
Wright State University Wright State University 

CORE Scholar CORE Scholar 

Browse all Theses and Dissertations Theses and Dissertations 

2013 

Palaeoecological Analysis of the Decline in Stromatolite Palaeoecological Analysis of the Decline in Stromatolite 

Abundance during the Ordovician Period Abundance during the Ordovician Period 

Noran Mhm El-Sherif 
Wright State University 

Follow this and additional works at: https://corescholar.libraries.wright.edu/etd_all 

 Part of the Earth Sciences Commons, and the Environmental Sciences Commons 

Repository Citation Repository Citation 
El-Sherif, Noran Mhm, "Palaeoecological Analysis of the Decline in Stromatolite Abundance during the 
Ordovician Period" (2013). Browse all Theses and Dissertations. 730. 
https://corescholar.libraries.wright.edu/etd_all/730 

This Thesis is brought to you for free and open access by the Theses and Dissertations at CORE Scholar. It has 
been accepted for inclusion in Browse all Theses and Dissertations by an authorized administrator of CORE 
Scholar. For more information, please contact library-corescholar@wright.edu. 

https://corescholar.libraries.wright.edu/
https://corescholar.libraries.wright.edu/etd_all
https://corescholar.libraries.wright.edu/etd_comm
https://corescholar.libraries.wright.edu/etd_all?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F730&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/153?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F730&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/167?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F730&utm_medium=PDF&utm_campaign=PDFCoverPages
https://corescholar.libraries.wright.edu/etd_all/730?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F730&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library-corescholar@wright.edu


 
 

PALAEOECOLOGICAL ANALYSIS OF THE DECLINE 

IN STROMATOLITE ABUNDANCE DURING 

THE ORDOVICIAN PERIOD 

 

 

 

 

A thesis submitted in partial fulfillment of the  

requirements for the degree of 

Master of Science 

 

By 

 

NORAN MHM EL-SHERIF 

B.S., Ain Shams University, 1998 

 

 

 

 

2013 

Wright State University 

 

 



 
 

WRIGHT STATE UNIVERSITY 

GRADUATE SCHOOL 

May 20, 2013 

I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY Noran MHM 

El-Sherif ENTITLED Palaeoecological Analysis of the Decline in Stromatolite Abundance During 

the Ordovician Period BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE 

DEGREE OF Master of Science. 

 

        .                                                       .     

          William Slattery, Ph.D. 
       Thesis Director 
 
 

                             .                                                   .    .. 

David Dominic, Ph.D. 
Interim Chair, Department  
of Earth and Environmental 
Sciences 

Committee on  
Final Examination  
 
.                                                         .    .. 
William Slattery, Ph.D. 

.                                                         .    .. 
David SchmIdt, Ph.D. 

.                                                         .    .. 

John Stireman, Ph.D. 

.                                                         .    .. 

R. William Ayres, Ph.D. 
Interim Dean, Graduate School 



iii 
 

ABSTRACT 

El-Sherif, Noran MHM. M.S. Department of Earth and Environmental Sciences, Wright State 

University, 2013. Palaeoecological Analysis of the Decline in Stromatolite Abundance During the 

Ordovician Period. 

 

 

A stromatolite is a laminated benthic microbial deposit. Its uniqueness arises from being present 

since the Precambrian to the present. Stromatolites recorded a peak time during the 

Mesoproterozoic, subsequently they witnessed abrupt rises and falls in abundance with the 

steepest decline in the Ordovician period, from which it never recovered from. There is no 

consensus yet regarding the reasons behind the decline of stromatolites. Thus the decline of 

these microbial deposits remains an enigma. Additionally, a literature gap exists regarding the 

reasons that specifically led to the Ordovician decline. Accordingly, the focus of this literature-

based MSc. thesis is to find the reasons that led to the stromatolites decline in the Ordovician – 

using abiotic and biotic palaeoecological tools – an approach that has not been implemented 

before in the study of stromatolites. The conclusions are that abiotic factors such as calcium 

carbonate ocean saturation were likely responsible for much of the decline. However, present-

day distributions in harsh environments and negative relationships between stromatolites and 

metazoan radiations indicate a role for biotic factors. 
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PALAEOECOLOGICAL ANALYSIS OF THE DECLINE IN STROMATOLITE 

ABUNDANCE DURING THE ORDOVICIAN PERIOD 

 

CHAPTER I: STROMATOLITE BACKGROUND 

 

A stromatolite is a laminated benthic microbial deposit (Kalkowsky 1908; Riding 1991a). The 

organisms that create these structures and their general form have persisted relatively 

unchanged for over a billion years; creating a long and persistent record of the sedimentary 

structures. Stromatolites abundance peaked time during the Mesoproterozoic (from 1600 to 

1000 Ma1), after which they incurred abrupt rises and falls, with the steepest decline in the 

Ordovician Period (from 495 to 443 Ma), from which it never recovered. A number of 

researchers have hypothesized the reasons behind the decline of stromatolites (e.g. Riding, 

2011; Mata and Bottjer, 2012), but a consensus has not yet been reached. Thus, the decline of 

these structures remains an enigma to be solved. Additionally, a literature gap exists regarding 

the reasons that specifically led to the Ordovician decline. Accordingly, the focus of this 

literature-based MSc. thesis is to examine the reasons that led to the decline of stromatolites’ in 

the Ordovician – through evaluation of the abiotic and biotic paleoecological conditions (e.g. 

oceanography and community ecology) of that time – an approach that has not been previously 

implemented in the study of stromatolites. 

                                                           
1
 Ma (megaannum) is a unit of time equal to one million years. 
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The term stromatolite was coined by Kalkowsky in 1908, yet to the present day there has been 

no widely accepted definition of what exactly constitutes a stromatolite (and what does not) 

due to stromatolites having varied characteristics such as both biogenic and abiogenic origins. 

Stromatolites are layered, mineral structures formed mainly in shallow water by microbial 

biofilms. These biofilms trap sedimentary materials and bind them together, producing layers 

that gradually accrete, forming a diversity of three-dimensional structures.  

In addition to microbial grain trapping and binding, stromatolites can also be formed by 

microbial precipitation, and inorganic precipitation (McNamara and Awramik, 1992) of minerals 

such as carbonates.  

The microbial communities that form stromatolites are dominantly composed of photosynthetic 

cyanobacteria, together with small eukaryotic algae (including brown, green and red algae) 

(Golubic 1976; Riding, 1991c). The sedimentary layers are composed of fine silt (7.8 μm) or clay-

size (0.06 - 2.0 μm) sediment or, more rarely, sand-size (62.5 μm - 1.68 mm) sediment (Boggs 

2006; Riding, 2012).  

Stromatolitic bedding ranges from nearly flat laminations to hemispherical forms in which the 

laminae are crinkled or deformed. Laminations are generally less than 1 mm thick and are 

caused by concentrations of fine calcium carbonate minerals, fine organic matter, and detrital 

clay and silt. Stromatolites composed of quartz grains have also been reported (Davis, 1968). 

The lamination structure forms because fine sediment is trapped in the very tiny filaments of 

microbial mats, which are relatively cohesive, active benthic surfaces upon which 
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microorganisms, metabolize, grow, and reproduce (Awramik et al., 1976). Once a thin layer of 

sediment covers the mat, the microbial filaments grow up and around sediment grains to form a 

new mat that traps another thin layer of sediment. This successive growth of mats produces the 

laminated structure. The shapes of the hemispheres are due to water energy and scouring 

effects in the depositional environment. 

Currently, stromatolites form mainly in the shallow subtidal, intertidal, and supratidal zones of 

the oceans, and have been noted in lacustrine environments. Because cyanobacteria carry out 

photosynthesis, stromatolites are restricted to water depths and environments where there is 

enough light for photosynthesis. Furthermore, stromatolite-forming microbial mats are usually 

found in extreme environments characterized by hypersaline conditions, increased alkanity, low 

nutrient levels, and high or low temperature habitats. It has been assumed that this restriction 

to harsh environments is to avoid grazers and/or competitors (e.g., Fisher 1965; Schubert & 

Bottjer, 1992). Most ancient stromatolite fossils occur in limestones (carbonate sediments); 

however, stromatolites have also been reported in siliciclastic sediments (Riding, 2011). 

Stromatolites are considered the only record of life that were widespread and abundant in the 

Mesoproterozoic. Since this apex, stromatolites have declined throughout the remaining part of 

Earth’s history with episodes of short-lived revival such as during the Cambrian (Zhuravlev, 

1996) that do not match their prime time. Fisher (1965) determined that their steepest decline 

commenced in the Ordovician. Yet they never fully disappeared and have been able to survive to 

the modern world. Stromatolites currently inhabit environmentally severe regions such as Shark 

Bay in Western Australia, which hosts the most studied modern examples (Riding, 2000). 
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FIG 1: Stromatolite Diversity and Abundance versus CO2 variation, after Riding, 2011. 

 

Throughout their evolutionary history (Fig. 1), stromatolites have undergone dramatic changes 

in terms of their microfabric (e.g., microbial species and sediment type), macrofabric (e.g. 

lamination quality) and external shape (e.g. branched and columnar forms); all of which could 

easily be traced to their ever-changing ecology. Both the changing character and abundance of 

stromatolites has been linked to various factors, including: (1) paleobiology/geobiology: 

eukaryote grazing and habitat competition; (2) oceanography – e.g. variations in sea water 

chemistry, particularly carbonate minerals supersaturation (Riding, 1991b), as well as tidal 

effects; (3) atmosphere – e.g., temperature and oxygen levels (Riding, 2000); (4) 
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biogeochemistry – e.g., dissolved phosphate levels (Merz-Preiß, 2000); and (5) sedimentology – 

e.g. periods of unusual abundance of ooids and marine cements (Riding, 2000).  

The first factor, eukaryotic grazing and habitat competition, has received much emphasis due to 

the apparent inverse relationship between stromatolite abundance and the rise in dominance of 

eukaryotes. It has been argued that the first and sharpest decline of stromatolites during the 

Late Proterozoic was related to the metazoan radiation (Awramik, 1971). It has also been noted 

that during the Phanerozoic, the brief reductions of metazoan life as an aftermath of mass 

extinctions prompted a short-lived prosperity among stromatolites (Schubert & Bottjer, 1992). 

Fossils from this burst of diversity have been nicknamed as “disaster forms.” Shortly after the 

mass extinction, metazoan life gradually prospered and stromatolites declined. Yet, Riding 

(1997) advocated that such mass extinction events were accompanied by increases in 

temperature and seawater carbonate mineral saturation, which favor microbial carbonate 

formation, irrespective of interactions with eukaryotic organisms.  

Riding (2000) concluded that both these arguments (eukaryotic grazing and competition, and 

seawater carbonate saturation) could be applied to the biotically stressful environments that 

stromatolites currently inhabit such as in Shark Bay (Western Australia) and Lee Stocking Island 

(The Bahamas). These environments are noted for their hypersaline lagoons, desiccated tidal 

flats, and highly mobile sediments, which are conditions that discourage eukaryote competition 

(Awramik, 1971). Concurrently, these same environments are characterized by enhancing 

carbonate precipitation through sweeping waves, cementation promoted by currents and 

desiccated intertidal flats, all of which favor rapid lithification of stromatolites (Riding, 1997). 
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Since stromatolites are framebuilders, Grotzinger (1989) considered them as legitimate 

components of reefs, but with increasing reefal biodiversity over time they became subsumed 

within such complex reef structures (Riding, 2011). Thus, in Fig. 1, it is legitimate to compare the 

available Grotzinger (1990) and Awramik & Sprinkle (1999) stromatolite graphs with Kiessling 

(2002) reefal “microbial” carbonates graph. 

Ordovician Life, Tectonics and Climate  

The Ordovician Period is the second period in the Paleozoic Era. It was preceded by the 

Cambrian Period and succeeded by the Silurian Period. It is radioisotopically dated from 495Ma 

to 443Ma (Fortey, 2005). The Ordovician Period was marked by a major marine diversification 

known as the Great Ordovician Biodiversification Event (GOBE). Organisms that appeared during 

the Cambrian (e.g., bivalve mollusks and gastropods) became much more diverse and 

widespread, while other organisms appeared and diversified for the first time (e.g., corals and 

bryozoans). There was an increase in the complexity of trace fossils and bioturbation through 

the period, with younger Ordovician organisms burrowing deeper in the sediment (Fortey, 

2005). Could these sources of bioerosion have resulted in disturbance of stromatolite structures, 

eventually leading to their decline? 

Geography changed continually during the Ordovician, due to mountain-building and volcanic 

events, and waning oceans (Fortey, 2005). Until the Middle Ordovician there was an overall 

transgression; in fact, sea levels during this time were the highest with respect to the entire 

Palaeozoic Era (Haq and Schutter, 2008). Much of the Ordovician had generally warm conditions 

(e.g., Frakes et al., 1992) that lasted until the Late Ordovician. 
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The Gondwana continent, (which was the largest continent at the time and comprised Africa, 

South Europe, South America, the Indian and Arabian Peninsulas, Antarctica, and Australia) 

drifted towards the South Pole throughout the period. By the Late Ordovician, Gondwana had 

gradually undergone extensive glaciation, the effects of which extended well beyond the 

continent. Oceanic water became tied up in the icesheet, resulting in a general marine 

regression. Climatic cooling forced the tropical carbonate belt to become extremely restricted, 

which affected the many organisms adapted to warm, carbonate-rich environments. Much of 

this biota either died out like stromatolites pushed into small refugia (Fortey, 2005).  

Overall, the Ordovician–Silurian extinction event drove about 85% of marine species to 

disappearance (Munnecke et al., 2010 after Sheehan, 2001). It is worthy to note that Riding 

(2005) deduced that despite the reduction in metazoan diversity in the aftermath of the 

Ordovician–Silurian mass extinction, stromatolites did not increase. His reasoning was that due 

to low global temperatures, seawater carbonate saturation was too low to promote the 

formation of stromatolites. 

 

OBJECTIVES AND SIGNIFICANCE 

 As noted above there exist a number of studies examining the decline of stromatolites 

throughout the geological record. Yet, so far, only a handful of papers have discussed 

stromatolites in the Ordovician Period, and none have discussed explicitly the decline of the 

stromatolites in the Ordovician. Thus the ultimate aim of this research is to explore the 

question: why stromatolites declined in the Ordovician? 

http://en.wikipedia.org/wiki/Ordovician%E2%80%93Silurian_extinction_event


8 
 

To answer this question, one would need to understand the ecological conditions and changes 

during the Ordovician. Additionally, in order highlight the palaeoecology of the Ordovician, it is 

contrasted with the opposing picture during the Mesoproterozoic time, when the abundance of 

stromatolites was at its peak.  

METHODS 

This literature-based research is focused on a review of stromatolites, their abundance and 

ecology during the Ordovician Period, and the reasons for their decline using ecological tools 

through the following goals: 

 

I. Review and summarize existing literature on stromatolites particularly during the 

Ordovician. This mainly covers the following topics: 

a. formation, structure and habitat conditions (e.g. nutritional resources and tidal 

energy), 

b. variability in abundance through geologic history, and 

c. evaluation of why stromatolites declined precipitously during the Ordovician 

Period. 

 

II. Conduct a thorough characterization of the global paleoecology of the 

Mesoproterozoic (highest peak) and the Ordovician (steepest decline). 

 

One must note that the ecological information regarding the Mesoproterozoic time – 

when stromatolites’ abundance was at its peak – is comparatively limited with respect 
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to that of the Ordovician time. Accordingly, when needed this study will take a wider 

picture and consider the Precambrian supereon as a whole instead (which includes the 

Mesoproterozoic era). 

 

III. Determine the effect of Ordovician paleoecology on stromatolites 

Synthesize and consequently analyze conclusions from the previous two steps to 

develop an informed scenario and hypotheses concerning the conditions that led to the 

decline of stromatolites in the Ordovician in comparison to the conditions that led to 

the stromatolites’ peak in the Mesoproterozoic. 

For example, this research will examine how preservation potential was influenced by 

the changed habitat conditions that occurred during the two contrasting periods. Were 

microbial communities able to proliferate during the Ordovician, but surrounding 

conditions did not favor lithification and thus preservation, or did microbial community 

abundance decline during the Ordovician and led to a scarcity of lithified – and thus 

preserved – stromatolites? 
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CHAPTER II: CARBONATES AND SUPERCONTINENT CYCLE BRIEIFING 

 
BRIEFING1: CARBON AND THE CARBONATES CYCLE 

 

As mentioned earlier, this research will focus on carbonate-formed stromatolites. Thus in order 

to understand the significant role that carbonates play in stromatolites’ sustainment and 

ultimately preservation, it is imperative to have a good understanding of the sources of 

carbonates and the factors that oscillate such sources. 

Carbonates (CaCO3) are mainly composed of the elements calcium, carbon and oxygen. The 

main player in carbonate formation is carbon, whose long-term cycle will be the focus of this 

briefing. The calcium and oxygen cycles will be covered implicitly within this briefing, or 

explicitly throughout the following chapters when necessary. 

Calcium ions are naturally abundant in sea-water and are one of the highest concentrations of 

all ionic species in the ocean (Ridgwella, 2005). 

The short-term cycle of carbon ranges from days to tens of thousands of years (Berner, 2004), 

while the thesis topic will be reliant on a longer-span geological time scale. The long-term 

carbon cycle is affected and affects many critical paleoecological forces as discussed below.  

It must be noted that the long-term carbon cycle encompasses various aspects of the short-term 

carbon cycle but adds to it the transition of carbon from and to rocks over a span of millions of 

years that may influence atmospheric CO2  (Berner, 2004). Such a long-term effect on 

atmospheric CO2 may drastically affect the climate such as changing Earth’s global climate from 
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a greenhouse to an icehouse environment (or vice versa) that could prompt a mass extinction 

event. 

According to Berner, 2004 the long-term carbon cycle is divided into two subcycles, as follows:   

Silicate-carbonate subcycle 

Atmospheric CO2 is captured by land either through rain or plant photosynthesis2.  The carbonic 

acid within the rain will react with the minerals of both exposed and subsurface rocks (especially 

calcium- and magnesium-containing silicate minerals3) to produce calcium and bicarbonate ions. 

These ions are carried by rivers to the sea and are precipitated, mostly biogenically – particularly 

– in the Phanerozoic) as calcium carbonates, and are subsequently buried in marine sediments.  

These reactions are summarized as follows: 

2CO2 + 3H2O + CaSiO3 → Ca++ + 2HCO3
- + H4SiO4    (1.04) 

Ca++ + 2HCO3
– → CaCO3 + CO2 + H2O     (1.12) 

 

To complete the cycle, CO2 is restored to the atmosphere and oceans through degassing via 

volcanism, metamorphism, and diagenesis.  

 

 

                                                           
2
 Plants flourished in the Devonian period which occurred after the Ordovician, thus the effect of plants  

   on the long-term cycle of carbon is irrelevant with respect to the thesis topic. 
3
 Rocks containing carbonate minerals weather in a time span less than a million year  

   span, thus does not have a long-term net effect on atmospheric CO2. 
4
 Ebelmen-Urey reaction 
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A- Organic subcycle 

After the death of organisms (especially photosynthetic organisms), their organic material 

maybe incorporated into sediments that may lithify into sedimentary rocks. Upon the 

decomposition of these organic-containing rocks CH4 (methane) is released, which once 

oxidated will convert to CO2 (carbon dioxide), as summarized below.  

Photosynthesis  CO2 + H2O → CH2O + O2    (1.3)  

Decomposition  2CH2O → CO2 + CH4           (1.4) 

Oxidation  CH4 + 2O2 → CO2 + 2H2O  (1.5)    

 

Such processes directly affect the carbon and CO2 global budgets. 

 
 
BRIEFING2: THE SUPERCONTINENT CYCLE AND ITS OROGENIES 

 
The assembly of supercontinents results in the peripheral subduction of large volumes of 

oceanic lithosphere that moves down into the deep mantle, affecting the mantle flow fields 

(Tackley, 2012). It is speculated that such a process generates upwelling superplumes beneath 

the supercontinent, which eventually contributes to its breakup and voluminous volcanism and 

thus a flux of CO2 drastically affecting the global climate. Anderson (1982), on the other hand 

observed that since continental lithosphere is both thick and has a radioisotope-enriched crust, 

it should act as a thermal insulator to mantle heat flow.  Worsley et al. (1984) further argued 

that supercontinents would become epeirogenically uplifted as heat accumulates beneath the 
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largely stationary supercontinent, ultimately manifesting as hotspot activity contributing to 

fragmentation. Both opinions are considered valid and could work simultaneously. Overall, 

whether assembly or fragmentation, such processes may have catastrophic effects caused by 

changes in global climate; including the extinction of many types of organisms.  

 
ASSEMBLY 

 
 When continents assemble into large land masses, promoted by double-sided oceanic 

lithosphere subduction, introversion (closure of interior oceans formed by the previous 

supercontinent breakup), and extroversion (closure of the exterior ocean), may occur. The 

newly-formed supercontinent is epeirogenically uplifted as heat accumulates beneath it, which 

lowers the sea level. Concomitantly, collisional orogenesis are formed. Enhanced weathering 

and erosional rates occur because of the formation of these mountain belts as well as the 

overall increased large areas of subaerially exposed continental crust (increased surface area). 

The weathering process would consume more CO2 from the atmosphere, which is eventually 

transferred by erosion through riverine inputs into the oceans. With sea level at its lowest 

elevation, the production and preservation of terrestrial deposits should be enhanced while that 

of marine sediments is diminished. As a result, the sequestering of isotopically light carbon in 

non-marine and organic-rich sediments could be expected to produce a record of low δ13C in 

the reciprocal marine platform reservoir. The enhanced CO2 sequestration also leads to cooler 

climates. This, along with the increased albedo caused by the high land/ocean ratio, would 

ultimately result in widespread glaciation and at times possibly “Snowball Earth” conditions.  
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 Increased weathering and erosion, including glacial erosion (Follmi, 1995), would also lead to 

the release of an enormous flux of nutrients into the oceans and more intense ocean circulation, 

and thus nutrient upwelling and eventually marine productivity and phosphate deposition. This 

raises O2 production through enhanced photosynthesis which eventually triggers an explosion of 

marine life. On the other hand, massive extinctions would be expected to accompany the loss of 

shallow marine habitat, as well as life that cannot be sustained in cold climates. 

 
RIFTING 

 

The crustal extension and the opening of new interior, (Murphy and Nance, 2003) ocean basins, 

coupled with subsidence of the dispersing continental fragments associated with supercontinent 

breakup should raise sea level to a maximum elevation.  Actively-eroding escarpments along 

new rift margins contribute sediments to the new rift basins, and marine transgressions would 

increase the rate of burial of organic and carbonate carbon on stable continental shelves 

increasing the values of δ13C. An increase in length of the ocean ridge system would also 

promote mantle degassing and release of CO2 into the atmosphere (Condie, 2001), and as 

continental drowning develops – i.e. less weathering and erosion – atmospheric CO2 levels 

buildup generating warmer climates, such as in the Mesoproterozoic (Fig. 1). 

Increased shallow marine regions would highly promote life in this region. Furthermore, Santosh 

(2010b) speculated that the breakup of supercontinents and the development of hydrothermal 

systems in rifts enriched in nutrients might have served as the primary building blocks of the 

skeleton of early modern life forms. 
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These rift basins restrict oceanic circulation promoting anoxic conditions in the deeper parts of 

the basins. Additionally, there is also a likely relationship between superplumes, supercontinent 

breakup and mass extinction. Upwelling plumes that break supercontinents apart generate large 

igneous provinces that may, in turn, affect climate by producing large-scale volcanism and 

plume-induced “winters” with catastrophic effects on the atmosphere and life. 

 

 
 
FIG. 2: Glacio-epochs and supercontinent assembly and break up, after Eyles, 2008 
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CHAPTER III: MESOPROTEROZOIC & ORDOVICAN PALAEOECOLOGY 

 

To understand why stromatolites abundance declined from the Ordovician (488 Ma – 444 Ma) 

onwards, it is necessary to understand the palaeoecology of the Ordovician that led to the 

decline and concomitantly to compare these ecological conditions to that of the opposite 

scenario, when stromatolites had reached a peak in both abundance and diversity during the 

Mesproterozoic Era (1.6 Ga – 1 Ga). 

Below is a summary of the major abiotic (lithosphere, atmosphere, hydrosphere, cryosphere) 

and biotic (biosphere) factors during both the Mesproterozoic and Ordovician; each followed by 

an analysis of how such factors affected and maybe were affected by stromatolites (including its 

constituents). 

 

ABIOTIC FACORS – Lithosphere 

PRECAMBRIAN 

Archean (4 Ga – 

2.5 Ga) & 

Paleoproterozoic 

(2.5 Ga – 1.6 Ga) 

The early Earth’s ocean was at first dominated by island arcs, but through 

arc-arc collision and accretion, continental crust was assembled into large 

land masses (Santosh, 2010), later forming almost episodic supercontinents. 

The supercontinents formed during the Archean were Ur (3.0 Ga) and 
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Kenorland (2.5 Ga); the latter fragmented in the early Paleoproterozoic 

(Condie, 2002; Eyles, 2007 after Rogers and Santosh, 2004).  

The supercontinent Columbia (or Nuna) supercontinent was assembled 2.1-

1.8 Ga. 

Mesoproterozoic 

(1.6 Ga – 1.0 Ga) 

The fragmentation of supercontinent Columbia (or Nuna) began about 1.6 

Ga ago and continued until about 1.3-1.2 Ga, only to be reassembled again 

into Meso- to Neoproterozoic Rodinia largely between 1.1-1.0 Ga through 

the Grenvillian Orogeny collisional events (Rogers and Santosh, 2002; Zhao 

et al., 2004; Condie, 2002; Zhao et al., 2000 after Dalziel et al., 2000). 

Rodinia was probably spread from the equator to the polar region at ca. 800 

Ma, followed by a rapid ca. 90 degrees rotation that brought the entire 

supercontinent to a low-latitude position by ca. 750 Ma (Li et al., 2004).  

Neoproterozoic 

(1.0 Ga – 540 Ma) 

This era was marked by the continental dispersal of Rodinia (from 750-610 

Ma) (Eyles and Januszczak, 2004) and its reorganization into the 

megacontinent Gondwana during the same period. (Hoffman, 1999).  

PHANEROZOIC With reference to Fig. 4 it appears that the Phanerozoic lithosphere 

involved lots of mountain building episodes (of varying degrees) and thus 

less flat land episodes discouraging epeiric seas development. 

Mountainous episodes also infer ice ages which would in turn imply a sea 

level drop. The longest flat land time and thus non-glacial time was in the 

Cambrian followed by the Triassic and Jurassic. This ties in with the 
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Phanerozoic sea level in Fig. 5. These flat land, non-glacial, and high sea 

level times are times that microbial carbonates had flourished in. 

Cambrian (540 – 

490 Ma) 

Gondwana was accreted 600 – 500 Ma and later merged with other 

continents in 320 Ma to form Pangaea, until breakup between 180 Ma and 

100 Ma (Fig. 3) (Veevers, 2005).  

During the Cambrian, most continents were in tropical latitudes, although 

the megacontinent of Gondwana extended south to the polar regions 

(Osborne and Tarling, 1996). 

Ordovician (490 – 

445 Ma) 

During the Early to Middle Ordovician the first major Northern Appalachians 

orogenic event occurred, coined as the Taconic Orogeny (Staal, 2005).  

By the Late Ordovician, megacontinent Gondwana had moved towards the 

South Pole, (e.g. Mata and Bottjer, 2012) and continents Baltica and Siberia 

started to move northward (Fig. 4) (Herrmann et al., 2004; Veevers, 2005). 

Post-Ordovician 

(445 – Present 

Ma) 

Veevers (2005) states that Pangea was formed in the Carboniferous (320 

Ma) and broke apart during the interval between the Jurassic and 

Cretaceous periods (180 – 100 Ma). 
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         FIG. 3 Rodinia’s assembly during the Mesoproterozoic  
 



20 
 

 

   FIG. 4 Arrangement of supercontinents and continents throughout the Phanerozoic 
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FIG. 5 Mountain building throughout the Phanerozoic 
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ABIOTIC FACORS – Atmosphere, Cryosphere and Hydrosphere  

 

PRECAMBRIAN 

Archean  

(4 Ga – 2.5 Ga) & 

Paleoproterozoic 

(2.5 Ga – 1.6 Ga) 

After the primordial steam atmosphere had rained out to form an ocean, it 

is prevailingly viewed that to compensate for the reduced solar luminosity 

(the young sun paradox) – which would have left the Earth in a global 

glaciation with no “liquid” water – greenhouse gasses would have 

dominated the atmosphere particularly CO2 and water vapor, and also H2 

and N2 (e.g. Kasting, 1993; Kasting and Siefert, 2002; Shaw, 2008; Kasting, 

2013). Later on methane (CH4) was introduced by methanogens living in a 

reduced upper ocean (Kopp et al., 2005 after Pavlov et al., 2000), through 

the synthesis of CO2 and H2, outweighing the CO2 abundance temporarily 

(Kaufman and Xiao, 2003). Ammonia (NH4) was also abundantly produced 

biologically (Kasting, 1993). So far, the Archean’s atmosphere remained 

anoxic, whereby only anaerobic life could survive.  

The appearance of “photoautotrophic” cyanobacteria in the Archean (ca. 

3.7 – 2.8 Ga) and their ability through time to generate excess oxygen to 

oxidize the methane-rich atmosphere, transforming it to CO2 (a less 

effective greenhouse gas) – a phenomena famously known as the Great 

Oxygenation Event (GOE), as well as the Oxygen Catastrophe, Oxygen Crisis 

or Great Oxidation. Kasting (1993) contends that it occurred around 2.0 Ga, 
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while Holland (2006) expands it to 2.45 – 1.85 Ga.  Surface ocean waters 

became oxidized and productive, while the methanogens escaped the 

poisonous effects of oxygen to the still anoxic deep ocean (Arnold, 2004) 

which was also oxygenated later in the Neoproterozoic (Eriksson, 2012).  

To summarize, Sheldon (2006) notes that the atmospheric CO2 was “fairly 

constant and elevated” during the Paleoproterozoic (2.5 to 1.8 Ga ago), and 

Holland (2006) notes that the photosynthetic oxygen pump led to a drastic 

reduction in the concentration of CO2.  

The overthrow of the hot greenhouse atmosphere rich in CH4 and CO2 into a 

cooler rich O2 atmosphere triggered off a planetary-scale glaciation 

(snowball Earth), in the Paleoproterozoic era (e.g. Kasting and Siefert, 2002; 

Kopp et al., 2005). 

Finally, the Archean and Paleoproterozoic oceans were likely greatly 

oversaturated with respect to calcium carbonate (calcite and aragonite), 

which would have facilitated the precipitation of large reefs even without 

biological participation (Kopp et al., 2005).  The ocean saturation then took 

on a decline mode throughout the rest of the Proterozoic and the 

Phanerozoic (Grotzinger, 1989). 

Mesoproterozoic 

(1.6 Ga – 1.0 Ga) 

The Mesoproterozoic Era was unique among the other Proterozoic Eras in 

being a nonglacial period and thus lacking any snowball events (Hoffman 

and Schrag, 2002).  A sharp decline in atmospheric CO2 was recorded (Fig. 1; 
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Sheldon, 2006; Kah and Riding, 2007). Atmospheric oxygen levels were 

almost stable; surface oceans were mildly oxygenated; while deep oceans 

remained anoxic or were mildly oxygenated (Holland, 2006; Arnold et al., 

2004). Holland (2006) contends that the period 1.85 to 0.85 Ga as the the 

‘boring billion.’ 

Neoproterozoic 

(1.0 Ga – 540 Ma) 

With most of Rodinia’s extensive land area at the equator both atmospheric 

CO2 drawdown and global albedo increased, which, along with waning 

plume volcanism led to low-latitude glaciation (Li et al., 2004).  Holland 

(2006) mentions that perhaps the largest three ice ages visited the Earth 

(after Hoffman & Schrag 2002; Hoffman in press) during this Era. Such 

snowball events have been related by other workers to the second major 

increase in photosynthetic oxygen coined as the Neoproterozoic 

Oxygenation Event (NOE) (Eriksson et al., 2012; Holland, 2006). The shallow 

oceans followed the rise in atmospheric oxygen, but the deep oceans 

remained anoxic, particularly during the intense Neoproterozoic ice ages 

(Holland, 2006). Kasting (1993) suggests that the decline of CO2 and other 

greenhouse gases counterbalanced the effect of the brightening sun. 

Canfield et al. (2007) propose that during the Late-Neoproterozoic after 

(580 Ma) deep-ocean oxygenation was initiated. 

PHANEROZOIC Atmospheric oxygen levels  in the Phanerozoic were significantly higher 

than that of the Precambrian, reaching maximum value during the 
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Carboniferous (359 - 299 Ma) before returning to its present value 

(Holland, 2006). The shallow oceans were probably oxygenated 

throughout the Phanerozoic, while the deep oceans fluctuated widely, 

perhaps on rather geologically short time-scales (Holland, 2006).  

With reference to Fig. 1, it can be inferred from the CO2 decline that the 

Phanerozoic was overall cooler than that of the Phanerozoic climate. 

Fig. 1, a CO2 drop was recorded from the period ca. 400 - 300 Ma, 

representing almost all of the Devonian and the entire Carboniferous 

periods - two periods are characterized by an explosion of botanical life. 

Cambrian (540 – 

490 Ma) 

The late Proterozoic to Cambrian interval witnessed the change from a 

saturated ‘aragonite sea’ to a ‘calcite sea’, corresponding to a change from 

‘icehouse’ to ‘greenhouse’ climatic conditions. 

Hughes and Heim (2005) suggest that the rapid seafloor spreading 

associated with the breakup of Pannotia caused a global sea-level rise, and 

increased global volcanism. Their reasoning is based on the absence of 

evidence of persistent glaciation. Additionally, it can be inferred that the 

increased global volcanism would entail a substantial increase in 

atmospheric CO2 – a Phanerozoic peak that was never regained since then. 

By the end of the Cambrian CO2 started its eventual decline (Fig. 1). 

In the late Cambrian the Sauk Transgression – a shallow sea – covered large 

continental areas. Consequently, most Cambrian formations contain 
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significant amounts of carbonate rock (Osborne and Tarling, 1996). 

Ordovician (490 – 

445 Ma) 

Munnecke et al. (2010) state that driven by an extended greenhouse 

climate from the Cambrian, extensive, epicontinental seas developed in this 

period (after Algeo and Seslavinski, 1995; Pratt and Holmden, 2008). Sea 

levels were possibly the highest of the entire Phanerozoic Eon (after Hallam, 

1992; Miller et al., 2005;Haq and Schutter, 2008). 

The southward drifting of Gondwana assumedly led to the Late Ordovician 

Gondwana glaciation (Herrmann, 2004). 

Munnecke et al. (2010) note a decrease in Ordovician temperatures (after 

Trotter et al., 2008), and that cooler waters may have been more welcoming 

for marine life (after Trotter et al., 2008). Or that increased calcium 

carbonate saturation aided the precipitation of the heavier skeletons of the 

Palaeozoic benthos (after Pruss et al., 2010).  

With reference to Fig.1 , the CO2 decline was enhanced by the Gondwana 

glaciation. 

Post-Ordovician 

(445 – Present 

Ma) 

The climate of the Silurian started cold but soon global temperature 

switched; as deduced from carbonate build-ups and bioherms indicating 

warmer waters (Cocks, 2005).  

The Devonian rise of large vascular land plants ‘perturbed the long-term 

carbon cycle’ by accelerating the silicate rocks weathering by their roots, 

and also removing atmospheric CO2 via photosynthesis, and producing O2, 
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aided by the increased burial of organic matter in sediments (Berner, 2004).   

Atmospheric CO2 was further depleted (Fig. 1) and O2 was significantly 

increased due to a major radiation in vascular land plants particularly seed 

plants in the Early Carboniferous (Scott, 2005). 

 

BIOTIC FACORS – Biosphere 

PRECAMBRIAN 

Archean (4 Ga – 

2.5 Ga) & 

Paleoproterozoic 

(2.5 Ga – 1.6 Ga) 

Stromatolites’ recorded history begins in the Archean ca. 3.45 Ga, and is 

considered of biogenic origin (Riding, 2011 after Hofmann et al., 1999; 

Allwood et al., 2006).   

Late Palaeoproterozoic and Early Mesoproterozoic rocks provide evidence 

for a moderate diversity of eukaryotic organisms (Knoll, 2006). 

Mesoproterozoic 

(1.6 Ga – 1.0 Ga) 

Stromatolites diversified widely (e.g Grotzinger, 1990) during most of this 

era, but towards the end they commenced a long-term decline.  Eukaryotes 

diversity increased during the late Mesoproterozoic (Anbar and Knoll, 2002 

after Porter and Knoll, 2000). 

Neoproterozoic 

(1.0 Ga – 540 Ma) 

Near the Precambrian-Cambrian boundary ca. 575 Ma the Ediacara biota – 

shallow and littoral marine (Allaby, 2008) soft-bodied metazoa (organisms 

and colonies) – arose shortly after the last glaciation of the era, suggesting a 

causal link between their appearance and the NOE that further oxygenated 
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the atmosphere and changed the deep ocean to an oxic state (Canfield et 

al., 2007; Canfield et al., 2007 after Narbonne and Gehling, 2003 and 

Bowring et al., 2002). 

The Ediacaran “soft-bodied” life abruptly disappeared concurrent with the 

Cambrian explosion of “skeletal” life (Canfield et al., 2007 after Narbonne, 

2005 and Knoll et al., 2006).  

Eriksson et al. (2012) notes that the Ediacaran–Cambrian transition was 

marked by an increase in bioturbation intensity (after Droser and Bottjer, 

1988) – a “substrate revolution” (after Bottjer et al., 2000) – that 

dramatically reduced the thickness and distribution of once ubiquitous 

microbial facies and mats (after Garrett, 1970; Hagadorn and Bottjer, 1997).  

McMenamin (2005) states that towards the end of the period, the seafloor 

mat seal began to break down, perturbing the global carbon budget (e.g., 

buried carbon was put immediately back into circulation). Simultaneously, a 

tremendous flux of mineral nutrients went to the oceans resulting from the 

final breakup of supercontinent Rodinia and formation of megacontinent 

Gondwana. 

Stromatolites continued their long-term decline. Concurrently, the 

burrowing and lamination-disturbing activities led the stromatolites’ 

concentric lamination to give way to a clotted, thrombolitic texture 

(McMenamin, 2005). 
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Eriksson et al. (2012) also note that metazoans biomineralization (after 

Erwin et al., 2011) marked a widespread appearance of skeletonized taxa 

during this transition, that could be sourced from the flux of minerals 

caused by the breakup of Rodinia. 

PHANEROZOIC The biosphere in the Phanerozoic proliferated at unprecedent rates. 

Simultaneously, a multitude of extinctions occurred, and notably five mass 

extinctions; namely end-Ordovician, Late Devonian, end-Permian, end-

Triassic, and end-Cretaceous. 

According to Riding (2011), Schubert and Bottjer (1992, 1995) note that if 

metazoans are able to outcompete (e.g. by overgrowth) microbial 

carbonates then temporary reduction in metazoa through mass 

extinctions should permit temporary increase in microbial carbonates. 

Thus, they dubbed the post mid-Permian extinction stromatolites as 

“post-mass extinction disaster forms.” Another resurgence was recorded 

after the Devonian extinction. However, they did not globally increase 

following the end-Ordovician, end-Triassic, and end-Cretaceous mass 

extinctions (Riding, 2006).  

Cambrian (540 – 

490 Ma) 

Known for the “Cambrian Explosion,” this period witnessed the 

diversification of abundant metazoan life that Earth never witnessed before. 

The Cambrian fauna were overridingly marine dwelling in the shallow seas 

of the continental margins. No freshwater or land organisms had yet 
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appeared.  Nevertheless, there are traces of plants bearing strong 

resemblance to modern types of seaweed (Osborne and Tarling, 1996).  

During the Cambrian, microbial reefs demonstrated the highest resurgence 

in the Phanerozoic. 

Ordovician (490 – 

445 Ma) 

Munnecke et al. (2010) report that this period recorded one of the two 

most significant radiation events in the history of marine life, coined as the 

Great Ordovician Biodiversification Event – resembling a massive rise in 

marine biodiversity (after Sepkoski, 1981) and biocomplexity (after Droser 

and Sheehan, 1997). Such an event can be directly related to the extensive, 

epicontinental seas developed during this period. 

By the Late Ordovician the second biggest mass extinction in the 

Phanerozoic occurred eradicating 85% of marine life (Munnecke et al., 

2010). It has been suggested that due to the absence of extraterrestrial 

evidence, the Late Ordovician glaciation could have been the cause of the 

extinction. (Herrmann et al., 2004).  

Fisher (1965) determined that stromatolites steepest decline commenced 

after the Mid-Ordovician. 

Post-Ordovician 

(445 – Present 

Ma) 

Cocks (2005) notes that the Silurian marine realm recorded abundance and 

diversity of the invertebrates (including benthos).  

The biological invasion (flora and fauna) of land began with modest 
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beginnings of autotrophic microbes to mosses to even trees through the 

Cambrian to Silurian periods (Berner, 2004; McGhee, 2005). But it was only 

in the Late Silurian to Early Devonian, that life’s invasion of land 

dramatically accelerated; which included vascular land plants and hence the 

first forests (McGhee, 2005). 

The largest development of reefal ecosystems ever occurred in the 

Devonian, estimated at maximum development to have covered over 5 

million km2 of seafloor (McGhee, 2005). This ties in with a slight rise of 

microbial reefs (Fig.1).  

By the end of the Devonian, one of the ‘Big Five’ mass extinctions occurred, 

caused by another switch from a hot greenhouse state to a cold icehouse 

one (McGhee, 2005). 

The significant Carboniferous oxygen-rich atmosphere caused by a major 

radiation in vascular land plants may have attributed to the growth of 

arthropods including insects (Scott, 2005). 

Carboniferous marine life resulted from extensive tropical shallow-water 

carbonates during the Mississippian, but soon a major glaciation throughout 

the tropics followed (Scott, 2005). The second temporarily Phanerozoic peak 

of microbial reefs (Fig.1) recorded in the Carboniferous canthus be 

explained by the increase in tropical shallow-water carbonates.   
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CHAPTER IV: DISCUSSION 

 
Grotzinger (1989) noted that there is an “excellent correlation” between inferred paleo-water 

depth and stromatolite form, whereby shallow-water forms often have lower synoptic relief 

(after Grotzinger, 1986; Hoffman, 1988; Ricketts and Donaldson, 1988). Riding (2011) elaborated 

on this view by stating that the stromatolite’s shape is determined by the original synoptic relief, 

which reflects the surrounding environment’s accretion rate. Low relative accretion rates would 

typically produce low relief, but would allow stromatolites to “laterally” encrust sediments, thus 

fostering complex shapes. In contrast, for stromatolites to survive a high relative accretion rate 

and avoid being smothered they would have to grow vertically producing high relief and simple 

shapes. He concludes that the Mesoproterozoic stromatolites’ highly conspicuous diversity (of 

low synoptic relief) and abundance could actually resemble the beginning of its decline due to 

either:  1) reduction in synsedimentary lithification (resulting from low accretion rates); and/or 

2) reduced microbial growth. Riding (2006) noted that “calcified” cyanobacteria was equivocal in 

both the Paleoproterozoic and the Mesoproterozoic and that the palaeogeographical 

distribution of calcified cyanobacteria was very limited during the period of ‘Snowball’ 

glaciations and its aftermath (after Riding, 1994). He also noted that calcified cyanobacteria 

became widespread and diverse only early during the Cambrian (after Riding & Voronova, 1984).  

With respect to microbial growth, both the Paleoproterozoic and Neoproterozoic Eras were 

generally characterized as “Snowball Earth” periods, and as per Quesada and Vincent (2012) 

based on present-day cryosphere analysis cyanobacteria are able to colonize cold habitats yet 

their diversity is considered low. Hence, since the Mesoproterozoic was a non-glacial period, it 
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follows then that cyanobacterial diversity would increase. Accordingly, the “reduced microbial 

growth” reasoning cannot be supported as discussed above. 

 

With respect to low synsedimentary lithification: 

(i) warm temperatures favor carbonates production, and since the Mesoproterozoic 

was a non-glacial period, stromatolites would have been able to thrive better in 

terms of abundance than during the ‘Snowball’ glaciations periods – for a short 

period. 

 

The supercontinent Columbia started to fragment at the beginning of the 

Mesoproterozoic Era ca. 1.6 Ga and continued until ca. 1.3 - 1.2 Ga (Zhao et al., 

2004).  Hence, according to the supercontinent cycle sea level rose and possibly 

epeiric seas were formed. It is known that shallow water carbonate sedimentation 

cannot keep up with major sea level rises through glacial melting. Accordingly, for 

stromatolites to sustain they would have to grow laterally, and thus foster complex 

shapes and thus diversity – until the Snowball Earth glaciation arrived. 

 

Almost instantly (in geological terms) the Mid-Mesoproterozoic witnessed the 

formation of the Rodinia supercontinent, largely between 1100 and 1000 Ma yet 

some infer its amalgamation back to1300 Ma (Condie, 2002).  Consequently, the 

resulting Grenvillian Orogeny enhanced silicate weathering, which drowned and 
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inhibited the carbonate factory – that the greenhouse should have entailed – but 

instead a Snowball Earth glaciation commenced. 

Hence, accretion rates were reduced and thus the lithification of the stromatolites 

began to adopt a declining phase, ultimately, negatively affecting the stromatolites’ 

abundance altogether. With reference to the period 1.3 Ga in Fig. 6, indeed this is 

the pinnacle point of diversity, and after that the long-term decline was embarked.  

 

 

 

 

FIG.6 Stromatolite diversity, after Riding, 2007 

 
 
 
The following Neoproterozoic Oxygenation Event led to the diversification of mobility and 

feeding modes amongst late Ediacaran-early Cambrian metazoans (after McIlroy and Logan, 

1999; Erwin et al., 2011; Eriksson et al., 2012) and drastically affected the physical and chemical 
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nature of marine sediments. This entailed an increase in bioturbation intensity (after Droser and 

Bottjer, 1988); a “substrate revolution” (after Bottjer et al., 2000) that dramatically reduced the 

thickness and distribution of previously ubiquitous microbial facies and mats (after Garrett, 

1970; after Hagadorn and Bottjer, 1997) and thus reduced the occurrence of stromatolites 

(Eriksson et al., 2012).  

The Ediacaran–Cambrian transition also marked a biomineralization revolution whereby the 

widespread appearance of skeletonized taxa is noted – previously recorded on a much minimal 

scale. Diversification in biomineralizing organisms was followed by an increase in overall skeletal 

contribution to shallow-water carbonate facies in the Ordovician, especially by heavily calcified 

corals, bryozoans, brachiopods, and echinoderms (after Pruss et al., 2010). Subsequently, 

biomineralizing foraminifera (benthic in the Devonian and planktonic in the Jurassic; after Hart 

et al., 2002) and coccolithophores (Triassic) significantly affected carbonate facies distribution 

by transferring carbonate deposition offshore (after Tucker, 1985; after Milliman, 1993; Erba, 

2006), which is a location not generally favored by stromatolites. 

Three more points remain related to why stromatolites underwent a steep decline after the 

beginning of the Ordovician: 

First was the Taconic Orogeny triggered the aggregation of  the supercontinent Pangaea, which 

prompted the same cycle of enhanced silicate weathering (Kump et al., 1999). Second, the 

significant event that is still prevalent to the present day was an abyssal CO2 sink. Wellman 

(2003), noted that the earliest generally accepted and widespread fossil evidence for land plants 

comes from microscopic dispersed spores recorded in the mid-Ordovician age. Thus 



36 
 

photosynthesis captured the CO2 that would have instead assisted in forming the carbonate-

forming stromatolites. Third, metazoan organisms continued to expand in abundance and 

diversity. 
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CHAPTER V: CONCLUSION 

 

Previous work has pointed out two main reasons behind the general decline of stromatolites: (1) 

seawater carbonate saturation; and (2) metazoan competition/grazing. 

This present research has taken a more “acute” evaluation of stromatolite decline by comparing 

the steepest decline in the Ordovician with the highest peak in the Mesoproterozoic. The results 

favor the former reasoning provided by previous work – but digs further into the reasons that 

affected each of the two periods under investigation. Yet, it must be noted that the second 

reason is not totally disregarded, but rather dampened as discussed below. 

Cyanobacteria heavily rely on atmospheric CO2 for both photosynthesis and calcification; 

concurrently stromatolites heavily rely on carbonates for sedimentation. Accordingly, since the 

main source of carbonates is atmospheric CO2 (along with Ca), the analysis of both periods 

entailed a deep understanding of the factors affecting the fluctuations affecting atmospheric 

CO2. 

Simply, the carbon budget can be allocated to either sources (mainly volcanism, metamorphism 

and diagenesis) or sinks (rocks and marine, animal and plant life). Throughout Earth history 

there has been a continuous variational interplay between both carbon sources and sinks. 

The arguments that support a decline in stromatolite abundance due to seawater carbonate 

saturation are: 

 



38 
 

1. Mesoproterozoic 

Sheldon (2006) noted that atmospheric CO2 was constant during the period 2.5 to 1.8 Ga ago 

(Paleoproterozoic); and then dropped significantly between 1.8 and 1.1 Ga ago (mostly 

Mesoproterozoic). Kah and Riding (2007) also confirmed a decrease in CO2 during the 

Mesoproterozoic through cyanobacterial analysis. Accordingly, this backs Riding’s (2011) 

assumption that stromatolites’ peak in abundance and diversity was an indicator of the 

beginning of the decline, because of lower seawater carbonate saturation.  

2. Cambrian and Ordovician Explosion 

During the Precambrian time, competition for CO2 and accordingly carbonate formation was 

limited. Besides bacteria, there was hardly any organic life. But with the start of the Ediacaran 

period the biosphere was totally revolutionized through two waves of intensified developments 

in life; namely the Cambrian Explosion and the Great Ordovician Biodiversification Event. These 

radiations of life had the greatest negative impact on stromatolite occurrence. Prior to the 

Phanerozoic time, CO2 and accordingly carbon products were arguably monopolized by 

cyanobacteria and carbonate rocks. With the appearance of multicellular life, the distribution of 

carbon products was significantly altered. To summarize this point from a chemical reaction 

perspective, it is as follows:- 

During the Precambrian the overwhelming continental geochemistry was related to the 

following formula: 
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CO2 + CaSiO3 → CaCO3 + SiO2 ,  

and the Precambrian atmosphere witnessed the following bacterial photosynthesis: 

CO2 + H2O → CH2O + O2 . 

With the continued increase of O2 in the atmosphere, multicellular life proliferated, but instead 

of forming bacterial organic material based on the previous bacterial photosynthesis, through 

respiration it locked up more carbon products, and accordingly depleted the carbon budget 

previously available for stromatolite formation. 

 

3. The Ordovician Hirnantian Glaciation Mass Extinction 

Glaciations generally result in a sea level drop and thus an exposure of shallow-water 

continental shelves. This was the case during the Hirnantian glaciation, which was one of the 

worst extinction events in Earth’s history. But what was unique about the End-Ordovician 

glaciation was that prior to its occurrence there was an unprecedented diversification of marine 

life.  With the exposure of shallow-water continental shelves, 85% of marine life was eradicated. 

This entailed a sudden astronomical amount of buried organic material. In other words, carbon 

would be locked up in the organic material for a long time before volcanic outgassing would 

reemit it out to the atmosphere again in the form of CO2.  
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Fig.7 shows that the Ordovician δ13C (marine carbonate rocks; representing organic carbon) was 

at its lowest stage throughout all of the Phanerozoic. This also ties with the lowest sea level 

(because of the end-Ordovician glaciation) during the Phanerozoic (Fig. 8). 

    

FIG. 7 Carbon Excursion                FIG. 8 Sea level change   

            

This point is further backed by the presence of microbialites (microbial carbonates) in 

Silurian rocks in the Waldron Shale in SE Indiana and their absence in the Ordovician 

Cincinnatian Series in SE Indiana even though they have the rest of the facies identical 

(Schmidt, 2006). 
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On the other hand it could be argued that the exposed carbonate shelves would provide 

more carbonate sources through weathering of these shelves, but, this glaciation 

occurred mainly in the Southern Hemisphere on the Gondwana Continent – a location 

that generally receives less sun than the equator and thus doesn’t favor carbonate 

formation.  

 

4. Post Ordovician time 

From the first appearance in the Ordovician, through the Silurian until the Devonian plant 

life increased significantly in abundance and variety acting inversely to the stromatolites 

abundance and variety. This was another blow to the atmospheric CO2 budget, as depicted 

from the CO2 graph in Fig.1.  

 

5. Carbonate Shelves 

Production of carbonates occurs abundantly in warm equatorial regions within a boundary 

of 30˚ latitude. According to Walker (2002), carbonate shelves have witnessed a continuous 

drastic decrease throughout the Phanerozoic as seen in Fig.9. This could be attributed to the 

general drift of the continents towards both poles vis-à-vis their equatorial concentration 

during the Precambrian. In other words, the favorable habitat for stromatolites occurrences 

has in itself undergone a drastic decline, thus pushing stromatolites to stressed locations 

where temperature is warm enough to allow them to grow and persist. 
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   FIG. 9 Phanerozoic Shelves, after Walker 2002 

 

To summarize the conclusions of this research, stromatolites steeply declined in the Ordovician 

for the following hypotheses: 

1- A continuous decline in atmospheric CO2 since the Mesoproterozoic 

2- An explosion in multicellular life during the Cambrian and Ordovician that outcompeted 

and grazed on stromatolites 

3- The End-Ordovician Mass Extinction that locked organic carbon for a longer period than 

usual and thus adversely affected the carbon budget availability.  
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4- The appearance of plant life that consumed CO2 through photosynthesis and locked 

more organic carbon. 

5- The decrease of carbonate shelves during the Phanerozoic, which is a favorable 

environment for stromatolite formation. 

 

Suggested Future Research 

In order for the above hypotheses to be validated, further data collection is suggested that 

would support or refute the roles of each of them. In addition to a study of the geomicrobial 

ecology of microbial mats. Finally, an in-depth palaeoecological analysis of stromatolites’ decline 

during the rest of the Phanerozoic is also suggested for further research. 
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