CEG 7550-01: Computer Vision

Arthur A. Goshtasby
Wright State University - Main Campus, arthur.goshtasby@wright.edu

Follow this and additional works at: https://corescholar.libraries.wright.edu/cecs_syllabi

Part of the Computer Engineering Commons, and the Computer Sciences Commons

Repository Citation
https://corescholar.libraries.wright.edu/cecs_syllabi/946

This Syllabus is brought to you for free and open access by the College of Engineering & Computer Science at CORE Scholar. It has been accepted for inclusion in Computer Science & Engineering Syllabi by an authorized administrator of CORE Scholar. For more information, please contact library-corescholar@wright.edu.
CEG-7550 Computer Vision

Fall 2013

CRN: 73111
Instructor: A. Goshtasby
Phone: 937-775-5170
Lectures: 11:00 - 12:20 PM, T, R
Location: 155 RC
Office Location: 495 Joshi
E-mail: agoshtas@wright.edu
Office Hours: T, W, R, 1:00-2:00 PM

No. Units: 3
Textbook:
Computer Vision: A Modern Approach
Forsyth & Ponce

Purpose of Course:
This course covers basic algorithms for low-level, mid-level, and high-level vision. The algorithms deal with edge detection and image segmentation, feature extraction and matching, and object recognition. Specific topics covered in the course are:

Contents: The following topics will be covered:

1. Preliminaries
2. Image filtering
3. Image features
4. Segmentation by clustering
5. Segmentation by model fitting
6. Texture analysis
7. Object detection
8. Stereo depth perception
9. Tracking
10. Image registration
11. Range data
12. Curves and surfaces
13. Shape from shading and photometric stereo

Learning Goals:
Students will learn algorithms that extract various types of information from images, analyze the information, and describe the contents of images. Some of the algorithms will be implemented as class projects.

Projects and Exams:
There will be four projects and four exams. Each project will implement an algorithm discussed in class. Programs will be accepted in C/C++ or MATLAB. All submitted programs should compile and run on college computers.

Grading Policy:
The projects will worth 50 points and the quizzes will worth 50 point. The following grades are guaranteed: A: 90-100, B: 80-89, C:70-79, D: 60-69, E: 0-59.

Calendar:

<table>
<thead>
<tr>
<th>Project</th>
<th>Assigned</th>
<th>Due</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9/10</td>
<td>9/24, 11:00 AM</td>
</tr>
<tr>
<td>2</td>
<td>9/26</td>
<td>10/15, 11:00 AM</td>
</tr>
<tr>
<td>3</td>
<td>10/17</td>
<td>11/7, 11:00 AM</td>
</tr>
<tr>
<td>4</td>
<td>11/12</td>
<td>12/3, 11:00 AM</td>
</tr>
</tbody>
</table>

Exams will be on 9/12, 10/1, 10/29, and 11/28.