
Wright State University Wright State University 

CORE Scholar CORE Scholar 

Browse all Theses and Dissertations Theses and Dissertations 

2013 

Synthesis and Electrodeposition of Mixed Metal Trinuclear Synthesis and Electrodeposition of Mixed Metal Trinuclear 

Clusters of Molybdenum and Chromium in Ionic Liquid onto a Clusters of Molybdenum and Chromium in Ionic Liquid onto a 

Platinum Electrode Platinum Electrode 

Lynn Renee Frock 
Wright State University 

Follow this and additional works at: https://corescholar.libraries.wright.edu/etd_all 

 Part of the Chemistry Commons 

Repository Citation Repository Citation 
Frock, Lynn Renee, "Synthesis and Electrodeposition of Mixed Metal Trinuclear Clusters of Molybdenum 
and Chromium in Ionic Liquid onto a Platinum Electrode" (2013). Browse all Theses and Dissertations. 
679. 
https://corescholar.libraries.wright.edu/etd_all/679 

This Thesis is brought to you for free and open access by the Theses and Dissertations at CORE Scholar. It has 
been accepted for inclusion in Browse all Theses and Dissertations by an authorized administrator of CORE 
Scholar. For more information, please contact library-corescholar@wright.edu. 

https://corescholar.libraries.wright.edu/
https://corescholar.libraries.wright.edu/etd_all
https://corescholar.libraries.wright.edu/etd_comm
https://corescholar.libraries.wright.edu/etd_all?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F679&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/131?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F679&utm_medium=PDF&utm_campaign=PDFCoverPages
https://corescholar.libraries.wright.edu/etd_all/679?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F679&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library-corescholar@wright.edu


SYNTHESIS AND ELECTRODEPOSITION OF MIXED METAL TRINUCLEAR 

CLUSTERS OF MOLYBDENUM AND CHROMIUM IN IONIC LIQUID ONTO A 

PLATINUM ELECTRODE. 

 

 

 

 

 

 

 

 

 

A thesis submitted in partial fulfillment 

of the requirements for the degree of 

Master of Science 

 

 

 

 

 

 

By 

 

 

 

 

 

Lynn Renee Frock 

A.S., Chemistry, Sinclair Community College, 1996 

B.S., Psychology, Kennesaw State University, 2003 

 

 

 

 

 

 

 

 

2012 

Wright State University 

 

 

 



 

 

WRIGHT STATE UNIVERSITY 

 

GRADUATE SCHOOL 

 

 

DECEMBER 14, 2012 

 

I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER 

MY SUPERVISION BY Lynn Renee Frock ENTITLED Synthesis and 

Electrodeposition of Mixed Metal Trinuclear Clusters of Molybdenum 

and Chromium in Ionic Liquid onto a Platinum Electrode BE 

ACCEPTED IN PARTIAL FULFILLMENT OF THE 

REQUIREMENTS FOR THE DEGREE OF Master of Science. 

 

                                                                                                    ____________________________ 

                                                                              Vladimir Katovic, Ph.D. 

                                                                                                      Thesis Director 

 

 ___________________________ 

                                                                                                      David A. Grossie, Ph.D., Chair 

                                                                                                      Department of Chemistry 

Committee on Final Examination 

 

____________________________  

Vladimir Katovic, Ph.D. 

 

____________________________  

 David A. Grossie, Ph.D. 

 

____________________________  

 Suzanne K. Lunsford, Ph.D. 

 

____________________________  

            Andrew Hsu, Ph.D. 

Dean, Graduate School. 
 

 



iii 
 

ABSTRACT 

 

 

Frock, Lynn R. M.S., Department of Chemistry, Wright State University, 2012. Synthesis 

and Electrodeposition of Mixed Metal Trinuclear Clusters of Molybdenum and 

Chromium in Ionic Liquid onto a Platinum Electrode 

 

 

 

Electrochemical properties of [Mo3O2(O2CCH3)6(H2O)(CF3SO2H)2  and 

[Cr2Mo(u2-CH3COO)6(u3-O)(H2O)3][CF3SO3] in 1-ethyl-3-methylimidazolium 

bis(pentafluoroethanesulfonyl)-imide ionic liquid was investigated. Cyclic 

voltammograms using a Platinum electrode indicated deposition had occurred for the 

[Mo3O2(O2CCH3)6(H2O)(CF3SO2H)2  metal cluster but had not for the polynuclear 

complex [Cr2Mo(u2-CH3COO)6(u3-O)(H2O)3][CF3SO3]. Constant potential electrolysis 

of -1.23 V using a platinum foil electrode was performed. Scanning electron microscopy 

in combination with energy dispersion spectroscopy confirmed that deposition had 

occurred.   
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           I.     INTRODUCTION 

 

MOLTEN SALTS 

A molten salt is a liquid obtained by melting an inorganic salt at extremely 

elevated temperatures. An example of a molten salt is sodium chloride (NaCl), that melts 

close to 800
0
C (1474

0
F)

1
. Molten salt mixtures are used in a variety of ways. For example 

molten chloride salt mixtures are commonly used in the process of alloy heat treatments. 

Molten salts are also used in the electrolytic production of metals such as uranium and 

aluminum. They have desirable characteristics such as good ionic conductivity, chemical 

and heat transfer properties. They are generally stable at very high temperatures and have 

relatively low vapor pressures.
2
 Molten salts do have several undesirable characteristics 

which include corrosiveness and difficulty in characterizing. They tend to be hydroscopic 

and attract water molecules from the surrounding environment. Their high melting points 

make them extremely dangerous to work with and require extra safety precautions to be 

taken when handled. 

 

IONIC LIQUIDS 

Ionic liquids are quite similar to molten salts. Researchers in the 1960’s found that 

by mixing inorganic and organic salts the melting point of the salt mixture could be 



2 
 

greatly reduced.
3
 The mixture is composed of a bulky organic cation and a smaller 

inorganic anion.
4
 Ionic liquids are salts that are liquids at ambient temperatures and 

contain strong ion-ion interactions that are not prevalent in molten salts.
5
 This strong ion-

ion interaction gives rise to some very interesting physical and chemical properties such 

as a large electrochemical window with a difference of approximately 4.0 volts between 

the cathodic and anodic decomposition potential. Most do not react with air and are not 

hydroscopic. They are stable at ambient temperature and have much lower melting 

points. They also have low vapor pressures, low densities, low dielectric constants and a 

wide range of thermochemical and electrochemical stability. Additionally they also have 

properties that make them useful as solvents in a variety of chemical applications due to 

their high conductivity and non-corrosiveness. Also, they are less toxic and safer to work 

with overall. Ionic liquids can be modified by to suit a particular application by choosing 

different anions or cations in the salt mixture
5,6

.
  
Choosing which anion to use is critical in 

designing the most suitable ionic liquid for a given application. The physical properties of 

ionic liquids can be altered by changing the alkyl chain length of the anion
6
. For example, 

the anions BF4
-
 and CF3SO4

-
 are both air and water insensitive and thermally stable 

however, they give yield to ionic liquids with different physical properties because the 

potential window of an ionic liquid is increased as the alkyl chain length is increased. 

Substitution of the bulky cation also plays a role in the physical properties of ionic 

liquids. Using different cations can alter the ionic liquids melting point as well as the 

width of the electrochemical window.
6
 Selection of the cation is critical due to the 

coulombic attraction between the cation and anion.
6
 The study and synthesis of ionic 

liquids has grown exponentially since they were first discovered in the 1960’s. The 
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synthesis of ionic liquids requires the reaction of a small inorganic anion, which governs 

the chemical properties of the liquid salt, with a bulky cation which determines the ionic 

liquids melting point.
7
 Five of the commonly used cations used to synthesize ionic liquids 

are (a) Alkylsufonium, (b) Alkylphosphonium, (c) Alkyammonium, (d) N,N-

alkylimidazolium, and (e) N-alkylpyridinium, shown in figure 1. 

a.) [SR3]
+
                  b.) [PR4]

+
                        c.) [NRxH4-x]

+
 

 

d.)                       e.)  

 

                                 

Figure 1. Five Commonly Used Cations in The Synthesis of Ionic Liquids  

 

One of the most common cations used in the synthesis of ionic liquids is the 1,3-

dialkylimidazolium cation
6
 shown in figure 2.  

 

                                       

Figure 2. One of the most common cations used in the synthesis of ionic liquids 1,3-

dialkylimidazolium cation 
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The 1,3-dialkyimidazolium salts are made up of dialkylimidazolium halides. The R is 

almost always a methyl group and R’can be varied to desired physical properties
7
. Table 

1 is a list of cationic portions used to vary physical properties and table 2 lists some of the 

commonly used anions. 

 

R’ = Methyl MMImCl - C5H9N2Cl 

Ethyl EMImCl - C6H11N2Cl 

Propyl PMImCl - C7H13N2Cl 

Isopropyl iPMImCl - C7H13N2Cl 

 

Table 1. Cationic portions used to vary physical properties 

 

 

Hexafluorophosphates  - PF6 

Tetrafluoroborate  - BF4 

Aluminate Halide - AlX4  (X = [Cl, Br, or I] 

Bis((pentfluoroethane)sulfonyl)imide – Beti 

 

    Table 2. Some of the commonly used anions   

 

*anions are listed in order of increasing water solubility 

 

Ionic liquids are currently being used in various processes such as batteries, metal 

electrodeposition, and photoelectrochemical cells. 
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METAL CLUSTER CHEMISTRY 

In the early nineteen sixties F. A. Cotton used the term cluster to describe 

compounds containing metal-metal bonds.
8
 The metal ion clusters contain at least two 

metal ions that are directly bonded together by a metal-metal bond. The transition metals 

of the second and third rows of the periodic table readily form very stable metal clusters 

due to their extended d-orbitals which favors overlap of valance orbitals.  

 One of the earliest examples of a metal cluster compound was the [Mo6Cl8]
4+

 cation in 

which the Mo6 is an octahedral cluster. In the octahedral metal cluster Mo6, each triangle 

Mo3 face is capped by a chlorine ion. The ligands for these and other types of clusters, for 

example O
2-

, Cl
-
, Br

-
 and I

-
 donate their π- electrons to the metals in the clusters center 

which optimizes the metal-metal bonding.
9
 

Metal clusters are of interest due to their ability to act as a catalyst. There were not many 

compounds known with metal to metal bonds in the early nineteen sixties and since then 

there have been numerous transitional metal compounds that have been synthesized and 

characterized by X-ray crystallography and various types of spectroscopy. 

Metal clusters are often referred to as transition metal cluster compounds and can be 

categorized either as early transitional metal clusters or late transitional metal clusters. 

There are two types of metal clusters; A). polynuclear carbonyls, nitrosyls, and similar 

related compounds; and B). halide and oxide complexes. Metal atoms of the type A have 

low formal oxidation states, -1 to +1, while those of type B are found in higher oxidation 

states, +2 to +3. Type A clusters are typically made up of late transitional 

metals, while type B clusters tend to consist of early transitional metals.
9
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Early transition metals  

Early transition metals attributes include high stability, very strong M-ligand 

bonds, and are typically inert. The metal atoms they contain are in higher oxidation states 

and typically bond with Π-donor ligands 
9
. The higher oxidation states helps to stabilize 

the metal cluster. The early transition metal homoleptic carbonyls have bond strengths 

that are stronger then late transition metals, as seen in Table 3.
26

  

Compound                 D, kj/mol Compound                 D, kj/mol 

Cr(CO)6                         108 Re(CO)6                      192 

Mo(CO)6                        152 Fe(CO)6                      117 

W(CO)6                          178 Co(CO)6                      136 

Mn(CO)6                         99 Ni(CO)6                       147 

 

Table 3. Bond Strengths for Transition Metals 

 

Early transition metals, also known as electron poor transition metal clusters or lower 

halides, are thought to contribute their excess electrons to the core metal due to 

contributions from their π - donor ligands, such as oxygen, chlorine, sulfur, bromine, 

iodine, and alkoxy molecules. The second and third transition metals specifically 

molybdenum, tungsten, tantalum and niobium have a formal oxidation state of +2 and +3. 

Maximum metal-metal bonding is achieved with higher oxidation states that help 

stabilize the metal cluster. Early transition metals strongly prefer to have a 

triangular and octahedral geometry. Figure 3 shows three examples of these geometries
13 
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(1) triangular [M3X9L3] type e.g., [Re3Cl12]
3-

 and (2) octahedral metal skeleton [M6X8L6] 

type e.g., [Mo6Cl 8L6]
4+

 or (3) [M6 X12L6 ] type e.g.,[Nb6Cl12L6]
12+

 (the chloro ligands 

bridge the 12 edges of the octahedron, L represents a suitable donor ligand) 

 

Figure 3. Octahedral and triangular geometries of Early Transition Metal clusters. 

 

Late transition metals 

The late transition metal clusters, sometimes referred to as electron rich transition 

metal clusters, contain metal centers such as, ruthenium, rhodium, and iridium in their 

low oxidation states. They are also typically known to contain carbonyl, nitrosyl, cyano, 

isocyanide, phosphine or hydido ligands. The carbonyl ligands are among the most 

common. The carbonyl ligand stabilizes the low oxidation state metal cluster by 

occupying the terminal, edge bridging or face capping positions of the cluster. These 

clusters contain π- acceptor ligands which due to their metal to ligand back-bonding, they 
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draw electrons from the metals. Late transition metals contain metals in low oxidization 

states, mostly zero, -1, or +1. They contain Π-acceptor ligands that withdraw electrons by 

Π-back-bonding. Late transition metals are highly reactive oxidizing agents that have 

weaker M-ligand bonds. Figure 4 shows an example of a late transition metal complex.  

 

 Figure 4. Late transition metal, [Mn2(CO)10] 

 

The transitional metal clusters contain half filled d and s valence orbitals, therefore 

maximum binding energies occur at the center of the transition series. The ligands that 

surround the metal core attempt to modify the electronic configuration of the metal while 

also achieving maximum binding energy
10

. 

 

STRUCTURES OF TRANSITION METAL CLUSTERS 

 

There are several different structural types of metal clusters, binuclear, trinuclear, 

tetranuclear , hexanuclear (octahedral) and Polynuclear metal complexes. 

Binuclear Metal Clusters 

Multiply bonded M-M dimmers with bond orders up to 4 are the most common 

binuclear metal cluster compound. Re2X8 
2-

 ions ( X = Cl-, Br- ) and binuclear 

carboxylates  M2( O2CR)4, (M = Cr, Mo, W, Re, or Ru ) are well known examples of 

binuclear metal clusters. An example of a Re2Cl8 
2-

 is shown in figure 5. 
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Figure 5. Structure of the Octachloridirhenate (III) ion The Re2X8 

 

 

 

The Re2X8 
2-

 anion has two distinctive features; the first one is the extremely short 

distance between the two metal Re atoms being only 2.24 angstroms apart, compared to 

2.75 angstroms in the rhenium metal and 2.48 angstroms in Re3Cl9. The other feature is 

the existence of the eclipsed configuration of the chlorine atoms in Re2Cl8 
2-

. The 

presence of the δ bond between Re atoms is proven by the eclipsed configuration of the 

chlorine atoms. This eclipsed configuration of the Re2Cl8
2-

 ion was described by F. A. 

Cotton
8
 and was central in proving that the quadruple δ did indeed exist between the Re 

atoms. Cotton was the first to describe the bonding of Re atoms in the dimer Re2Cl8
2- 7

. 

The Re atoms are joined along the z axis and each Re atom is bonded to four chlorine 

atoms. This geometry forms a square planar array. In each of the four Re-Cl bonds the 

dsp
2
 hybrid orbitals are used (occupying the dx

2
-y

2
orbital). The pz and dz

2
 orbital lie 

directly along the Re-Re bond axis and are thought to be hybridized to form one orbital 

directed towards the other Re atom and another in the opposite direction. The orbitals of 

each Re atom overlap and form a sigma-bond (Figure 6-a). Each dxy and dyz orbital of Re 

are not perpendicular toward the other Re atom, which overlap to form the d-d π bonds. 

The resulting π bonds, one in the xz plane and one in the yz plane are shown in figure 6-

http://images.search.yahoo.com/images/view;_ylt=A0PDoQ0uc.xQhRgA1geJzbkF;_ylu=X3oDMTBlMTQ4cGxyBHNlYwNzcgRzbGsDaW1n?back=http://images.search.yahoo.com/search/images?p=Rhenium+molecules&_adv_prop=image&va=Rhenium+molecules&fr=befhp&tab=organic&ri=111&w=168&h=131&imgurl=www.forgottenplanet.com/studyguide/chem210/ch1_p3_4.jpg&rurl=http://www.forgottenplanet.com/studyguide/chem210/chem210_ch1_page_3.html&size=3.1+KB&name=Quadruple+bond+between+<b>Rhenium+</b>atoms&p=Rhenium+molecules&oid=4d5184d63f926549b4116c75bd682acd&fr2=&fr=befhp&tt=Quadruple+bond+between+<b>Rhenium+</b>atoms&b=91&ni=56&no=111&ts=&tab=organic&sigr=12928gpv6&sigb=141lpomid&sigi=11ne6jh5h&.crumb=2QnRqgmzR69
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b. The forth metal-metal bond is able to form by the overlap of the two remaining d 

orbitals, dxy, of each Re atom. The sideways overlap of these d orbitals gives rise to the δ 

bond. This overlap can only exist if the chlorine atoms are in eclipsed form. The 

staggered form doesn’t allow for the overlap of the dxy orbitals and would result in no 

delta bonding.
10 

 

Figure 6. Multiple bonding between rhenium atoms, (a) Sigma bonding between Re 

atoms, (b) Two π bonds between Re atoms.
10

  

There are four d electrons contributed from each Re atom allowing the formation of four 

bonds. The structure of the M2(O2CR)4 dimer is shown in figure 7 (where M= Mo, W, 

Cr).
27 
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Figure 7. The structure of the the M2(O2CR)4 dimer (where M= Mo, W, Cr). 

 

The formal oxidation state of Mo in Mo2(O2CR)4 is +2. The quadruply Mo dimers are 

easily oxidized by 1e
-
 to give rise to dimers with a bond order of 3.5. 

Mo2(O2CR)4  -e
-
  Mo2(O2CR)4

+
 -e

-
  Mo2(O2CR)4

2+
 

 

Trinuclear Metal Clusters 

 

One of the best known examples of noncarbonyl clusters containing three metal 

atoms are the rhenium trihalides [(ReCl3)3] and their derivatives. First discovered in 1932 

by Geilnann, Wriuce, and Biltz
12

, Each rhenium atom is bonded together both directly to 

the other by metal to metal bonds and indirectly by a bridging halogen ligand. 

 In addition each rhenium atom in the triangular geometry is coordinated by two or more 
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halide ligands below and above the plane defined by the three rhenium atoms (figure 8 

a)
10

. The rhenium atoms of the diamagnetic Re3Cl8 cluster are bridged by halide ions with 

adjacent Re3Cl8 clusters which gives rise to a polymeric structure
11 

(figure 8 b). A 

dodecahalotrirhenate(III) ion Re3X12
3-

 is produced when Re3X8 is dissolved in a 

hydrochloric acid solution (figure 8 c)
11

. The behavior of other halides is the same as Cl. 

 

Figure 8. Structures of trinuclear rhenium metal clusters, (a) Re3X9, (b) polymeric 

structure of Re3X8, (c) Re3Cl12
3- 

 

Trinuclear triply-bonded compounds of the type M3X6 constitute an important and 

extensive area of chemistry.
14

 Trinuclear metal clusters with bond orders between 2/3 and 

1 are generally formed by the early transition metals in their lower oxidation states such 

as molybdenum, tungsten, niobium, and titanium. Their geometry is a triangular M3 unit. 

The basic structures of this type of clusters are known as; (M3X6 type), without μ3-

ligands (figure 9) is given by the cluster [M3X6 (C6Me6)3]
n+

 where M = Nb, Ti, Ta and X 

= Cl, or Br. The three metal atoms have direct metal-metal bonds to each other and are 
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surrounded by four chloride ligands in a square planar formation with three C6Me6 

molecules coordinating on the axial plane. The second type (M3X13 type), with one μ3-

ligand (figure 10) M3 X13 structure type is given by the formula [M3( μ3-X)( μ-Y)3L9)] 

where M = Ti, Nb, Mo, and W. X= μ3 capping ligands can be Cl
-
, Br

-
, I

-
, O2

-
, OCH2 

CMe3
-
, and S2

-
. Y = μ2 bridging ligands can be Cl

-
, Br

-
, I

-
, O2, S2

-
. The terminal ligands L 

can be OEt
-
, O2CCME3, CN

-
, H20, and the halide ions. The third type (M3X17 type), with 

two μ3-ligands, M3X17 structure (figure 11) with two ligands is given by formula [M3(μ3 -

X)2 ( μ-O2Y)6L3)]. The metals are Mo and W while the X can be O2
-
 or OEt

-
.  The 

bridging bidentate ligands O2Y can be MeCO2, EtCO2, tBuCO2 and monodentate ligands 

L can be, MeCO2, tBuCO2 and H20. 

 

Figure 9. Structure type (a) [M3X6(C6Me6)3]
n+

 (no μ3 ligand) 
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Figure 10. Structure type (b) [M3( μ3-X)( μ-Y)3L9)] (one μ3 ligand) 

 

                     

Figure 11. Structure type (c) [M3( μ3-X)2( μ-O2Y)6L3)] ( two μ3-ligands)
12

 

 

Tetranuclear metal clusters 

Tetranuclear metal clusters are very uncommon, however they can be formed by 

the dimerazation of quadruply bonded binuclear compounds. This dimerization will give 

rise to a planar structure, a tetrameric structure. There are very few examples of a 

tetrahedral structure metal clusters found that contain carbonyl ligands.
12

 Figure 11 shows 

an example of a quadruply bonded binuclear compound as a result of dimerization. 
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Figure 12. Quadruply bonded binuclear compound as a result of dimerization
12

 

 

Hexanuclear Metal Clusters 

 

Hexanuclear metal clusters are clusters that contain six metal atoms. Some of the 

earliest Hexanuclear clusters synthesized contained molybdenum, niobium, or tantalum 

atoms. These types of clusters can be formed by having either single bonds to several 

other metal atoms or by having multiple metal-metal atom bonds. This is a result of the 

low oxidation state of the metal. There are two types of hexanuclear clusters;  

1. The metal atoms form an octahedral cluster configuration with eight ligands 

bridging three of the six metal atoms. The ligands are positioned above the triangular 

faces of the octahedron. 

2. This type has the same core structure but has 12 ligands with each bridging two 

metal atoms. 



16 
 

  

[Mo6Cl8]
4+

                                                      [M6 X12]
2+

 where X= Cl, Br 

 Figure13. Examples of hexanuclear structure types.
13 

 

Polynuclear metal complexes 

Polynuclear metal complexes are inorganic complexes that contain two or more 

metals that do not have direct metal-metal bonds. Metal atoms in these compounds are 

stabilized by bridging ligands. In some cases of mixed metal polynuclear complexes the 

metals have been shown to exhibit covalent bonding of certain metals. Some common 

inorganic bridging ligands are: CO, OH
-
, SH

-
, and NH2

-
. Figure 14 shows an example of 

the Polynuclear complex, Cr3O(CH3CO2)6(H2O)3
+
. 
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Figure14. Polynuclear complex, Cr3O(CH3CO2)6(H2O)3
+
 

 

 METAL CLUSTER COMPOUNDS AS CATALYST 

  Metal cluster compounds are considered to be good candidates for improved 

catalyst. In 1836 Jöns Jakob Berzelius 
14

 was said to have coined the term catalyst to refer 

to the chemical reactions that are accelerated by substances that remain unchanged after 

the reaction has taken place. Transition metals and their compounds are now well known 

for their homogeneous and heterogeneous catalytic activity. This activity is due to their 

ability to adopt multiple oxidation states and to form different types of complexes
9
. 

Catalysts at a solid surface, such as an electrode, involve the formation of bonds between 

reactant molecules and the atoms at the surface of the catalyst. Both early and late 

transition metals utilize 3d and 4s electrons for bonding which has the effect of increasing 

the concentration of the reactants at the catalyst surface and also weakening of the bonds 

in the reacting molecules by lowering the activation energy needed to break bonds. The 

transition metal ions have the ability to change their oxidation states which makes them 

effective as catalysts. In metal cluster compounds each metal atom is directly bonded to 

an adjacent metal atom, but in metal cluster compounds the bonds are much shorter then 

http://en.wikipedia.org/wiki/J%C3%B6ns_Jakob_Berzelius
http://en.wikipedia.org/wiki/Catalytic
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in homogeneous metals. There are several advantages of metal cluster compound catalyst 

over traditional mononuclear catalyst. The properties of metal cluster compounds can be 

altered by changing the type of ligands, the structural configuration and by incorporating 

different metals into the cluster. They are soluble in an array of common solvents. They 

have the ability to bind to very small molecules through multiple metal ligand bonds. Due 

to these abilities metal clusters should work well as catalyst for the reduction of small 

molecules such as CO, N2, and O2. An example being the hydrogenation of carbon 

monoxide cannot be catalyzed by mononuclear metal catalyst,
16

 however the metal 

cluster compounds have been shown to catalyze the reduction
17

 of CO to CH4 and H2O. 

 

ELECTROCHEMICAL METHODS 

 Electrochemical methods provide efficient and straightforward assessment of the 

redox behavior of molecular systems. The most common electrochemical method used by 

chemist today is the voltammetric or potential sweep method. Voltammetry is a 

correlation between applied potential and current. In all potential sweep methods, the 

potential (V) of the working electrode is varied continuously with time according to a 

predetermined potential waveform or excitation function, while the current (I) is 

concurrently measured as a function of the potential. The applied potential at the working 

electrode is measured against a reference electrode of choice, while a counter electrode or 

auxiliary is required to balance the I-V applied. Thus, three electrodes are required, a 

working electrode, a reference electrode and an auxiliary electrode. An electrolyte salt 

must also be dissolved in solution to maintain sufficient conductivity in the bulk solution. 

Common types of working electrodes include glassy carbon, platinum, silver and gold. 
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Common types of auxiliary electrodes include Pt wire, and glassy carbon rods. Common 

types of reference electrodes include Ag/AgCl, Normal hydrogen electrode (NHE), 

saturated calomel electrode and Ag/Ag/NO3. Figure 15 shows a typical electrochemical 

cell used for potential sweep voltammetry. 

 

Figure15. Typical electrochemical cell used for potential sweep voltammetry. 

 

Linear Sweep Voltammetry 

 Linear sweep voltammetry (LSV) is the most basic potential sweep method. In 

LSV the potential of the working electrode is varied linearly with time between two 

values for example, the initial (Ei) and final (Ef) potentials. While the electrode potential 

is steadily increasing or decreasing during the experiment, a level of ohmic current flows 

continuously. The currents are due to the capacitive charging of the working electrodes 

double layer or Helmholtz layer. When the potential reaches a value in which the 

chemical species in the solution undergo electrochemical conversions Faradaic current 

will also flow. Figure 15 shows bulk solution when no potential is applied. Figure 16 
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shows that as potential is applied ohmic current begins to flow. Figure 17 shows the 

formation of the Helmholtz double layer in the electrochemical cell.
32 

 

 

 

 

Figure16. Bulk solution as no potential applied.
32

                 Figure17. Potential applied 
32

  

(Figure reproduced with permission from Taylor & Francis Group LLC- Books) 
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Figure18. Formation of the Helmholtz double layer in the electrochemical cell.
28

 

(Figure reproduced with permission from Taylor & Francis Group LLC- Books) 

 

 

Relative to the bulk solution redox chemical reactions only occur in the electrical double 

layer.
32 

 

Cyclic Voltammetry 

Cyclic voltammetry (CV) is similar to linear sweep voltammetry. It is based on 

the same fundamental principles however, in cyclic voltammetry the potential of the 
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working electrode is varied linearly with time between three values, EiEspEf.  In CV 

the potential of the working electrode is scanned back after reaching a chosen value, the 

switching potential (Esp). During the forward scan or reduction sweep, the Ei is more 

positive than the Ef  and the current is a result of the reduction of species. After reaching 

Esp the reverse scan begins and the anodic current is a result of the re-oxidation of the 

previously reduced species. Figure 18 shows the excitation function for a LSV 

experiment and figure 19 shows the excitation function for a CV experiment.
28 

 

 

 

 

Figure19. The excitation function for a LSV experiment.
32

 

(Figure reproduced with permission from Taylor & Francis Group LLC- Books) 
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Figure20. The excitation function for a CV experiment.
32

 

(Figure reproduced with permission from Taylor & Francis Group LLC- Books) 

 

 

Cyclic voltammetry can be used to study the redox properties of a large variety of 

organic and inorganic chemical species. Modern instruments allow the experimentalist to 

choose multiple switching potentials in order to carry out tailored CV scans over a chosen 

potential window which allows for rapid location of redox potentials as well as the 

kinetics of heterogeneous electron transfer reactions.  It is also a simple method to 

analyze the electrolyte solutions effect on the overall redox reaction. The potentials at 

which the maximum peak currents occur are called Ep values. The potentials for the 

oxidizing anodic and reducing cathodic sweep directions are referred to as Epa and Epc 

respectively. If the scan rate is varied and the effect on the relative magnitude of both the 



24 
 

anodic current Ipa, and the cathodic current Ipc, are determined, the rate constants for 

decomposition of the process can be deduced. The potential E1/2 for an electrical process 

is determined by (Epa + Epc) / 2. The value of E1/2 corresponds to the redox potential of 

the complex provided the diffusion properties of both the reduced and oxidized species 

are very similar. In an ideal redox process ΔEp =|Epa – Epc| = 0.059 V for an one electron 

redox reaction process. The characteristic half wave potential E1/2 of a redox couple is 

usually within a few mV of the formal potential E
o
 for the couple according to the Nernst 

equation shown below.
28 

 

E1/2 = E
0
 – (RT/2nF) ln(Dox/Dred) 

 

The ratio of the diffusion coefficients Dox and Dred is usually close to unity. The ease of 

determining half wave potentials and close approximation of formal potentials makes CV 

an attractive method in the study of redox processes. 

 It is common to determine the reversibility of a redox reaction by comparing ΔEp values 

of an unknown complex to the values of reference know complex. Ferrocene, Fe(C5H5)2 

is commonly used as a reference complex in redox studies. Figure 21 shows the 

reversible redox reaction of ferrocene (n
5
-C5H5)2Fe

2+
    ferricenium (n

5
-C5H5)2Fe

3+
. 

 

(Figure reproduced with permission from Taylor & Francis Group LLC- Books) 
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Figure 21. Reversible redox reaction of ferrocene  ferricenium
28 

 (n
5
-C5H5)2Fe

2+
    (n

5
-C5H5)2Fe

3+
 

 Figure 22 shows a cyclic voltammagram for a reversible one electron redox couple of 

Fe(C5H5)2  in acetonitrile against an Ag/AgCl reference electrode with E1/2 = 0 V.
28

   

 

 

Figure 22. Cyclic voltammagram of a reversible Fe 
+3/+2

 1e
-
 redox couple, E1/2 = 0V 

32
 

(Figure reproduced with permission from Taylor & Francis Group LLC- Books) 

  

 

a. Initial potential at 0.10 shows no current, thus no electrolysis when electrode 

is turned on. 

b. Electrode scanned in a more positive direction. 

c. Potential is made more positive and electrode is now a strong oxidant to 

oxidize ferrocene (n
5
-C5H5)2Fe

2+
 to  ferricenium (n

5
-C5H5)2Fe

3+
. 
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d. As anodic current increases the concentration of ferrocene decreases rapidly at 

the electrode surface causing the current to peak. 

e. Current decays as ferricenium surrounds the electrode and ferrocene 

concentration is depleted. 

f. Scan is now reversed at the switching potential Esp of 0.75 V In between 

points f and g anodic current continues as potential is sufficiently positive to 

oxidize ferrocene. 

g. At point h the electrode is now a strong reductant able to reduce the 

ferricenium that has accumulated adjacent to the electrode surface and the  

reversible redox reaction of  ferricenium (n
5
-C5H5)2Fe

3+  
 ferrocene (n

5
-

C5H5)2Fe
2+

 takes place. 

 

Cyclic voltammetry can provide four important parameters of a redox process, 

the anodic peak current, Ipa, the cathodic peak current, Ipc, the anodic peak 

potential, Epa,  and the cathodic peak potential Epc. These four values can be used 

to determine the number of transferred electrons, n, the heterogeneous rate 

constant Kn and the standard reduction potential E
o
. If the redox process is 

electrochemically reversible a characteristic cathodic wave is observed with a 

maximum current value given by the Randles-Sevcik equation shown below.
28 

 

Ip = [(2.69x10
5
) n 

2/3
 A(Doxv)

1/2
CoxΨ]/[RT]

1/2
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Ip= peak current; n = number of electrons; A= working electrode area (cm
2
); C = 

analyte concentration (m/cm
3
); v= potential scan rate (V/s) D = diffusion 

coefficient (cm
2
/s). 

32 

 

 The three types of systems that are prevalent in cyclic voltammetry are a 

reversible system, a quasi-reversible system, and an irreversible system. The type of 

system depends on the rate constant of the process. Slow electron exchange (very small 

K
0
) during the redox process will cause the system to be irreversible. If the current from 

the reverse sweep is not displayed in a CV scan then a system is irreversible. If the peak 

potential separation is greater than 59.2 V than the system is quasi-reversible and will 

increase with increased scan rate. Figure 23 depicts the difference between the reversible 

system and the quasi reversible system. A quasi reversible system is caused by the 

magnitude of the electron exchange rate being similar to that of the cyclic voltammetry. 

In an irreversible system the current on the reverse sweep will not show up.  
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Figure 23. Cyclic voltammagrams of: A. Reversible system and B. Quasi reversible 

system.
23

     

  

     

                                    II.  EXPERIMENTAL 

 

Materials 

The following materials were purchased from Alfa Aesar company: Acetic 

Anhydride (97+%) Trifluoroacetic acid (99%), Trifluoromethanesulfonic acid (98+%), 

Hexacarbonyltungsten (97%),  and Dowex 50wx2 100-200 (H). Molybdenum 

hexacarbonyl technical grade was purchased from Fluka Chemical Company. Sodium 

tungstate dehydrate (99%) , and Chromium(II) acetate dimer monohydrate was purchased 

Aldrich Chemical Company. Acetonitrile, gradient grade +99.0% and triethylamine was 

purchased from Fisher Scientific and used as received. Trifluoromethanesulfonic acid 

(99.5%) was obtained from Alfa Aesar.  

Instrumentation 

UV-VIS electronic absorption spectra were obtained using an Ocean Optics 4000 

spectrophotometer interfaced with an Apple computer and a HP 8100 printer. The UV-

Vis scans of samples were taken using ionic liquid or water as a solvent blank in 1-cm 

quartz cell. IR spectra were obtained from a Themo Scientific Nicolet 6700 FTIR 

interfaced with a Dell computer and a HP printer. Crystallography data was obtained 
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using a Bruker/Mitigen sample mount and ran in a Smart X2S Bruker/Mitigen 

instrument.
30

 Crystallography data was analyzed with Apex 2 and Oscail software.
31

   

The amount of water in the ionic liquid was determined using a Denver 

Instrument Coulometric Karl Fisher Titrator interfaced with a Model 260 titrator  

controller.  Approximately 20 microliters of liquid was injected into the titrator using a 

stainless steel needle and a glass syringe. The syringe was washed in ethanol and the 

dried in an oven with temperatures from 60 to 80 degrees Celsius between uses. 

Cyclic Voltammetry experiments were performed using an EG+G Princeton applied 

Research (PAR) 173 Potentiostat/Galvanostat System with a PAR 75 universal 

Programmer. A MacLab/4 analog digital converter was used to convert analog data 

recorded using Scope V3 software. Scanning electron microscopy was performed on a 

FEI Quanta SEM equipped with an Electron energy dispersion scope. 

 The cyclic voltammograms were obtained using a platinum disk working electrode, an 

Ag/AgCl reference electrode, and a platinum auxiliary electrode. The platinum disc 

electrodes (1mm) were obtained from Cypress Systems Inc. The cell volume ranged from 

0.5mm to 1ml. The electrochemical cell is shown in Figure 24. 
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Figure 24. Example of electrochemical cell  

 

 

 

 

 

Preparation of 1-ETHYL-3-METHYLIMIDAZOLIUM Bis(pentafluoroethane 

sulfonyl) 

 

  The ionic liquid 1-ETHYL-3-METHYLIMIDAZOLIUM Bis(pentafluoroethane 

sulfonyl) imide was previously synthesized and identified.
19

 Water was removed from the 

sample by placing on high vacuum with a liquid nitrogen trap for several days. CV scans 

indicated the presence of chlorine ions. Chlorine ions were removed by repeated washes 

with 40 ml of H2O followed by fine frit filtering and then placed back on high vacuum 

for several days.  

 

SYNTHESIS OF METAL CLUSTERS 

 

The formation of the metal-metal quadruple bond in the acetate derivative of 

molybdenum (II) carboxylate compounds presented the challenge of creating an air free 

environment to prevent the oxidation of the compound and intermediates. The binuclear 

metal dimer of molybdenum tetracarboxylate , Mo2(O2CR)4 and the metal Chromium 



31 
 

tetracarboxylate dimer ,Cr2(O2CR)4 , were prepared and handled under a nitrogen purge 

utilizing the Schlenk technique. Synthesis of the trinuclear metal clusters were all done 

under a nitrogen purge to prevent the air oxidation of the reactants.
20,27

 

 

 

Synthesis of Mo2(O2CCH3)4 -  tetra (acetato) dimolybdenum (II) 

 

MO2(O2CCH3)4  was synthesized by heating the triply bonded +3 dimer of 

2Mo(CO)6 in solution with a stoichiometric amount of acetic acid. The process strips CO 

ligands from Mo(CO)6 and allows for the oxidation of Mo atoms by the acetic acid.
20

 The 

resulting product is the quadruply bonded +2 dimer MO2(O2CCH3)4 .
27

  The extremely air 

sensitive dimer product was filtered in a glove box under N2 purge using a schlenk filter. 

The final product was stored in sealed vials and left in N2 purged desiccator containing 

Phosphorous pentoxide (P2O5) for later use. 

 

Mo2(CO)6  + 4HO2CCH3 ---- Mo2(O2CCH3)4  + 12CO + H2 

 

 

 

Synthesis of  [Mo3O2(O2CCH3)6(H2O)3](F3CCOOH) – Hexa-µ2-acetato-di- µ3-oxo-

tris(aqua-molybdenum (IV)- trifluoromethylacetate 

This synthesis was accomplished by finely grinding 1.21 g (5.0 mmol) of Na2MoO4 

and placing into a 200 ml schlenk flask which contained a mixture of 70 ml of acetic 

acid, I ml of triethyl amine and 7 ml of acetic anhydride. The mixture was deareated with 

N2 and placed under heat with a constant N2 purge. The mixture was allowed to reflux for 

30 minutes after which 12.0 g (2.0 mmol) of Mo2(O2CCH3)4 was quickly added. The 



32 
 

mixture was refluxed for 72 hours while stirring under a N2 purge. A color change was to 

dark brown observed when all the solids had dissolved. After refluxing the solution was 

allowed to cool to room temperature and diluted with 200 ml of H2O. The diluted mixture 

was then filtered.  The filtrate was then poured into a Dowex 50x2-200 cation exchange 

resin column previously prepared with HCl. After rinsing the column with H2O the 

filtrate was slowly eluted using 1.0M Trifluoromethyl acetic acid. Four layers were 

developed in the column from top to bottom, one blue green, one dark blue, one yellow 

and one light pink. The solution was, then, evaporated on the rotatory evaporation system 

at 80 
o
C under vacuum to remove the excess H2O. The remaining eluent was allowed to 

slowly evaporate and produced dark red crystals of the product 

[Mo3O2(O2CCH3)6(H2O)(CF3CO2H)2.
20,27

 

 

 

 

Synthesis of Cr2(O2CCH3)4 

An aqueous solution of a Cr
3+ 

compound is first reduced to the chromous state 

using zinc according to the following reaction.
20

 

2Cr
3+

 + Zn  2Cr
2+

 + Zn 
2+

 

The resulting blue product is then treated with sodium acetate which results in the rapid 

participation of chromous acetate as a bright red powder according to the following 

reaction.
20

 

2Cr
2+

 + 4OAc + 2H2O  Cr2(OAc)4(H2O)2  
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Any introduction of air into the apparatus is indicated by a discoloration of the bright red 

product.
21

  Figure 25 shows the structure of a Cr2(OAc)4(H2O)2 molecule. 

 

 

Figure 25. Structure of a Cr2(OAc)4(H2O)2 molecule  

 

The red colored compound of Cr2(OAc)4(H2O)2 , like that of Mo2(OAc)4, contains a 

quadruple bond between the two metal atoms. The molecule contains two chromium 

atoms, four monoanionic acetate ligands and two ligated molecules of water. The 

coordination environment surrounding each chromium atoms consists of a total of four 

oxygen atoms coming from each acetate ligand, one water molecule in the axial position 

and the second chromium atom being opposite of the water molecule. This environment 

gives the chromium center an octahedral geometry. The molecule has D4h symmetry. The 

same structure as a molecule of the Molybdenum(II) acetate dimer. The main difference 

between the two structures are the reported bond lengths between each molecules central 

metal atoms, with Mo-Mo reported as 2.093Å and Cr-Cr reported as 2.36 Å
10

. The 

quadruple bond found between the two chromium atoms arises from the overlap of its 

four d- orbitals of each metal atom with the same orbitals of the other metal atom. The 

sigma bond comes from the overlap of the z
2
 orbitals and the overlapping orbitals of the 

http://en.wikipedia.org/wiki/File:Chromium(II)-acetate-dimer-3D-balls.png
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xz and yz gives rise to two pi bonds. The fourth bond, the delta bond is from the xy 

orbitals overlapping. Because the Cr is in a 2+ oxidation state it is a good reducing agent. 

The formation of the quadruple bonds on the two Cr atoms is shown in the MO diagram 

in figure 26. 

 

 

  Figure 26.  MO diagram for Cr (II) acetate complex
29 

 

 

Synthesis of [Cr2Mo(u2-CH3COO)6(u3-O)(H2O)3][CF3SO3]
 

 This preparation was very similar to that of [Mo3O2(O2CCH3)6(H2O)(CF3SO2H)2 

with the exception of using excess Cr2(OAc)4  in place of Mo2(O2CCH3)4. Finely ground 

Na2MoO4
.
2H2O (1.20 g, 4.66 mmol) was placed in a solution of 70 ml acetic acid, 7 ml 

acetic anhydride and 1 ml triethyl amine utilizing the schlenk method. The suspension 

was deareated by purging with N2 and brought to a reflux. The Cr2(OAc)4 dimer (2.0 g, 
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5.32 mmol) was added quickly under N2 and refluxed for 11 days. After about 24 hours 

the solution changed to a dark brown color and all the solids had dissolved. After 4 days 

the solution changed to a medium purple color which indicated that product underwent 

oxidation. The synthesis was attempted again at increased temperature and longer 

reaction time. A green solution was achieved at higher temperature and 7 days of reflux. 

The solution was then vacuum filtered through a glass frit funnel and eluted through an 

acidified Dowex 50x2-200 cation exchange 15 cm height resin column. The eluent was 

slowly evaporated and produced a very small quantity of trigonal faced dark green 

octahedral crystals. The product was analyzed by utilizing three dimensional diffraction 

using Mo Kα radiation. The structure was confirmed to be crystals of the hetero-

polynuclear metal complex [Cr2Mo(u2-CH3COO)6(u3-O)(H2O)3][CF3SO3]. The complex 

was also analyzed using FTIR, CV and UV-VIS characterization methods. 
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III. RESULTS AND DISCUSSION 

 

Electrochemistry of EMIBeti 

EMIBeti is prepared by utilizing an ion exchange reaction with EMICl and 

LiBeti. EMICl is dissolved in 200 ml of H2O after which an equal molar amount of 

lithium bis((pentafluoroethane)sufonyl)imide (LiBeti) dissolved in 200 ml of H2O is 

added. After the reaction in solution has taken place the LiCl must be removed from the 

final product. The LiCl was completely removed by washing the solution with 40 ml of 

H2O approximately 15 times. The solution was determined to be free of LiCl when it no 

longer tested positive when reacted with Ag
+
. Once the solution was free of LiCl it was 

dried using high vacuum for removal of excess H2O. IR spectra confirmed the identity of 

the ionic liquid. CV scans taken before and after washing the ionic confirmed all 

impurities had been removed. Figure 27 shows the inferred spectrum of EMIBeti after 

washing and drying the solution. The relatively small bands of H2O stretching, at ~3600 

cm
-1

 is observed. The two bands correspond to symmetric and antisymmetric stretching 

of H2O. If a larger amount of H2O were present (> 300 ppm) a broad band at ~3400 cm
-1

 

would be observed characteristic of the presence of hydrogen bonding. 
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Figure 27.  Infared spectrum of EMIBeti 

 

 

CV scans taken of EMIBeti before and after purification confirmed the ionic 

liquid was clean and dry. Figure 28 shows the CV scan of the ionic prior to purifying. 

Figure 29 shows the CV scan of the ionic liquid post purification. The voltammogram 

does not show an oxidation peak at 1.0 V due to the oxidation of Cl
-
. EMIBeti is known 

to have an electrochemical potential window of 4.3V with a positive potential of 2.1V 

and a negative potential of 2.2V. 
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Figure 28. CV scan of EMIBeti with before purification 

 

 

Figure 29.  CV scan of EMIBeti after purification 
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  For ionic liquids the electrochemical window is driven by the how much 

the cation can resist reduction and how well the anion can resist oxidation. Addition of a 

metal into the ionic liquid will reduce the electrochemical window of the ionic liquid. As 

an example ferrocene CV scans were ran in acetonitrile as shown in figure 30. Another 

CV scan of ferrocene was ran in EMIBeti as shown in figure 31 which clearly shows a 

reduction in the width of the electrochemical window. 

 

Figure 30. CV scan of Ferrocene in acetonitrile  

 

 

 

Figure 31. CV scan of Ferrocene in EMIBeti 

 



40 
 

 

Electrochemistry of trinuclear metal complexes   

 The electrochemical properties of [Mo3O2(O2CCH3)6(H2O)(CF3SO2H)2 and 

[Cr2Mo(u2-CH3COO)6(u3-O)(H2O)3][CF3SO3] trinuclear metal complexes in ionic liquids 

were compared to their electrochemical properties in H2O.  The differences of structures 

of these two metal complexes are clearly shown in figure 32. The metal clusters, 

[Mo3O2(O2CCH3)6(H2O)(CF3SO2H)2 and [Cr2Mo(u2-CH3COO)6(u3-O)(H2O)3][CF3SO3]   

do not readily dissolve in H2O or EMIBeti. A small amount of each complex was placed 

in separate electrochemical cells equipped with tiny stir bars. Two samples of each metal 

complex were prepared, one containing H2O and one containing EMIBeti. The samples 

were place on a stir plate at a temperature of 60
0
 C for several days to dissolve the metal 

complexes. Electronic spectra of the metal complexes confirmed the structure of the 

metal complexes did not change by dissolving them in ionic liquid. Figure 33 shows the 

UV-Vis spectra of [Mo3O2(O2CCH3)6(H2O)(CF3SO2H)2  dissolved in H2O and figure 34 

shows the UV-Vis spectra obtained in EMIBeti. Similarly, the electronic spectra of the 

[Cr2Mo(u2-CH3COO)6(u3-O)(H2O)3][CF3SO3]  polynuclear complex obtained in H2O and 

EMIBeti are shown in figure 35 and 36 respectively. The spectra are identical confirming 

that the metal complexes did not change by dissolving them in ionic liquid. 
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A.                                                                        B.  

Figure 32. A) [Mo3O2(O2CCH3)6(H2O)(CF3SO2H)2 and B) [Cr2Mo(u2-CH3COO)6(u3-

O)(H2O)3][CF3SO3]. 

     

 

 

Figure 33. UV-Vis [Mo3O2(O2CCH3)6(H2O)(CF3SO2H)2 in H2O 
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Figure 34. UV-Vis scan [Mo3O2(O2CCH3)6(H2O)(CF3SO2H)2 in EMIBeti 

 

 

 

Figure 35. UV-Vis[Cr2Mo(u2-CH3COO)6(u3-O)(H2O)3][CF3SO3] in H2O 
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Figure 36. UV-Vis scan of [Cr2Mo(u2-CH3COO)6(u3-O)(H2O)3][CF3SO3] in EMIBeti 

 

 

 

 

 

 

UV-Vis electronic spectra was obtained for the metal complex of 

[Mo3O2(O2CCH3)6(H2O)(CF3SO2H)2  shows absorbance peaks at 435nm and 525nm in 

both H2O and EMIBeti. The UV-Vis spectra for [Cr2Mo(u2-CH3COO)6(u3-

O)(H2O)3][CF3SO3]  metal complex gave absorbance peaks at 446nm and 535nm in both 

H2O and EMIBeti. 
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Electrochemistry of [Mo3O2(O2CCH3)6(H2O)(CF3SO2H)2   

 Cyclic volyammograms of [Mo3O2(O2CCH3)6(H2O)(CF3SO2H)2  dissolved in 

EMIBeti ionic liquid using a platinum working electrode and a Ag/AgCl  reference 

electrode are shown in figure 37. The voltammogram was initiated at 0 V, scanned in the 

negative direction and reversed at -1.9 V at a scan rate of 50 mV/sec. Figure 37 displays 

the reduction peak at  -1.6 V and an oxidation peak at 1.1 V. A reverse CV in figure 38 

displays an irreversible reduction peak at 1.23V with no oxidation peak during the cycle.  

 

Figure37. Forward CV scan [Mo3O2(O2CCH3)6(H2O)(CF3SO2H)2 in EMIBeti. 

 

 

Figure38. Reverse CV scan of [Mo3O2(O2CCH3)6(H2O)(CF3SO2H)2 in EMIBeti 
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Electrochemistry of [Cr2Mo(u2-CH3COO)6(u3-O)(H2O)3][CF3SO3 ] 

 A structural study on [Cr2Mo(u2-CH3COO)6(u3-O)(H2O)3][CF3SO3] utilizing 

three dimensional diffraction using Mo Kα radiation has confirmed the configuration of 

the hetero-polynuclear cluster. The configuration of the complex cation consists of two 

chromium atoms and a single molybdenum atom in a triangular formation surrounding a 

single oxygen atom. The three metal atoms are each coordinated to the central oxygen 

atom, to four of the oxygen atoms of the acetate groups and to the oxygen of one of the 

water molecules. It appears as if the Mo is bonded to each of the chromium, but the 

chromium atoms are not directly bonded to each other in the octahedral formation. The 

acetate groups link the vertices of the central complex cation. The space group 

determined using Apex II software is the orthorhombic P212121 due to the primitive 

orthorhombic nature of the crystal and the 21 screw axis along each x,y,z lattice 

directions. [1, 0, 0] at x, ¼, 0 with screw component [1/2, 0, 0], [0, 1, 0] at 0, y, ¼ with 

screw component ½-x, -y, ½ z, and [0, 0, 1] at ¼, 0, z with screw component [0, 0, ½]. 

Unit cell values resulted in a=12.72 Å , b=13.51 Å and c=16.92 Å where alpha, beta and 

gamma = 90
0
. Z value calculated is 4, cell volume of 2909.1 with a density value of 1.729 

g/Å
3
 and a resolution factor value of 0.089. A comparison of the literature values 

28
 for 

trans-u3-Oxo-tris{bisacetatoaquochromium(III) chloride hexahydrate is very similar 

where literature values were given as a=13.677 Å, b= 23.14 Å, c=9.14 Å with space 

groups as P212121, V=2893.44, and Z=4. ρ was found to be 1.823 g/Å. Bond angles and 

distances were found to be in close range to literature 
14

 values reported as Cr to central O 

bond lengths of 1.95 Å, 1.86 Å and 2.04 Å compared to values determined here of Cr3-

O2 = 1.89 Å, Cr8-O2 = 1.882 Å and Mo1-O2 = 1.909 Å. The following bond lengths for 

the hetero-central metal atoms were found to be, Mo1-Cr3=3.2877 Å, Mo1-Cr8=3.2815 
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Å. The angles between each metal atom found in the literature 
28

 were reported as Cr3-

O4-Cr2=119.6 º, Cr2-O4-Cr1=118.9º and Cr1-O4-Cr3=121.6 º, compared to values 

reported here, found to be Cr3-O2-Mo1=119.3 º, Cr8-O2-Mo1=119.9 º, and Cr3-O2-

Cr8=120.2 º. The solved structure is shown in figure 39. 

 

Figure 39. Structural solved for [Cr2Mo(u2-CH3COO)6(u3-O)(H2O)3][CF3SO3] 

 

 

Cyclic volyammograms of [Cr2Mo(u2-CH3COO)6(u3-O)(H2O)3][CF3SO3] dissolved in 

EMIBeti ionic liquid using a platinum electrode and a Ag/AgCl electrode are shown in 

figure 40. The voltammogram was initiated at 0, scanned in the negative direction and 

reversed at -1.9 V at a scan rate of 50 mV/sec and displays two reduction peaks at 0.85 V 

and 0.39 V. A single oxidation peak at -1.1 V appeared for the cycle. A reverse CV in 

figure 41 displays two irreversible reduction peaks at 1.05 V and 0.65 V, with no 

oxidation peak during the cycle. 
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The forward CV scan of [Cr2Mo(u2-CH3COO)6(u3-O)(H2O)3][CF3SO3] in EMIBeti is 

shown in figure 40. The reverse CV scan is shown in figure 41. 

 

 

 

Figure 40. CV scan of [Cr2Mo(u2-CH3COO)6(u3-O)(H2O)3][CF3SO3] in EMIBeti. 

 

 

 

Figure 41. Reverse CV scan of [Cr2Mo(u2-CH3COO)6(u3-O)(H2O)3][CF3SO3] in 

EMIBeti.  

 

IR spectra of [Mo3O2(O2CCH3)6(H2O)(CF3SO2H)2  and [Cr2Mo(u2-CH3COO)6(u3-

O)(H2O)3][CF3SO3] are shown in figures 42 and 43 respectively. 



48 
 

 

 

Figure 42. IR scan of [Cr2Mo(u2-CH3COO)6(u3-O)(H2O)3][CF3SO3] 

 

 

 

 

 

Figure 43. IR scan [Mo3O2(O2CCH3)6(H2O)(CF3SO2H)2   
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Electrochemical deposition of [Mo3O2(O2CCH3)6(H2O)(CF3SO2H)2  and [Cr2Mo(u2-

CH3COO)6(u3-O)(H2O)3][CF3SO3] onto a Pt electrode 

 

 Based on the reduction potential indicated by the reverse sweep CV’s, the two 

metal cluster complexes were chosen as comparison candidates for electrochemical 

deposition onto a pure Pt electrode. We propose that at a potential of-1.23 V, a complete 

reduction of the [Mo3O2(O2CCH3)6(H2O)(CF3SO2H)2  cluster to metal using 12 electrons 

would take place. 

[Mo3O2(O2CCH3)6(H2O)3]
2+

 + 12e
-
  Mo3 

 The deposition could be explained by the bonding of the metal atom of the Mo3 cluster 

unit to the Pt. It has been proposed that the M3 cluster in ionic liquid releases one H2O 

molecule in the [Mo3O2(O2CCH3)6(H2O)(CF3SO2H)2 cluster resulting in emptying one 

equatorial coordination site of the M3 clusters available to bind to the Pt electron 
24

.   The 

result being easy transfer of electrons and formation of Mo deposition onto the Pt 

electrode. The proposed bonding is shown in figure 44. 

 

 

Figure 44. Proposed bonding between the M3 cluster and platinum electrode. 
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The [Mo3O2(O2CCH3)6(H2O)3] metal species is made up of three direct metal-metal 

bonds and has a cation charge of +12. Each Mo atom has a formal oxidation state of +4. 

However, in the metal complex of [Cr2Mo(u2-CH3COO)6(u3-O)(H2O)3] species the Mo is 

directly bonded to each of the Cr atoms but the Cr atoms do not bond to each other. There 

is also a difference in the charge of the cation for of [Cr2Mo(u2-CH3COO)6(u3-O)(H2O)3] 

where the Mo has an oxidation state of +4 but each of the Cr atoms only carry a charge of 

+3 which gives an formal oxidation state of 3.33 for the metal center.  The bond distances 

found for the Mo3 species are also different. Mo3 complexes are reported as 2.46 Å to 

2.55 Å
17

. According to the crystallography data obtained for [Cr2Mo(u2-CH3COO)6(u3-

O)(H2O)3] the bond distance between the Mo atom and each of the two Cr atoms was 

found to be approximately 3.3 Å which would result in a much weaker bond 
23

. To 

investigate the deposition of each metal complex onto a Pt electrode, a constant reduction 

potential on a small Pt foil electrode was performed. A two compartment electrochemical 

cell was used for the electrodeposition of each species. A pure Pt foil working electrode 

and an Ag/AgCl reference electrode were placed in the cathodic compartment. The 

auxiliary Pt electrode was placed in the anodic compartment. A solution of 

[Mo3O2(O2CCH3)6(H2O)3] metal species dissolved in EMIBeti was electrolyzed at -1.23 

V for 50 hours. Inspection of the Pt electrode using scanning electron microscopy (SEM) 

indicates that a deposition had occurred. Furthermore, energy dispersion spectroscopy 

(EDS) indicated a definite change in the metal composition of the pure Pt foil electrode. 

The initial composition of the Pt foil electrode was 100% compared to 88.1% for Pt post 

deposition and 1.59% for the amount of Mo on the same electrode. Figure 45 shows the 

SEM images of the Pt electrode before and after the electrochemical deposition of 
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[Mo3O2(O2CCH3)6(H2O)3] onto the Pt electrode. Figure 46 shows the results of the EDS 

analysis performed on the same Pt electrode post electrochemical deposition.  

 

 

 

 

A. Pre-electrochemical deposition        B. Post- electrochemical deposition 

Figure 45. SEM 5000x of Pt electrode  A.) Pre-electrochemical deposition , B.) Post- 

electrochemical deposition of [Mo3O2(O2CCH3)6(H2O)(CF3SO2H)2 
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Figure 46. Data from Energy Dispersion x-ray diffraction scans for Pt electrode post 

[Mo3O2(O2CCH3)6(H2O)(CF3SO2H)2  electrochemical deposition. 
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CV scans of the remaining solution in the electrochemical cell was performed and 

it is clearly show in figure 47 that the forward scan no longer gives evidence of presence 

of the [Mo3O2(O2CCH3)6(H2O) species. UV-Vis scans were also taken of the solution 

post electrochemical deposition and are shown in figure 48. A band shift toward a lower 

frequency and longer wavelength indicates a change in the composition of the species in 

the solution. 

 

 

Figure 47. CV scan post electrochemical deposition of [Mo3O2(O2CCH3)6(H2O) in 

EMIBeti.   
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Figure 48. UV-Vis scan of [Mo3O2(O2CCH3)6(H2O)(CF3SO2H)2  post electrochemical 

deposition. 

 

 

Similarly, using the same type of electrochemical cell, an attempt was made to 

electrochemically deposit [Cr2Mo(u2-CH3COO)6(u3-O)(H2O)3 in EMIBeti onto the Pt 

electrode. The only difference being the value of the applied potential, -1.05 V at which 

the [Cr2Mo(u2-CH3COO)6(u3-O)(H2O)3  species was electrolyzed. The Inspection of the 

Pt electrode using scanning electron microscopy (SEM) indicates that no deposition of 

[Cr2Mo(u2-CH3COO)6(u3-O)(H2O)3 had occurred. Furthermore, energy dispersion 

spectroscopy (EDS) indicated a change in the metal composition of the pure Pt foil 

electrode had not occurred. The initial composition of the Pt foil electrode was 100% and 

remained the same for the Pt electrode post attempted electrodeposition. Figure 49 shows 

the SEM images of the Pt electrode before and after the electrochemical deposition of 

[Cr2Mo(u2-CH3COO)6(u3-O)(H2O)3 . There is a difference of appearance for the Pt 

electrode, however the EDS in figure 50 shows no signs of the presence of either Cr or 
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Mo atoms. CV scans of the remaining solution in the electrochemical cell was also 

performed and clearly show in figure 51 that the forward scan gives evidence that the 

[Cr2Mo(u2-CH3COO)6(u3-O)(H2O)3 species is still present in the electrolyzed solution. 

UV-Vis scans were also taken of the solution post electrochemical deposition and are 

shown in figure 52. Characteristic peaks for [Cr2Mo(u2-CH3COO)6(u3-O)(H2O)3 were not 

present which possibly indicate that the species basically fell apart while undergoing 

electrolyzation. 

  

 

 

 

                       

A. Pre-electrochemical deposition        B. Post- electrochemical deposition 

Figure 49. SEM scan 5000x of Pt electrode  A.) Pre-electrochemical deposition 
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 B.) Post- electrochemical deposition of[Cr2Mo(u2-CH3COO)6(u3-O)(H2O)3][CF3SO3] 

Cr2Mo(u2-CH3COO)6(u3-O)(H2O)3 

 

Figure 50. Data from Energy Dispersion x-ray diffraction scans for PT electrode post 

[Cr2Mo(u2-CH3COO)6(u3-O)(H2O)3][CF3SO3] electrochemical deposition attempt. 
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Figure 51. CV scan of of [Cr2Mo(u2-CH3COO)6(u3-O)(H2O)3][CF3SO3] post 

electrochemical deposition. 

 

 

 

Figure 52. UV-Vis scan of of [Cr2Mo(u2-CH3COO)6(u3-O)(H2O)3][CF3SO3] post 

electrochemical deposition. 
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IV. CONCLUSION 

In this work the electrochemical properties of two different types of metal 

clusters was investigated in an attempt to modify a Pt electrode. The trinuclear 

homogeneous metal cluster of [Mo3O2(O2CCH3)6(H2O)(CF3SO2H)2  and the 

polynuclear metal complex [Cr2Mo(u2-CH3COO)6(u3-O)(H2O)3][CF3SO3] in 

EMIBeti ionic liquid were both thought to be good candidates due to thier 

early transition metal and electrochemical potential characteristics. EMIBeti 

was chosen as a suitable electrolyte solution due to its stability and wide 

electrochemical potential window. Modification of a Pt electrode using metal 

cluster compounds is thought to enhance the catalytic properties of the Pt 

electrode.  

 It was shown by UV-Vis that the species of both the metal complexes 

maintain their chemical integrity when dissolved in EMIBeti. After 

electrochemical deposition experiments of both metal complexes it was found 

that the trinuclear metal cluster of  [Mo3O2(O2CCH3)6(H2O)(CF3SO2H)2  

could be successfully deposited onto a Pt electrode but the polynuclear 

complex of [Cr2Mo(u2-CH3COO)6(u3-O)(H2O)3][CF3SO3] could not be 

deposited. The successful deposition was proven by SEM and EDS 

spectroscopy methods. 

Research could be extended further by actually using the modified Pt 

electrode in a fuel cell such as an ethanol fuel cell to enhance the fuel cells 

ability to make the reaction that takes place procede to completion. This 
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would be a benefit for the utilization of ethanol as an alternative energy 

resource.  
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