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ABSTRACT 

Gutwein, Amanda Brooke. M.S., Department of Neuroscience, Cell Biology and 

Physiology, Wright State University, 2013. Characterization of stimulation-induced 

volume changes of the CA1 region within in vitro rat hippocampus slices. 
 

Intrinsic optical signals (IOS) were used to evaluate volume regulation 

mechanisms during Schaffer collateral stimulation-induced volume changes in 

hippocampal slices. The effects of stimulation frequency, synaptic function, ionotropic 

glutamate receptor (iGluR) activation, glutamate uptake, and volume regulatory anion 

channels (VRAC) were examined with IOS. Data were analyzed using ANOVA with 

Dunnett's post hoc test (p<0.05 indicated significance). IOS changes were stimulation 

frequency dependent between 1 Hz and 10 Hz with full recovery of IOS within 5 min. 

Synaptic blockage reduced the rate of swelling by 81% compared to the control and the 

IOS did not fully recover. Recovery rate was reduced with iGluR inhibition. Inhibition of 

glutamate uptake reduced the rate of swelling by 70% compared to vehicle controls. 

During stimulation, action potentials, iGluR activation, and glutamate uptake contribute 

to swelling. Regulatory volume mechanisms during stimulation were glutamate-mediated 

via iGluRs and VRAC independent. 
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I. INTRODUCTION 

Regulation of cellular volume is a vital aspect of cellular homeostasis. Cells are 

susceptible to volume changes when there are fluctuations in intracellular and 

extracellular osmolarity. Cell volume is determined by the cellular content of osmotic 

active compounds and by the extracellular tonicity. Cell water content will change based 

on the osmotic active compounds present. As the intracellular content of osmotic active 

compounds increases, the extracellular space becomes hypotonic to the cell, and the cells 

take in water in an attempt to equalize the osmotic pressure. During hypoosmotic cell 

swelling, an acute increase in cellular volume is restored through a mechanism termed 

regulatory volume decrease (RVD) by the efflux of inorganic and organic osmolytes. 

This mechanism decreases the intracellular osmotic content thus increasing the 

movement of water from the intracellular compartment. Osmolyte efflux is accomplished 

via activation of specific transporters and volume-activated channels. Volume-regulated 

anion channels (VRACs) open during cell swelling and mediate RVD. VRACs are anion 

channels which are permeable to chloride and a variety of small organic anions such as 

taurine and excitatory amino acids (EAA) like glutamate (Kimelberg et al., 1990). 

Previous studies have reported stimulation-induced swelling in the central 

nervous system; however, mechanisms of cell swelling and volume regulation during 

functional activity remain unclear. Many factors have been suggested to be involved in 
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neuronal activity induced cell swelling including fluctuations of extracellular K
+
, 

glutamate accumulation in astrocytes, and activation of ionotropic glutamate receptor 

(iGluR). The proposed research is intended to identify and characterize the features of 

stimulation-induced volume changes of the rat hippocampus through the application of a 

synaptic block solution, iGluR antagonists, glutamate reuptake inhibitors, and VRAC 

inhibitors. In this study, we will use imaging analysis techniques to examine changes in 

the light transmission (intrinsic optical signal or IOS) of hippocampal slices induced by 

synaptic transmission. Although it is accepted that IOS can detect cellular swelling by 

increased light transmittance through tissue, the cellular mechanisms underlying these 

changes in the IOS of neuronal tissue during activity are not precisely known as yet. 

Synaptic activation or moderate hypo-osmotic exposure has been shown to lead to 

increased light transmittance, decreased reflectance, and reduced light scattering 

(MacVicar and Hochman, 1991; Andrew and MacVicar, 1994; Pal et al., 2013). A 

decrease in extracellular space (ECS) has been shown to occur during evoked activity in 

the cortex (Dietzel et al., 1982) in stimulated spinal cord slices(Sykova et al., 2003) and 

in the hippocampal slice during synaptic stimulation (Fayuk et al., 2002).  

A greater understanding of the mechanisms and osmolytes responsible for 

stimulation-induced swelling will lead to improved treatment plans for any 

pathophysiological conditions resulting in edema such as epilepsy, traumatic brain injury, 

and excitotoxicity.  
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II. LITERATURE REVIEW 

Fluid movement in the brain 

 

In the central nervous system (CNS), fluid in different compartments is regulated 

through specialized cellular membranes. The movement of fluid between compartments 

of blood, cerebrospinal fluid, extracellular fluid, and intracellular fluid of neurons and 

glia depends on the concentrations of inorganic and organic osmolytes. There is 

presumably a continuous flux of water between neurons and glial cells because of cellular 

transport of osmolytes such as glutamate, sodium, and potassium between these cell types 

(Kimelberg, 2004a). Abnormal water movements between these compartments are 

associated with numerous pathological conditions including stroke, brain tumors, 

traumatic brain injury and temporal lobe epilepsy (Unterberg et al., 2004; van Vliet et al., 

2007; Freeman et al., 2010; Thompson et al., 2013). 

Edema 

Cerebral edema is characterized by an excess of fluid accumulation in the brain. 

Edema is a common pathological response to various forms of neurologic insults that 

affect patients with almost every category of neurologic disease, including metabolic, 

infectious, neoplastic, cerebrovascular, and traumatic brain injury disease states (Ryu et 

al., 2013). Following neurological insult, alterations in osmolyte gradients drive fluid 

accumulation and increase brain volume. The excess fluid deforms the brain tissue that is
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restricted by the meningeal layers and skull causing an increased intracranial pressure and 

resulting in a high rate of morbidity and mortality.

Brain edema is classified as osmotic, vasogenic, or cytotoxic (Unterberg et al., 

2004). In some cases such as trauma, hypoxic-ischemic encephalopathy, or metabolic 

conditions, there can be a mixed pattern of cytotoxic and vasogenic edema (Ho et al., 

2012). Osmotic brain edema develops due to plasma hyposmolality compared to the brain 

tissue resulting in fluid accumulation into neurons and glial cells. In contrast, vasogenic 

edema develops when there is an increased permeability of capillary endothelial cells due 

to a disruption in the blood-brain barrier. The break-down of tight junctions in endothelial 

cells allows protein-rich fluid to accumulate in the interstitial space. Traumatic brain 

injury, ischemia, and hypoxia can lead to cytotoxic edema and excitotoxicity (Arundine 

and Tymianski, 2004). Although cytotoxic edema by itself does not imply net brain 

swelling, the formation of cytotoxic edema will deplete the extracellular space of 

electrolytes such as Na
+
 and Cl

-
 and cause a reduction in extracellular water content 

(Liang et al., 2007). Thus, cytotoxic edema creates new concentration gradients. During 

cytotoxic edema, osmotic imbalances and excess intracellular water are not restored by 

adenosine triphosphate (ATP) dependent or passive movement of electrolytes which are 

characteristic of physiological cell volume regulation.  

Cell volume regulation 

Regulation of cellular volume is a vital aspect of cellular homeostasis. Cells are 

susceptible to volume changes when there are fluctuations in intracellular or extracellular 

osmolarity. During normal physiological conditions, the osmolarity of extracellular fluid 

(ECF) in the body including that of brain tissue  is maintained relatively constant between 
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285 and 295 mOsm/kg (Wright, 2012). Since ECF osmolality is relatively stable, most 

fluctuations in cellular volume are due to changes in intracellular osmolarity (Hoffmann 

et al., 2009). Osmotic imbalances can be produced across the plasma cell membrane due 

to cellular activity from transport, metabolism, and brain injury (Okada, 2004; Ho et al., 

2012). Cell volume is determined by the cellular content of osmotically active 

compounds and by the extracellular osmolality. Thus, as the intracellular content of 

osmotically active compounds increases, the extracellular space becomes hypotonic to 

the cell interior, and water enters the cell to equalize the osmotic pressure across their 

plasma membranes. 

Regulatory volume decrease 

In response to increased cellular water content, cellular volume can be restored by 

the efflux of inorganic and organic osmolytes through a mechanism termed regulatory 

volume decrease (RVD). Mechanisms of RVD are not fully understood but involve efflux 

of intracellular osmotic content to increase movement of water from the intracellular 

compartment. For osmoeffective efflux, net anion efflux  must be accompanied by K
+
 

efflux to maintain electroneutrality (Okada et al., 2001). Three different mechanisms are 

known to be involved during RVD: K
+
Cl

-
 co-transporters (KCCs), K

+
 channels, and Cl

-
 

channels (Okada, 2004). The organic osmolytes predominantly contributing to RVD in 

the brain are amino acids such as aspartate, glutamate, and taurine (Pasantes-Morales, 

1996). Mechanisms of RVD are summarized in Figure 1. 

Volume-regulated anion channels 

  Volume-regulated anion channels (VRACs or IClvol) are ubiquitously present in 

mammalian cells and are required for the regulation of electrical activity, cell volume, 
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intracellular pH, immunological responses, cell proliferation and differentiation (Duan et 

al., 1997). The molecular identity of VRAC remains elusive despite extensive research 

and several candidates (Abdullaev et al., 2006; Okada et al., 2009). VRACs are typically 

activated during swelling and provide a pathway for efflux of intracellular anions, with 

the  permeability sequence of SCN
-
>I

-
>NO3

-
>Br

-
>Cl

-
>F

-
>gluconate (Kimelberg et al., 

2004). During cellular swelling, RVD mechanisms involve VRACs to mediate an efflux 

of osmolytes but may also show limited activity in non-swollen cells (Mongin and 

Kimelberg, 2005). VRACs have a relatively large pore diameter of approximately 1.1 nm 

that permits the efflux of small organic osmolytes.   VRACs have been shown to release 

excitatory amino acids such as aspartate, glutamate, and taurine during increased 

extracellular K
+
, hypoosmotic conditions, oxidative stress, excitotoxic stimulation, and 

ischemia (Rutledge et al., 1998; Kreisman and Olson, 2003; Kimelberg, 2004b; 

Kimelberg et al., 2004; Abdullaev et al., 2006; Inoue and Okada, 2007; Tucker and 

Olson, 2010; Zhang et al., 2011).  Inhibition of VRACs has been shown to reduce water 

permeability of cellular membranes suggesting that VRACs might also  be water 

permeable (Nilius, 2004). 
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Figure 1: Mechanisms of regulatory volume decrease.  (Left) Cell equalizes the osmotic 

pressure through an influx of water. (Right) Cell undergoes regulatory volume decrease 

(RVD) via several efflux pathways. Solid lines indicate the cellular membrane prior to 

swelling (Left) or RVD (Right). Dotted lines indicate the changes in  membrane volume 

as a result of swelling or RVD. Abbreviations: K
+
Cl

-
 Co-transporter (KCC),  Cl

-
/HCO

-
3 

antiporter or anion exchanger (AE), Ca
+2

 dependent Cl
-
 current ( IClCa), Ca

+2
 dependent 

K+ current (IKCa), volume activated Cl
- 
current (IClvol), volume activated K

+
 current (IKvol) 

From (Hoffmann et al., 2009)  
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Figure 1:  
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Hippocampus 

 

The hippocampus, a part of the limbic system, is a major component of the 

mammalian brain involved in learning and memory. The hippocampus, sometimes 

referred to as the hippocampal formation, is a paired structure located in the medial 

temporal lobe of the cerebral cortex. In the human brain, the hippocampus appears as a 

seahorse-shaped structure that extends into the floor of the lateral ventricle and becomes 

continuous with the fornix posterior to the splenium of the corpus callosum. Extensive 

research has established microanatomy and circuitry pathways of the hippocampus. Since 

different cell types within the hippocampus are organized into layers, the hippocampus 

serves as an excellent model for studying neurophysiology.  

Cognitive deficits involving the hippocampus are often persistent and severely 

debilitating. Individuals with damage to the hippocampus exhibit an inability to form or 

retain new memories. Research has connected the hippocampus to multiple diseases 

including vascular disease, temporal lobe epilepsy, cognitive aging, post-traumatic stress 

disorder, transient global amnesia, schizophrenia, and depressive and anxiety disorders 

(Small et al., 2011). Even within the hippocampus, there exists regional differences in 

vulnerability to metabolic diseases and stressors that increase with age (Jackson and 

Foster, 2009). In addition, due to the physiology of the hippocampus, there is a regional 

vulnerability for ischemic injury and cytotoxic edema. Further understanding of the 

mechanisms of cell volume regulation in the hippocampus will be vital for addressing the 

pathophysiological conditions associated with this structure and will have implications 

for damage in the rest of the central nervous system (CNS).  
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Structure of the hippocampus 

The hippocampus appears as two interlocking C-shaped laminar structures and 

typically refers to the dentate gyrus (DG), the hippocampus proper, and the subicular 

cortex. Frequently, the extorhinal cortex (EC) is included as part of the hippocampal 

formation. The region within the hippocampus proper is subdivided into CA1, CA2 and 

CA3 (Amaral and Witter, 1989). In figure 2, regions of the hippocampal formation and 

the primiary synaptic connections between these regions are shown in a schematic 

drawing. CA1 extends from the dorso-medial subiculum to CA2. CA2 is considered a 

small region between CA1 and CA3. CA3 comprises the ventro-medial portion of the 

hippocampus. The terminal portion of CA3, as it courses into the dentate hilus, is 

sometimes referred to as CA4. Since there is no clear histological features distinguishing 

CA3 from CA4, many authors consider CA3 and CA4 regions together as CA3 (DeFelipe 

et al., 2007). 

Basic synaptic pathways in the hippocampus 

The lamellar model considers the hippocampal cortex to be organized into parallel 

lamellae forming a tri-synaptic circuit lying within a transverse  plane of the 

hippocampus (Andersen et al., 1971). Synaptic transmission flows mainly 

unidirectionally in the hippocampus proper by three principal pathways: perforant 

pathway (PP), mossy fiber pathway, and the Schaffer collateral pathway (SC).  

The major input to the hippocampus originates from EC layer II/III neurons 

through the PP and directly targets neurons in the CA1, CA2 ,CA3, DG, and subiculum 

(Canto et al., 2008). The DG is unique compared to the hippocampus proper because it 

has two glutamatergic principal cells: granule cells and hilar mossy cells (Scharfman and 
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Myers, 2012). Hilar mossy cells can either excite or inhibit granule cells, depending on 

whether their direct excitatory projections to granule cells or their projections to local 

inhibitory interneurons dominate (Jinde et al., 2013). Granule cells, the major principal 

cell type in the DG, are quiescent and send projections exclusively to the CA3 region via 

mossy fibers (Krautwald and Angenstein, 2012). In contrast, mossy cells exhibit 

spontaneous activity (Duffy et al., 2013) and receive back-projections from CA3 

pyramidal neurons (Jinde et al., 2013). The CA3 pyramidal neurons send axons to CA1 

pyramidal cells through the SC and to the CA1 cells in the contralateral hippocampus. 

The CA1 and the subiculum receive direct input from EC layer III neurons through the 

temporoammonic pathway (TA). CA1 pyramidal cells mainly target the adjacent 

subiculum and the entorhinal cortex in addition to various cortical areas (Cenquizca and 

Swanson, 2007). The CA1 and subiculum are the major output structures of the 

hippocampus given that their projections terminate in a variety of subcortical and cortical 

areas including the entorhinal cortex (Witter, 2006).  
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Figure 2: Anatomy of the rodent hippocampus and neural network. 

a) A transverse slice from the rodent brain is enlarged to depict the regions of the 

hippocampus and basic circuitry. b) Schematic of the excitatory trisynaptic pathway is 

depicted by solid black arrows. Abbreviations: EC, entorhinal cortex; DG, dentate gyrus; 

PP, perforant pathway; LPP, lateral perforant pathway; MPP, medial perforant pathway; 

CA, Cornu Ammonis; TA, temporoammonic pathway. From (Deng et al., 2010) 
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Figure 2:
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Layers of the hippocampus 

 The axons, cell bodies, and dendrites of pyramidal cells, the principal excitatory 

neurons of the hippocampus, are arranged through seven well-defined layers: alveus, 

stratum oriens, stratum pyramidale, stratum lucidum, stratum radiatum, stratum 

lacunosum, and stratum moleculare.  Hippocampal pyramidal neurons, frequently 

regarded as a homogeneous cell population, (Szilagyi et al., 2011) form the stratum 

pyramidale with the cell bodies of various interneurons. 

In the rodent, CA1 pyramidal neurons form a compact layer consisting of 5 to 8 

superimposed rows of pyramidal neurons (Mizuseki et al., 2012). The ventricular portion, 

or deepest layer of the hippocampus, known as the alveus, consists of the myelinated 

axons from pyramidal cells (DeFelipe et al., 2007). Axons in the alveus bifurcate with 

branches extending rostrally through the fornix system and caudally toward the 

retrohippocampal region of the hippocampus where they contribute to the 

intrahippocampal circuit (Cenquizca and Swanson, 2007).  

Stratum oriens (str. oriens) is superficial to the alveus consisting mainly of the 

basal dendrites from the pyramidal cells and several classes of interneurons. Oriens 

lacunosum-moleculare (O-LM) cells, a major class of GABAergic interneurons, have 

their horizontal dendrites and somata in the str. oriens (Szilagyi et al., 2011) and inhibit 

the distal apical dendrites of pyramidal cells (Leao et al., 2012). 

The stratum lucidum (str. luc.) is only present in the CA3 region and contains 

mossy fibers from dentate gyrus granule cells. The stratum radiatum (str. rad.) contains 

apical dendrites from pyramidal cells and several types of interneurons. Interesting, 
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astrocytic  processes in stratum radiatum of area CA1 represent only ∼5% of the neuropil  

contrasting with ∼27% in cerebellar cortex (Ventura and Harris, 1999). 

The SC fibers, which are the axons from the CA3 pyramidal neurons innervating 

predominantly dendritic spines of CA1 pyramidal cells, run through the str. rad. and the 

stratum lacunosum (str. lac.). Interneuron cell bodies of the Schaffer collateral associated 

cells course along the SC fibers in the str. rad. up to the border of the str. lac. (Szilagyi et 

al., 2011). The str. lac. also contains PP fibers from the superficial layers of EC. Due to 

the small size of the str. lac., it is often grouped together with stratum moleculare (str. 

mol.) into a single stratum called stratum lacunosum-moleculare (str.lac-mol) which has 

an approximate thickness of 150 µm (Kajiwara et al., 2008). The str.lac-mol contains 

axons of the TA pathway from layer III EC neurons which synapse with the distal apical 

dendrites of CA1 pyramidal cells (van Groen et al., 2002; Cai et al., 2013). Str. mol. is 

the most superficial stratum in the hippocampus and consists of PP fibers which form 

synapses onto the distal portion of the apical dendrites of CA3 pyramidal cells. 
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Figure 3: Labeled regions and layers of rodent hippocampus from a 
3
H-thymidine 

autoradiogram of a rodent hippocampus slice. The picture shows stratum lacunosum and 

stratum moleculare together as stratum lacunosum-moleculare. CA2 region is not labeled. 

Taken from the website of braindevelopmentmaps.org (Altman and Bayer, 2012) 
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Figure 3:
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Schaffer collateral synaptic physiology 

 

Schaffer collateral pathway action potentials 

The SC pathway was utilized in these studies to elicit monosynaptic stimulation 

of pyramidal cells in the CA1 region.  Synaptic transmission of the SC pathway is 

controlled by the ionic gradient across the axolemma that supports action potentials 

which travel towards the nerve terminal. At rest, the cytoplasm of neurons has a low 

concentration of Na
+
 and Cl

-
 and a high concentration of K

+
 relative to the extracellular 

fluid. In adult pyramidal neurons, intracellular Cl
-
 is estimated to be 4 mM (Tyzio et al., 

2008). Several specialized leak channels and the Na
+
/K

+
 ATPase, which pumps 3 Na

+
 out 

of the cell in exchange for 2 K
+
 into the cell, maintain this concentration gradient of ions. 

Due to the constant pumping activity of the Na
+
/K

+
 ATPase, cells maintain a high 

intracellular K
+
 concentration. 

During synaptic activity of the SC pathway, the CA3 pyramidal neuron membrane 

potential first becomes depolarized due to voltage-gated Na
+
 channels that mediate an 

influx of Na
+ 

ions into the cell body. Once the membrane potential reaches a threshold 

voltage, an action potential can be elicited. The large depolarization peak of the action 

potential causes voltage-gated Na
+
 channels to inactivate such that Na

+
 influx stops 

before the cells reach the equilibrium potential for Na
+
. Then a rapid efflux of K

+
 ions 

through voltage-gated K
+
 channels causes the membrane potential to repolarize towards 

resting membrane potential. The membrane potential continues towards the equilibrium 

of K
+
 ions. An afterhyperpolarization of the membrane occurs where the membrane 

potential is transiently more negative than the resting membrane due to slow inactivation 

of voltage-gated K
+
 channels. Once the voltage-gated K

+
 channels close, the resting 
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membrane potential is reestablished through the specialized leak channels and Na
+
/K

+
 

ATPase.  

The action potential of the CA3 pyramidal neuron propagates towards the nerve 

terminal through an axon in the str. rad. and str. lac. When action potentials arrive at the 

presynaptic nerve terminal, Ca
2+

 influx is mediated by voltage-gated Ca 
2+

 channels. 

Presynaptic Ca
+2

 influxes contribute to approximately 75% of stimulus-induced 

intracellular Ca
+2

 transients in the stratum radiatum (Liotta et al., 2012). Each presynaptic 

nerve terminal contains hundreds of synaptic vesicles that are filled with 

neurotransmitters (Sudhof and Rizo, 2011). Various specialized proteins assemble to 

release synaptic vesicles in the presence of elevated intracellular Ca
+2

. The synaptic 

vesicles fuse with the presynaptic membrane and release neurotransmitters into the 

specialized extracellular space of the synaptic cleft to bind on postsynaptic membrane 

receptors of the CA1 pyramidal cells. Postsynaptic activation and generated action 

potentials contribute to approximately 50% of the stimulus-induced ion fluxes in the 

stratum radiatum during SC activity (Liotta et al., 2012). 

Glutamatergic synapse  

 Glutamate, a small amino acid, is the primary excitatory neurotransmitter in the 

CNS including the hippocampal pyramidal cells. When in excess, glutamate is considered 

a powerful neurotoxin. Although glutamate serves multiple roles in the central nervous 

system, this review will concentrate on glutamate as a neurotransmitter in the Schaffer 

Collateral pathway of the hippocampus and the ionotropic glutamate receptors involved 

in glutamatergic signaling. In the nerve terminal of pyramidal cells, glutamate is stored in 

small spherical synaptic vesicles for eventual release as a neurotransmitter. Upon 
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stimulation of the nerve terminal, synaptic vesicles fuse with the presynaptic cell 

membrane, releasing their content into the synaptic cleft. Glutamate diffuses across the 

synaptic cleft between the nerve terminal and dendritic spine of the CA1 pyramidal cell. 

Once in the synaptic cleft, glutamate binds to glutamate-specific receptors (GluRs) 

present on neurons and glia. Activation of GluRs alters membrane permeability primarily 

to cations and depolarizes the post-synaptic membrane of the CA1 pyramidal cell. The 

process is terminated as glutamate is transported via specific glutamate transporters 

(GluTs) back into the pre-synaptic neuron and into surrounding glial cells. Glutamate 

returning into the pre-synaptic neuron is packaged directly into synaptic vesicles by 

vesicular glutamate transporters (VGluTs). However, glutamate transported into glial 

cells rapidly enters the glutamate-glutamine cycle.  Glial cells convert the accumulated 

glutamate to glutamine for transfer into neurons.  Then glutamine is converted back to 

glutamate and re-packaged into vesicles. Glutamate re-uptake into glial cells is vital for 

maintaining a low extracellular concentration of this excitatory neurotransmitter, thus 

preventing excessive glutamate excitation and excitotoxicity.  

Glutamate receptors 

Glutamate triggers rapid changes in membrane conductance through activation of 

glutamate receptors. There are two general classes of GluRs present on neurons and glia: 

ionotropic glutamate receptors (iGluRs) and metabotropic glutamate receptors (mGluRs). 

iGluRs are glutamate-gated cation channels that have traditionally been classified into 

three subtypes based upon pharmacological and electrophysiological data: NMDA (N-

methyl-D-aspartate) receptors (NMDARs), AMPA (α-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid) receptors (AMPARs) , and kainate receptors (KARs) 
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(Dingledine et al., 1999). The mGluRs are G-protein coupled receptors that exert a 

variety of modulatory effects through their recruitment of second messenger systems 

(Pinheiro and Mulle, 2008). In this study, the focus on glutamate receptors will be limited 

to the ionotropic glutamate receptors and their roles in the glutamatergic synapse in the 

hippocampus. 

AMPARs 

The AMPARs consist of  four subunits, GluA1-GluA4, (Hollmann and 

Heinemann, 1994; Collingridge et al., 2009) that assemble into a tetrameric complex to 

form a functional ion channel that is permeable to Na
+
 and K

+
 ions (Mano and Teichberg, 

1998). Although most AMPARs are impermeable to Ca
+2

, recent research has revealed 

the presence of calcium-permeable AMPARs (CP-AMPARs) in hippocampal neurons 

and astrocytes (Sans et al., 2003; Verkhratsky and Kirchhoff, 2007). Certain types of 

neural activity such as paired-pulse stimulation reveal  CP-AMPARs present at 

perisynaptic sites of the CA1 synapses from Schaffer collaterals (He et al., 2009).  But 

under physiological conditions, CA1 pyramidal cells abundantly express GluA2-

containing Ca
2+

 -impermeable AMPARs (Liu and Zukin, 2007). In neurons, AMPARs 

are located predominantly on the post-synaptic membrane but are also found at extra-

synaptic sites and occasionally on the pre-synaptic  membranes (Sprengel, 2006). 

Fluorescent in situ hybridization and immunocytochemistry studies have localized 

AMPAR subunits in the somata and dendrites of CA3 and CA1 pyramidal cells, 

especially in the apical dendrites of pyramidal cells (Cox and Racca, 2013). Glutamate 

activated neuronal AMPARs allow an influx of cations which depolarize the membrane 

and generate excitatory postsynaptic potentials (EPSPs). Since AMPAR activation 
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requires only the presence of glutamate, AMPARs can mediate fast excitatory synaptic 

transmission in the hippocampus (Lau and Tymianski, 2010). 

KARs 

 The KAR is a tetrameric iGluR that is composed of diverse combinations of five 

subunit proteins: GluK1, GluK2, GluK3, GluK4 and GluK5 (Collingridge et al., 2009; 

Copits and Swanson, 2012). Until recently, KARs were often referred together with 

AMPARs because of similar biophysical properties and the limited ability to selectively 

target KARs pharmacologically (Jane et al., 2009; Copits and Swanson, 2012). KARs are 

glutamate-gated channels that are permeable to cations and display rapid activation and 

desensitization characteristics (Pinheiro and Mulle, 2006). KARs are  ubiquitously 

distributed throughout the brain and act predominantly as modulators of synaptic 

transmission and neuronal excitability (Contractor et al., 2011). Numerous studies have 

demonstrated the presence of functional KARs in various neuronal populations on 

presynaptic and postsynaptic membranes (Pinheiro and Mulle, 2006). In the 

hippocampus, KARs have been shown to modulate inhibitory synaptic transmission in 

the CA1 region and require high-frequency stimulation in CA3 pyramidal neurons 

(Swanson and Heinemann, 1998). KARs are most likely localized at presynaptic 

GABAergic synapses to modulate GABA release from interneurons (Rodriguez-Moreno 

et al., 1997). Glial KARs also have been localized diffusely with AMPARs on the somata 

of oligodendrocytes (Salter and Fern, 2005). 

NMDARs 

NMDARs are heteromeric complexes composed of different subunits from a 

collection of three subtypes: GluN1, GluN2, and GluN3 (Paoletti and Neyton, 2007; 
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Collingridge et al., 2009). NMDARs have binding sites for glutamate, polyamines, Mg
+2

, 

and glycine (Wollmuth et al., 1998b, a; Ghasemi and Dehpour, 2011). Similar to  the 

manner in which Mg
2+

 interacts with residues that form the narrow constriction in the 

NMDA channel pore, numerous polyamines have been identified that modulate 

NMDARs (Berger et al., 2013). The activation of NMDARs requires binding of 

glutamate in addition to glycine or D-serine. In neurons at resting membrane potential, 

NMDARs which bind glutamate remain in a low conductance state because the channel 

pore is blocked by Mg
2+ 

ions. Under these basal conditions, an EPSP resulting from a 

glutamatergic synapse will be mediated entirely by AMPA receptors. However, 

membrane depolarization due to AMPAR activation can expel the Mg
2+ 

from the NMDA 

channel. With a depolarized membrane and a co-agonist (glycine or d-serine ), the 

glutamatergic impulses can activate NMDARs to allow the influx of monovalent cations, 

including Na
+
 and divalent cations, most notably Ca

2+ 
(Kalia et al., 2008). Ca

+2
 ions then 

can act as an important second messenger to activate intracellular signaling cascades. 

NMDARs have been found to be co-localized with AMPARs in the postsynaptic density 

of the vast majority of glutamatergic synapses in the brain (Pinheiro and Mulle, 2006). 

Once considered exclusively neuronal, NMDARs have now been demonstrated to 

be expressed in glial cells. In astrocytes and oligodendrocytes, NMDARs are expressed 

on the distal processes, a distribution which is unlike other iGluRs (Conti et al., 1996; 

Salter and Fern, 2005). Glial NMDARs have been found to be approximately 25 times 

more sensitive to glutamate compared to AMPA receptors (Lalo et al., 2006). Together, 

the location and sensitivity to glutamate suggest that NMDRs might contribute to 

monitoring glutamate levels in the extracellular space. Glial NMDARs have been found 



23 

 

to be either completely insensitive or weakly sensitive to extracellular Mg
2+

 (Lalo et al., 

2006). As a result, glial NMDARs are functional at resting membrane potentials and 

allow the influx of Na
+
 and Ca

2+
 ions into the glia. Although the role for NMDARs in 

generating astroglial Ca
2+

 signals is generally neglected, synaptic stimulation of 

NMDARs has been shown to contribute up to 50% of intracellular Ca
2+

 in cortical 

astrocytes (Palygin et al., 2010; Lalo et al., 2011). As in neurons, increased intracellular 

Ca
+2

 ions can act as an important second messenger to activate specialized proteins and 

intracellular signaling cascades. In cultured astrocytes, Ca
+2

 influx is required to obtain 

glutamate-induced volume increases (Hansson et al., 1994). 

Glutamate Transporters (GluTs) 

GluTs, known as excitatory amino acid transporters (EAATs), are abundant in 

neuronal and glial membranes and bind glutamate rapidly. The exact stoichiometry of 

GluT among the different isoforms of GluTs is still debated but it is considered that the 

uptake of 1 glutamate molecule is thermodynamically coupled with the influx of 3 Na
+
, 1 

H
+
, and the efflux of 1 K

+
 (Lopez-Bayghen and Ortega, 2011; Stone et al., 2012). Thus, 

GluTs use secondary active transport to maintain a 10
6
-fold glutamate concentration 

gradient across the cell membrane (Gameiro et al., 2011). During ATP reduction and 

altered osmotic states, glutamate transport can be reversed (Takahashi et al., 1997). 

The rapid kinetics of GluT serves several functions at the glutamatergic synapse. The 

uptake of glutamate preserves the electrical signal by maintaining a low non-toxic 

extracellular glutamate concentration, typically less than 1 µM (Simard and Nedergaard, 

2004). GluTs can modulate the time and extent of glutamate receptor activation. Uptake 

of glutamate also limits the spillover of glutamate into neighboring synapses and 
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extrasynaptic areas. Because of the rapid accumulation of glutamate from the 

extracellular space by GluT, this process is the primary mechanism for the inactivation of 

synaptically released glutamate (Rothstein et al., 1996). For astrocytes, glutamate uptake 

can be mediated either by Na
+
-independent or Na

+
-dependent mechanisms. The Na

+
-

independent uptake represents only a small proportion of total astrocyte glutamate uptake 

and is typically done via chloride dependent glutamate/cysteine antiporters (Anderson 

and Swanson, 2000). Na
+
-dependent glutamate uptake governs the majority of Na

+
 influx 

into astrocytes in situ (Langer and Rose, 2009) GluTs in astrocytes are considered the 

most important for maintaining normal glutamate concentrations and providing a 

pathway for glutamate metabolism. Astrocytic GLuTs clear approximately 80% of 

glutamate released during synaptic transmission (Verkhratsky and Kirchhoff, 2007). 

The task of glutamate clearance in the CNS is spread among six different GluTs, encoded 

by five distinct genes: EAAT1, EAAT2, EAAT3, EAAT4, and EAAT5 (Huang and 

Bergles, 2004). The subtypes EAAT1 and EAAT2 are mostly expressed in glial cells, 

whereas EAATs 3–5 are neuronal (Gameiro et al., 2011). In the hippocampus, EAAT1, 

EAAT2, and EAAT3 (Stone et al., 2012) are expressed and of those EAAT2 is 

considered the most prominent (Danbolt, 2001). The rat homologs of EAAT1, EAAT2, 

and EAAT3 are GLAST, GLT-1, and EAAC1 respectively. In the hippocampus, GLAST 

and GLT-1 are expressed as glial glutamate transporters in astrocytes, while EAAC1 is 

expressed as a neuronal glutamate transporter (Tsukada et al., 2005). Glial processes 

contain high levels of GLT as well as GLAST (Lehre and Danbolt, 1998). The 

concentration of GluTs in the stratum radiatum of hippocampus CA1 is approximately 

15,000 per µm
3
 tissue with GLT concentration as high as 12,000 per µm

3
 (Lehre and 
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Danbolt, 1998). GLT and GLAST clear the majority of extracellular glutamate while 

EAAC1 is estimated to account for the remaining 40% of glutamate uptake (Rothstein et 

al., 1996). 
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Figure: 4 Summary of glutamatergic synaptic activity. The illustration shows the basic 

aspects of the Schaffer collateral glutamatergic synapse. Glutamate (Glu) from the 

presynaptic neuron (purple) is released into the extracellular space. Glutamate then can 

bind to NMDARs, AMPARs, KARs and mGluRs. (Note that, although not shown here, 

iGluRs also are located on presynaptic neuronal and on glial membranes). Glutamate is 

cleared from the extracellular space by EAATs present in astrocytes (blue) and neurons 

(purple). Glutamate is recycled and packaged into synaptic vesicles via VGluTs. From 

(Swanson et al., 2005) 
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Figure 4: 
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Glutamate-glutamine cycle  

The uptake of glutamate by glial cells serves as the major pathway by which 

glutamate is recycled back to neuronal synaptic boutons. Glutamate released during 

neurotransmission is taken up primarily by neighboring astrocytes through GluTs. 

Glutamate then is amidated to glutamine by the ATP-dependent, glia-specific enzyme 

glutamine synthetase (Danbolt, 1994; Albrecht et al., 2010) .  Glutamine also can be 

converted into alpha-ketoglutarate by glutamate dehydrogenase or aspartate 

aminotransferase for subsequent oxidative metabolism in the TCA cycle (Stobart and 

Anderson, 2013). Efflux of glutamine from astrocytes into the extracellular fluid occurs 

via system N transporters while system A transporters (SAT) actively transport glutamine 

into neurons (Chaudhry et al., 2002). Imported glutamine is converted back into 

glutamate in the neuron through deamination by mitochondrial phosphate activated 

glutaminase (Kvamme et al., 2000). Neuronal glutamate is transported into synaptic 

vesicles via vesicular glutamate transporters (VGluTs) which are located in the 

membrane of synaptic vesicles. VGluTs are supplied with energy through a Mg
+2

-

dependent ATPase in the vesicular membrane which pumps H
+
 ions into the vesicles 

(Danbolt, 2001). Without Mg
+2 

 and ATP to fuel the proton pump, glutamate leaks out of 

the vesicles down the concentration gradient by reversal of VGluT (Danbolt, 1994). 
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Figure 5: Glutamate-glutamine cycle. This basic schematic of the glutamate-glutamine 

cycle between astrocytes and neurons is shown here. This schematic does not show 

system N transporters, system A transporters, and vesicular glutamate transports. 

Abbreviates: glutamate (Glu), excitatory amino acid transports (EAATs), glutamine 

(Gln), glutamine synthase (GS), alpha-ketoglutarate (α-KG), glutamate dehydrogenase 

(GDH), aspartate aminotransferase (AAT), phosphate-activated glutaminase (PAG), 

tricarboxylic acid cycle (TCA). From (Stobart and Anderson, 2013). 
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Figure 5: 
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Electric-activity dependent volume changes 

Potassium spatial buffering of action potentials 

Regulation of extracellular K
+
 in the brain is essential for neuronal excitability 

and is recognized as a major function of astrocytes (Bay and Butt, 2012). There are 

narrow ranges for K
+
 fluctuations and yet these fluctuations are a necessary consequence 

of synaptic transmission (Walz and Hertz, 1983). An elevated extracellular K
+
 may 

induce uncontrolled hyperexcitability and abnormal synchronization of neurons. Seizure 

activity in vivo is characterized by elevations in extracellular K
+
 from 3 mM to a ceiling 

level of 10–12 mM (Seifert et al., 2006). Conduction properties of CA1 afferents are 

sensitive to elevations in extracellular K
+ 

(Poolos et al., 1987). 

During synaptic transmission, neural depolarization is halted by an efflux of K
+
 

through voltage-gated K
+
 channels. The concentration of extracellular K

+
 increases in the 

compact extracellular space surrounding neurons and glia following activity. Gap 

junctions in astrocytes constitute a syncytium for ion movement (Witte et al., 2001) and 

are thought to facilitate spatial buffering of extracellular K
+
 during synaptic activity by 

redistributing K
+
 to places with low extracellular K

+
. However, recently, transgenic mice 

with gap junction deficient astrocytes revealed a large capacity for K
+
 redistribution 

suggesting that gap junction-dependent processes only partially account for K
+
 buffering 

in the hippocampus (Wallraff et al., 2006). At perivascular endfeet, K
+
 efflux is an 

effective vasodilator which serves to satisfy enhanced glucose and oxygen demand 

during neuronal activity (Filosa et al., 2006).  Gap junctions also interconnect 

perivascular glial endfeet which also contain various K
+
 channels, aquaporin channels 

(AQP), and purinergic receptors (Simard et al., 2003; Assentoft et al., 2013; Stobart and 
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Anderson, 2013). In the hippocampus, AQP4 is expressed  in CA1, where it may 

facilitate the rapid water fluxes that are required for maintaining K
+
 homeostasis during 

electrical activity (Papadopoulos and Verkman, 2013). Interestingly, AQP4 expression is 

strongest in the CA1 str. lac-mol suggesting this sublayer is important for astrocytic K
+
 

and water regulation.  

Studies using patch-clamp technique demonstrated expression of voltage-gated K
+
 

channels, Ca
+2

 activated K
+
 channels, and inward rectifying potassium channels (Kir) in 

glial cells.  However,  physiological properties of Kir channels suggest that this channel 

is responsible for the majority of K
+
 clearance from the extracellular space (Horio, 2001). 

Recent work suggests astrocytes exhibit co-localization of Kir4.1 with AQP4 (MacAulay 

and Zeuthen, 2010). Thus, volume regulation in glia may require cooperation of AQP4 

and Kir4.1 activities (Seifert et al., 2006).  Kir and Na
+
/K

+
 ATPase have been found 

important for K
+
 clearance during synaptic activity (Bay and Butt, 2012). However, 

recent data from other studies have stressed the importance of brain Na
+
/K

+
 ATPase 

rather than glial channel-mediated removal for clearing extracellular K
+ 

(Meeks and 

Mennerick, 2007). Finally, during stimulation, astrocytes experience an influx of Ca
+2

 

which has been found to stimulate Na
+
/K

+
 ATPase thus decreasing extracellular K

+ 

(Wang et al., 2012). From these studies, Na
+
/K

+
 ATPase is thought to be responsible for 

K
+
 clearance during stimulation while glial Kir4.1 is primarily responsible for 

maintaining steady-state extracellular K
+
 by releasing K

+
 back into the extracellular space 

to off-set active K+ uptake via Na
+
/K

+
 ATPase. 

Although glial swelling during neuronal activity is well known, the exact 

mechanisms underlying this swelling are unclear (MacAulay and Zeuthen, 2010). It is 
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thought that astrocytes experience a water influx to balance the osmotic pressure due to 

the increase in astrocytic K
+
, leading to swelling of the astrocyte and a decrease in the 

extracellular space.  

Glutamate-mediated cell volume regulation 

In the glutamatergic synapse, glutamate has been shown to mediate volume 

regulation through different pathways. Several studies have shown that glutamatergic-

purinergic signaling contributes to osmotic volume regulation of retinal glial cells (Wurm 

et al., 2008; Wurm et al., 2010; Linnertz et al., 2011). A purinergic signaling cascade 

includes the release of ATP, activation of purinergic receptors on glia, and subsequent 

efflux of Cl
- 
and K

+
 accompanied by water efflux as part of the regulatory volume 

decrease mechanism (Darby et al., 2003; Uckermann et al., 2006). It is thought that 

glutamate activation of mGluRs causes a release of ATP from glial cells to activate 

purinergic receptors (Kalisch et al., 2006; Wurm et al., 2008). In addition, glutamatergic-

purinergic signaling has been found to evoke taurine efflux in the substantia nigra in 

response to hypoosmolarity (Morales et al., 2007; Morales et al., 2009). These findings 

suggest that glutamatergic-purinergic signaling also may apply to volume regulation 

during synaptic activity. 

Glutamate activation of all three iGluRs  has been found to significantly enhance 

taurine release (Oja and Saransaari, 2013b) while activation of mGluRs was found to 

have a minor role in the regulation of taurine release (Oja and Saransaari, 2013a). During 

oxidative stress, NMDAR activation was found to be associated with volume regulation 

in the hippocampus (Tucker and Olson, 2010). Interesting, activation of AMPARs in the 
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substantia nigra induced a dose-response increase of taurine while NMDARs showed no 

response (Garcia Dopico et al., 2004). 

Despite the years of research, the mechanisms underlying glutamate-mediated 

volume regulation in neurons and glial cells during synaptic transmission remain largely 

unclear. In this present study, volume regulation of neurons and glia in the glutamatergic 

synapse will be examined. These experiments will elucidate the specific role of glutamate 

in cell swelling and volume regulation during stimulation. 

Model of volume regulation during synaptic activity 

 

Figure 6 illustrates the current understanding of volume regulation during 

stimulation. When an action potential reaches the glutamatergic pre-synaptic terminal of 

a nerve cell, it causes an elevation in intracellular Ca
+2

 due to the opening of voltage-

dependent Ca
+2

 channels. This rise in calcium ultimately triggers the fusion of glutamate 

containing synaptic vesicles with the cell membrane. The release of glutamate diffuses 

across the narrow region of the synaptic cleft between the presynaptic membrane of the 

axon and the postsynaptic membrane of the target dendrite.  

Glutamate binds to iGluRs on neurons and glial cells causing an influx of cations. 

Additionally, astrocytes rapidly clear excess K
+
 and glutamate from the extracellular 

space. The intracellular water influx which results from these ion movements into cells 

relieves osmotic pressure gradients and decreases the volume of the extracellular space. 

The cells which are swollen then can undergo RVD via several specialized channels 

including VRACs to release ions and organic osmolytes into the extracellular space. 

Several studies have demonstrated that glutamate-mediated volume regulation 

mechanisms involving iGluRs facilitate RVD.   
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While each of these mechanisms has been studied in isolated cell systems, there 

has been no attempt to examine these processes in the context of physiological neuronal 

activity in situ.  Thus, the role of synaptic activity, glutamate, and VRACs in stimulation-

induced swelling and recovery is unclear. In this present study I will examine the effects 

of stimulation, iGluR inhibition, GluT inhibition, and VRAC inhibition to elucidate the 

specific role of glutamate in cell volume regulation during stimulation-induced cellular 

swelling. 
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Figure 6: Mechanisms underlying stimulation-induced volume changes (A) 

Representation of an astrocyte (purple) and myelinated neurons (blue myelin, yellow 

neuron). The active synapse is highlighted in red. (B) The active synapse is enlarged to 

illustrate astrocytic swelling in response to synaptic activity. (Left) Inactive glutamatergic 

synapse and astrocytic VRACs are inactive. (Middle) During synaptic activity, K
+
 and 

glutamate are released into the extracellular space. Glutamate binds to GluRs causing 

neurons and glia to experience an influx of cations (not shown). Neuronal swelling is not 

shown due to cations is not shown. Astrocytes experience an influx glutamate and K
+
 via 

glutamate transports and K
+ 

channels respectively. A water influx via aquaporins relieves 

the osmotic pressure in astrocytes resulting in an increased cellular volume and decreased 

extracellular space. (Right) Osmotic swelling triggers VRACs to mediate the efflux of 

anions and excitatory amino acids. From (Mulligan and MacVicar, 2006). Reprinted with 

permission from AAAS. 
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Figure 6: 
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III: OBJECTIVE & SPECIFIC AIMS 
 

The complex and dynamic interactions that occur at the synaptic level between 

neurons and glia pose a challenge for understanding volume regulation during functional 

brain activity.  The mechanisms and osmolytes involved in cellular volume regulation 

during synaptic activity remain uncertain. This research is intended to characterize 

stimulation–induced volume changes in the hippocampus. To accomplish this task, the 

interactions between neurons and glia were studied with several specific aims. 

Specific aims 

 

Examine the effects of stimulation frequency on cell volume. 

The first goal of this study was to identify and characterize the effects of different 

stimulation frequencies on cell volume. This was accomplished using several different 

frequencies to orthodromically stimulate the Schaffer collateral pathway while measuring 

cellular volume simultaneously. A frequency with a measurable change in IOS that 

offered the most consistent results was selected for the remainder of this project. 

Investigate the effects of synaptic block on cell volume. 

The second goal of this study was to determine if pre-synaptic activity contributed to 

stimulation-induced swelling. The synaptic transmission was blocked with 
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a pharmacological agent and field potential records were used to confirm that synaptic 

transmission was blocked.

Distinguish the effects of iGluR inhibition on cell volume. 

The third goal of this study was to determine the involvement of ionotropic glutamate 

receptors in volume regulation during stimulation. Pharmacological agents were used 

during stimulation to inhibit iGluRs present on neurons and glia while observing the 

changes in cellular volume. The effects of AMPA inhibition and NMDA inhibition were 

studied separately, as well as together, to observe the effects of total iGluR inhibition. 

The field potential recordings were used to confirm effectiveness of AMPA inhibition by 

the absences of excitatory post-synaptic potentials. Field potentials during NMDA 

inhibition were used to confirm that excitatory post-synaptic potentials remained because 

neurons were being depolarized by the AMPARs. During total iGluR inhibition, the field 

potentials were used to confirm that excitatory post-synaptic potentials were blocked due 

to AMPA inhibition. 

Identify the effects of glutamate reuptake inhibition on cell volume. 

At the excitatory glutamatergic synapse of the Schaffer collateral pathway, the effects 

of glutamate reuptake were investigated by the application of a pharmacological agent to 

block GluTs present on neurons and glia. The field potential recordings were used to 

confirm that glutamate was accumulating within the synaptic cleft resulting in increased 

excitability. The cellular volume changes were observed during stimulation with the 

inhibition of GluTs. 
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Characterize the effects of VRAC inhibition on cell volume. 

The final goal of this study was to determine the involvement of VRAC during 

stimulation-induced swelling. Given that VRACs activate during cell swelling, the 

involvement of VRACs was expected to be evident. The inhibition of VRACs was 

achieved with several different drugs to characterize the changes in IOS. 

Significance   

 

These studies will further our understanding of volume regulation that occurs 

during functional brain activity. This information will provide insight into the osmolytes 

that are contributing to stimulation-induced swelling and the recovery process of cellular 

volume. Together, the understanding of volume regulation and the osmolytes involved in 

volume regulation during physiological conditions will advance treatment protocols for 

pathophysiological conditions that potentially could lead to brain edema. 
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IV. MATERIALS AND METHODS 

Chemicals 

 
NaCl, dimethyl sulfoxide (DMSO), 2-aminoethanesulfonic acid (taurine), 5-nitro-

2-(3-phenylpropylamino)benzoic acid (NPPB), 6-cyano-7-nitroquinoxaline-2,3-dione 

(CNQX), (+)-MK-801 hydrogen maleate (MK801) were obtained from Sigma-Aldrich 

(St. Louis, MO). MgSO4, NaHCO3, and KCl were procured from Fisher Scientific 

(Fairlawn, NJ). CaCl2∙2H20, NaH2PO4∙H20 and D-glucose (dextrose) were from JT Baker 

(Phillipsburg, NJ); NaH2PO4∙H20 was also obtained from VWR (Westchester, PA); 4-[(2-

butyl-6,7-dichloro-2-cyclopentyl-2,3-dihydro-1-oxo-1H-inden-5-yl)oxy]butanoic acid 

(DCPIB) and (3S)-3-[[3-[[4-(trifluoromethyl)benzoyl]amino]phenyl]methoxy]-L-

aspartic acid (TFB-TBOA) were acquired from Tocris Biosciences (Ellisville, MO); 2-[3-

(trifluoromethyl)anilino]nicotinic acid (niflumic acid) was procured from ICN 

Biomedicals (Aurora, OH); 95% ethyl alcohol (ethanol) was from AAPER (Shelbyville, 

KY). 

Animals  

 

All experiments performed were approved by the Laboratory Animal Care and 

Use Committee (LACUC) at Wright State University. Fifty-five adult Sprague-Dawley 

rats of either sex 237±83g (mean ± standard deviation) were housed in a controlled 
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environment at the Laboratory Animal Care facility at Wright State University. The room 

temperature was maintained at 74˚F. Rats were housed in full-spectrum fluorescent lights

 on a 12:12 light:dark cycle. All rats were provided standard tap water and standard feed 

ofTeklad 8640 Rodent diet (Harlan Laboratories, Madison, WI) ad libitum. The contact 

bedding used for all experiments was either corn cob (0.6 cm), (The Andersons Inc., 

Maumee, OH) or aspen chip (Sani Chip, Harlan Laboratories). Rats were transported 

individually to the laboratory in cages with bedding, food and water. Cages were 

designed to minimize potential exposure of the animals to disease and personnel to 

animal allergens on the day of the experiments. 

Slice preparation 

 

Once the animal arrived to the laboratory, its weight was recorded and it was 

anaesthetized for perfusion. Transverse 400 µm thick hippocampus slices were prepared 

using methods similar to those previously described (Tucker and Olson, 2010; Lein et al., 

2011). Animals were anaesthetized to apnea using isoflurane and then perfused via the 

left cardiac ventricle with ice-cold isotonic artificial cerebrospinal fluid (aCSF) that had 

been equilibrated with 95% O2 plus 5% CO2. Isotonic aCSF consisted of (in mM): 124 

NaCl, 3.5 KCl, 2 CaCl2, 1 MgSO4, 1 Na2HPO4, 26 Na2HCO3, and 10 glucose. Animals 

then were decapitated and the brain placed into a frozen slurry of aCSF for at least 5 min. 

Transverse hippocampal tissue slices then were prepared from the middle third of each 

hippocampus. Figure 7 illustrates the relative position of such a transverse slice within 

the rat brain (Amaral and Witter, 1989). Slices were cut in a plane that preserved Schaffer 

collateral connections (Teyler, 1980) and then were transferred to a preincubation 

chamber where they remained for at least 60 min at room temperature in aCSF 
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equilibrated with 95% O2 plus 5% CO2. For most slices, 1 mM taurine was added to the 

aCSF to maintain normal tissue taurine content (Kreisman and Olson, 2003). After the 

slice preparation and a 60 min preincubation period, slices were transferred individually 

to the recording stage of a Haas-type interface chamber and perfused with aCSF 

equilibrated with 95% O2 plus 5% CO2 at 35°C. For slices exposed to 1 mM taurine 

during room temperature incubation, the same taurine concentration was present during 

the first 30 min of perfusion on the recording stage. 
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Figure 7: Lateral view of hippocampal formation in the rodent brain. The parietal and 

temporal neo-cortex are removed to expose the position of the hippocampal formation. 

The transverse axis (Trans) is shown perpendicular to the long septotemporal axis of the 

hippocampus. A transverse slice is depicted from the middle of the left hippocampus and 

enlarged at the top left to show the intrinsic synaptic connections. Abbreviations: CA1, 

Cornu Ammonis 1;CA3, Cornu Ammonis 3;DG, dentate gyrus; mf, mossy fibers; pp, 

perforant path; S, subiculum; Se, septal; sc, Schaffer collaterals; T, temporal. 
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Figure 7: 
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Electrophysiology 

 

Electrical stimulation 

All experiments were conducted inside a Faraday cage to prevent electrostatic and 

electromagnetic inference. pClamp 6 software (Axon Instruments, Union City, CA) was 

used for stimulation control in combination with a single channel stimulator (S-900, 

Dagan Corporation, Minneapolis, MN) and stimulus isolation unit (S-910, Dagan 

Corporation, Minneapolis, MN). A stimulation pulse of 200 µsec length was delivered at 

30 sec intervals to a bipolar electrode made of 178 µm diameter Teflon-coated stainless 

steel wires. The stimulating electrodes were placed in the stratum radiatum of the CA3 

region to orthodromically stimulate the Schaffer collateral pathway (Figure 8). These 

electrodes were placed prior to positioning the glass recording electrode to prevent 

damage to the recording electrode by movement of the slice. Low frequency stimulation, 

considered a pulse frequency rate of once every 30 sec, was delivered to slice prior to 

high frequency stimulation trains. During high frequency stimulation, slices received a 

train of pulses at 1, 3, 5, or 10 Hz for 5 minutes. After the stimulation train, low 

frequency stimulation resumed. If slices were given more than one high frequency 

stimulation train, the trains were separated by 5 min. pClamp 6 software was used for 

data acquisition and analysis. 

Field potential recording 

Population field potentials from pyramidal neurons were recorded with a glass 

microelectrode (WPI inc, Sarasota, FL) filled with aCSF (~50 MΩ) and positioned in 

either the pyramidal cell layer or stratum radiatum of CA1 (Figure 2). Voltages were 
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measured with a high input impedance dual differential electrometer (FD223, WPI Inc, 

Sarasota, FL). The responses to stimulation were filtered using a 2 pole 5 kHz low-pass 

and amplified ×10 during data acquisition. The resulting waveform was displayed on an 

oscilloscope and digitized with pClamp software (TDS-340A, Tektronic, Beaverton, 

OR).  By monitoring the peak-to-peak response of the population spike with the 

oscilloscope, the stimulus current amplitude was adjusted to give the maximum signal 

with the lowest stimulus strength.  This typically resulted in stimulus currents between 

0.2 and 0.9 mA. Baseline responses were recorded to assure slice quality and viability. 
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Figure 8: Image of a hippocampal slice on recording stage. Single line labeled 

“Recording” shows the placement of the glass microelectrode within the in the pyramidal 

cell layer of CA1. The two lines labeled “Stimulation” point to the bipolar stimulating 

electrodes placed in the stratum radiatum of the CA3. The subiculum, dentate gyrus, and 

entorhinal cortex are labeled for orientation. 

. 
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Figure 8: 
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Imaging 

 

Slices were transluminated from below with white light from a DC-regulated 

illuminator (PL-900 Dolan-Jenner, Boxborough, MA) and viewed with an upright stereo 

microscope (SMZ 800, Nikon, Melville, NY).  Slice images were acquired at 10-sec 

intervals using a charge-coupled device (CCD) fixed gain camera with 640 x 480 pixel 

spatial resolution and 8-bit intensity resolution (maximum of 255 units). Images were 

captured and a region of interest (ROI) in the stratum radiatum of CA1 between the 

stimulation and recording electrodes was selected using ImageJ software. The average 

pixel intensity within the ROI was calculated to indicate the magnitude of light 

transmission through the slice. The intensity of the illuminating light source was adjusted 

to give an average intensity in the ROI of approximately 120 units at the start of 

recordings. Baseline images were taken prior to drug treatment. All experiments were 

performed in a darkened room to prevent reflected light from other sources from 

interfering with the transmitted light signal. 

Drug application 

 

For some experiments, isotonic aCSF was modified to block synaptic activity in 

the slices by reducing the concentration of CaCl2 to 0.2 mM and increasing the 

concentration of MgSO4 to 11.4 mM. Depending on the drug used. isotonic aCSF, 

DMSO, or 95% ethanol were used as vehicles for stock solutions. For AMPAR 

inhibition, slices were perfused with 25 µM CNQX for 20 min prior to beginning the 

stimulation train. We found this was sufficient time to completely block population field 

potentials. Slices exposed to NMDAR inhibitors were perfused 15 min with 10 µM 

MK801 prior to the stimulation train. Effects of complete iGluR inhibition was 
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investigated by perfusing slices with a combination of both 25 µM CNQX and 10 µM 

MK801 for 20 min prior to beginning the stimulation train. Slices used to study glutamate 

uptake inhibition were perfused with 1 µM TBF-TBOA for 20 min prior to beginning the 

stimulation train. Slices exposed to the VRAC inhibitors, 20 µM DCPIB, 100 µM 

niflumic acid, or 100 µM NPPB were perfused with for 15 min prior to the start of the 

stimulation train. When used, drugs also were present throughout the stimulation train 

and during the subsequent 15 min recovery period. 

Experimental design  

 

Figure 9 illustrates the typical experimental design for taurine-loaded slices 

treated with a drug. During time of taurine perfusion on the recording stage stimulating 

and recording electrodes were placed in the slice. Stimulation and image recording began 

during the taurine perfusion period. Immediately following perfusion with taurine, slices 

were exposed to a drug treatment for 15-20 min before the start of a high frequency 

stimulation train. Image and electrophysiological data collected during the experiments 

were archived on a network server and transferred at the end of the day to a personal 

computer for analysis. 
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Figure 9: Schematic of experiment timeline. The experimental design of a typical taurine-

loaded slice involved changes in stimulation and perfusion. When a drug was not used, 

isotonic aCSF replaced the period of drug perfusion. Stimulation frequencies during the 

experiment are shown in boxes above the arrow. Changes in the composition of the 

perfusion solution that occurred during an experiment are shown inside the arrow. The 

approximate time period of each event is shown within its corresponding box. 
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Figure 9: 
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Field potential analysis 

 

A Gaussian low pass filter with a cut off of 5 kHz was applied to the 

electrophysiological signals prior to digital acquisition by pClamp software. To examine 

drug effects on the stimulation-induced field potentials, the magnitude of the population 

spike was calculated by measuring the peak-to-peak amplitude at the population spike 

signal. The mean amplitude was calculated by averaging results from 5 sequential records 

over a 2.5 min time interval. These mean amplitudes were calculated at several time 

periods throughout the experiment: prior to drug treatment, at the end of drug loading, at 

the end of high frequency stimulation, and at the end of the experiment. 

Image analysis 

 

The average intensity of the ROI in the hippocampal slice acquired during the 

minute prior to the beginning of high frequency stimulation train was averaged to use as a 

baseline to normalize measurements from each of the following ROI values (Figure 10). 

The resulting normalized values thus describe the fractional change in light transmittance 

of the slice over time. The change in light transmittance within the selected ROI was 

graphed to characterize changes that occurred during high frequency synaptic activity and 

pharmacological treatments. NIH Image software was used to normalize each 

hippocampus slice image on a pixel-by-pixel basis to the average of seven images 

acquired during the minute prior to high frequency stimulation.  A pseudocolor intensity 

scale was applied to these normalized images to display regional changes in light 

transmittance (Figure 11). 
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Intrinsic optical signal (IOS) analysis 

 

In order to gain insight into how brain activity effects the movement of water 

between intracellular and extracellular compartments, we used the change in light 

absorption to provide an indirect measure of volume changes. Intrinsic optical signals 

(IOSs) refer to changes in optical properties of an unstained biological tissue measured as 

a change of either light transmittance or reflectance. Previous studies have shown that 

cellular swelling is associated with decreased light scattering, decreased reflectance, and 

increased light transmittance through biological tissue samples (MacVicar and Hochman, 

1991; Andrew and MacVicar, 1994; Andrew et al., 1996; Aitken et al., 1999; Andrew et 

al., 1999; Muller and Somjen, 1999; Bahar et al., 2000; Fayuk et al., 2002; Tucker and 

Olson, 2010; Pal et al., 2013). In these studies, light transmission of the ROI was used to 

determine the IOS. IOS has been used to indirectly measure brain tissue volume changes 

in brain tissue slices  

To characterize IOSs during high frequency stimulation, several measurements 

were taken during the time course of an experiment. These include: on-set slope, 

maximum IOS, time point of the maximum IOS, off-set slope, and the value measured 15 

min after the high frequency stimulation train was terminated (Figure 10). For slices 

exposed to the same treatment, measurements of each parameter were averaged and the 

standard error of the mean (SEM) was calculated.  
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Figure 10: Schematic of measured IOS Parameters. A) Baseline region used to normalize 

light transmission signals. B) Region of IOS highlighted with a blue bar to show the 

linear approximation used to calculate the on-set slope. C)  Region of IOS recorded for 

the maximum change in IOS. D) Region where the time at maximum IOS was recorded. 

E) Region of IOS highlighted with a blue bar to show the linear approximation used to 

calculate the off-set slope. F) Region where IOS recovery was measured 15 min after the 

high frequency stimulation train was terminated. 
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Figure 10: 
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Figure 11: Colorized hippocampus slice image. The pseudocolor intensity scale 

represents percent change in IOS from baseline (black regions indicate no change in 

IOS). A) Baseline slice image before initiation of high frequency stimulation indicates no 

change in IOS. B) Slice during high frequency stimulation displays increased IOS along 

the SC pathway. 
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Figure 11:  

A) 

   

B) 

  

  



58 

 

On-set slope 

The on-set slope corresponds with the initial change in IOS observed at the start 

of high frequency stimulation.  It was derived as the slope of a linear approximation 

calculated from 2-3 normalized IOS values. The number of values chosen to calculate on-

set slope was determined as the number of points which yielded the minimum coefficient 

of variation across experiments. The mean on-set slope was calculated for each treatment 

along with the SEM of these mean values.  

Maximum IOS and corresponding time 

During the high frequency stimulation train, the maximum IOS and the time at 

which the maximum IOS point occurred was recorded. The time at which the maximum 

IOS point occurred is expressed relative to the beginning of the high frequency 

stimulation train. The mean maximum IOS and time point were calculated for each 

treatment along with the standard error of mean of these mean values  

Off-set slope  

The off-set slope measurement began immediately after the high frequency 

stimulation and consisted of a linear approximation of 2-6 values. The number of values 

chosen to calculate off-set slope was determined as the number of points which yielded 

the minimum coefficient of variation across experiments. The mean off-set slope was 

calculated for each treatment along with the SEM of these mean values. 

IOS recovery 

IOS was measured for each slice 15 min after the end of the high frequency 

stimulation train to get a measure of recovery. Slices used to study stimulation-frequency  
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were only given 5 min of recovery following the stimulation train. Thus IOS recovery 

was taken 5 min after the end of stimulation for these initial experiments. The mean IOS 

recovery was calculated for each treatment along with the SEM of these mean values. 

Statistical analysis 

 

Quantitative data are presented as the mean values ± SEM. Amplitude values 

from electrophysiological recordings and IOS values were analyzed for statistical 

significance using a one-way ANOVA with Dunnett's post hoc analysis for multiple 

comparisons. A two-way ANOVA without replication with Dunnett’s post hoc analysis 

was used in the analysis of IOS during iGluR inhibition. For some studies, the non-

parametric Mann-Whitney U test was used if data was not normally distributed. Values 

were considered significantly different for p < 0.05.  

 



60 

 

V. RESULTS 

Hippocampal volume response to stimulation is frequency dependent  

 

The Schaffer collateral pathway was stimulated at 1, 3, 5, and 10 Hz for 5 min. In 

slices without taurine treatment, the magnitude of changes in light transmission through 

the slice increased as the frequency of the stimulation train increased (Figure 12). Several 

parameters were taken during the time course of the experiment to characterize the 

effects of stimulation frequency on IOS. The on-set slope, taken from the start of high 

frequency stimulation was calculated for each frequency change. The on-set slope was 

significantly different from baseline at 10 Hz stimulation but not for lower frequencies 

(Figure 13). The off-set slope, taken at the end of high frequency stimulation, was 

significantly different from baseline at 10 Hz (Figure 13). The maximum change in IOS 

increased with increased stimulation; however, the maximum change in IOS from the 

baseline and the time at which the maximum occurred were not significant at any 

frequency (Table 1). The IOS measured after 5 min of recovery was not significantly 

different from the baseline value at any frequency.
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Figure 12: Effects of stimulation frequencies on IOS. Slices were stimulated at the 

frequencies shown and slice images acquired every 10 sec. Values are the mean ± SEM 

of 5-6 slices. Some error bars for individual time points are removed for clarity. 
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Figure 12: 
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Figure 13: On-set slope and off-set slope measured at different stimulation frequencies.     

* Indicates values which are significantly different from baseline by a one-way ANOVA 

(p<0.05) and Dunnett’s post hoc test. 
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Figure 13: 
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Table 1: Effect of stimulation frequency on maximum IOS, time at the maximum IOS, 

and IOS recovery after 5 min. Values are the mean ± SEM from 5-6 hippocampal slices. 

No values were significantly different from baseline by a one-way ANOVA (p<0.05) and 

Dunnett’s post hoc test.   
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Table 1: 

Stimulation 

Frequency 

Maximum 

change in IOS 

(% from baseline) 

Time at 

Maximum IOS 

(min) 

Last min of IOS 

(% from baseline) 

1 Hz 0.23 ± 0.11 0.92 ± 0.72 0.28 ± 0.57 

3 Hz 0.73 ± 0.53 1.37 ± 0.75 -0.48 ± 0.31 

5 Hz 1.68 ± 1.21 1.06 ± 0.53 -0.34 ± 1.06 

10 Hz 2.52 ± 1.40 1.72 ± 0.87 1.26 ± 1.29 
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Synaptic blockage inhibits stimulation-induced swelling  

 

Population field potentials 

A synaptic block solution (SBS) was created by modifying aCSF with low Ca
+
 

and high Mg
+ 

concentration. Slices were perfused with the SBS 10 min prior to high 

frequency stimulation and throughout the period of high frequency stimulation and 

recovery. Field potential recordings were used to verify that the slice was synaptically 

blocked. Figure 14 shows the field potential at several time periods during the course of 

the experiment. The mean amplitude of the population spike measured over 2.5 min prior 

to SBS perfusion was 2.34 ± 0.17mV. The amplitude remained significantly reduced 

from the baseline amplitude throughout SBS exposure. The amplitude was reduced at the 

end of the 10 min perfusion to 1.17 ± 0.22mV. During the last half of the high frequency 

stimulation, the amplitude decreased further to 1.01 ± 0.15mV. By the end of the 

experiment, the amplitude had increased somewhat to 1.12 ± 0.21mV but did not recover 

to the baseline amplitude.  

Stimulation-induced changes in IOS  

IOS responses to stimulation were reduced in slices perfused with SBS and 

remained relatively unchanged following the high frequency stimulation (Figure 15). 

There was a significantly reduced on-set slope in synaptically blocked slices, but the off-

slope was not statistically different from that measured in control slices (Figure 16). The 

maximum IOS was reduced in synaptically blocked slices, but the time to reach the 

maximum IOS was not statistically different (Table 2). Slices exposed to SBS did not 

return towards the baseline following high frequency stimulation.   
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Figure 14: Effects of synaptic block on stimulation-induced field potentials. Individual 

field potentials were taken at several periods during the experiment A) Baseline field 

potential taken prior to SBS exposure B) Field potential after 10 min drug loading C) 

Field potential at the end of 10 Hz stimulation. D) Field potential 15 min after the end of 

the 10 Hz stimulation train. Arrows point to the composite action potential spike in the 

Schaffer collateral axons. The sampling interval of the individual field potential 

recordings was reduced by a factor of 10. The graphed field potentials were expanded to 

show the first 20 ms of the recording data for clarity purposes. 
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Figure 14:  
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Figure 15: Effect of synaptic block on stimulation-induced changes in IOS. Values are 

the mean ± SEM of 5-7 slices. Some error bars for individual time points are removed for 

clarity. 
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Figure 15: 
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Figure 16: On-set slope and off-set slope measured with perfusion with synaptic block 

solution. Values are the mean ± SEM of 5-7 slices. * Indicates values which are 

significantly different from control by a one-way ANOVA (p<0.05) and Dunnett’s post 

hoc test. 
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Figure 16: 
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Table 2: Effect of SBS on maximum IOS, time at maximum IOS, and last min of IOS. 

Values are the mean ± SEM from 5-7 hippocampal slices. * Indicates values which are 

significantly different from control by a one-way ANOVA (p<0.05) and Dunnett’s post 

hoc test or Mann-Whitney U test. 
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Table 2: 

Group 

Maximum 

change in IOS 

(% from baseline) 

Time at 

Maximum IOS 

(min) 

Last min of IOS 

(% from baseline) 

Control 6.22 ± 1.61 4.69 ± 0.19 3.47 ± 1.43 

SBS 1.99 ± 0.34* 3.63 ± 0.76 2.08 ± 1.16 
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iGluR inhibtions does not alter stimulation-induced changes in IOS  

Population field potentials 

Hippocampal slices were exposed to 25 µM CNQX or 10 µM MK801 to examine 

the role of glutamate AMPA or NMDA signaling, respectively, for stimulation-induced 

swelling and volume regulation. Complete inhibition of iGluRs was achieved with 

perfusion of both 25 µM CNQX and 10 µM MK801 in the aCSF. Control slices were 

exposed to aCSF containing 0.1% DMSO, the vehicle used to make stock solutions of 

CNQX and MK801. Field potential recordings were used to verify viability of the slice 

and inhibition of AMPA receptors. In the presence of CNQX, the population spike 

amplitude was significantly reduced in the electrophysiological recordings following 20 

min of CNQX perfusion. Figure 17 shows several field potentials recorded during the 

course of a CNQX experiment. Perfusion with MK801 did not significantly impact the 

amplitude of the population spike except during the high frequency stimulation (Figure 

18). In the presence of CNQX and MK801, the amplitude was significantly reduced 

throughout the experiment following the 20 min perfusion (Figure 19). Table 3 shows the 

calculated amplitudes prior to drug exposure, at the end of drug loading, at the end of the 

high frequency stimulation, and at the end of the experiment. 

Stimulation-induced changes in IOS 

The stimulation-induced IOS responses of slices perfused with CNQX were 

similar to that measured in slices perfused with drug vehicle (Figure 20). In contrast, 

slices perfused with MK801 showed a reduced IOS response (Figure 21). Perfusion with 

the combination of CNQX and MK801 to block all iGluRs also reduced the stimulation-

induced change in IOS (Figure 22). Inhibition of iGluRs decreased the IOS rate of change 
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for the on-set and off-set slopes (Figure 23). The inhibition of AMPARs did not slow the 

rate of change as much as inhibition of NMDARs. During total iGluR inhibition, there 

was an additive effect on the IOS rate of change. In the presence of CNQX, the peak 

typically occurred later during the high frequency stimulation train. During the last min 

of images, the IOS was similar to controls for all drug treatments. With NMDA inhibition 

alone, the IOS maximum was significantly reduced. Total iGluR inhibition also tended to 

reduce the maximum IOS change but the value was not statistically different from 

controls. Table 4 summarizes effects of iGluR inhibition on the maximum IOS and when 

this peak occurred relative to the start of high frequency stimulation. 
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Figure 17: Effects of CNQX on stimulation-induced field potentials. Individual field 

potentials were taken at several periods during the experiment A) Baseline field potential 

taken prior to CNQX exposure B) Field potential after 20 min of drug loading C) Field 

potential at the end of 10 Hz stimulation. D) Field potential 15 min after the end of the 10 

Hz stimulation train. The sampling interval of the individual field potential recordings 

was reduced by a factor of 10. The graphed field potentials were expanded to show the 

first 20 ms of the recording data for clarity purposes. 
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Figure 18: Effects of MK801 on stimulation-induced field potentials. Individual field 

potentials were taken at several periods during the experiment A) Baseline field potential 

taken prior to MK801 exposure B) Field potential after 15 min of drug loading C) Field 

potential at the end of 10 Hz stimulation. D) Field potential 15 min after the end of the 10 

Hz stimulation train. The sampling interval of the individual field potential recordings 

was reduced by a factor of 10. The graphed field potentials were expanded to show the 

first 20 ms of the recording data for clarity purposes. 
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Figure 19: Effects of total iGluR inhibition on stimulation-induced field potentials. 

Individual field potentials were taken at several periods during the experiment A) 

Baseline field potential taken prior to CNQX+MK801 exposure B) Field potential after 

20 min of drug loading C) Field potential at the end of 10 Hz stimulation. D) Field 

potential 15 min after the end of the 10 Hz stimulation train. The sampling interval of the 

individual field potential recordings was reduced by a factor of 10. The sampling interval 

of the individual field potential recordings was reduced by a factor of 10. The graphed 

field potentials were expanded to show the first 20 ms of the recording data for clarity 

purposes. 
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Figure 19: 
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Table 3: Effects of iGluR inhibition on population spike amplitude. Values are the mean 

± SEM from 3-6 hippocampal slices. * Indicates values which are significantly different 

from baseline amplitude by a one-way ANOVA (p<0.05) and Dunnett’s post hoc test. 
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Table 3: 

Group 
Baseline 

amplitude 
(mV) 

End of drug 
loading 

amplitude 
(mV) 

End of 10 Hz 
train 

amplitude 
(mV) 

End of 
experiment 
amplitude 

(mV) 

CNQX 4.19 ± 1.40 1.02 ± 0.1 * 0.75 ± 0.07 * 1.01 ± 0.08 * 

MK801 4.42 ± 0.53 4.57 ± 0.54 1.24 ± 0.12 * 4.55 ± 0.42 

CNQX + 
MK801 

4.29 ± 0.56 1.12 ± 0.05 * 0.88 ± 0.12 * 1.27 ± 0.32 * 
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Figure 20: Effects of CNQX on stimulation-induced changes in IOS. Values are the mean 

± SEM of 4-5 independent measurements. Some error bars for individual time points are 

removed for clarity. 
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Figure 20: 
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Figure 21: Effects of MK801 on stimulation-induced changes in IOS. Values are the 

mean ± SEM of 4 independent measurements. Some error bars for individual time points 

are removed for clarity. 
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Figure 21: 
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Figure 22: Effects of total iGluR inhibition on stimulation-induced changes in IOS. 

Values are the mean ± SEM of 4 independent measurements. Some error bars for 

individual time points are removed for clarity.  
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Figure 22: 
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Figure 23: Measured on-set slope and off-set slope with iGluR inhibition. * Indicates 

values which are significantly different from the vehicle by a two-way ANOVA (p<0.05) 

and Dunnett’s post hoc test. 
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Figure 23: 
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Table 4: Effect of iGluR inhibition on maximum IOS, corresponding time at maximum 

IOS, and last min of IOS. Values are the mean ± SEM from 4-5 hippocampal slices. * 

Indicates values which are significantly different from the vehicle by a two-way ANOVA 

(p<0.05) and Dunnett’s post hoc test. 
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Table 4: 

Groups 

Maximum IOS 

(% from baseline) 

 

Time at Maximum 

IOS 

(min) 

Last min of IOS 

(% from baseline) 

Vehicle 7.34 ± 0.79 3.00 ± 0.52 1.68 ± 0.87 

CNQX 8.75 ± 2.66 4.73 ± 0.30 * 1.96 ± 0.99 

MK801 3.69 ± 0.82 * 1.38 ± 0.79 1.45 ± 0.88 

CNQX + MK801 4.41 ± 1.35 4.58 ± 0.26 1.52 ± 0.24 
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Glutamate uptake inhibition prevents stimulation-induced swelling  

Population field potentials 

TFB-TBOA was used to inhibit glutamate uptake during high frequency 

stimulation. The population spike amplitude increased after 15 min of perfusion with 

1µM TFB-TBOA from 2.75 ± 0.86 mV to 3.51 ± 0.62 mV. The number of repetitive 

population spikes with low frequency stimulation also was observed to increase during 

TFB-TBOA perfusion. During high frequency stimulation, the population spike 

amplitude was reduced to 1.89 ± 0.33 but recovered by the end of the experiment to 3.48 

± 0.61mV. Figure 24 shows several field potential taken throughout a typical TFB-TBOA 

experiment. 

Stimulation-induced changes in IOS 

TFB-TBOA perfusion reduced stimulation-induced changes in IOS (Figure 25). 

The on-set slope at the start of high frequency stimulation with TFB-TBOA perfusion 

was greatly reduced compared to that observed in control slices (p<0.01) (Figure 26). 

Although the maximum change in IOS during high frequency stimulation was reduced 

compared to that observed in slices with only drug vehicle, this difference was not 

significant. In TFB-TBOA slices, the maximum IOS appeared 1.83±0.74 min into the 

high frequency stimulation train which was 39% earlier than in control slices but not 

significant. Upon termination of the high frequency stimulation train, slices exposed to 

TFB-TBOA experienced a lower off-set slope at 3.00±1.58%/min compared with slices 

perfused with vehicle, but this difference was not statistically significant (Figure 26). The 

last min of IOS was not significantly different between slices perfused with TFB-TBOA 

and control slices.   
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Figure 24: Effects of TFB-TBOA on stimulation-induced field potentials. Individual field 

potentials were taken at several periods during the experiment. A) Baseline field potential 

taken prior to TFB-TBOA exposure. B) Field potential after 15 min of drug loading. C) 

Field potential at the end of 10 Hz stimulation. D) Field potential 15 min after the end of 

the 10 Hz stimulation train. The sampling interval of the individual field potential 

recordings was reduced by a factor of 10. The graphed field potentials were expanded to 

show the first 20 ms of the recording data for clarity purposes. 
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Figure 25:  Effects of TFB-TBOA on stimulation-induced changes in IOS. Control slices 

were exposed to aCSF with DMSO, the vehicle for TFB-TBOA. Values are the mean ± 

SEM of 4 independent measurements. Some error bars for individual time points are 

removed for clarity. 
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Figure 25: 
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Figure 26: Measured on-set slope and off-set slope with TFB-TBOA exposure. * 

Indicates values which are significantly different from those obtained from slices 

perfused with vehicle by a one-way ANOVA (p<0.05) and Dunnett’s post hoc test.  
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Figure 26: 
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VRAC inhibition does not affect stimulation-induced changes in IOS  

 

Population field potentials 

Three drugs were used to inhibit of VRAC during high frequency stimulation. In 

the presence of niflumic acid or NPPB, the field potentials and population spike 

amplitude did not significantly change (Figures 27 and 28). In the presence of DCPIB, 

the population spike amplitude was increased following 20 min of perfusion (Figure 29).  

For all of these drugs, the population spike amplitude decreased during high frequency 

stimulation but showed at least partial recovery after the stimulation train was terminated 

(Table 5) possibly due to an exhausted supply of glutamate. Table 5 shows the mean 

population spike amplitudes prior to drug exposure, at the end of drug loading, at the end 

of the high frequency stimulation, and at the end of the experiment. 

Stimulation-induced changes in IOS   

Due to the differences in drug vehicle used, each VRAC inhibitor had different 

control series of slices for comparison. IOS responses of slices perfused with niflumic 

acid were similar to the control (Figure 30). Slices perfused with NPPB showed an 

elevated IOS response compared with their respective control slices (Figure 31); 

however, inhibition of VRACs with DCPIB significantly decreased the overall IOS 

response (Figure 32). The on-set slope and off-set slope for slices perfused with niflumic 

were similar to those measured in relevant control slices (Figure 33). The on-set slope of 

NPPB was similar to that measured in slices perfused with vehicle only but the off-set 

slope was significantly different (Figure 34). DCPIB perfusion significantly decreased 

both on-set and off-set slopes (Figure 35). Table 6 shows the effects of VRAC inhibition 

with the three drugs on the maximum IOS and the time at which the maximum IOS 
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occurred relative to the start of high frequency stimulation. IOS recovery measured 15 

min after the end of high frequency stimulation was significantly reduced only for slices 

perfused with DCPIB (p<0.01). Niflumic acid and NPPB did not influence the maximum 

IOS but instead significantly delayed the time when the maximum occurred during high 

frequency stimulation (p<0.05 and p<0.01 respectively). The recovery IOS was reduced 

in niflumic acid to 1.18±0.49% above baseline compared to the control at 3.47±1.43% 

above baseline. Recovery IOS in the presence of NPPB was elevated to 3.33±1.23% 

above baseline compared to the ethanol vehicle at 0.24±0.75% above baseline. Exposure 

to DCPIB significantly reduced the recovery IOS (p<0.05) to 1.41±0.72% above 

baseline. 
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Figure 27: Effects of niflumic acid on stimulation-induced field potentials. Individual 

field potentials were taken at several periods during the experiment A) Baseline field 

potential taken prior to niflumic acid exposure B) Field potential after 15 min of drug 

loading C) Field potential at the end of 10 Hz stimulation. D) Field potential 15 min after 

the end of the 10 Hz stimulation train. The sampling interval of the individual field 

potential recordings was reduced by a factor of 10. The graphed field potentials were 

expanded to show the first 20 ms of the recording data for clarity purposes. 
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Figure 28: Effects of NPPB on stimulation-induced field potentials. Individual field 

potentials were taken at several periods during the experiment A) Baseline field potential 

taken prior to NPPB exposure B) Field potential after 15 min of drug loading C) Field 

potential at the end of 10 Hz stimulation. D) Field potential 15 min after the end of the 10 

Hz stimulation train. The sampling interval of the individual field potential recordings 

was reduced by a factor of 10. The graphed field potentials were expanded to show the 

first 20 ms of the recording data for clarity purposes. 
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Figure 29: Effects of DCPIB on stimulation-induced field potentials. Individual field 

potentials were taken at several periods during the experiment A) Baseline field potential 

taken prior to DCPIB exposure B) Field potential after 15 min of drug loading C) Field 

potential at the end of 10 Hz stimulation. D) Field potential 15 min after the end of the 10 

Hz stimulation train. The sampling interval of the individual field potential recordings 

was reduced by a factor of 10. The graphed field potentials were expanded to show the 

first 20 ms of the recording data for clarity purposes. 
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Figure 29: 
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Table 5: Effects of VRAC inhibition on population spike amplitude. * Indicates values 

which are significantly different from the baseline amplitude by a one-way ANOVA 

(p<0.05) and Dunnett’s post hoc test or a Mann-Whitney U test. 
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Table 5: 

Group 

Baseline 

amplitude 

(mV) 

End of drug 

loading 

amplitude 

(mV) 

End of 10 Hz 

train 

amplitude 

(mV) 

End of 

experiment 

amplitude 

(mV) 

Niflumic acid 2.77 ± 0.62 2.91 ± 0.61 1.39 ± 0.21 2.50 ± 0.50 

NPPB 3.23 ± 0.49 3.37 ± 0.34 1.02 ± 0.10 * 2.55 ± 0.29 

DCPIB 4.51 ± 0.72 5.87 ± 1.06  2.44 ± 0.41 6.74 ± 0.70* 
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Figure 30:  Effects of niflumic acid on stimulation-induced changes in IOS. The vehicle 

slices were taurine-treated and perfused with aCSF. Values are the mean ± SEM of 6-7 

independent observations. Some error bars for individual time points are removed for 

clarity.  
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Figure 30: 
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Figure 31: Effects of NPPB on stimulation-induced changes in IOS. The vehicle slices 

were taurine-treated and perfused with ethanol + aCSF. Values are the mean ± SEM of 4-

5 independent observations. Some error bars for individual time points are removed for 

clarity. 
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Figure 31:
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Figure 32:  Effects of DCPIB on stimulation-induced changes in IOS. The vehicle slices 

were taurine-treated and perfused with DMSO + aCSF. Values are the mean ± SEM of 4-

7 independent observations. Some error bars for individual time points are removed for 

clarity. 
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Figure 32:
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Figure 33: Measured on-set slope and off-set slope with niflumic acid exposure. * 

Indicates values which are significantly different from the vehicle by a one-way ANOVA 

(p<0.05) and Dunnett’s post hoc test. 
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Figure 33: 
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Figure 34: Measured on-set slope and off-set slope with NPPB exposure. * Indicates 

values which are significantly different from the ethanol vehicle by a one-way ANOVA 

(p<0.05) and Dunnett’s post hoc test. 
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Figure 34: 
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Figure 35: Measured on-set slope and off-set slope with DCPIB exposure. Data values 

represent mean ± SEM for 4-7 independent experiments. * Indicates values which are 

significantly different from the vehicle by a one-way ANOVA (p<0.05) and Dunnett’s 

post hoc test. 
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Figure 35: 
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Table 6: Effect of VRAC antagonists on maximum IOS, time at the maximal IOS, and 

IOS value measured at the last min of the experiment. Due to differences in solubility 

among the VRAC antagonists, each drug had a different control for comparison. Niflumic 

acid, NPPB, and DCPB were dissolved in aCSF, ethanol, and DMSO respectively. ◊ 

Indicates values which are significantly different from control by a one-way ANOVA 

(p<0.05) and Dunnett’s post hoc test. † Indicates values which are significantly different 

from ethanol vehicle by a one-way ANOVA (p<0.05) and Dunnett’s post hoc test.* 

Indicates values which are significantly different from the vehicle by a one-way ANOVA 

(p<0.05) and Dunnett’s post hoc test. 
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Table 6: 

Groups 
Maximum IOS 

(% from baseline) 

Time at Maximum 

IOS 

(min) 

Last min of IOS 
(% from baseline) 

Vehicle 7.34 ± 0.79 3.00 ± 0.52 1.68 ± 0.87 

Control 6.22 ± 1.61 4.69 ± 0.19 3.47 ± 1.43 

Ethanol 4.39 ± 1.19 0.70 ± 0.35 0.24 ± 0.79 

Niflumic acid 5.63 ± 1.01 3.17 ± 0.65 ◊ 1.18 ± 0.49 

NPPB 7.77 ± 1.66 4.54 ± 0.31 † 3.33 ± 1.23 

DCPIB 2.08 ± 0.36 * 2.55 ± 0.81 -1.41 ± 0.72 * 
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VI. DISCUSSION 
 

The results of these studies elucidate mechanisms underlying stimulation-induced 

swelling of neurons and glia at the glutamatergic synapse and potential sources of volume 

regulation. The physiological consequence of synaptic activity results in cellular swelling 

to stimulation that is largely due to NMDA activation and glutamate uptake. These 

studies suggest glutamate receptor activation is a significant factor for volume regulation. 

Finally, volume regulation via VRACs is minimal at most during stimulation-induced 

swelling.  

Volume response to stimulation is frequency dependent  

 

During neuronal activity, axonal studies in crab leg nerves revealed light 

scattering changes that were suggested to represent axon swelling resulting from the ionic 

exchanges that occur during the action potential (Cohen and Keynes, 1971). Following 

these studies, several investigators have observed similar changes in light transmission 

during stimulation. Stimulation of rat hippocampal slices with photodiodes to detect 

transmitted light also showed an association of optical signals with synaptic activity 

(Grinvald et al., 1982; MacVicar and Hochman, 1991). These changes in light scattering 

and transmission during electrical activity were found to be associated with cell-volume 

changes (Andrew and MacVicar, 1994; Witte et al., 2001; Fayuk et al., 2002). 

 In this present study, stimulation of the SC pathway in most slices exhibited a 

frequency related trend for the on-set slope, off-set slope, and maximum change in IOS. 

These results together confirm previous findings (MacVicar and Hochman, 1991) and 

demonstrate that stimulation-induced changes in IOS are related to stimulation frequency. 
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Previous studies in the mouse optic nerve have found that increases in extracellular K
+ 

are proportional to stimulation frequency (Bay and Butt, 2012). Likewise, research in the 

rat cerebral cortex has revealed glutamate release is proportional to neuronal activity 

(Moroni et al., 1981). Glutamate release may in turn lead to cell swelling during its re-

uptake into glial cells or by activating GluRs which cause cation influx into neurons and 

glia. Taken together, this suggests that stimulation-induced changes of IOS are related to 

stimulation frequency because uptake of extracellular K
+
, activation of glutamate 

receptors, and glutamate uptake are proportional to stimulation frequency. Astrocytes are 

predominately involved in glutamate and K
+
 uptake following neuronal discharge and 

have been shown to swell due to this influx of osmolytes (Schneider et al., 1992; 

Macaulay and Zeuthen, 2012). A previous study measuring IOS changes in the CA1 str. 

rad. found that IOS changes were proportional to the level of hypo-osmolality (Andrew 

and MacVicar, 1994) which would indicate that cellular influx of water is proportional to 

intracellular osmolytes which drive water influx. Overall, these findings support the 

notion that changes in IOS indicate cellular swelling proportional to the influx of K
+
, 

glutamate, and cation influx via GluR which is dictated by the level of synaptic activity. 

Interestingly, slices stimulated at 1 Hz exhibited an initial decrease in IOS. This 

finding might indicate initiation of regulatory volume mechanisms during stimulation that 

can over compensate during low levels of activity. A study in the optic nerve revealed 

that stimulation of nerves at 1 Hz did not evoke a change of extracellular K
+
, indicating 

K
+
 efflux and uptake were in balance at low levels of activity (Ransom et al., 2000; Bay 

and Butt, 2012) and thus, would not result in water influx and cellular swelling. During 

low levels of activity, the movement of K
+
 and glutamate between the intracellular and 
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extracellular compartments causes negligible water movement therefore no cellular 

swelling. Glutamate-mediated regulatory volume mechanisms initiated during low-levels 

of synaptic activity would reduce cellular volume of non-swollen cells. These events 

could explain the reduced IOS during stimulation at 1Hz in the present study.  

Synaptic blockage inhibits stimulation-induced swelling  

 

 Orthodromic stimulation of the SC pathway evokes action potentials of CA3 

pyramidal cell axons resulting in an influx of Na
+
, Ca

+2
, and efflux of K

+
. Elevated 

intracellular Ca
+2

 via voltage-gated Ca
+2

 channels facilitates synaptic vesicle release 

which can be blocked by polyvalent cations such as Mn
+2

, Co
+2

, and Mg
+2 

(Taft and 

DeLorenzo, 1987). In the present study, low extracellular Ca
+2

 and high extracellular 

Mg
+2

 were used to block voltage-gated Ca
+2

 channels and thus block intracellular Ca
+2

 

influx and glutamate release. Synaptic blockage was confirmed by measuring field 

potentials that indicated the presence of only presynaptic activation of the SC pathway 

and no postsynaptic response in synaptic block conditions (Figure 14). 

During synaptic blockage, action potentials cause K
+
 accumulation in the 

extracellular and periaxonal space (Kiernan et al., 1997) which is predominantly cleared 

by astrocytes and results in a cellular influx of water (Kofuji and Newman, 2004). 

Additionally, neurons experience an influx of Na
+
 resulting in neuronal swelling 

(Churchwell et al., 1996). In this study, synaptic blockage of the SC pathway 

significantly reduced stimulation-induced changes in IOS. Similar results were reported 

with Ca
+2

-free EGTA perfusate of hippocampal slices (MacVicar and Hochman, 1991).  

Antidromic stimulation, which initiates action potentials in the axon without synaptic 

activity also showed reduced changes in IOS in hippocampal slices (Andrew and 
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MacVicar, 1994). In the presence of tetrodotoxin, a potent neurotoxin that blocks 

voltage-gated sodium channels, there is no change in IOS present in hippocampal slices 

indicating that generation of action potentials is necessary for the observed cellular 

swelling (Pal et al., 2013). These findings together imply that while there is some K
+
 and 

Na
+
 induced swelling during SC activation, the majority of cellular swelling is a 

consequence of Ca
+2

 influx and/or glutamate release.  

Under perfusion with normal aCSF, glutamate release may in turn lead to cell 

swelling during its re-uptake into glial cells or by activating post-synaptic glutamate 

receptors.  Glutamate mediated swelling via GluR activation is well known and 

associated with multiple pathophysiological conditions (Andrew et al., 1996; Arundine 

and Tymianski, 2004; Kimelberg, 2004a; Liang et al., 2007; Ho et al., 2012). For 

example, Ca
+2

 accumulations by GluR activation is involved in hippocampal cell damage 

associated with ischemia (Benveniste et al., 1988; Lobner and Lipton, 1993) which 

results in cellular swelling (Zhang et al., 2011). 

Synaptic blocked slices exhibited a lack of recovery following stimulation-

induced changes in IOS. These findings indicate that intracellular Ca
+2

, glutamate release, 

and/or GluR activation might be involved in volume regulatory mechanisms during 

neuronal activity. Ca
+2

 signaling activates Ca
+2

-sensitive protein kinases (Bender et al., 

1992; Crepel et al., 1998), Ca
+2

 dependent ion channels (Scemes and Giaume, 2006), and 

gliotransmitters (Zorec et al., 2012), each of which can potentially mediate RVD.  In 

most cell types, including neurons and astrocytes, influx of Ca
2+

 precedes RVD 

suggesting that it serves as a second messenger for effector proteins (Hua et al., 2010). 

Increases in intracellular Ca
+2

 are required for activation of neuronal volume-regulatory 
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pathways following swelling caused by Na
+
 influx (Churchwell et al., 1996).  Likewise, 

RVD mechanisms are Ca
+
 dependent in cultured astrocytes (Olson et al., 2004; Benfenati 

et al., 2011). There also is evidence of Ca
+2

 signaling of NMDA-induced taurine efflux 

during volume regulation in hippocampal slices (Menendez et al., 1993).   

Synaptically released glutamate also may be an important signal that initiates 

volume regulatory mechanisms. Glutamate activation of all three iGluRs has been found 

to commence taurine efflux (Oja and Saransaari, 2013b). In synaptically blocked slices, 

none of the glutamate receptors would be able to initiate taurine efflux and this could 

explain the lack of recovery IOS. Glutamate mediated volume regulation through 

purinergic signaling has also been shown in numerous studies during osmotic challenges 

of retinal glial cells (Kalisch et al., 2006; Wurm et al., 2008; Wurm et al., 2010; Linnertz 

et al., 2011). These studies showed glutamate activation of mGluR , which causes Ca
+2

 

influx, resulted in ATP release that initiated purinergic signaling pathways to facilitate 

ion and taurine effluxes. Synaptically blocked slices would be unable to activate mGluR 

and start purinergic signaling cascades for volume regulation. Taken together, previous 

research supports the notion that Ca
+2

 and glutamate can potentially mediate regulation of 

cellular volume during stimulation-induced swelling. 

 Results in conjunction with past research suggests stimulation-induced swelling is 

mainly an outcome of synaptic glutamate release which leads to glutamate uptake from 

the extracellular space into astrocytes as well as an influx of cations into neurons and 

astrocytes via glutamate receptors. Subsequently, glutamate mediates a volume 

regulatory mechanism likely associated to taurine efflux, Ca
+2

 –dependent processes, or 

purinergic signaling.  
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iGluR inhibition affects stimulation-induced changes in IOS  

The activation of iGLuRs causes an influx of Na
+
, K

+
, and Ca

+2 
into neurons and 

glia (Mano and Teichberg, 1998; Pinheiro and Mulle, 2006; Kalia et al., 2008; Langer 

and Rose, 2009). This influx of osmolytes would be expected to cause cellular swelling. 

Various studies have demonstrated activity dependent swelling in hippocampus slices 

during stimulation. Orthodromic stimulation and kainate application increase IOS in 

hippocampus revealing cellular swelling associated with excitatory synaptic input 

(Andrew and MacVicar, 1994). Additionally, application of the glutamate agonist 

NMDA increases IOS in the rat hippocampal slices, particularly in the CA1 region (Jarvis 

et al., 1999). Further studies showed that blockade of iGluRs with kynurenic acid 

inhibited hippocampal changes in IOS (MacVicar and Hochman, 1991). 

Inhibition of AMPARs and NMDARs were examined with the application of 

CNQX and MK-801, a competitive antagonist at non-NMDA glutamate receptors 

(Honore et al., 1988; Andreasen et al., 1989) and non-competitive antagonist that blocks 

the channel pore of NMDARs (Lau and Tymianski, 2010), respectively. The inhibition of 

AMPAs was confirmed by field potential recordings that displayed reduced population 

spike amplitude.  

AMPAR inhibition did not the affect the maximum change in stimulation-induced 

IOS while NMDAR inhibition significantly reduced the maximum change in IOS (Table 

4). These results suggest that the NMDARs contribute to hippocampal swelling induced 

by synaptic activation while AMPARs have little to no effect. Similarly, AMPA 

inhibition with NBQX did not block glutamate-induced swelling in astrocyte cultures 

(Hansson et al., 1994). Reduced IOS with complete iGluR inhibition was likely due to 
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NMDAR inhibition. Stimulation-induced swelling via NMDARs might be associated 

with increased Ca
+2 

permeability of the postsynaptic membranes. Mouse cortical neuron 

cultures treated with NMDA demonstrated Ca
+2

 influx via NMDARs. This leads to the 

activation of kinases, which in turn phosphorylates NOX2, increases superoxide 

production and induces cellular swelling from oxidative stress (Brennan-Minnella et al., 

2013). Cellular swelling from oxidative stress has also been demonstrated in hippocampal 

slices (Tucker and Olson, 2010). 

AMPAR and NMDAR inhibition hindered recovery of IOS at the termination of 

stimulation while complete iGluR inhibition with both drugs present resulted in an 

additive effect on cellular volume regulation (Figure 23). This inhibition of recovery with 

the application of iGluRs implies that glutamate-mediated volume regulation involves 

activation of iGluR during electrical activity.  Overall, these findings suggest that only 

NMDARs contribute to stimulation-induced swelling of the hippocampus while both 

iGLuRs mediate cellular volume recovery mechanisms during neuronal activity. 

NMDAR activation has been linked to volume regulation by facilitating taurine efflux 

during oxidative stress (Tucker and Olson, 2010; Oja and Saransaari, 2013b). It is 

possible that Ca
+2

 influx via NMDARs could signal volume regulatory mechanisms via 

kinases and Ca
+2

 activated ion channels. The involvement of Ca
+2

 in RVD responses 

following cell swelling has been found in many cell systems, particularly those of 

epithelial origin but not as of yet in neuronal cells (Hoffmann et al., 2009) 

Glutamate uptake inhibition reduced IOS response  

 

Although GluTs are expressed by all CNS cell types, astrocytes are the cell type 

primarily responsible for glutamate uptake (Bergles and Jahr, 1998; Anderson and 
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Swanson, 2000). Absence of GluTs results in excessive activation of GluRs, abnormal 

neuronal activity, and eventual excitotoxic degeneration (Rothstein et al., 1996; Tanaka et 

al., 1997). Several studies have shown TFB-TBOA to potently inhibit glutamate uptake. 

This drug can be used to selectively target different glial GluTs at nanomolar 

concentration levels (Shimamoto et al., 2004; Tsukada et al., 2005; Bozzo and Chatton, 

2010; Torres et al., 2013).  In this present study, 1 µM of TFB-TBOA was used to 

effective block all GluTs. 

During stimulation-induced volume changes, inhibition of GluTs with TFB-

TBOA increased the population spike amplitude suggesting glutamate persistence in the 

synaptic space was influencing neuronal excitability (Figure 24). Increased changes in 

IOS would indicate that neuronal activity contributes to cellular volume changes more 

than glutamate uptake. However, glutamate inhibition reduced changes in IOS indicating 

cellular volume changes due to neuronal activity have minimal effect compared to 

glutamate uptake. These results indicating glutamate uptake induced swelling are similar 

to results from a previous study that showed EAAT2 inhibition, the most prominent 

GluTs in the str. rad of CA1 (Lehre and Danbolt, 1998), reduced IOS amplitude (Pal et 

al., 2013). GluTs uptake of one glutamate molecule is thermodynamically coupled with 

the influx of three Na
+
, one H

+
, and the efflux of one K

+
 (Lopez-Bayghen and Ortega, 

2011; Stone et al., 2012) thus cation influx should be impaired with GluT inhibition. Na
+
 

is an important osmolyte that can drive water influx. The majority of Na
+ 

infux in 

astrocytes is mediated by GluT activation (Langer and Rose, 2009). These results joined 

with other studies suggest that glutamate and Na
+
 influx via GluTs contribute to glial 

swelling during neuronal activity. 
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VRAC inhibition does not affect stimulation-induced changes in IOS  

 

Efflux of intracellular Cl
-
 coupled with K

+
 is one of the main contributors to RVD 

(Hoffmann et al., 2009). It is accepted that many cells regulate their volume through cell 

swelling-activated VRAC that generates RVD through efflux of Cl
-
 and small organic 

osmolytes (Kimelberg et al., 2006). VRACs are also permeable to water in addition to 

various organic anions such as taurine (Nilius, 2004; Tucker and Olson, 2010). During 

excitotoxic conditions, VRACs are responsible for the persistence of dendritic beadings 

and neuronal swelling in cultured cortical neurons (Inoue and Okada, 2007). In hypoxic-

ischemic conditions, inhibition of VRACs is neuroprotective by blocking glutamate and 

taurine efflux (Feustel et al., 2004; Kimelberg et al., 2004; Zhang et al., 2008; Alibrahim 

et al., 2013).  

There is wide source of pharmacological inhibitors for VRACs including NPPB, 

niflumic acid, and DCPIB. These pharmacological agents were used separately in this 

present study to examine the effects of VRAC on stimulation-induced changes in IOS. 

VRAC inhibition during stimulation produced inconsistent results with these various 

drugs. Inhibition of VRACs with NPPB increased the maximum IOS response and 

delayed IOS recovery suggesting that VRACs are vital for volume regulation during 

stimulation induced swelling (Figure 31).  In contrast, VRAC inhibition with niflumic 

acid produced IOS changes similar to the control suggesting the absence of VRAC 

involvement during synaptic activity (Figure 30). Finally, VRAC inhibition with DCPIB 

significantly decreased initial, maximum, and recovery IOS responses suggesting VRACs 

contribute to stimulation induced volume changes (Figure 32). The conflicting results 



136 

 

imply that various effects of these vehicles and drugs on cellular components other than 

VRAC could have affected the changes in IOS during stimulation. 

NPPB is a potent but non-selective Cl
-
 channel blocker that has been extensively 

studied (Alibrahim et al., 2013) and shown to inhibit RVD during osmotic challenges 

(Kreisman and Olson, 2003).  A previous study found NPPB, at the same concentration 

level of this present study, can dramatically reduce cellular ATP content in hippocampal 

neuron cultures (Olson and Martinho, 2006). In the hippocampus, reduced intracellular 

ATP would disrupt numerous mechanisms such as K
+
 clearance via Na

+
/K

+
ATPase , 

glutamate uptake, and glutamate-glutamine. ATP is an important component of 

glutamatergic-purinergic signaling which has been shown to regulate cellular volume in 

retinal glial cells (Wurm et al., 2008). Together these findings suggest that reduced ATP 

would jeopardize cellular energy demands and affect changes in IOS. 

Niflumic acid also blocks or modulates a wide spectrum of ion channels 

including: Ca
2+

-activated K
+
 channels (Ottolia and Toro, 1994), Ca

+2
-activated Cl

-

channels (White and Aylwin, 1990; Korn et al., 1991), and a voltage-gated potassium 

channels (Wang et al., 1997; Lee and Wang, 1999).  Since niflumic acid is a weak acid, it 

can lower intracellular pH and induce necrosis in cultured hippocampal neurons (Ding et 

al., 2000), which can result in necrotic volume increase (Okada et al., 2001). However, 

the dilated weak acid in this project would not have been able to induce necrosis. 

Recently niflumic acid was found to only partially inhibit of swelling-activated Cl
-
 

currents and had little effect on EAA release (Abdullaev et al., 2006). These findings 

indicate that niflumic acid is not ideal for studying effects of VRAC inhibition.  
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DCPIB, once considered a specific VRAC inhibitor (Abdullaev et al., 2006; 

Zhang et al., 2008) has been shown to inhibit several glutamate transport pathways 

(Bowens et al., 2013). DCPIB exposure significantly reduced the maximum IOS and the 

rates of changes for swelling and recovery. In addition, population spike amplitudes were 

increased with DCPIB exposure similar to TFB-TBOA exposure. These results support 

the recent evidence that DCPIB inhibits glutamate transport. Since DCPIB exposure 

inhibited both VRACs and glutamate transport it is difficult to interrupt VRACs role in 

stimulation-induced swelling. 

VRACs contribution during stimulation-induced volume changes remains 

inconclusive. Results from this study could not support or refute volume changes 

associated with VRACs. It is possible that the effects of VRAC were minimized by the 

various other effects the drugs had on IOS.  Thus, current pharmacological agents used in 

this study were insufficient for evaluating the role of VRACs during stimulation-induced 

volume changes.  

Conclusion 

 

This study illuminates several mechanisms involved in swelling and volume 

regulation in the hippocampus exposed to high frequency stimulation. We confirmed that 

neuronal activity increases cellular volume proportional to stimulation frequency. The 

cellular volume increases during stimulation are a result of both action potentials and 

synaptic glutamate release. Most cellular swelling is due to glutamate uptake and 

activation of NMDARs. Our experiments indicate that glutamate also plays a significant 

role in volume regulation during neuronal stimulation. Although VRACs support volume 
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regulation during osmotic challenges, volume recovery from stimulation-induced 

swelling may not be dependent on VRACs. 

Limitations and future directions 

 

There are a number of limitations and future directions in this study. One of the 

major limitations concerns IOS, which indirectly measures cellular volume by changes in 

light transmission through tissue. IOS can be compromised as an indicator of cellular 

volume changes by several factors including dendritic beading, cellular membrane 

configuration, and mitochondrial swelling (Jarvis et al., 1999; Johnson et al., 2000). 

Additionally, IOS measurements cannot distinguish among volume changes in glial cells, 

neurons, or myelin. Although this study focused on neurons and glia, myelin also can 

swell during stimulation. K
+
 accumulates in the periaxonal space that can cause Schwann 

cell swelling and myelin restructuring (Kiernan et al., 1997). There also are a couple of 

pharmacological limitations in this study concerning VRACs and iGluRs. The effects of 

VRACs could not be thoroughly addressed with the use of different vehicles and 

pharmacological agents. This limitation might be resolved in the future once the 

molecular nature of VRACs has been identified (Abdullaev et al., 2006) There also is a 

current absence of drugs to selective target presynaptic and postsynaptic iGluRs. It is 

likely that iGluRs on neurons have different functions based on presynaptic or post-

synaptic location (Pinheiro and Mulle, 2008).  

Several factors were not evaluated in this study and potentially could contribute to 

stimulation-induced swelling. Previous studies have shown that K
+
 plays a role in 

glutamate-induced swelling both in cultured astrocytes (Hansson et al., 1994) and 

hippocampal slices (Andrew and MacVicar, 1994; Pal et al., 2013). mGLuR, present on 
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neurons and glia, exert a variety of effects on second messenger systems and ion channels 

(D'Antoni et al., 2008). These receptors have been shown to activate mitogen-activated 

protein kinase (Peavy and Conn, 1998) which has been shown to facilitate RVD (Crepel 

et al., 1998). A study with astrocyte cultures has demonstrated that mGluRs are involved 

in glutamate-induced swelling (Hansson et al., 1994). There is evidence that mGluRs 

enhance glutamate uptake (Yao et al., 2005) which would contribute to stimulation-

induced swelling. Some studies have suggested mGluRs influence the release of 

gliotransmitters such as ATP which has been shown to regulate cellular volume (Wurm et 

al., 2008). This suggests further research should examine the role of  mGluRs,  

gliotransmission, and purinergic signaling in stimulation-induced volume changes.  

Finally, since this study demonstrated that neuronal activity affects volume 

changes, modulation of that activity will regulate volume changes. The effect of 

inhibitory signaling on stimulation-induced volume changes should be addressed in 

future studies. A previous study in hippocampal slices demonstrated that inhibition of 

GABA receptors increased IOS thus suggesting that inhibitory signals also can modulate 

volume (Pal et al., 2013). Recent evidence shows that glycine and glutamate co-exist in 

the hippocampus at the glutamatergic presynaptic terminals and are thought to modulate 

NMDARs and decrease neuronal excitability (Muller et al., 2013).  This also could 

control stimulation-induced swelling. 
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