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Figure 5.1. The mean pixel value of Segment 19 (shaded in red) is used to track the 

respiration waveform. Of the candidate segments (Segments 27, 28, and 29, shaded in 

pink) that can be used to track the cardiovascular pulse, Segment 29 was chosen for 

analysis. 

 

 The temperature signals from segments 19 and 29 are processed similarly for the 

estimations of RR and HR, respectively. First, interpolation is used to fill in missing data 

caused by poor tracking performance. For frames in which the subject’s head is rotated to 

a large degree (>30°) away from the frontal pose, or in which the subject performs very 

quick and large head motions, the Visage software is unable to successfully track the 

facial feature coordinates. During feature extraction, coordinate values from these frames 

are set to NaN (“not a number”) in the vector so that they may be interpolated at this step. 

Interpolation is applied using a least squares approach that does not modify any known 

values. Following interpolation, random noise is mitigated using a 10-point sliding-

average filter. 
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 Next, using the DCT filtering method, narrow bandpass filters are applied to the 

signals, with cutoff frequencies corresponding to the expected RR or HR range, 0.08 to 

0.7 Hz and 0.9 to 2.8 Hz, respectively. As these are dynamic signals, the FFT is applied 

to the 30-second, non-overlapping windows of the temperature data and the frequency 

component with the highest magnitude is chosen as the RR or HR for that window 

(Figures 5.2-5.3). 

 
Figure 5.2. The respiration waveform extracted from thermal image Segment 19 and the 

respiratory belt signal for a 30-second window show good correlation aside from the 

delay in the belt signal (left). The dominant frequencies of the two signals (right) are 

selected and the difference between the assessed RR is calculated. 

 
Figure 5.3. The cardiovascular pulse waveform extracted form thermal image Segment 

29 and the ECG signal for a 30-second window show a matching number of peaks (left). 

The dominant frequencies of the two signals are used to calculate the difference between 

the assessed HR. 

 

120 125 130 135 140 145 150
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time (sec)

A
rb

it
ra

ry
 U

n
it

s

 

 

Mean seg 19

Respiratory belt

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency (Hz)

M
ag

n
it

u
d

e

 

 

Mean seg 19

Respiratory belt

30 35 40 45 50 55 60
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Time (sec)

A
rb

it
ra

ry
 U

n
it

s

 

 

Mean seg 29

ECG

0 0.5 1 1.5 2 2.5
0

0.01

0.02

0.03

0.04

0.05

0.06

Frequency (Hz)

M
a
g
n
it
u
d
e

 

 

Mean seg29

ECG



69 
 

5.1.3 Radar signal processing 

 The in-phase (I) and quadrature (Q) radar signals are digitized and recorded 

during the experiment. Phase unwrapping is performed by taking the arctangent of the 

quotient of I and Q to provide a measurement of chest displacement. Both respiration and 

cardiovascular pulse waveforms are observed through the chest displacement signal, 

which is filtered with each of the appropriate sets of cutoff frequencies to obtain these 

signals of interest. Analysis proceeds as for the temperature signals from MWIR imagery, 

 
Figure 5.4. The respiration waveform extracted from the radar signal and the respiratory 

belt signal for a 30-second window (left). The dominant frequencies of the two signals 

(right) are selected and the difference between the assessed RR is calculated. 

 
Figure 5.5. The cardiovascular pulse waveform extracted from the radar signal and the 

ECG signal for a 30-second window (left). The dominant frequencies of the two signals 

are used to calculate the difference between the assessed HR. 
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using the FFT of 30-second non-overlapping windows, and choosing the highest 

magnitude frequency component to represent the RR or HR (Figures 5.4-5.5). 

5.1.4 Comparison to ground truth from contact sensors 

 The chest respiratory effort signal is filtered with the cutoff frequencies of the 

expected respiratory rate range, and the ECG signal is filtered with the cutoff frequencies 

for the expected heart rate range. Ground truth RR and HR values are obtained through 

the same process as the radar and MWIR signals using 30-second non-overlapping 

windows. 

 Frequencies are converted from units of Hz (s
-1

) to min
-1

 by multiplying by 60 so 

that RR is reported in breaths per minute, and HR in beats per minute. For each of the 30 

second windows, the difference between the ground truth and estimated values dRR and 

dHR are calculated as 

   =       , and (16) 

   =       , (17) 

where RR and HR are the ground truth values, and RR' and HR' are the estimated values 

from either the MWIR imagery or the radar signal. The accuracy of the estimated 

respiration rate is represented by the percentage of 30-second windows having a 

difference from the ground truth within either one or two breaths per minute. Similarly, 

the accuracy of the estimated heart rates is represented by the percentage of the windows 

having a difference from the ground truth within either two or six beats per minute. 

Accuracy estimates are calculated independently for each portion of the experiments: 

baseline, mental task and physical task.  
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5.2 Results 

5.2.1 Vital sign estimation from thermal imagery 

 Using 30-second windows to analyze the estimated vital signs yields 150 

windows for baseline, 168 for the mental task, and 387 for the physical task. The 

temperature signal from Segment 19 estimated the subject’s respiratory rate to within one 

breath per minute for 60.0% of the windows, and within two breaths per minute for 

70.7% of the windows during baseline. During the mental and physical tasks, these 

percentages fell to 43.5% and 32.6%, respectively, for within one breath per minute, and 

54.8% and 40.1%, respectively, for within two breaths per minute (Table 5.1). A 

distribution of all dRR values displays more positive values than negative, indicating that 

the estimated RR is more often less than the ground truth RR (Figure 5.6).  

The estimated HR from the temperature signal of Segment 29 was accurate to 

within two beats per minute for 12.7% and 8.93% of the windows, and within six beats 

per minute for 24.7% and 18.5% of the windows at baseline and mental task, respectively 

(Table 5.2). During the physical task, these percentages increased to 20.2% for within 

two breaths per minute, and 26.4% for within six breaths per minute. A distribution of all 

dHR values shows that nearly 55% of the windows have difference greater than 18 beats 

per minute, meaning that the estimated HR values were much lower than the ground truth 

HR (Figure 5.6). 

Table 5.1. Percentages of the estimated RR from the temperature signal having a 

difference d within one or two breaths per minute from the ground truth for the three 

experimental collections. 

 Baseline Mental Task Physical Task 

-1 < dRR < 1 breath per minute 60.0% 43.5% 32.6% 

-2 < dRR < 2 breaths per minute 70.7% 54.8% 40.1% 
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Table 5.2. Percentages of the estimated HR from the temperature signal having a 

difference d within two or six beats per minute from the ground truth for the three 

experimental collections. 

 Baseline Mental Task Physical Task 

-2 < dHR < 2 beats per minute 12.7% 8.9% 20.2% 

-6 < dHR < 6 beats per minute 24.7% 18.5% 26.4% 

 

 
Figure 5.6. A distribution of the differences between ground truth RR and estimated RR 

(left) and between ground truth HR and estimated HR (right) by MWIR imagery for 30-

second, non-overlapping windows across all tasks. The bin widths of each plot are set to 

the measured accuracy interval for each estimated parameter. 

 

5.2.2 Radar vital signs 

 The radar signal estimated the subject’s respiration rate within one breath per 

minute for 67.1% of the windows and within two breaths per minute for 75.9% of the 

windows during baseline. These percentages decreased for the mental and physical tasks 

to 43.5% and 15.3% for within one breath per minute, and 51.2% and 21.9% for within 

two breaths per minute (Table 5.3). The distribution of all dRR values display more 

positive values than negative, similar to the thermal imagery, so the estimated RR is more 

often lower than the ground truth (Figure 5.7). There are a total of 158 windows from 

baseline, 170 from the mental task, and 393 from the physical task. 
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 The radar-estimated HR was accurate within two beats per minute for 34.2% of 

the windows, and within six beats per minute for 49.4% of the windows during baseline. 

During the mental and physical tasks the radar signal estimated the HR within two beats 

per minute for 22.9% and 32.8% of the windows, and within six beats per minute for 

41.1% and 49.3% of the windows (Table 5.4). The distribution of all dHR values shows 

that many of the windows had an estimated HR with a difference of more than 30 beats 

per minute from ground truth (Figure 5.7). 

Table 5.3. Percentages of the estimated RR from the radar signal having a difference 

within one or two breaths per minute from the ground truth for the three experimental 

collections. 

 Baseline Mental Task Physical Task 

-1 < dRR < 1 breath per minute 67.1% 43.5% 15.3% 

-2 < dRR < 2 breaths per minute 75.9% 51.2% 21.9% 

Table 5.4. Percentages of the estimated HR from the radar signal having a difference 

within two or six beats per minute from the ground truth for the three experimental 

collections. 

 Baseline Mental Task Physical Task 

-2 < dHR < 2 beats per minute 34.2% 22.9% 32.8% 

-6 < dHR < 6 beats per minute 49.4% 41.1% 49.3% 

 
Figure 5.7. A distribution of the difference between ground truth RR and estimated RR 

(left) and ground truth HR and estimated HR (right) from radar for 30-second windows 

across all tasks. The bin widths are set to the measured accuracy interval. 
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5.3 Discussion 

 Detection of RR was similarly successful using thermal imagery and the radar 

signal for baseline and mental task data collections. However, during the physical task 

the RR detected by thermal imagery were more accurate than those from the radar 

system. This is not an unexpected result, due to the increased subject movement while 

pedaling the exercise bicycle during the physical task. Face tracking compensated for this 

movement during acquisition of the temperature signal, but the chest displacement signal 

from the radar was impacted by the additional motion that introduces noise in the 

respiratory pattern. Also, as subjects’ RR increase during exercise, breathing tends to 

become more shallow, the chest displacement becomes smaller, and the SNR decreases. 

 The radar system was more successful than thermal imaging for detecting HR in 

all three data collections. Even after filtering, the cardiovascular pulse waveform of the 

temperature signal has low SNR since the neck segment covers a larger area of the skin 

than is necessary. A more focused ROI directly over the carotid artery would provide a 

better pulse waveform. Using thermal imagery, higher HR accuracy was achieved during 

the physical task than for baseline and the mental task. This is expected since subjects’ 

HR increase and the heart’s contractile force is greater during physical exercise, resulting 

in more blood being pumped through the carotid artery than when at rest, creating a 

higher SNR. The greater force of contraction also allows HR to be more successfully 

detected through the radar-acquired chest displacement signal during the physical task; 

the accuracy values were similar to those from baseline and greater than those from the 

mental task. 
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 The differences between the ground truth and estimated RR and HR were often 

very large, indicating that the respiration or pulse waveform was not accurately detected 

or filtered, and that its frequency was not dominant in the signal. Instead, a noise 

frequency in the low frequency region of the filter’s passband dominated the signal 

(Figure 5.10). The low cutoff frequency for the RR filter was 4.8 breaths per minute, so a 

RR around that value would often be selected when the respiration waveform was not 

detected in the signal. The HR filter had a low cutoff frequency of 54 beats per minute, 

which would very often be at least 20 beats per minute less than the true HR. Low 

frequency noise in the HR signal likely stems from subject motion that causes slight 

inaccuracies in segment tracking. Gibbs phenomenon may have also contributed low 

frequency oscillations that would affect the ability to correctly detect the RR or HR 

frequencies. 

 

Figure 5.8. Unfiltered (left) and filtered (right) spectra of thermal segment 29 show that a 

peak at the lower frequency region of the passband, being the dominant frequency, would 

be selected as the estimated HR. 
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first identifying the frequency spectrum peaks for cases where the difference between 

ground truth (or expected RR or HR) and extracted frequencies are very large. In 

instances where a secondary peak appears in the normal expected range for the vital sign 

frequency, it may be selected to replace the more dominant noise peak (Figure 5.9). 

These manual overrides were performed for the extraction of HR and RR from thermal 

imagery during the baseline collections; 35% of HR windows and 17% of RR windows 

were updated. The accuracy of the estimated RR improved to within one breath per 

minute for 72.0% of the windows and to within two breaths per minute for 86.7% of the 

windows (Table 5.5), a more satisfactory result. The accuracy of the estimated HR 

improved to within two beats per minute for 26.7% of the windows and to within six 

beats per minute for 53.3% of the windows (Table 5.6).  

 

Figure 5.9. The low frequency peak (56 bpm) is contributed by noise in the low region of 

the passband. The 72 bpm peak is manually selected to provided a better estimate of HR. 
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Table 5.5. Percentages of the estimated RR from the temperature signal having a 

difference within 1 or 2 breaths per minute from the ground truth at baseline for original 

and adjusted results.  

 Baseline Baseline (Adjusted) 

-1 < dRR < 1 breath per minute 60.0% 72.0% 

-2 < dRR < 2 breaths per minute 70.7% 86.7% 

Table 5.6. Percentages of the estimated HR from the temperature signal having a 

difference within 2 or 6 beats per minute from the ground truth at baseline for original 

and adjusted results. 

 Baseline Baseline (Adjusted) 

-2 < dHR < 2 beats per minute 12.7% 26.7% 

-6 < dHR < 6 beats per minute 24.7% 53.3% 

 

 Although acquisition conditions were more challenging and more stringent 

metrics were used to evaluate performance, the results of this experiment to detect vital 

signs through thermal imagery were not as successful as reported in previous works [15-

18]. However, several aspects of our techniques make them more feasible for practical 

applications. For instance, no manual ROI selection or initialization was needed and the 

region was continuously tracked throughout the collection, allowing subjects complete 

freedom of motion within the camera’s field of view. Also, the frontal view of the face 

was used to detect both RR and HR, even though this is a non-ideal pose for HR 

detection. This experiment also demonstrated the ability to unobtrusively detect vital 

signs during mental and physical tasks, which was not investigated in other works. 
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day variance. Instead, data from the morning, afternoon and evening were analyzed 

independently. The CVs across the morning, afternoon, and evening data collections are 

highly correlated (R = 0.781, 0.899, 0.937, respectively). Again here, the nose segments 

(15 and 19) consistently have the highest variation and the perioptic segments (7, 9, 10 

and 11) the lowest variation (Figure 6.3).  Notably, the relative magnitude of the variation 

for the nose segments is lower in the morning versus the afternoon and evening. Further, 

a majority of the segments exhibit lower variance in the afternoon collection versus the 

other two time periods. 

 
Figure 6.2. The pooled and intra-day CVs are the greatest for segments 19 and 15 of the 

nose. Segments 7, 9, 10, and 11, of the perioptic region are the lowest. 
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Figure 6.3. The aggregate CVs for the morning, afternoon, and evening collections are 

significantly different but are highly correlated. Again, segments of the nose region have 

the highest variation and segments of the perioptic have the lowest variation.  

 

An alternate analysis was performed using three-factor ANOVA to determine 

whether there was a significant source of variation in the mean pixel values due to the 

time of collection, day, or subject. The returned p-values by segment for each of the 

factors indicate significance if p < 1-α, where we chose α = 0.95. The time of collection is 

found to be a significant factor for all segments except for Segments 1, 4, 5, 8, 10, 11, 13, 

and 17, representing the forehead, perioptic, and upper cheeks (Figure 6.4). The day of 

collection is found to be a significant factor for all segments except for Segments 15, 16, 

and 19, representing the nose region, as well as Segment 21, located just below the nose 

(Figure 6.5). A significant source of variation is found across subjects for every segment, 

which is expected due to person-to-person variability. 
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Figure 6.4. p-values by segment, returned from three-factor ANOVA, that indicate the 

significance of the time of collection as a source of variance. The dashed line is drawn at 

p = 0.05. For segments of the forehead, perioptic, and upper cheek region, collection time 

was not a sigificant factor. 

 

 
Figure 6.5. p-values by segment, returned from three-factor ANOVA, that indicate the 

significance of the day of collection as a source of variance. The dashed line is drawn at p 

= 0.05. For segments of the nose and the segment just below the nose, day of collection 

was not a significant factor. 
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6.2.2 Distance and pose 

 Facial feature tracking was not successful at distances over 15 feet for all subjects, 

and for angles greater than 30 degrees for all subjects. Images of all 12 subjects were 

successfully tracked for distances of 5 and 10 feet at the 0° pose, and images of 10 

subjects were successfully tracked at 15 feet and 0° pose (Table 6.1). At 10 feet, images 

of all 12 subjects were successfully tracked for the ±30° poses. 

Table 6.1. Number of subjects successfully tracked at each distance and pose angle from 

the imager, where 0° corresponds to the frontal pose. 

                    Pose Angle [°] 

Distance [ft] 
0 ± 30 ± 60 ± 90 

5 12 8 both, 4 either 0 0 

10 12 12 both 0 0 

15 10 4 both, 4 either 0 0 

20 2 0 0 0 

25 0 0 0 0 

 

 The largest mean CV of the pixel values at 5, 10 and 15 feet occurs in the nose 

region, 5.08%, followed by the forehead region at 4.20% (Table 6.2). Whereas the mean 

pixel value in the nose region at the three distances is fairly similar for most subjects, the 

spread is very large for a few subjects (Figure 6.6, top). Also, there is no apparent trend 

between the pixel value and subject-to-imager distance for any of the segments. The 

regions having the smallest mean CVs at distances of 5, 10 and 15 feet are the mouth, 

upper and lower cheeks.  

The perioptic region has the largest mean CV for pose angles of -30°, 0°, and 

+30° at 10 feet, 4.55%, followed by the nose region at 3.55%. In comparison to the effect 

of increasing distance, the mean pixel value of the perioptic region is somewhat more 
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Figure 6.6. Mean pixel values of the nose region (top) having the highest CV across 

distances, and the forehead region (middle) and perioptic region (bottom) having the 

highest and lowest CVs across poses, respectively. 
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consistent over pose angle (Figure 6.6, middle); the forehead region shows even more 

consistent values over pose angle (Figure 6.6, bottom). The mouth, upper cheeks, and 

forehead regions have the smallest mean CVs under these pose angle (2.24 to 2.96%). As 

the imaging distance is constant, the range of mean CVs was small.  

Table 6.2. Mean CV across 12 subjects of the pixel values in a given region, at distances 

of 5, 10, and 15 ft, and pose angles of -30°, 0°, and 30° at 10 feet. 

Region 
Mean CV for 

Distances 

Mean CV for 

Angles 

Forehead 0.0420 0.0268 

Perioptic 0.0403 0.0455 

Upper cheeks 0.0344 0.0296 

Nose 0.0508 0.0355 

Lower cheeks 0.0355 0.0302 

Mouth 0.0342 0.0224 

 

 

6.2.3 Activation of facial muscles 

 As expected, after the first balloon inflation trial, the lower cheeks region showed 

the greatest change in pixel value from baseline, with an average increase of 1,353 

grayscale units, corresponding to a temperature increase of about 0.71 °C, across 12 

subjects (Figure 6.7, top). The change in grayscale units are converted to the change in 

temperature using a linear fit to the calibration data. Although the actual calibration curve 

is nonlinear, the region lying within the observed skin temperature range is nearly linear. 

The mouth region showed the second greatest change, corresponding to about 0.55 °C 

(Figure 6.7, middle). Except for the perioptic region, where the average pixel intensity 

decreased slightly from Trial 2 to Trial 3, all regions showed temperature increases 

between subsequent trials (Figure 6.7, bottom). After the second and third trials, the 
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Figure 6.7. Mean pixel values (difference from baseline) of the lower cheek (top), mouth 

(middle), and perioptic (bottom) regions for 12 subjects, after each trial of blowing up a 

balloon. The lower cheeks and mouth showed the greatest temperature increase, while the 

perioptic region showed the least. 
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mouth region showed the greatest changes in temperature, 1.33 °C and 1.57 °C, 

respectively, and the lower cheeks showed the second greatest changes, 1.12 °C and 1.31 

°C, respectively. The forehead region showed the smallest changes in pixel values for 

each of the three trials, and the perioptic region showed the second smallest changes 

(Table 6.3). 

Table 6.3. Mean pixel value (difference from baseline) across 12 subjects, after each trial 

of blowing up a balloon. Segments are merged together into seven regions. 

Segment region Trial 1 Trial 2 Trial 3 

Forehead 145 464 532 

Perioptic 322 615 601 

Upper cheeks 841 1318 1529 

Nose 722 1281 1804 

Lower cheeks 1353 2140 2508 

Mouth 1043 2543 3007 

Neck 640 1148 1282 

 

6.2.4 Impact of topical skin products 

Baseline, mental task, and physical task data, with four subjects wearing each of 

four products, were compared. Using a paired t-Test, α = 0.95, with the null hypothesis 

being that there is no temperature difference between left and right sides of the face, only 

the liquid-based makeup caused an apparent difference in skin temperature during the 

mental task (p = 0.0039) and physical task (p = 0.0373), and only in the region of the 

cheeks, and the increase in skin temperature was less than 1 °C for each subject. 
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6.3 Discussion 

 The segments found to have the highest day-to-day variability are those within the 

nose region. Mainly consisting of cartilage tissue, and having no major blood vessels in 

the proximity, the nose does not exhibit good thermoregulation, and the overlying skin is 

greatly affected by activity and ambient conditions. The room temperature during the 

experimental collections varied within a few degrees which would contribute to nose 

segment temperature variability. More likely, of greater impact are the effects of a 

subject’s activities prior to the arrival. As our data collection was conducted in the month 

of January, subjects may have spent time outdoors just before the experimental session.  

Collection during different phases of respiration, inspiration or expiration, also likely 

contributes to variability. Temporal averaging may have captured most of either one of 

the phases for a particular collection, which was not controlled. 

 The perioptic region was found to have the lowest day-to-day variability. In 

contrast to the nose, this region exhibits very stable temperatures under normal conditions 

due to having a minimal amount of tissue between the superficial vessels and overlaying 

skin. Therefore, this region remains close to core body temperature and may only 

experience variations due to responses of the autonomic nervous system. Within this 

region, Segment 9, containing the area to the outside of the left eye, was observed to have 

the lowest intra-day and pooled variances (Figure 6.8, left). Segment 19, the tip of the 

nose and nostril region, was observed to have the highest intra-day and pooled variances 

(Figure 6.8, right). 
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Figure 6.8. Segment 9 of the perioptic region has the lowest variability across all 

subjects, and Segment 19 of the nose has the highest variability. Here, the mean pixel 

values of Segment 9 (left) and Segment 19 (right) during 15 collections over five days are 

shown for a particular subject.  

 

 The facial feature tracker was unsuccessful in tracking subjects at distances 

greater than 15 feet and at angles greater than 30°. These findings are consistent with the 

limitations quoted by the developer [33]. The minimum allowable size of the face in the 

image is approximately 80 pixels wide, which is roughly the observed size at the distance 

of 20 feet. The developer also quotes that head rotation is tracked up to approximately 

45°, in agreement with our findings that tracking was unsuccessful at 60° or greater. Our 

expectation is that tracking would be more successful for a continuous head rotation from 

the frontal pose to a larger degree, rather than discretized collections at each angle. 

 Our approach to segmenting the neck region was developed for images collected 

at a subject-to-imager distance of six feet, and was invalid at greater distances. Due to the 

unavailability of fiducial coordinates on the neck output by the tracker (at any distance), 

vertical lines drawn from four tracked points along the jaw and chin line to the bottom of 

the image were used to segment the neck region into three rectangular-shaped segments 
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At distances greater than six feet, a large portion of the subject’s upper body is, therefore, 

included in these segments. The background subtraction step did not suppress these 

regions because the pixel values in the chest region are more similar to those of the face 

than to background pixel values.  

 The highest variance observed in the image sets at varying distances was found to 

be from the nose region. As previously mentioned, the variability of the nose is likely 

impacted by the ten-second collection time occurring during the inspiration or the 

expiration phase. As this factor cannot be controlled in real-world scenarios, our 

experiments did not aim to consistently collect data during one or the other phase. The 

cheeks and mouth regions were found to have the smallest variances in image sets at 

varying distances. These regions are composed of segments with large areas and good 

separation between the coordinates, allowing the tracker to consistently locate these 

regions even when their size is decreased. The perioptic region was found to have the 

highest variance across the image sets at varying pose angles. The small size and short 

distances between coordinates of these segments, which become even shorter as the head 

is turned, cause the tracker to be more inaccurate in locating these regions.  

Overall, each of the regions showed very low variability with varying distances 

and pose angles. All CVs were less than approximately 5%. The expected effect of 

increased subject-to-imager distances was decreased pixel values due to a loss of energy 

by atmospheric absorption of photons along the transmission path [3]. This trend was not 

found in our results, but is likely to be more of an issue at distances greater than 100 ft. 

 The activation of facial muscles after the trials of balloon inflations caused pixel 

values in the mouth and lower cheeks regions to increase by the greatest amount. All 
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other regions also displayed an increase in pixel value from baseline after each trial. Even 

though facial muscles may not be activated in each of the regions, the increase of blood 

flow to the active muscles causes temperatures in all regions of the face to increase. The 

forehead and perioptic segment regions displayed the smallest increase in pixel values, as 

expected from being the furthest distance away from the active muscles around the 

mouth. 
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7. Conclusions 

7.1 Summary of Findings 

 This research has evaluated the performance of thermal imaging for the detection 

of physiological indicators of stress in humans. Results of three separate investigations 

were given that describe the ability to detect and discriminate stress through thermal 

imaging, the utility of stand-off modalities to monitor physiological vital signs that are 

related to stress responses, and the stability of thermal signatures in terms of the 

limitations and possible confounding factors in this application. 

 Feature-based classification was found to be successful for the two-class problems 

including paradigms of high versus low stress as well as mental versus physical stress. 

Four classifiers were tested (ANN, NB, LDA and SVM) with LDA providing the highest 

classification accuracies. LDA achieved 100% accuracy in classifying high mental stress, 

and nearly 99% in the classification of mental versus physical stress (the other classifiers 

were also successful). Sequential feature selection was found to be very useful in 

reducing the dimensionality of the feature space, which ultimately yielded faster 

computation times and better performance. This also allowed for the identification of 

salient features and specific facial regions related to expected physiological indicators of 

stress. 

 We demonstrated that thermal imagery is capable of detecting vital signs (RR and 

HR) at stand-off distances in a similar manner to that of the mmW radar system, although 

not at the performance levels reported in previous works. However, our method utilized a 
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full face tracker that requires minimal manual input, and evaluated an ROI with a larger 

area than found necessary in previous methods. Further, in contrast to previous works, we 

conducted these experiments under more realistic operating conditions, collecting vital 

sign data during mental and physical tasks. Relative to baseline measurements, accuracy 

typically decreased during task performance, with the exception of HR detection during 

the physical task, which was more accurate than baseline measurement due to higher 

cardiac output that improved SNR. 

  In the investigation of the stability of human thermal signatures, the nose 

segments were found to have the greatest day-to-day variability and the perioptic 

segments were found to be the least variable. This is a desirable result as the perioptic 

region was found to provide useful features for the detection of stress. Because this 

region is less susceptible to environmental and inter-individual differences and sensitive 

to stress-related changes, keying on this region is advised. The one caveat is that this 

region is unavailable in subjects who are wearing glasses, as the thermal signatures will 

not be transmitted through glass or polycarbonate materials. The distance and pose at 

which the subject may be positioned from the imaging system was found to be limited by 

the facial feature tracker. Subjects’ faces were not able to be located at distances greater 

than 15 feet and pose angles greater than 30°, consistent with the tracker’s specifications. 

All regions had very low coefficients of variation (typically less than 5%) across 

collections at varying distances and pose angles. The smallest variances were observed in 

the cheek and forehead regions, making these areas suitable for evaluation under realistic 

surveillance conditions. As predicted, the mouth and lower cheeks showed the greatest 

temperature increase after balloon inflation. This effect propagated to all other facial 
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regions, confirming that local muscle activation is a confounder in the interpretation of 

facial thermal signatures. Liquid makeup was the only skin product to confound thermal 

signatures. Although the emissivity of the product was not measured, its primary 

component, water, has an emissivity (0.99), which is slightly greater than that of human 

skin. This increased emissivity would contribute to the apparent increase in skin 

temperature.  

7.2 Suggestions for Future Work 

Rather than the Stroop test, the use of a more realistic scenario for the mental 

stress-inducing task might generate results that could be extended to surveillance 

domains. One such experiment is the guilty knowledge technique (GKT) which has been 

reported to produce valid physiological responses for a subject attempting to be deceptive 

[34]. This experiment involves a subject enacting one, both, or neither of two mock-

crimes. Afterward, the subject is interrogated with questions related to one of the crimes.  

Such an experiment engages the subject, when guilty, into recalling things that were truly 

witnessed, providing a more realistic response to stress. Further improvements to non-

contact vital signs detection would include the implementation of a peak detection 

algorithm to provide a weighted average of frequency peaks within an expected range, 

rather than selection of a single dominant frequency. The expected frequency range may 

be narrowed by using the estimated values of prior time windows in a continuous 

monitoring application. Also, a more focused ROI over the external carotid would 

increase SNR of the cardiovascular pulse signal. Increasingly challenging test conditions 

could be tested to assess system robustness. The use of moving subjects and the 
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introduction of scene clutter and obscurations would present additional challenges to 

tracking and feature extraction.  
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Appendix 

Table A.1. Calibration measurements for temperatures ranging from 19.9 to 38 °C. 

Radiance values are calculated with a source emissivity of 0.95, source area of 25 cm
2
, 

and source distance of 170 cm. The pixel value is a spatial average of an ROI on the 

blackbody. 

Temperature 

(°C) 

Radiance 

(W/(sr·cm
2
)) 

Pixel value 

[14 bit] 

19.9 0.000145 8490.715 

20.9 0.000150 8701.461 

21.9 0.000155 8923.866 

23 0.000161 9177.802 

23.9 0.000167 9383.433 

25 0.000173 9651.062 

26 0.000179 9903.951 

27 0.000186 10161.342 

28 0.000192 10427.250 

29 0.000199 10703.815 

30 0.000206 10987.870 

31 0.000213 11279.208 

32 0.000221 11573.264 

33 0.000228 11888.059 

34 0.000236 12200.358 

35 0.000244 12533.391 

36 0.000252 12865.278 

37 0.000261 13217.797 

38 0.000270 13572.122 

 



99 
 

 

Figure A.1. Calibration curve, 3
rd

 degree polynomial fit, to the temperature and pixel 

value measurements of the blackbody. The shaded square represents the normal range of 

pixel values measured, where a linear fit is approximated for conversion to temperatures. 
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Subj. 

# 

Raw Data Normalized Data Z  

Sum 

Z 

Composite Δ HR [beats/m] Δ GSR [μSiemens] Δ RR [breaths/m] Z HR Z GSR Z RR 

1 -3.49 -4.28 -1.87 0.93 0.86 0.88 18.13 13.18 13.73 -1.18 -1.25 -0.91 1.96 1.92 1.79 2.06 1.37 1.23 6.99 1.59 

2 13.37 7.76 9.72 0.11 0.11 0.01 N/A 3.49 2.75 0.58 0.41 0.47 -0.75 -0.66 -0.92 -1.44 -0.67 -0.91 -3.89 -0.88 

3 5.05 3.34 1.38 0.08 0.04 0.01 1.65 4.39 4.94 -0.29 -0.20 -0.52 -0.85 -0.90 -0.92 -1.12 -0.48 -0.48 -5.77 -1.31 

4 2.60 0.35 4.27 1.16 1.11 1.19 10.44 9.89 10.44 -0.54 -0.62 -0.18 2.72 2.79 2.74 0.58 0.68 0.59 8.76 1.99 

5 7.52 7.32 8.42 0.29 0.29 0.30 3.30 2.75 3.30 -0.03 0.34 0.32 -0.17 -0.04 -0.01 -0.80 -0.83 -0.80 -2.02 -0.46 

6 9.68 3.84 9.99 0.61 0.58 0.61 10.98 5.49 11.53 0.19 -0.14 0.51 0.88 0.95 0.95 0.69 -0.25 0.80 4.58 1.04 

7 2.22 0.27 0.24 0.32 0.21 0.24 3.29 6.04 8.24 -0.58 -0.63 -0.66 -0.05 -0.30 -0.19 -0.80 -0.13 0.16 -3.19 -0.72 

8 7.96 5.97 4.99 0.20 0.21 0.24 3.85 -0.55 2.20 0.01 0.16 -0.09 -0.46 -0.32 -0.18 -0.69 -1.52 -1.02 -4.12 -0.94 

9 -5.02 -4.69 -1.77 0.25 0.24 0.31 6.04 6.59 2.75 -1.34 -1.31 -0.90 -0.29 -0.21 0.02 -0.27 -0.02 -0.91 -5.22 -1.19 

10 0.87 -0.68 0.59 1.13 1.08 1.24 5.49 3.85 6.04 -0.72 -0.76 -0.62 2.61 2.71 2.90 -0.37 -0.60 -0.27 4.88 1.11 

11 23.02 9.34 7.40 0.22 0.10 0.10 6.59 6.04 5.49 1.58 0.62 0.20 -0.39 -0.69 -0.63 -0.16 -0.13 -0.38 0.02 0.01 

12 -1.76 2.26 5.35 0.15 0.14 0.16 -0.55 1.10 0.55 -1.00 -0.35 -0.05 -0.62 -0.54 -0.43 -1.54 -1.18 -1.34 -7.06 -1.60 

13 -6.61 -9.08 -6.55 0.05 0.07 0.05 18.68 19.78 20.32 -1.50 -1.92 -1.47 -0.95 -0.80 -0.79 2.17 2.76 2.52 0.02 0.00 

14 2.33 3.33 4.22 0.56 0.36 0.07 0.55 2.19 -2.75 -0.57 -0.21 -0.18 0.75 0.20 -0.72 -1.33 -0.94 -1.98 -4.99 -1.13 

15 2.85 6.82 1.04 0.31 0.30 0.28 6.59 10.44 10.44 -0.52 0.28 -0.57 -0.10 -0.01 -0.08 -0.16 0.79 0.59 0.22 0.05 

16 28.23 24.73 17.34 0.32 0.30 0.33 9.33 6.04 9.34 2.12 2.74 1.38 -0.06 0.00 0.08 0.37 -0.13 0.38 6.88 1.56 

17 0.85 -1.51 -2.19 0.50 0.46 0.42 7.14 7.69 7.14 -0.73 -0.87 -0.95 0.53 0.54 0.37 -0.06 0.21 -0.05 -1.00 -0.23 

18 24.71 11.56 11.72 -0.03 -0.05 -0.06 9.89 9.89 10.44 1.76 0.93 0.71 -1.23 -1.19 -1.11 0.47 0.68 0.59 1.60 0.36 

19 24.40 10.11 11.86 0.33 0.33 0.32 14.83 16.48 16.48 1.72 0.73 0.73 -0.03 0.10 0.06 1.43 2.07 1.77 8.57 1.95 

20 22.71 20.63 36.11 0.14 0.13 0.16 2.20 2.20 5.49 1.55 2.18 3.63 -0.67 -0.59 -0.46 -1.01 -0.94 -0.38 3.31 0.75 

21 5.85 3.92 1.50 0.32 0.26 0.28 14.83 13.18 15.38 -0.21 -0.12 -0.51 -0.06 -0.15 -0.07 1.43 1.37 1.56 3.23 0.73 

22 7.88 6.38 7.06 0.33 0.30 0.25 4.39 3.85 3.85 0.01 0.21 0.16 -0.04 0.01 -0.15 -0.59 -0.60 -0.70 -1.69 -0.39 

23 -4.35 -4.04 -6.41 0.46 0.41 0.47 9.34 9.89 9.34 -1.27 -1.22 -1.45 0.41 0.37 0.52 0.37 0.68 0.38 -1.22 -0.28 

24 10.55 10.54 8.77 0.12 0.09 0.08 4.94 4.94 8.24 0.28 0.79 0.36 -0.72 -0.70 -0.68 -0.48 -0.37 0.16 -1.36 -0.31 

25 5.40 3.42 3.62 0.11 0.09 0.09 13.73 3.85 2.20 -0.25 -0.19 -0.26 -0.77 -0.73 -0.66 1.22 -0.60 -1.02 -3.27 -0.74 

26 15.38 10.70 9.19 0.12 0.07 0.09 7.14 1.65 4.39 0.78 0.81 0.41 -0.74 -0.79 -0.65 -0.06 -1.06 -0.59 -1.88 -0.43 

27 8.26 0.41 1.22 0.25 0.17 0.16 8.79 6.59 7.69 0.04 -0.61 -0.54 -0.30 -0.43 -0.44 0.26 -0.02 0.05 -1.98 -0.45 

28 8.81 6.30 14.17 0.16 0.15 0.19 6.59 6.04 7.69 0.10 0.20 1.00 -0.59 -0.53 -0.35 -0.16 -0.13 0.05 -0.40 -0.09 

Table A.2. For each physiological variable (HR, GSR and RR), the difference from baseline for minutes 1, 2, and 3 of the mental task. 

Normalized data are given as a Z-score by subtracting the mean of each column and dividing by the standard deviation. The composite Z-score 

is calculated by normalizing the sums of the nine individual Z-scores. Shaded cells indicate manual adjustments made to the extracted RR. 
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Table A.3. Features selected by SFS for the classification of mental stress under our three 

different paradigms. MEAN, MAX, and TTM are the raw features of a segment’s mean 

pixel value, maximum pixel value, or mean of the top 10% hottest pixels, respectively. 

S1-S3 are the slopes of the feature data for minutes 1, 2, or 3, and M1-M11 are the means 

of the 30-second windows with a 15-second slide. 

Segment High v. Remaining High v. Low 
High v. Low v. 

Neutral 

1 MEAN M5   

2    

3 TTM S1  
MAX S1 

MAX S2 

4    

5    

6  MEAN M2  

7  TTM S3  

8    

9    

10    

11    

12    

13    

14    

15  MAX S3  

16    

17    

18 TTM M1 MEAN M2  

19    

20    

21    

22  MEAN M7  

23 TTM S1  TTM S1 

24   
MEAN M7 

MEAN M9 

25    

26 MAX S1  
MEAN M11 

MAX S1 

27    

28 MAX M8 MAX S3 MAX M3 

29 MAX M3   
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Table A.4. Features selected by SFS for the classification of mental versus each set of 

physical data, representing three different time spans of the physical task. MEAN, MAX, 

and TTM are the raw features of a segment’s mean pixel value, maximum pixel value, or 

mean of the top 10% hottest pixels, respectively. S1-S3 are the slopes of the feature data 

for minutes 1, 2, or 3, and M1-M11 are the means of the 30-second windows with a 15-

second slide. 

Segment 
Beginning of exercise 

(Minutes 1-2-3) 

End of exercise 

(Minutes 3-4-5) 

After exercise 

(Minutes 6-7-8) 

1 MEAN S1 
  

2 
   

3 MEAN M6 
  

4 
  

 

5 
  

 

6 
   

7 MAX S1 
  

8 
  

TTM S2 

9 
  

TTM M1 

10 TTM M4 TTM S1 
 

11 
MEAN M9 

TTM M1 
MEAN M7 

MAX S2 

MAX M5 

TTM M3 

12 
   

13 
   

14 
   

15 TTM S1 MEAN S1 MAX S2 

16 
   

17 
 

MEAN M1 
 

18 
   

19 
  

TTM M7 

20 MEAN S2 MAX M3 
 

21 
  

MEAN S3 

22 
   

23 
   

24 MEAN S1 
MEAN S1 

MEAN M10  

25 
   

26 
  

MAX M7 

27 MEAN S1 MAX M6 
 

28 MAX M9 MAX M2 
MAX M4 

TTM S3 

29 
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