavihtien o as described in the model.
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The results are shown in Figuge, with the Monte Carlo results shown in blue, the Noiseless
Integration prediction in green, and the Unbiased Intégmaprediction in black. The prediction
accuracies are typical, with the Unbiased Integrationguering quite well, and much better than

the Noiseless Integration method.

For comparison, we also show the prediction results for beamwidth noise in Figur8.7.
It can be seen that the performance is signficantly betterfivathe finite beamwidth case for low
noise. This is as expected, since it involves less unceytmimange. As the noise level increases, the
performance difference decreases due to the fact thatffleeetlice in the possible ranges becomes

less significant due to the very large noise power.

Finally, we show the results for the case where the true risisistributed according to the
finite beamwidth effects, but the classifier incorrectlysuge zero beamwidth noise model with the
same value of. This is an example of the common case that, for speed, thsifida uses a simple
noise model, but the actual noise is known to be much more lexmphe results are obtained using
the method of Sectiod.7.3and are shown in Figurg.8. The Unbiased Integration prediction is
quite good. The Noiseless Integration method performsfgigntly worse for this scenario. This
is also as expected given that the Unbiased Integrationaddémds itself much more easily to the

task of prediction performance under incorrect noise nsdel

The performance for the incorrect noise model is signifigawbrse than that for when the
correct finite beamwidth model is used, especially for lows@oThis is as expected, since for high
noise, the different range values become statisticallgesiothus reducing the effect of the finite
beamwidth model. This shows that using too simple of a noisdehfor the classifier can cause
a major degradation in performance, as most systems attenoperate in the very low error rate
region. It also indicates that accurate performance piiedidor the low noise regime depends

much more on the accuracy of the imaging model than on theelafiprediction method.
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Figure 8.6: Performance prediction for finite beamwidthseawith uniform anomalies.

Probability of error giveri, is true as a function of Gaussian noise standard deviation
Monte Carlo simulation results shown in blue, Method of Nt#ss Integration shown in
green, and Method of Unbiased Integration shown in black.
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Figure 8.7: Performance prediction for zero beamwidthenaigh uniform anomalies, for

comparison to finite beamwidth results. Probability of elgiven H, is true as a func-

tion of Gaussian noise standard deviation Monte Carlo simulation results shown in
blue, Method of Noiseless Integration shown in green, anthbtéof Unbiased Integra-
tion shown in black.
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Figure 8.8: Performance prediction for finite beamwidthseawith uniform anomalies.
Classifier uses incorrect zero beamwidth noise model. Bililyaof error given H, is
true as a function of Gaussian noise standard deviatiaionte Carlo simulation results
shown in blue, Method of Noiseless Integration shown in gremad Method of Unbiased
Integration shown in black.
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Chapter 9

Experimental Studies

In this section, we turn to the use of the prediction methasebkbped in this thesis for predicting
performance as functions of various parameters. In additie verify the accuracy of the various
extensions to the main methods described above, includmgultimodal extension, the multiple
target extension, prediction using multiple nuisance patars, and the various derived asymptotic

expressions for the variation of performance with diffénearameters.

In this chapter, we primarily use the targets shown in Fig@r& and9.2, which are a Honda
Civic and Toyota Avalon respectively, shown in noiselegsggeimages o200 x 200 pixels for
clarity. This additional set of targets is introduced to dastrate that these methods work on a
variety of targets. These targets are also somewhat mdistiethan the previous sedan/tank pair,
in that they have a generally more similar appearance. Sierwise specified, the true target is

always the Honda Civic, in a pose pointing away from the senso

9.1 Performance for Multiple Target Classification

In this section, we verify the accuracy of our performanadpation methods for the multiple target
case. We consider a four target ATR system, with the truestdrging the Avalon in Figur8.2,
and the other three targets being the Civic shown in Fi@utea Mazda Sentra shown in Figure

9.3 and a Jeep in Figur@.4. Images of sizé&6 x 56 pixels are used. The nuisance parameter is
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Figure 9.1: Honda Civic Model, shown in a noiseless LADARgaimmage.

target azimuth angle, with prior7 to 7 radians. The noise model is Gaussian range noise. The
results are shown in Figur@5-9.8. Monte Carlo results were generated using 10* simulations

and are shown in blue. The Noiseless Integration predigi@hown in green, and the Unbiased
Integration prediction in black. The plot of the probalilihat the true Avalon target is selected is
shown in Figured.5. Note the initial large probability of correct classifiaati which decays to near
zero as the noise level increases. This is because the Aimkandwiched between two targets,
the Civic and Sentra, one of which is slightly larger, and elightly smaller. This results in the
thresholds determining the decision rules to be drawn solaar in the true target, and thus reduce

its probability of correct classification as the noise beesthigh.

The probability that the Civic is chosen is shown in Fig@é. Note that the probability
increases rapidly from zero, before decreasing again asdise becomes very large. This is ex-
pected, since the Civic is similar to the Avalon, and in teohsize between the Avalon and Jeep.
The probability that the Sentra is chosen is shown in Fi@ureand that for the Jeep 8.8. As
can be seen, the probability of the Jeep being chosen ialipitiery low, and remains so for low

noise. This is as expected, since the Jeep is the target midet the truth. For this region, the
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Figure 9.2: Toyota Avalon Model, shown in a noiseless LADARge image.

probability of error is dominated by the two targets clogeghe truth, the Sentra and Civic. As the
noise becomes very high, however, the probability the Jeepdsen begins to increase. Again, this
is as expected since the increased noise hides the disdiieslaf the targets. This increase comes
at the expense of the other three targets, but especialhedCivic. This is as expected, since both
the Civic and Jeep are larger than the true target, whereaSehtra is somewhat smaller. Hence
the Civic is allotted less of the space and loses its proipalais the noise decreases the distance

between targets.

The prediction methods do not perform quite as well as withlimary case, but this is to
be expected given the larger number of degrees of freedonhéopredicted quantities. Overall,
though, the predictions are still reasonably good, espedfzat of the Method of Unbiased Inte-
gration. As always, the accuracy is greatest for low noidegre the prediction matters most. If
more accuracy is needed, the multimodal method of Sedtidrican be used to achieve arbitrary

accuracy by increasing the number of approximating randamptes.
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Figure 9.3: Mazda Sentra Model, shown in a noiseless LADARgeamage.

9.2 Performance for Multiple Nuisance Parameters

In this section, we consider performance prediction in ties@nce of multiple nuisance parameters.
The Civic and Avalon targets are used with image Sizex 56 pixels, with the Civic being the true
target. The three common nuisance pose parame3gerd used, which aréz, y) position and
azimuth angle. The prior on the azimuth angle is uniform frem/2 to /2. The other priors
are uniform as well. Since 3-D integration is required, we @& by 11 by 19 grids of points
surrounding the main peak. The range of these grids are chaseg the optimization method
described in Chaptéy. Numeric integration is performed using Gaussian intexfah as described
in Chapters. The Gaussian noise with random deletions model is usel pratbability of deletion

0.2.

The results are shown in Figu#ed, with the Monte Carlo results shown in blue, the Noiseless
Integration prediction in green, and the Unbiased Intégmgbrediction in black. As expected, the

UIM prediction outperforms the NIM prediction. It can alse een that the predictions are slightly
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Figure 9.4: Jeep Model, shown in a noiseless LADAR range énag

optimistic. This is to be expected due to the greater inamyuwith the 3-D integration.

9.3 Target Symmetry

In this section, the performance of classifying the Civid &valon is considered, with the nuisance
parameter being orientation angle. The true target is asdumbe the Civic in Figur®.1. We
use images of siz86 x 56. In this scenario, the targets have a similar appearanee @fi80
degree rotation, thus making the necessary likelihoodyrate used for recognitiord(1) and the

calculation ofv/ bimodal.

We perform this experiment with the coherent LADAR modelthaa probability of anomaly
of 0.2. The results are shown in FigueelQ The Monte Carlo simulation results using 10000
simulations for the full width prior from-7 to 7« are shown in blue, the prediction using the NIM

is shown in green, and the UIM prediction is shown in black.e Tésults using the half prior of
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Figure 9.5: Performance prediction for 1-D Gaussian ramgsen Probability that the
correct target (Avalon) is chosen as a function of noisedstechdeviation. Monte Carlo
simulation results shown in blue, NIM in green, and UIM shawblack. Note the decay
from perfect classification to very poor as noise increases.

—m/2ton/2 are also shown, with Monte Carlo simulation results showmedh the NIM prediction
shown in magenta, and the UIM prediction shown in cyan. Nigedegradation in performance
in moving to the more realistic prior from the half width prioThis is because the presence of
symmetries makes the recognition problem more difficult.thBarediction methods work well,
with the Unbiased Integration performing much better thanNoiseless Integration method, and
the prediction being slightly better for the half width pridue to the lack of symmetries. From the
difference in performance between the true priors it appteat if the method of Grenander were
as accurate as possible, the prediction should result mighiens that are overly optimistic by at
least 0.1. This is because the Laplace approximation asstiaethe integrand has a single peak,

and thus at best can only integrate over the region near timapr peak.

Since the functions to be integrated are bimodal, we exectiulti-modal extension of the
prediction methods in Sectioh7.1to improve the prediction. We test this hypothesis in thet nex

section.
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Figure 9.6: Performance prediction for 1-D Gaussian ramggen Probability that the Civic
is chosen as a function of noise standard deviation. Mont Ganulation results shown
in blue, NIM in green, and UIM shown in black. Note the rapidriease in probability
followed by a decay.

9.4 Multi-Modal Extension

In this section, the use of the multi-modal extension is destrated. The noise model of Gaussian
noise plus random deletions is used, with probability oketieh 0.2. The ATR problem is the
same as the full{ to 7) prior scenario in the previous section. In that sectiomas found that
the prediction using one pair of approximating samples v accurate as for other scenarios.
Hence, for this next experiment two pairs of approximatiagiples W = 2) are used, with one
on each of the two peaks in the integrand. The probabilityradreas a function of noise level
is shown in Figure9.11 with the Monte Carlo results shown in blue, along with thedjrton
using the Method of Noiseless Integration shown in greenthagrediction using the Method of
Unbiased Integration shown in black. It can be seen thaifgignt improvement compared to the
single pair results of Figur8.10 has occurred for the Noiseless Integration Method as esggect

indicating that it does not do as well extrapolating out te tther mode. On the other hand, the
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Figure 9.7: Performance prediction for 1-D Gaussian ramgsen Probability that the
Sentra is chosen as a function of noise standard deviatiomté/Carlo simulation results
shown in blue, NIM in green, and UIM shown in black.

Method of Unbiased Integration shows significant relatimpriovement for lower noise, but only
slight improvement for high noise, which is what might be esed given that it is already a better

approximation.

We then run the simulation with four approximating pairs ofngs (/' = 4). The two addi-
tional pairs are chosen to be symmetric about the primari.p&€he results are shown in Figure
9.12 It can be seen that the Unbiased Integration predictioirtisally perfect for this case, and the
Noiseless Integration prediction has improved once agHis confirms that the gradual addition

of approximating samples will increase the accuracy of tieeliption.
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Figure 9.8: Performance prediction for 1-D Gaussian ramggen Probability that the Jeep
is chosen as a function of noise standard deviation. Mont Ganulation results shown
in blue, NIM in green, and UIM shown in black. Note the initlav probability, which
begins to increase as the noise becomes very high.

9.5 Asymptotic Dependence of Performance on Resolu-

tion

In this section, we consider the variation of probabilityesfor for a fixed noise variance as a
function of sensor resolution. The Gaussian range imagemodel is used. Changes in resolution
are obtained by downsampling images of st96 x 200 pixels. The independent variable is the
number of pixels on a side for the downsampled image. Thedbwesolution for which we run the

experiment isl0 x 10 pixels.

The results of prediction are shown in Figl@d3 The Monte Carlo results usir@)x 10*
simulations are shown in blue, the Method of Noiseless hat&mn in green, and the Method of Un-
biased Integration in black. The performance gets betf@disaas the image resolution increases,
and then saturates out at zero probability of error as egdechs expected, the predictions are

accurate, with the UIM outperforming the NIM.
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Figure 9.9: Performance prediction for 1-D Gaussian rarajeenwith random deletions
with (x,y) position and azimuth angle uncertainty. Probability obeis a function of

noise standard deviation shown. Monte Carlo simulationlteshown in blue, NIM in

green, and UIM shown in black.

We now use the simple version of the asymptotic approximdtio the variation with sensor
resolution described in Sectiaghlin (7.10. The results are shown in Figuel4 with the Monte
Carlo results in blue circles and the Method of Unbiasedgiratigon in black stars. The other six
curves are the asymptotically approximating curves baseth® Unbiased Integration prediction
at each of the six points. As can be seen, the results are guit in the low error probability
region as desired, with the possible exception of the tweesibased on the two points with the
highest error probability, for which the error is as larg®#¥. The other five curves become overly
pessimistic in the high error region, but this should not vésaue since it is not desired to operate
in that region anyway. Otherwise, the error is within 0.0B\c8 this asymptotic prediction requires
merely the evaluation of a series of Q functions to genetaterésolution curve, once one point
has been predicted, the additional error incurred with tiéshod is outweighed by its very large

increase in speed.

Finally, we consider the more complex asymptotic predictioethod that also requires the
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Figure 9.10: Performance prediction for Gaussian ranggéenmaise with uniform anoma-
lies. Nuisance parameter is target angle with prarto 7. Probability of error givertd, is
true as a function of Gaussian parameteMonte Carlo simulation results shown in blue,
NIM shown in green, and UIM shown in black. Results for halbpof —7 /2 to 7 /2 also
shown, with Monte Carlo simulation results shown in red, Ndkbwn in magenta, and
UIM shown in cyan. Note the degradation in performance in imgto the more realistic
prior.

threshold adjustment at the point to be predictéd®)( As can be seen, the results are in general
significantly more accurate, although there are points &/ttex approximation is slightly worse. All
the curves except one stay close to the Monte Carlo truthlifopise levels, unlike for the previous
method. The one exception to this is the curve based on timé wiih the highest error probability,
which has an overly high error prediction for almost all of tlange. This is because the threshold
adjustment at that point is dramatically smaller than fa tther points, since at that point, the
curve is beginning to saturate out near 0.5 error, and tlegiiahds are becoming relatively uniform
over the angle space. For extrapolation using this poietstmpler asymptotic approximation is

more reasonable.

It thus appears that the asymptotic techniques for resolwtriation developed in this thesis

provide highly efficient and reasonably accurate methogseadicting the performance at a certain
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Figure 9.11: Performance prediction for Gaussian ranggéenmaise with uniform anoma-
lies. Nuisance parameter is target angle with prarto 7, and two pairs of approximating
samples are used to predict performance. Probability of givenH, is true as a function
of Gaussian parametet. Monte Carlo simulation results shown in blue, NIM shown in
green, and UIM shown in black.

image resolution given a predicted performance at ano#seldution and the same noise level. This
also confirms that even fairly small images (25 pixels on &)sithve high enough resolution to
apply these asymptotic techniques. This is further supddoy the fact that it is not limited to any

one noise model, so long as the Central Limit Theorem applies

9.6 Dependence of Performance on Anomaly Probability

In this section, we consider the application of the resuitstiie variation of performance with

probability of anomaly. We use the methods of SecGdh3

We again use the Honda Civic and Toyota Avalon models astg&ngéh the nuisance param-
eter being target azimuth angle with a uniform prior fremr to 7, and the image siz&6 x 56.

We use the Gaussian noise with random deletion model, wighmttise variance held constant as
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Figure 9.12: Performance prediction for Gaussian ranggenmaise with uniform anoma-
lies. Nuisance parameter is target angle with priarto =, and four pairs of approximating
samples are used to predict performance. Probability of givenH, is true as a function
of Gaussian parametet. Monte Carlo simulation results shown in blue, NIM shown in
green, and UIM shown in black.

the probability of anomaly varies from 0 to 0.7. The resutis the predictions of the Noiseless
Integration Method and the Method of Unbiased Integrati@nshown in Figuré®.16 with the in-
dependent variable being the probability of anomaly. Thetdcarlo results are shown in blue and
are generated usiriyx 10* simulations, the results of the Noiseless Integration Methre shown

in green, and the results of the Method of Unbiased integratire shown in black. For some of the
range of values, the Noiseless Integration predictionightly better. This is likely a coincidence
resulting from the full prior and the inherent target symriest as it appears that this is biasing the
UIM prediction lower, and the NIM tends to have a higher eprdiction than the Unbiased Inte-
gration prediction, thus accidentally correcting for thebihsed Integration predictions errors. This

is confirmed by the divergence of the Noiseless Integratiediption for high error probabilities.

To test the results of this approximation for other anomabdeds, we repeat this experiment

using the coherent LADAR model. The noise variance is hefgtamt as the probability of anomaly
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Figure 9.13: Performance prediction for 1-D Gaussian rargse. Probability of error
givenH, is true as a function of image dimension in pixels. Monte €ainulation results
shown in blue, NIM shown in green, and UIM shown in black.

varies from 0 to 0.7.

The approximation for the variation of error rate with prbiliay of anomaly given in Section
6.1.3in (7.1]) is then implemented. To test this method, we use the coheADAR model with
the uniform anomaly distribution. The probability of andynis varied by varying the length of the
uniform distribution in such a way as to preserve the anordelysity. The width of the uniform
distribution is chosen to be 20 times the Gaussian standandttbn for the lowest nonzero prob-
ability of anomaly. The only exception to this procedure determining the uniform distribution
length is for the case of zero probability of anomaly, for @fhihere is no anomaly component. For
the reference point needed to appliyl(l), we use the Method of Unbiased Integration, and gener-
ate 5 curves, each based on the reference point at a diffedertumbered point on the complete
prediction curve, with the count starting at zero probapitif anomaly. The results are shown in
Figure9.17. The Unbiased Integration prediction is shown in black, #redfive remaining curves

are the simple approximation curves generated using tleeerefe point indicated, with the num-
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Figure 9.14: Performance prediction for 1-D Gaussian rargse. Probability of error
givenH, is true as a function of image dimension in pixels. Monte €ainulation results
shown in blue, UIM shown in black. Other six curves use thepémesolution asymptotic
method and are numbered by the point used to generate thes ety the points numbered
from left to right.

bering being from left to right. It can be seen that the singgproximation is reasonably accurate,
given the speed of computation. This confirms the usefuloEse simple anomaly rate variation

approximation.

9.7 Performance as a Function of Sensor Elevation Angle

We now perform an experiment to find the variation of the pbiliig of error with sensor elevation
angle. The Gaussian range noise with random deletions risoaled, with a probability of anomaly
0.2. The Civic and Avalon are used as the targets, and thatelevangle is varied from 10 degrees
to 90 degrees in steps of 10 degrees, with the azimuth andleaise variance held constant. The
image size is agaib6 x 56 pixels. The true target was the Civic in a pose at a 45 degrgle émthe

sensor line of sight, and the nuisance parameter was thet @zgmuth angle. The prior is uniform
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Figure 9.15: Performance prediction for 1-D Gaussian rar@se. Probability of error
givenH, is true as a function of image dimension in pixels. Monte €aimnulation results
shown in blue, UIM shown in black. The other six curves usestheple resolution asymp-
totic method and are numbered by the point used to generateutive, with the points
numbered from left to right.

from —7 to 7.

The probability of error results are shown in Figl#d8 The Monte Carlo results using
2 x 10* simulations are shown in blue, and the predictions usingNibiseless Integration method
and Unbiased Integration method are shown in green and bdaglectively. It can be seen that the
performance is very good for low elevation angles and dexgaglickly to about 0.25 probability
of error around 50 degrees elevation before leveling outsligtitly improving. This degradation
in performance is to be expected, since low elevation anglsslt in a higher contrast between
the target and its flat ground plane background, whereasiditr éddevation angles, the difference
in range between the target and the background is only as Esghe target height. Since the
difference in target outline is very important to the cléissi high contrast with the background, as
it improves the ability to segment the target, improves tlssification performance. Due to the

nature of elevation angle, the rate of improvement in cahimaickly slows and practically stops as
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Figure 9.16: Performance prediction for 1-D Gaussian rarayge with random deletions.
Probability of error givenH, is true as a function of image dimension in pixels. Monte
Carlo simulation results shown in blue, NIM shown in greerd &IM shown in black.

the elevation angle increases above about 45 degrees, ighittat we observe in the results.

The simple approximate elevation angle variation resutmfSection7.2.3for low elevation
angles are then applied to this experiment. The assumptiovhich this is based is that the number
of pixels on target does not change significantly as the #tevangle varies. Four approximate
curves are generated using as reference samples the Uhbissgration predictions for elevation
angles of 20, 40, 60, and 80 degrees, with each referencdesamiguely associated with one of
the approximating curves. The results are shown in Figut& The Monte Carlo results and the
Unbiased Integration prediction are shown for clarity. Bpgroximating curves are the remaining
four curves. Considering the simplicity of the approxiroati the results are quite accurate. The
approximation results are very accurate for the regionreefioe error probability levels out, but
degrade for the leveled out region where the probabilityrafreis high as expected based on the
assumption of low to medium elevation angle. The predistigenerated using reference points in

the leveled out region are more accurate than those geddeather away. This result indicates
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Figure 9.17: Performance prediction for 1-D Gaussian rarogge with uniform anomalies.
Probability of error giveni, is true as a function of image dimension in pixels. UIM
prediction shown in black. The five remaining curves are ttegligtions using the simple
method of prediction, using different points as referenziafs.

that this approximation to the performance variation is @omably accurate method of rapidly

obtaining a prediction for the performance variation wivation angle.

The high elevation angle approximate results from Secti@i3are then applied to the same
data. The same reference points are used, and the resuiscava in Figured.20. As expected,
the approximations for the high elevation angle regiongis@ierence points also in that region are
significantly more accurate than the was the case for the levagon angle approximation. Also
as expected, the approximation using the low elevationeaofjR0 degrees as a reference is quite
poor, in contrast to its high degree of low angle accuracyttierlow angle approximation. For the
mid level elevations, both approximate prediction methsslsm to be reasonably accurate and in
agreement. From this (if a few samples are available) it @addtermined approximately what the
cutoff is between “low” and “high” elevation angles. It shdie noted, though, that as most of the
variation in performance occurs in the low angle range,ithikely to be the most interesting and

critical area, as opposed to the relatively constant highagion angle region.
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Figure 9.18: Performance as a function of sensor elevatiglean degrees. Probability of
error givenH, is true as a function of image dimension in pixels. Monte €annulation
results shown in blue, NIM in green, and UIM shown in black.

9.8 Performance as a function of Angular Pose

We consider the variation of performance with respect tdrie value of the target azimuth angle.
We use the targets of Figur@sl and9.2, with the former being the true target, and the elevation
angle being 40 degrees. The imagefisx 56 pixels in size. The Gaussian noise plus random
deletions noise model is used, with probability of anomaB. ONMe use the Method of Unbiased
Integration to predict performance, calculating the LLR psing the Gaussian pdf approximation
since the number of pixels is large enough for the CentralitLitheorem to apply. The azimuth
angle prior is uniform from-= to 7 radians. We vary the azimuth angle of the true target in steps
of 0.2 degrees from 0 to 360 degrees and predict the protyabflierror for each. The results are

shown in Figure9.21

As can be seen, the probability of error varies significantith pose, from about 0.2 to 0.4. A
view of the true target in the pose with maximum performascghown in Figur®.22 and a view

in the pose with minimum performance in FigB&23 As can be seen, the number of pixels on
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Figure 9.19: Performance as a function of sensor elevatiglean degrees. Probability of
error givenH, is true as a function of image dimension in pixels. Monte €annulation
results shown in blue and the Unbiased Integration prextidcs shown in black. Remaining
four curves are the simple approximation curves generasedyuhe indicated reference
points.

target is significantly larger for the image in the pose witdnamum performance than in the image

in the pose with minimum performance.

A significant portion of this effect is due to variations irethumber of pixels on target. First,
we show a plot of the number of pixels on target as a functiquose angle in Figurg.24, showing
that the number of pixels on target varies widely, from al&f@ to 800. We then use the asymptotic
prediction for the variation of performance with resolutito generate a plot of the asymptotic
prediction of what the performance curve would be if the ltgan was altered for each plot such
that the image always had the same number of pixels on thettaqual to the average number.
The results are shown in Figuee25 with the true performance shown in blue and the performance
normalized to the same number of pixels shown in red. Noteth®ared curve is flatter than the
blue, but still varies considerably, indicating that a &amprtion the variation in performance with

azimuth is not due to changes in the number of pixels on targeé curve appears to be almost
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Figure 9.20: Performance as a function of sensor elevatiglean degrees. Probability of
error givenH, is true as a function of image dimension in pixels. Monte €annulation
results shown in blue and the Unbiased Integration prextidcs shown in black. Remaining
four curves are the simple approximation curves generasedyuhe indicated reference
points.

piecewise constant, however, indicating that the targetsasier to separate when looking at the
front of the vehicle than when looking on the back, even onrgopel basis. To confirm this, we
show a plot (Figur®.260f the expectation of the pseudo-loglikelihood rdtig(Z’) divided by the
number of pixels on target, where it appears that the averegaration of pixels is smaller for the
region for which the probability of error is higher. Some loiktvariation may be reduced by adding
in target position uncertainty to the azimuth uncertaihty, overall, from this result, it appears that

the performance of ATR algorithms should vary with pose heytwill be suboptimal.

An additional result from this experiment is the unconditib probability of error. That is,
the predictor does not know the true pose of the target, dslprior distribution. To obtain the

unconditional performance, the true pose must be intedyi@ie That is,

Ple|Ho) = /S Ple|Ho, 0) fo(6)d0 .1)
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Figure 9.21: Performance prediction for 1-D Gaussian rarayge with random deletions.
Probability of error giverf, is true as a function of truth azimuth angle in degrees. Pre-
diction using Method of Unbiased Integration shown.

where fj is the prior on the true target nuisance parameters as before

The results obtained in this subsection were derived usiagifarm prior, so the resulting
unconditional probability of error is 0.26. This method damused to find the change in perfor-
mance resulting from implementing a Bayesian classifiargiie incorrect prior, by using different
priors to predict conditional performance and to do thegragon to obtain the unconditional per-

formance. This is then compared to the predicted performasing the true prior.

9.9 Pixel Contributions to Performance

In this section, we examine which pixels in an image are nmopbrtant to the separability of a pair
of targets. We consider a scenario where the true targetisitimda Civic in the pose shown in
Figure9.27. The image size i86 x 56 pixels. The alternative target is the Toyota Avalon in thmea

pose. The nuisance parameter is azimuth angle. The Gaussgmnplus random deletions model
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Figure 9.22: View of true target (Civic) in the pose for whitle performance is best. Note
the large number of pixels on target.

was used with a probability of deletion 0.2. The noise legathiosen such that the probability of

correct classification is about 0.75.

We consider two measures of the usefulness of each pixektoettognition task. Both are
based on Grenander’'s method of predicting performancethimethod, the performance predic-
tion is based on two quantities, the pseudo loglikelihodit & (4.26) and the threshold adjustment
V' (4.13), which is the square root of the ratio of the second dexieatof the loglikelihood func-
tions for the two targets, evaluated at a certain value ohthgance parameter. Since loglikelihood
is additive on a per pixel basis due to independerdc2q, the two measures we consider are the
expected value of each pixel's contributidf L’ (sy)] to the pseudo loglikelihood ratio, and the ra-

tio of the second derivativeéi(sk, H;,0)

o: of each target's loglikelihood of the pixel of interest,
evaluated at the same point the threshold adjustment isaeal. The first measure, by defini-
tion, measures pixel contributions to the minimum targgiasability over the nuisance parameter
space, and is strictly additive. The second measure meakoke strongly a given pixel moves

the threshold adjustment, and in which direction. Thislatheasure is not additive, but gives a
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Figure 9.23: View of true target (Civic) in the pose for whitte performance is worst.
Note the relatively small number of pixels on target.

general indication of which pixels are the most useful ired®ining the target’s exact pose and the

resulting effect on the performance.

A plot of the first measure is shown in Fig®e28 Positive values indicate that the expected
value of the pseudo loglikelihood ratio is biased towardstthie target, with the magnitude indi-
cating the strength of that bias. It can be seen that the mygstriant portions of the image for
recognition are along the edges of the vehicles, which ispsated, since it is there that the differ-
ences in outline occur. The most important edge regionsaaipde the front and back, along with
the sideview mirror. By far the most significant region is thar bumper area, where the viewing
angle results in a significant difference in target outlilmethis region the differences are made par-
ticularly large, partially because only the top part of tearrof the vehicle can be seen, and because

the low viewing angle amplifies the discontinuity betwees tdrgets trunk top and the ground.

A plot of the second measure is shown in Figlr29 The results were obtained using 5 point
finite differencing to obtain the second derivatives. Thraf the second derivatives is the ratio

of that for the alternative target to that of the true tardgeétcan be seen that the pixels that have
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Figure 9.24: Number of pixels on target as function of Hondad&zimuth pose angle in
degrees. Note that the minima and maxima correspond appabedy to the maxima and
minima of the performance plot.

the most effect on the threshold adjustment are relatecketsitte view mirrors, the front end of the

vehicle, and the trunk area. This is as expected.
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Figure 9.25: Performance prediction for 1-D Gaussian ranagge with random deletions.
Probability of error giverH, is true as a function of truth azimuth angle in degrees shown
in blue. The probability corrected for the number of pixets target is shown in red.
Prediction using Method of Unbiased Integration shown.
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Figure 9.26: Plot of the expected pseudo LLR divided by thalmer of pixels on target as
a function of azimuth angle.
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Figure 9.27: View of Civic in pose used for individual pixelaysis.
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Figure 9.29: Pixel contributions to the Laplace approxiorathreshold adjustment. Sec-
ond derivative of loglikelihood function of Avalon targeidied by that of the true target.
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Chapter 10

Conclusion

Two new methods of predicting the performance of the BayesiBR classifier were presented,
the Noiseless Integration Method, and the Unbiased Intiegr&lethod. Both methods involve the
integration of two deterministic scalars across the nuisgrarameter space and using the result to
adjust the threshold on a pseudo log likelihood ratio teste first method is a simple extension
of the method of Grenander giving significantly increaseztifmtion accuracy. The second method
is more accurate than the first as it is based on an unbiasedxapgtion of the Bayesian inte-
gral. The new methods were then compared with the method erfig®ider in an experiment, and
both of these methods outperformed the method of Grenandarlérge margin. The improve-
ment in performance over the method of Grenander was fourhe tespecially significant when
significant target near symmetry was present, and when t@isés are medium to high. This is
largely because the method of Grenander assumes that b $grgmetry is present and because
the Laplace approximation it is based on is only reasonatiyrate for low noise. This increase in
accuracy comes at an increase in computational cost. Fgoradjction method, it is essential that
the computational intensity of the prediction is much ldgmtthat of a similarly accurate Monte
Carlo simulation. Each of the methods presented here caly aakieve this requirement, as the

complexity is slightly more than that of a single Bayesiatognition operation.

These new methods were then applied to several LADAR noisieta@f varying complexity

and accuracy, allowing for significantly more accuracy thesvided by the simple Gaussian mod-
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els used previously for LADAR performance prediction. Ml capabilities added using these
models include the ability to model anomalous pixels andsirange noise, as well as being able to
handle point clouds. From experiments, it was found thatkassification performance can be sig-
nificantly optimistic if an overly simplistic noise modelused for prediction, thus necessitating the
use of accurate noise models to accurately predict perfuzenalo allow the derivation of more an-
alytic results, a random deletion pixel anomaly model was aked as a successful approximation

to the more accurate anomaly models.

Various extensions to these two methods were developed. thaueof predicting perfor-
mance for a multiple target classification problem was dgped, using the joint distribution af/
log likelihoods and the Bayesian MAP classifier. A method i@dyally increasing the accuracy
of the prediction at the cost of increasing complexity isoaieveloped. This method provides a
smooth transition from the simplest version of the two mdthmtroduced here and a complete
Bayesian Monte Carlo simulation. Variations of the two noehwere developed for predicting the

performance of classifiers derived using incorrect noisdetso

Simple analytic asymptotic expressions were then devdlégrehe variation of the probability
of error with sensor resolution, probability of anomalynser elevation angle, and noise variance.
Most of these methods require the computation of a more aterediction for one point along
the curve before the entire curve is generated using the®dse As a result, they are significantly
more accurate than is possible using the same simplifyisgragtions but without the initial point.
These approximations were found to apply to a large rangeeofelevant parameter values, and to

be quite accurate for all reasonable scenarios tested.

Experiments were then run with several different target GA@els and different noise mod-
els to generate performance curves as functions of diffgr@mameters of interest. It was found that
both the methods presented here perform quite well, edjyettia Method of Unbiased Integration.
Comparing the NIM and the UIM, the UIM is clearly the betteegiction method, giving much
more accurate and more consistent results for high noiseg able to predict performance for
discontinuous noise pdfs, and showing significantly bettmuracy for the case of incorrect clas-

sifier noise models. Which of these methods are selected ivea gituation will depend on how
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much accuracy is required and whether or not the expectatemuired by the Method of Unbiased

Integration are analytically tractable.

Several additional observations were discussed. Fimggstfound that the effect of the thresh-
old adjustment/ is relatively small for very low noise, but becomes significtor high noise. It
was also found that for noise levels that are not very smalldégree of rotational near symmetry
commonly found in common civilian targets is sufficient tasa the Laplace approximation to re-
sult in significantly inaccurate predictions, as it assumesear symmetries are present. The use
of numerical integration causes the presence of near symtoeaffect NIM and UIM to a much
lesser degree. Finally, it was observed that accuracy iiompeance prediction depends heavily on
the accuracy of the noise model used. Especially for lowen@scuracy in noise modeling affects

prediction accuracy much more than does the choice of gredimethod.

In conclusion, we have developed a set of improved techsigfierarying complexity and
accuracy to predict the performance of LADAR ATR given CADdets of the relevant targets.
These methods were implemented for a variety of noise modelsreviously used for performance
prediction, some of which allow for significantly higher acacy. The prediction results were

confirmed experimentally using Monte Carlo simulations.
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Appendix A

Proof of Theorem |

In this appendix, we prove the following theorem. The appration in @.22) is asymptotically

correct, that is

Js Elp(Z|H;,0)]fi(0)do
E[p(Z|Hi, 07)]

/S P(Z|H;,0),(8)d8 ~ p(T|H,, 07)

As the noise level goes to zero the expectation of a functmiverges to the value of the
function when the noise level is zero. This is because if doamvariablez(o) with variances?

has an expectatioR'[z(c)] that is continuous with respect to

Efz(o)] _ Elz(0)]

o) T ) A1)
As aresult,
/E[p(IIHi,Q)]fi(Q)dQN/p(TZIHi,Q)fi(Q)dQ (A.2)
s s

E[p(Z|H;,07)] ~ p(Zo|H;,0;)

which results in
Js Elp(Z|Hi,0)|£:(8)d0 [ p(Zo|Hi,6)fi(6)do
E[p(Z|H;,07)] p(Zo|H;, 60)

(A.3)
by the definition of asymptotic equality and the properti€the ratio of limits.
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Thus it is apparent that the Noiseless Integration Methattla@ Unbiased Integration Method
are asymptotically equivalent, since the right hand sidb@fquation is identical to the expression
in (4.14). Since the Noiseless Integration Method has been showrotade an approximation that

is asymptotically equivalent to the truth][ the Unbiased Integration Method does also.
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Appendix B

Asymptoticity of Deletion
Approximation for Coherent LADAR

Anomalies

In this appendix, it is shown that the Gaussian noise witkloamdeletions model in Secticdh2.3

is asymptotically equivalent to the coherent LADAR modelSaction6.2.1 as the range swath
b — a — oo for constant probability of anomaly. As the loglikelihood ratio is the quantity of
interest, we consider the differenceifilog p(si|H;, 0)|Ho, 0] for both of the models. This is the
expectation of each pixel's contribution to the loglikeldd ratio, split between the two hypotheses.

Let the difference in the expectations be
0= Ecoh[logpcoh(8k|HiaQ)|H0>Q3] - Edel [logpdel(sk|Hi>Q)|H07Q8] (Bl)

where the subscriptsoh anddel indicate the coherent LADAR and the random deletion models
respectively. The definitions for each noise model are giuethe sections listed above. Let the
coherent LADAR range swath He, b]. Let the Gaussian noise standard deviatiorrpthe mean

5%,; and the probability of anomaly; for both models and hypotheses. For the Gaussian noise
with random deletions model, let the anomaly suli$éte such that3| = b — « for accuracy in

comparison.
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We have

(0)
1 —ag IR ()} Py
5= / log(peon (sk|Hi, 0)) (Wexp{ - (s =35, )"} + — dsy, (B.2)
log
/ B] |B|

(11— ay) (l-a) . 1 (0o 1 o
V2mo? /a 10g<\/m P QJZ(S’f Sk )7} ) exp 202(3k 5, )" ¢ dsg

Separating this into two portions

b 11—« 1 (7)) (7))
6= [ 1 : —— (s —Spa)? d B.3
1 /a Og<mexp{ 20_2(Sk Sk’)}+b—a>b—a Sk ( )
bao(log "ds
k
1Bl" 7 (B
=

b
1 —a; 1 (g 5, )2 «@ 11—« 1
[ om (e 220 ) (g oot =0
l-« b 1— ;) — 1 (g 502 1 _
—( 2770%)/ 10g<( —27702)6 502 (5551 )exp{—ﬁ(sk—sg))z}dsk

Since the coherent loglikelihood in the region outside tlea af the Gaussian peak is asymptotically

equal tol / log(b — a) due to the rapid decay of the Gaussian portion of the likelih@nd since the
smaller likelihoods have the highest magnitude loglikeditis and thus dominate the expectation,
and because the width of the Gaussian distribution is fixed, hye have that

b—a—o0

For d, it also is apparent that the expressions within the logaust converge as — a increases.

Since the remainder of the integrands is the same, we hatve tha

b—a—00

as well. Hence the two noise models are asymptotically edpriv. Note that fofs, ; — 55 ;| > o,
the size ofb — a required to achieve convergence is exceedingly large, altleet rapid decay of

the Gaussian function and the nature of loglikelihood. Téisot an issue, however, since in this
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case the statistical separability of the targets must by higih for the random deletions model,
thus creating a low probability of error. Hence it is not imjaot that the expected loglikelihoods
converge so long as thie— « is large enough that the separability is sufficiently lang@rider to

maintain an absolute accuracy in predicted probabilitys Thterion is much easier to achieve, thus

making the approximation more useful.
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