Wright State University CORE Scholar

Computer Science & Engineering Syllabi

College of Engineering & Computer Science

Fall 2013

CEG 7370-01: Distributed Computing

Yong Pei Wright State University - Main Campus, yong.pei@wright.edu

Follow this and additional works at: https://corescholar.libraries.wright.edu/cecs_syllabi

Part of the Computer Engineering Commons, and the Computer Sciences Commons

Repository Citation

Pei, Y. (2013). CEG 7370-01: Distributed Computing. . https://corescholar.libraries.wright.edu/cecs_syllabi/948

This Syllabus is brought to you for free and open access by the College of Engineering & Computer Science at CORE Scholar. It has been accepted for inclusion in Computer Science & Engineering Syllabi by an authorized administrator of CORE Scholar. For more information, please contact library-corescholar@wright.edu.

CEG 7370 Distributed Computing

Syllabus

Fall Semester, 2013

Time/Place: Instructor:	Lecture: 4:40 – 6:00 PM, M/W, Millett 286 For the web section, the lecture videos will be made available as early as the following day. Dr. Yong Pei, 489 Joshi Research Center Tel. 937-775-5111, Email: yong.pei@wright.edu Office Hours: 12:45-2:15 pm, M/W.			
Prerequisite:	Undergraduate level <u>CEG 4350</u> or equivalent. Expected background: operating system, process and thread, C/C++ and JAVA programming experience in UNIX or Linux.			
Catalog Data:	Semaphores: weak and strong, split-binary, distributed. Distributed Algorithms. Communicating sequential processes. Distributed Tuple Space. Clients and servers, RPC, RMI, Hadoop. 3 hours lecture.			
Text Books:	 Recommended: 1. Coulouris, G., Dollimore, J., and Kindberg, T., Distributed Systems: Concepts and Design, 4th Edition, Addison Wesley, 2005 2. Queueing Systems, Volume I: Theory, L.Kleinrock, John Wiley & Sons, 1975. 			
	 References: A. Silberschatz, P. Galvin, and G. Gagne, Operating System Concepts, John Wiley & Sons. Tanenbaum, A. and Maarten van Steen, Distributed Systems Principles and Paradigms, 2002: Prentice-Hall, ISBN 0-13-088893-1. A. Tanenbaum, Distributed Operating Systems, Prentice Hall. 			
Website:	CEG 7370 in Pilot.			
Grading:	Project assignments – 40 % Midterm Exam – 30% Final – 30%			

Lectures:

The following tentative schedule defines in greater details what material is covered in the course and when it is covered.

Week	Topic/Tests etc.
------	------------------

<u>Fundaı</u>	<u>nentals</u>	of distribute	d computing	and systems

- 1-2 Models of distributed Systems, IPC, Networking, Remote procedure call, Remote Invocation
- 2-3 OS Supports and Security. DFS, NFS, AFS
- 3-4 Name, directory & discovery services, Peer-to-peer systems, Fault tolerant services,

Transactions with replicated data

Case studies of distributed computing system

- 5-6 GFS, MapReduce, Hadoop, Hadoop Files System
- 6-7 Multimedia streaming and VOD
- 7-8 Pastry a Structured DHT Overlay Network

(Mid-term exam Wednesday of the 8th week)

- 8-9 Distributed sensor systems
- 9-10 Mobile and Ubiquitous computing

Distributed System Modeling and Performance Evaluations:

- 11-12Basic concepts in probability and stochastic process; exponential distribution, poisson process,
Little's theorem, Markov chain, balance equations, birth-death process. Selected topics from
Chapters 1,2,3 of Kleinrock and handouts.
- 13-14 Queueing Theory Fundamentals; M/M/1, M/M/*. Selected topics from Chapters 3,4,5 of Kleinrock and handouts.

(Final Exam on Monday of Week 15)

15-16 Open-Design Project Presentations