Terahertz Spectroscopic Reflection and Scattering Measurements of Aligned CNT Arrays as a Function of Carbon Nanotube Length

Satya Ganti
Wright State University - Main Campus

Lindsay Owens
Wright State University - Main Campus

Stanley Smith IV
Wright State University - Main Campus

Jason A. Deibel
Wright State University - Main Campus, jason.deibel@wright.edu

Follow this and additional works at: https://corescholar.libraries.wright.edu/physics

Part of the [Physics Commons](https://corescholar.libraries.wright.edu/physics)

Repository Citation
https://corescholar.libraries.wright.edu/physics/879

This Abstract is brought to you for free and open access by the Physics at CORE Scholar. It has been accepted for inclusion in Physics Faculty Publications by an authorized administrator of CORE Scholar. For more information, please contact library-corescholar@wright.edu.
Experiments in the AFIT Radar Instrumentation Laboratory

Julie Jackson
Air Force Institute of Technology

Geoffrey Akers, Brian Roadruck, Aaron Evers, Jose Gutierrez
Air Force Institute of Technology

The AFIT Radar Instrumentation Laboratory (RAIL) mission is to develop new data collection strategies, novel processing algorithms, and informative data products for a variety of radar modes, configurations, and waveforms through cutting-edge research and scholarship. We aim to equip our students with the next generation of smart radar tools and technologies. RAIL hosts a suite of test equipment used in AFIT’s radar curriculum and research experiments. The LabVolt Radar Training System enables students to work with radar equipment at safe radiation levels. Tektronix waveform generation and measurement equipment supports efficient data collection and analysis. Research students can take advantage of the test equipment to explore new theoretical concepts with small scale experiments. This poster showcases recent experiments in statistical characterization of radar ground clutter and passive radar imaging using OFDM waveforms.

Terahertz Spectroscopic Reflection and Scattering Measurements of Aligned CNT Arrays as a Function of Carbon Nanotube Length

Satya Ganti
Wright State University

Lindsey Owens, Stanley Smith IV, Jason Deibel
Wright State University

Reflectance and scattering measurements were made on vertically aligned carbon nanotube arrays of varying lengths grown on quartz substrate. Measurements are performed with copper as reference using terahertz time-domain spectroscopy. Direct reflection and scattering results indicate a frequency-related dependence on the length of the carbon nanotubes and the angle of incident radiation.