
Wright State University Wright State University 

CORE Scholar CORE Scholar 

Browse all Theses and Dissertations Theses and Dissertations 

2012 

Entropy Optimal Orthogonal Matrices Entropy Optimal Orthogonal Matrices 

Akhilesh Pathak 
Wright State University 

Follow this and additional works at: https://corescholar.libraries.wright.edu/etd_all 

 Part of the Physical Sciences and Mathematics Commons 

Repository Citation Repository Citation 
Pathak, Akhilesh, "Entropy Optimal Orthogonal Matrices" (2012). Browse all Theses and Dissertations. 
726. 
https://corescholar.libraries.wright.edu/etd_all/726 

This Thesis is brought to you for free and open access by the Theses and Dissertations at CORE Scholar. It has 
been accepted for inclusion in Browse all Theses and Dissertations by an authorized administrator of CORE 
Scholar. For more information, please contact library-corescholar@wright.edu. 

https://corescholar.libraries.wright.edu/
https://corescholar.libraries.wright.edu/etd_all
https://corescholar.libraries.wright.edu/etd_comm
https://corescholar.libraries.wright.edu/etd_all?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F726&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/114?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F726&utm_medium=PDF&utm_campaign=PDFCoverPages
https://corescholar.libraries.wright.edu/etd_all/726?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F726&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library-corescholar@wright.edu


Entropy Optimal Orthogonal Matrices

A thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Science

By

Akhilesh Pathak

B. Tech, Indian Institute of Technology Kanpur, 2009

2012

Wright State University



WRIGHT STATE UNIVERSITY

SCHOOL OF GRADUATE STUDIES

June 1, 2012

I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SU-

PERVISION BY Akhilesh Pathak ENTITLED Entropy Optimal Orthogonal Matrices

BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR

THE DEGREE OF Master of Science.

K.T. Arasu, Ph.D.

Thesis Director

Weifu Fang, Ph.D.,

Chair

Department of

Mathematics and Statistics

College of Science and Mathematics

Committee on

Final Examination

K.T. Arasu, Ph.D.

David Miller, Ph.D.

Richard Mercer, Ph.D.

Andrew Hsu, Ph.D.

Dean, School of

Graduate Studies



ABSTRACT

Pathak, Akhilesh, M.S., Department of Mathematics and Statistics, Wright State

University 2012, Entropy Optimal Orthogonal Matrices.

The entropy of an orthogonal matrix is defined by the Gadiyar, Maini, Padma and

Sharatchandra who have re-defined Hadamard matrices as the orthogonal matri-

ces that saturate the bound for entropy. They also presented numerical results

for maximal entropy for dimension n = 3, 5. We prove the results analytically for

n ≡ 0(mod 4), n = 3 and construct local extremums for n = 5, 6, 10, 2p, 3p, where p is

prime. We also provide cojectures on necessary conditions for optimality and optimal

matrices based on the prime factorization of the order.
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1. Introduction

The entropy of a random variable (or a probability distribution) is defined as the

measure of uncertainty in Information Theory. As the uncertainty in the outcome(s)

of an event decreases, we say that we have received some information. The idea of

entropy was first introduced by Claude Shannon in his famous paper [1]. In signal pro-

cessing and communication problems, specifying the probabilities in the cases where

little information is available, is not solvable completely. This is a classical problem

in probability theory. One can intuitively think that the optimal uncertainty could

happen when all the outcomes are equiprobable, for which mathematicians Jacob

Bernoulli and Laplace gave an intuitive principle of indifference [2]. George Boole,

John Venn, and others gave it formally, named as the principle of insufficient reason

[3]. During the 20th century, Information Theory provided advancement to classical

notions by giving a unique and unambiguous criterion for the measure of uncertainty

represented by a discrete random probability distribution, called entropy. The char-

acterization of Shannon’s measure of entropy was given as follows. For a discrete

random variable taking finite number of possible values x1, x2, · · · , xn with probabili-

ties p1, p2, · · · , pn such that pi > 0 and
∑n

i=1 pi = 1, the amount of uncertainty of the

probability distribution is given by

H(X) =
n∑
i=1

pi log2

1

pi
.
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The minimum for the entropy defined above is zero for the case of certainty, i.e. for

some j,

pi =


1 for i = j

0 for i 6= j

The maximum for the entropy is log2 n when all values are equiprobable, i.e.

pi =
1

n
, ∀ i = 1, 2, ..., n.

The entropy for an orthogonal matrix has been defined in [4]. We shall discuss bounds

on the entropy for several values of n. The bound for an n × n orthogonal matrix

has an interesting connection with Hadamard matrices. A detailed introduction to

Hadamard matrices and its properties have been given in the next section 2.1. We also

prove achievable sharper bounds with corresponding examples of an n×n orthogonal

matrix for the case when Hadamard matrices do not exist. Certain symmetries have

been found for various categories based on the prime factorization of n. The numerical

computations done by [4] give entropy optimal matrices of order 3 and 5. We have

analytically proved the results for orders 4k, 3, and have extended the results for

order 6 and 10 using the Kronecker product for the orthogonal matrices. To prove

the universal bound, we have used Jensen’s inequality and for a sharper bound of

order 3, we use the characterization given by Stewart [5].
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1.1. Entropy for an Orthogonal Matrix. For an n × n orthogonal matrix M(n)

with real entries aij at the (i, j)th position, the definition for entropy is given as below

ER[M(n)] =
n∑
i=1

n∑
j=1

a2ij ln

(
1

a2ij

)
.

Another definition we give for a different class of matrices, namely complex inverse

orthogonal matrices defined in [6].

1.2. Complex Inverse Orthogonal Matrix. An n×n complex inverse orthogonal

matrix M is a matrix such that the product (M)
(

1
M

)
= nIn, where M is a matrix

with uni-modular columns and complex non-zero entries aij at the (i, j)th position

and 1
M

is the matrix with complex entries 1
aij

at the (i, j)th position.

1.3. Entropy for a Complex Inverse Orthogonal Matrix. For an n×n inverse

orthogonal matrix M with complex entries aij at the (i, j)th position, we define entropy

as

EC [M(n)] =
n∑
i=1

n∑
j=1

|aij|2 ln

(
1

|aij|2

)
,

where |aij| represents the absolute value of the complex number aij.

1.4. Entropy Saturation. We define the entropy saturation for an orthogonal ma-

trix M(n) of order n as the ratio of its entropy to the upper bound for n, denoted

as

S[M(n)] =
E[M(n)]

nln(n)

For a Hadamard matrix (if exists) of order n, S[M(n)] = 1.

3



2. Preliminaries

2.1. Hadamard Matrices. A Hadamard matrix H of order n is defined as an n×n

square matrix with entries from 1, -1 such that

HHT = nIn,

where In is the identity matrix. In other words, Hadamard matrix is a matrix whose

entries are either 1 or -1 and whose rows are mutually orthogonal. Clearly, the

columns must also be mutually orthogonal, and the following also holds [7];

HTH = nIn.

From here onwards, we shall use the notation Hn for an n× n Hadamard matrix.

2.2. Cayley’s Parameterization of Orthogonal Matrices. Any orthogonal ma-

trix M which does not have -1 as an eigenvalue can be expressed as

M = (I + S)(I − S)−1,

for some suitable skew-symmetric matrix S. Conversely, any skew-symmetric matrix

can be expressed in terms of a suitable orthogonal matrix M by

S = (M + I)−1(M − I).

The above two forms set-up a one-to-one correspondence between orthogonal and

skew-symmetric matrices. Proof is given in [11].
4



2.3. Exponential Parameterization over Special Orthogonal Group SO(N).

For every positive integer N, the orthogonal group O(N) is the group of N × N

orthogonal matrices M satisfying

MMT = MTM = In, and M
∗ = M,

where M∗ is the conjugate of M, because the determinant of an orthogonal matrix is

either 1 or -1.

2.4. The Optimization Problem. The general optimization problem [14] over or-

thogonal matrices can be formulated as

maxXεR(n×n)F (X), s.t. XTX = In,

Where In is the identity matrix and F (X) : Rn×n → R is a differentiable function.

The feasible set M(n × n) =
{
X : XεRn×n : XTX = In

}
is often referred to as the

Stiefel Manifold.

This has wide applications in polynomial optimization, combinatorial optimization,

eigenvalue problems, sparse PCA, p-harmonic flows, 1-bit compressive sensing, ma-

trix rank minimization, etc. These problems are difficult because the constraints are

not only non-convex, but numerically expensive to preserve during iteration. It is

generally difficult to solve this problem since the orthogonality constraints can lead

to many local maximizers and, in particular, several of these problems in special

forms are NP-hard [12]. There are no known algorithms to obtain a global optimizer
5



except for a few simple cases. Most existing constraint preserving algorithms use

matrix reorthogonalization that requires matrix factorization such as SVDs. Other

popular algorithms generate points along geodesics of M(n×n) that compute matrix

exponentials or solve PDEs. We will approach the problem using the algorithm given

in [12] based on a simpler constraint preserving formula.
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3. Known Results

As given in [4], we know the following results on the entropy function defined by

[4], using numerical computation.

(1) For n = 2 and n ≡ 0(mod 4), the scaled Hadamard matrix saturates the

entropy. E.g.

M =



1/2 1/2 1/2 1/2

−1/2 1/2 −1/2 1/2

−1/2 −1/2 1/2 1/2

1/2 −1/2 −1/2 1/2


(2) For n = 3 the matrix below with rational entries gives maxima.

M =


−1/3 2/3 2/3

2/3 −1/3 2/3

2/3 2/3 −1/3


(3) For n = 5 the matrix below with rational entries gives maxima.

M =



−3/5 2/5 2/5 2/5 2/5

2/5 −3/5 2/5 2/5 2/5

2/5 2/5 −3/5 2/5 2/5

2/5 2/5 2/5 −3/5 2/5

2/5 2/5 2/5 2/5 −3/5


7



4. Bounds On Entropy Of Real Orthogonal Matrix

4.1. Universal bound for all n:

Theorem 4.1. ER[M(n)] ≤ nln(n).

Proof. Let f : R→ R be a concave function, then the Jensen’s inequality states that

∑n
i=1 f(xi)

n
≤ f

(∑n
i=1 xi
n

)

And equality holds if and only if all the xi’s are equal.

For f(x) = xln(1/x) defined for 0 < x ≤ 1, we can show that f(x) is concave as

f ′′(x) = −1/x < 0. For xi ∈ (0, 1] for all i such that
∑n

i=1 xi = 1 using the Jensen’s

inequality we get, ∑n
i=1 f(xi)

n
≤ f

(
1

n

)
∑n

i=1 xiln(1/xi)

n
≤ 1

n
ln(n)

n∑
i=1

xiln(1/xi) ≤ ln(n)

The equality is achieved if and only if xi = 1
n

for all i. Now, consider an n × n

orthogonal matrix M. For j = 1, 2, ....n the jth column has some of squares of the

elements equal to 1, therefore, we have

n∑
i=1

a2ij ln

(
1

a2ij

)
≤ ln(n)

for all j. Therefore,
n∑
i=1

n∑
j=1

a2ij ln

(
1

a2ij

)
≤ nln(n).
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ER[M(n)] ≤ nln(n).

And the equality holds if and only if a2ij = 1
n
, i.e. aij = ± 1√

n
. Therefore the equality

is achieved by 1√
n
Hn where Hn is the Hadamard matrix of order n. �

Hence in the cases, where n is a positive integer such that the Hadmard matrix

exists, the upper bound is achieved and by
(

1√
n

)
Hn only. Therefore, we have an

optimal matrix for n = 1, 2, 4, 8, 12, · · · i.e. in the cases when n = 1, 2 or 0 (mod

4). Hence the existence of optimal orthogonal matrix relies on the truth content of

the Hadamard conjecture.

4.2. Sharp bounds when n is not a multiple of 4: In the cases when the Had-

mard matrix does not exist, in the expression for the upper bound of the entropy,

the inequality is strict; it cannot be achieved and therefore should be optimized to a

sharper bound by several other techniques. We will describe the bounds for certain

categories later in this paper. However, the bound nln(n) is achievable for EC [M(n)]

for all n. Before we proceed to other cases, we summerize the algorithms we use.

Given a feasible point X and the gradient G := DF (X) =
(
∂F (x)
∂Xi,j

)
, we define a

skew-symmetric matrix A as either

A := GXT −XGT

9



or

A := (PxG)XT −X(PxG)T , where Px :=

(
I − 1

2
XXT

)
.

The new trial point is determined by the Crank-Nicolson-like scheme

Y (τ) = X − τ

2
A(X + Y (τ)),

where Y (τ) is given in the closed form: Y (τ) = QX and Q :=
(
I + τ

2
A
)−1 (

I − τ
2
A
)
,

as discussed in Cayley parameterization.

Optimality Conditions: We state the first-order and second order optimality con-

ditions in the following two lemmas due to [12][14]. The Lagrangian function for the

generalized optimization problem can be given as,

L(X, l) = F (X)− 1

2
tr(l(XTX − 1)),

where l is the symmetric Lagrangian multiplier corresponding to XTX = I.

Lemma 4.2. If X is optimal, then X satisfies the first-order optimality conditions,

DxL(X, l) = G − XGTX = 0 and XTX = 1 and XTX = I, with the associated

Lagrangian multiplier l = GTX. Define

5F (X) := G−XGTX, and A := GXT −XGT .

Then, 5F (X) = AX. Moreover, 5F (X) = 0, if and only if A=0
10



Lemma 4.3. Second order necessary conditions: Suppose an n × n matrix X is

optimal. Then there exists a Lagrange multiplier l such that the first order conditions

are satisfied. Suppose also that

tr(ZTDD)(D(F (X))[z])− tr(lZTZ) < 0,

for any matrix Z. Then X is a strict maxima.

Lemma 4.4.

(1) Given any skew symmetric matrix W, the matrix Q := (I + W )−1(I −W ) is

well defined and orthogonal, i.e., QTQ = I.

(2) Given any skew-symmetric matrix W , the matrix Y (τ) = X − τ
2
A(X +Y (τ))

satisfies Y (τ)TY (τ) = XTX, and Y (τ) is given by

Y (τ) =
(
I +

τ

2
A
)−1 (

I − τ

2
A
)
X.

Also, its derivative with respect to τ is given by

Y ′(τ) =
(
I +

τ

2
A
)−1

W

(
X + Y (τ)

2

)
,

and in particular, Y ′(0) = −WX.

(3) Set W = A = GXT −XGT . Then Y (τ) is the descent curve at τ = 0, i.e.

F ′τ (Y (0)) :=
∂F (Y (τ))

∂τ
|τ=0 = −1

2
‖A‖2F ,

11



where F ′τ (Y (τ)) denotes the derivative of Fτ (Y (τ)) with respect to τ .

Proof of (1) is well-known. And (2) and (3) are given in [12][14].

Monotone Curvilinear Search Algorithm

The curve Y (τ) defined above satisfies the following condition: The matrix W is

continuous in X and satisfies

F ′τ (Y (0)) = −σ ‖A‖2F , where σ > 0 is constant.

Algorithm Steps:

(1) Choose an initial point X0, i.e. a matrix of order n.

(2) Initialize: set k ← 0, ε ≥ 0, and 0 < ρ1 < ρ2 < 1.

(3) While true do:

(i) Generate A

(ii) Compute the step size τk

(iii) Update Xk+1 ← Y (τk)

(iv) Stop if ‖5Fk+1‖. Otherwise k ← k + 1

Using the algorithms we cojecture the following observation. If M∗ is the n × n

orthogonal matrix such that ER[M(n)] is optimal, then the matrix M∗
2 formed by

squaring the elements of M∗, is a symmetric matrix up to elementary row transfor-

mation.

The results above will be confirmed in the following section.

12



5. Constructions and Proofs

5.1. Case: n=3. There are exactly three independent real variables in a 3 × 3 or-

thogonal matrix. Consider the following 3× 3 orthogonal matrix

M =


? x y

? ? z

? ? ?

 .

The element a11 can be determined by the fact that sum of squares of the elements in

the first row is 1. Such a11 will have two values. Once a11 is determined the second

row has two variables a21 and a22 and two corresponding equations for orthogonality

i.e. the product of corresponding elements in the 1st and 2nd row is zero and the sum

of squares of the elements is 1. This will determine at most four pairs of a21 and a22,

after that a31, a32, and a33 are determined. The third row having three unknowns

and three equations for orthogonality, again, give at most eight solutions. Therefore,

the triplet (x,y,z) determines at most 64 orthogonal matrices. The complexity of the

total orthogonal matrices is the same as that of the suitable triplets, (x,y,z).

Another way to construct an orthogonal matrix with exactly three independent

variables could be as below. Choosing three diagonal elements (having absolute value

less than 1) independently, and determining the remaining six elements by the six

orthogonality conditions.

M =


x ? ?

? y ?

? ? z


13



ER(M) = [x2ln

(
1

x2

)
+ y2ln

(
1

y2

)
+ z2ln

(
1

z2

)
] +
∑
i 6=j

a2ijln

(
1

a2ij

)
For any such fixed triplet, the quantity in the first bracket in the expression for E(M)

is fixed. In order to optimize ER(M), we use Jensens Inequality, for the six elements

a2ij with i 6= j. The summation below is fixed.

∑
i 6=j

a2ij = 3− (x2 + y2 + z2) = constant

Therefore, the optimal entropy occurs (for fixed diagonal), when a2ij, is a constant for

all i 6= j (If such an orthogonal matrix exists.) Hence, the optimal E(M) must occur

when such a symmetric matrix exists. There is a characterization based on House-

holder reflections, given by Stewart (1980), where a symmetric orthogonal matrix can

be represented by

A(u) = I − 2
uuT

‖u‖2
,

where u is a non-zero vector and ‖.‖ is the Euclidean norm. Any orthogonal matrix

of size n× n can be constructed as a product of at most n such reflections. From the

expression above for A, It can be shown that AT = A and AAT = ATA = I. For the

vector u=(p,q,r), with norm ‖u‖2 = p2 + q2 + r2 = d, we have the expression for A:

A =


1− 2p2/d −2pq/d −2pr/d

−2pq/d 1− 2q2/d −2qr/d

−2pr/d −2qr/d 1− 2r2/d

 .

14



Suppose the matrix M consists of 3 column vectors v1, v2, v3 and define

f(v1) = f(x1, y1, z1) = x21ln

(
1

x21

)
+ y21ln

(
1

y21

)
+ z21ln

(
1

z21

)
.

Then, ER(M) = f(v1) + f(v2) + f(v3). As f is a concave function, E(M) is also

a concave function. Therefore, using Jensen’s inequality for optimality, we need

f(v1) = f(v2) = f(v3). Applying the condition above to the column vectors of the

matrix A(p,q,r), we get p=q=r, for u = (p, p, p), ‖u‖2 = 3p2 = d, which gives

A(p, p, p) =


1/3 −2/3 −2/3

−2/3 1/3 −2/3

−2/3 −2/3 1/3

 or (−1)


−1/3 2/3 2/3

2/3 −1/3 2/3

2/3 2/3 −1/3

 .

This is the required 3× 3 orthogonal matrix.

Remark: Note that the matrix above is optimal for every concave function applied

element-wise and added over all the elements. It does not depend on the function as

long as the function is concave.

Theorem 5.1. The saturation value remains constant for the Kronecker products of

matrices of order 3, i.e. the value S[M(3n)] = 0.88 for all positive integers n, where

M(3n) is given by the Kronecker product M(3n) = M(3)⊗M(3)⊗ .....⊗M(3)
15



Proof. We use induction, since, S[M(9)] = S[M(3)] = 0.88 and

M(3n+1) = M(3n)⊗M(3)

The entropy,

ER[M(3n+1] = 3
n+ 1

n
ER[M(3n)]

Therefore,

S[M(3n+1)] = 3
n+ 1

n
S[M(3n)]

3nln(3n)

3n+1ln(3n+1)

or

S[M(3n+1)] = S[M(3n)]

Hence S[M(3n)] = 0.88 is constant for all n. �

Verifying KKT point and Numerical results using the Algorithm: The

optimal matrix of order 3 above satisfies the conditions in lemma 4.3 and 4.4 The

numerical results using the algorithm described above gives the following results for

step size 0.2:

Starting with M0 =


0 −0.8 −0.6

−0.8 −0.36 0.48

0.6 0.48 −0.64

,

we get the 11th iteration, M11 =


0.33 −0.66 −0.66

−0.66 0.33 −0.66

−0.66 −0.66 0.33

,

which is the same as the result we have proved above. The algorithm works really

fast for small values of n, as long as the saddle point (see below) is avoided. A saddle
16



point is given by the following matrix:

M =


1/2 −1/

√
2 −1/2

1/
√

2 0 −1/
√

2

1/2 −1/
√

2 1/2

 .

The corresponding value of the entropy has a significant deviation from the bound

nln(n). For the matrix above we obtain,

ER[M(3)] ≈ 2.89 < 3ln(3) ≈ 3.29.

Linear search

Given a feasible point X, we vary τ on real line, and evaluate Y (τ). It can be proved

that Y (τ) is again an orthogonal matrix, in fact, more generally,

Y (τ)Y (τ)T = XXT

We propose two methods.

1. Fix X, vary τ over real line.

2. Recursive method: (i) Fix τ → (ii) fix X → (iii) evaluate Y (τ) → (iv) update

X = Y (τ)→ go to step (ii).

In the picture above plot is the between Y (τ) on X-axis and Entropy on Y-axis.
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The absolute maxima appears for τ
2

= −0.905, and the corresponding matrix is


0.668 −0.666 0.333

0.668 0.334 −0.666

−0.333 −0.666 −0.668


which is same as I − (2/3)J after interchanging the rows. Other critical points are as

below,

For τ
2

= −0.065, it actually gives a saddle point, the corresponding matrix being,


0.010 −0.706 −0.707

0.706 −0.495 0.505

0.707 0.505 −0.495

 ≈


0 − 1√
2
− 1√

2

1√
2
−1

2
1
2

1√
2

1
2

−1
2


Other critical points are as following,
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Maxima for τ
2

= 1.4, given by,


0.8271 0.1826 −0.5316

−0.1826 −0.8072 −0.5613

0.5316 −0.5613 0.6342


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Saddle for τ
2

= 0.555, given by,


0.4292 −0.0367 −0.9025

0.0367 −0.9976 0.0580

0.9025 0.0580 0.4268


Minima for τ

2
= 0.32, given by,


0.0190 −0.9993 0.0308

0.9993 0.0180 −0.0314

−0.0308 −0.0314 −0.9991


which is actually identity matrix after elementary row operations.

5.2. Case: n=5. We have the same theorem again as in case 3.

Theorem 5.2. The saturation value remains constant for the Kronecker products of

matrices of order 5, i.e. the value S[M(5n)] remains constant for all positive integers

n, where M(5n) is given by the Kronecker product M(5n) = M(5)⊗M(5)⊗.....⊗M(5)

Proof. Same as for n=3. �
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Using the algorithms we find the following matrices are optimal.



0.7513 −0.2263 −0.3282 −0.3602 −0.3832

−0.2263 0.7941 −0.2986 −0.3277 −0.3487

−0.3282 −0.2986 0.5669 −0.4754 −0.5057

−0.3602 −0.3277 −0.4754 0.4782 −0.5551

−0.3832 −0.3487 −0.5057 −0.5551 0.4095


And 

0.5948 −0.4009 −0.4032 −0.4012 −0.4023

−0.4009 0.6033 −0.3990 −0.3970 −0.3981

−0.4032 −0.3990 0.5987 −0.3993 −0.4004

−0.4012 −0.3970 −0.3993 0.6027 −0.3984

−0.4023 −0.3981 −0.4004 −0.3984 0.6005


The matrix above is absolute maximum and indeed is −[I − (2/5)J ] i.e.

M =



−3/5 2/5 2/5 2/5 2/5

2/5 −3/5 2/5 2/5 2/5

2/5 2/5 −3/5 2/5 2/5

2/5 2/5 2/5 −3/5 2/5

2/5 2/5 2/5 2/5 −3/5



The matrices above for n=3, 5 give rise to the following conjecture,
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Conjecture 1. If M∗ is the n×n orthogonal matrix such that ER[M(n)] is optimal,

then the matrix M∗
2 formed by squaring the elements of M∗, is a symmetric matrix

up to row interchanges.

5.3. Case: n = prime > 2. Again in this case, as a Hadamard matrix does not exist,

we try for an orthogonal matrix with elements having at most two different absolute

values. For a non-zero x, the value of
(
n
x

)
and prime p are co-prime, therefore, the

only way to construct such a matrix is when x=0. [Sylvester’s conjecture]. Given

that x=0, we assign the value of m as close as possible to 3p
4

. In this process, there

will be almost p − 3p
4

= p
4

number of b’s. With our assumption that x=0, more

than one non-overlapping bs in any row need more than p rows. Therefore, the only

possible value (p-m) can have is 1. With these conditions: x=0, p-m=1, we get

a = ±2
p
, and b = ∓p−2

p
. The starting point for the iteration can be constructed in

the following way,

M =



−(p− 2)/p 2/p ... 2/p

2/p −(p− 2)/p ... 2/p

... ... ... 2/p

2/p 2/p ... −(p− 2)/p


.

The expression for entropy, in this case, can be given as below.

ER[M(p)] = p

[
(p− 1)

(
4

p2

)
ln
(p

2

)2
+

(
p− 2

p

)2

ln

(
p

p− 2

)2
]
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For large values of the prime p, the approximate value of entropy is given by

ER[M(p)] ≈ 8ln(
p

2
) + 4� pln(p).

After iterations, the convergence and the 1st and second order conditions for local

extrema guarantee that the value of the entropy is optimal. The matrix above does

satisfy the and second order conditions given in lemma 4.3 and 4.4.

5.4. Case: n=6. Again in this case, as a Hadamard matrix does not exist, we try

for an orthogonal matrix with elements having at most two different absolute values.

Similar to the case for n = 5, we get the following conditions on m, x, a, and b.

For n = 6, i.e. m = 3, 4, 5 we have

x+m ≈ 3n

4
= 4.5.

The nearest integers to x + m are 4 and 5.

x ≤ (6−m)2

6

For m = 4 or m = 5, we have x = 0.
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• Case: m = 4 and x = 0; we solve for a and b to get a = ± 2
3
√
2

and b = ∓ 1
3
√
2
.

The construction of such an orthogonal matrix is possible in the following way,

M =



−1/3
√

2 2/3
√

2 2/3
√

2 1/3
√

2 −2/3
√

2 −2/3
√

2

2/3
√

2 −1/3
√

2 2/3
√

2 −2/3
√

2 1/3
√

2 −2/3
√

2

2/3
√

2 2/3
√

2 −1/3
√

2 −2/3
√

2 −2/3
√

2 1/3
√

2

−1/3
√

2 2/3
√

2 2/3
√

2 −1/3
√

2 2/3
√

2 2/3
√

2

2/3
√

2 −1/3
√

2 2/3
√

2 2/3
√

2 −1/3
√

2 2/3
√

2

2/3
√

2 2/3
√

2 −1/3
√

2 2/3
√

2 2/3
√

2 −1/3
√

2



.

The value of the entropy for the matrix above is ER ≈ 9.95 < 6ln(6) ≈ 10.75.

The 1st and second order conditions for local extrema guarantee that the value

of the entropy is optimal. The matrix above does satisfy the and second order

conditions given in lemma 4.3 and 4.4.

Observation: The desirable matrix here in the 6 × 6 case is actually the

Kronecker product of our results for 2×2 and 3×3, i.e. the Kronecker product

of the two matrices below:

 1/
√

2 −1/
√

2

1/
√

2 1/
√

2

⊗

−1/3 2/3 2/3

2/3 −1/3 2/3

2/3 2/3 −1/3

.


We write M(6) = M(2) ⊗ M(3).
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• Case: m = 5 and x = 0; we solve for a and b to get a = ±1
3

and b = ∓2
3
.

The construction of such an orthogonal matrix is possible in the following way,

M =



−2/3 1/3 1/3 1/3 1/3 1/3

1/3 −2/3 1/3 1/3 1/3 1/3

1/3 1/3 −2/3 1/3 1/3 1/3

1/3 1/3 1/3 −2/3 1/3 1/3

1/3 1/3 1/3 1/3 −2/3 1/3

1/3 1/3 1/3 1/3 1/3 −2/3


The value of the entropy for the matrix above is ER ≈ 9.48 < 9.95.

• Case: m = 3 and x = 0; we solve for a and b to get a = ± 1√
3

and b = 0 (a

and b must be positive).

• Case: m = 3 and x = 1; we solve for a and b to get a2 = 1
17−8

√
3

and b2 = 7−4
√
3

17−8
√
3
.

In this case (even if matrix exists), ER ≈ 8.11 < 9.48 < 9.95. Therefore, our

conclusion in this case is that the matrix M(6) = M(2) ⊗ M(3) is optimal.

5.5. Case: n = 2p, where p is prime > 2. Again in this case, as a Hadamard

matrix does not exist, we construct an orthogonal matrix with two distinct elements.

For x = 0 and m = 2p - 1, we get a = ±1
p

and b = ∓p−1
p

.
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The construction is as follows,

M =



−(p− 1)p 1/p ... 1/p

1/p −(p− 1)/p ... 1/p

... ... ... ...

1/p 1/p ... −(p− 1)/p


.

Entropy for the matrix above is given by,

ER = 2p

[
(2p− 1)

(
1

p2

)
ln
(p

1

)2
+

(
p− 1

p

)2

ln

(
p

p− 1

)2
]
.

For a large prime p, we have an approximate expression for entropy as

ER ≈ 8ln(p) + 8ln(2) + 4� 2pln(2p).

In an alternate construction, we divide the 2p×2p matrix into four p×p sub-matrices.

Optimizing each sub-matrix (of prime order) is equivalent to optimizing a p×p matrix

as in the previous case.

For x = 0 and m = 2p - 2, we get a = ± 2
p
√
2

and b = ∓ p−2
p
√
2
.
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The construction of such a matrix is possible in the following way,

M =



−(p− 2)/p
√

2 · · · 2/p
√

2 (p− 2)/p
√

2 · · · −2/p
√

2

2/p
√

2 · · · 2/p
√

2 −2/p
√

2 · · · −2/p
√

2

· · · · · · 2/p
√

2 · · · · · · −2/p

2/p
√

2 · · · −(p− 2)/p
√

2 −2/p
√

2 · · · (p− 2)/p
√

2

−(p− 2)/p
√

2 · · · 2/p
√

2 −(p− 2)/p
√

2 · · · 2/p
√

2

2/p
√

2 · · · 2/p
√

2 2/p
√

2 · · · 2/p
√

2

· · · · · · 2/p
√

2 · · · · · · 2/p

2/p
√

2 · · · −(p− 2)/p
√

2 2/p
√

2 · · · −(p− 2)/p
√

2



Observation: M(2p) = M(2) ⊗ M(p)

The equation for entropy in this case can be given as follows,

ER[M(2p)] = 2p

[
(2p− 2)

(
2

p2

)
ln

(
p2

2

)
+ 2

(
(p− 2)2

2p2

)
ln

(
2p2

(p− 2)2

)]
.

For large values of a prime p, the approximate value of entropy is given by

ER[M(2p)] ≈ 16ln(p) + (2p− 8)ln(2) + 8� 2pln(2p).

For large prime numbers, we compare the values in the two cases,

ER[M(2p)] ≈ 16ln(p) + (2p− 8)ln(2) + 8� ER ≈ 8ln(p) + 8ln(2) + 4� 2pln(2p).
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In this case, we conclude that the Kronecker product, M(2p) = M(2) ⊗ M(p) has

entropy more than that of the matrix generated by m = 2p - 1 (because m = 2p - 2

is closer to 3(2p)/4 than that of 2p - 1).

5.6. Case: n = 3p, where p is prime > 3. Again in this case, as a Hadamard

matrix does not exist. We construct an orthogonal matrix with two distinct elements.

For x = 0 and m = 3p - 1, we get a = ± 2
3p

and b = ∓3p−2
3p

.

The construction is as follows,

M =



−(3p− 2)/3p 2/3p ... 2/3p

2/3p −(3p− 2)/3p ... 2/3p

... ... ... ...

2/3p 2/3p ... −(3p− 2)/3p


.

Entropy for the matrix above is given by,

ER = 3p

[
(3p− 1)

(
4

9p2

)
ln

(
3p

2

)2

+

(
3p− 2

3p

)2

ln

(
3p

3p− 2

)2
]
.

For a large prime p, we have an approximate expression for entropy as

ER ≈ 8ln(3p)− 8ln(2) + 4� 3pln(3p).
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In an alternate construction, we divide the 3× 3 matrix into nine p× p sub-matrices.

Optimizing each sub-matrix (of prime order) is equivalent to optimizing a p×p matrix

as in the previous case.

For x=0, we use four different entries as

a = ± 4

3p
, b = ∓ 2

3p
, c = ∓2(p− 2)

3p
, d = ±p− 2

3p
.

Where (a,b,c,d) occur (2p−2, p−1, 2, 1) times respectively. In fact, we obtain M(3p)

= M(3) ⊗ M(p). The expression for entropy, in this case, is given below.

ER[M(3p)] =3p

[
(2p− 2)

(
16

9p2

)
ln

(
9p2

16

)
+ (p− 1)

(
4

9p2

)
ln

(
9p2

4

)

+2

(
2(p− 2)

3p

)2

ln

(
3p

2(p− 2)

)2

+

(
p− 2

3p

)2

ln

(
3p

p− 2

)2
]

For large values of a prime p, the approximate value of entropy is given by

ER[M(3p)] ≈ 24ln(p) + 6pln

(
3

2

)
+ 12.

For large prime numbers, we compare the values in the two cases,

ER[M(3p)] ≈ 24ln(p) + 6pln

(
3

2

)
+ 12� ER ≈ 8ln(3p)− 8ln(2) + 4.

In this case also, we conclude that the Kronecker product M(3p) = M(3) ⊗ M(p) has

more entropy than that of the matrix generated by m = 3p - 1.
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5.7. General Case: n = p1p2,where p1 and p2 are primes with p1 < p2. A con-

struction for x = 0 and m = p1p2 − 1, can be done using a = ± 2
p1p2

and b = ∓p1p2−2
p1p2

as follows,

M =



−(p1p2 − 2)/p1p2 2/p1p2 · · · 2/p1p2

2/p1p2 −(p1p2 − 2)/p1p2 · · · 2/p1p2

· · · · · · · · · · · ·

2/p1p2 2/p1p2 · · · −(p1p2 − 2)/p1p2


.

Entropy for the matrix above is given by,

ER = p1p2

[
(p1p2 − 1)(

2

p1p2
)2ln

(p1p2
2

)2
+

(
p1p2 − 2

p1p2

)2

ln

(
p1p2

p1p2 − 2

)2
]
.

For large primes, we have an approximate expression for entropy as

ER ≈ 8ln(p1p2/2) + 4� p1p2ln(p1p2).

In our alternate construction, we divide the p1p2 × p1p2 matrix into p21 p2 × p2 sub-

matrices. Optimizing each sub-matrix (of prime order) is equivalent to optimizing a

p2 × p2 matrix as in the previous cases. We use four different entries as

a = ± 4

p1p2
, b = ∓2(p1 − 1)

p1p2
, c = ∓2(p2 − 2)

p1p2
, d = ±(p1 − 2)(p2 − 2)

p1p2
,
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where (a, b, c, d) occur {(p1 − 2) (p2 − 2) , p2 − 1, p1 − 1, 1} times respectively. We

obtain M(p1p2) = M(p1) ⊗M(p2). The expression for entropy, in this case, can be

given as

ER[M(3p)] =p1p2

[
(p1 − 2)(p2 − 2)(

4

p1p2
)2ln

(p1p2
4

)2
+

(p2 − 1)

(
2(p1 − 1)

p1p2

)2

ln

(
p1p2

2(p1 − 1)

)2

+

(p1 − 1)

(
2(p2 − 1)

p1p2

)2

ln

(
p1p2

2(p2 − 1)

)2

+

(
(p1 − 2)(p2 − 2)

p1p2

)2

ln

(
p1p2

(p1 − 2)(p2 − 2)

)2
]
.

For large values of the primes, the approximate value of entropy is given by

ER[M(p1p2)] ≈ 32ln(p1p2) + 8p1ln
(p2

2

)
+ 8p2ln

(p1
2

)
+ 4(p1 + p2)

This value of entropy is significantly larger than 8ln(p1p2/2) + 4.

The Kronecker product M(p1p2) = M(p1)⊗M(p2) has entropy more than the matrix

generated by m = p1p2 − 1. It is easy to show that the Kronecker product obtained

in this case is an orthogonal matrix.

For two orthogonal matrices M1 = M(p1), and M2 = M(p2) we have that, M1M
T
1 =

Ip1 and M2M
T
2 = Ip2 . The Kronecker product M = M(p1p2) = M(p1) ⊗M(p2) =

M1 ⊗M2.

MMT = (M1⊗M2)(M1⊗M2)
T = (M1⊗M2)(M

T
1 ⊗MT

2 ) = (M1M
T
1 )⊗(M1M

T
1 ) = Ip1⊗Ip1 = Ip1p2
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Similarly, MTM = Ip1p2 , therefore the matrix M = p1p2 is an orthogonal matrix. In

general the Kronecker product of two matrices is not commutative; however the value

of entropy of a Kronecker product is independent of the order, i.e.

ER[M(p1p2)] = ER[M(p1)⊗M(p2)] = ER[M(p2)⊗M(p1)]

5.8. A Generalization for a Square Free Number:

Conjecture 2. Let n be a square free number. Let n = (p1)(p2) · · · (pk), where

p1, p2, · · · , pk are distinct prime numbers. The optimal matrix of order n is given

by

ER[M(n)] = ER[M(p1)⊗M(p2)⊗ ...⊗M(pk)].

5.9. Construction of Entropy Optimal Complex Inverse Orthogonal Ma-

trix: Applying Jensen’s inequality, as in the case of real orthogonal matrices, we get

similar bounds on the entropy of a complex inverse orthogonal matrix,

0 ≤ Ec[M(n)] ≤ nlogn.
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This is a general bound that works for all n, and equality is achieved if and only if

|aij|2 = 1
n

Or in polar form, we write aij = 1√
n
eiθ, where eiθ is a root of unity.

For n = 2, we have the following optimal matrix which achieves the bound 2ln(2).

M(2) =

 1/
√

2 1/
√

2

1/
√

2 −1/
√

2



For n = 3, we construct the optimal matrix as follows,

M(3) =


1/
√

3 1/
√

3 1/
√

3

1/
√

3 ω/
√

3 ω2/
√

3

1/
√

3 ω2/
√

3 ω/
√

3

 .

For the matrix above, Ec[M(3)] = 3ln(3).

For general n: The optimal value nln(n) is achieved by the n× n scaled Vander-

monde matrix (Vn).

M(n) =

(
1√
n

)
Vn
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Where Vn is given as the matrix below,

M =



1 1 1 · · · 1

1 α α2 · · · αn−1

1 α2 α4 · · · α2n−2

· · · · · · · · · · · · · · ·

1 αn−1 α2n−2 · · · α(n−1)2


,

where α is the nth root of unity (α 6= 1). It is easy to check that the optimal entropy

is achievable for all n, for the matrix above. Ec[M(n)] = nln(n).
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