A Tabu Search Heuristic for Multi-Period Clustering to Rationalize Delivery Operations

Surya Sudha Kambhampati

Wright State University

Follow this and additional works at: https://corescholar.libraries.wright.edu/etd_all

Part of the Operations Research, Systems Engineering and Industrial Engineering Commons

Repository Citation

https://corescholar.libraries.wright.edu/etd_all/823

This Thesis is brought to you for free and open access by the Theses and Dissertations at CORE Scholar. It has been accepted for inclusion in Browse all Theses and Dissertations by an authorized administrator of CORE Scholar. For more information, please contact library-corescholar@wright.edu.
A Tabu Search Heuristic for Multi-Period Clustering to Rationalize Delivery Operations

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Engineering

by

Surya Sudha Khambhampati
B.Tech., Nagarjuna University, 2004

2008
Wright State University
I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY Surya Sudha Khambhampati ENTITLED A Tabu Search Heuristic for Multi-Period Clustering to Rationalize Delivery Operations BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science in Engineering.

Xunhui Zhang, Ph.D.
Dissertation Director

S. Narayanan, Ph.D., P.E.
Department Chair

Committee on Final Examination

Xinhui Zhang, Ph.D.

Raymond R. Hill, Ph.D.

Frank W. Ciarallo, Ph.D.

Joseph F. Thomas, Jr., Ph.D.
Dean, School of Graduate Studies
COPYRIGHT BY
Surya Sudha Khambhampati
2008
ABSTRACT

Delivery operations use centralized warehouses to serve geographically distributed customers. Resources (e.g., personnel, trucks, stock, equipment) are scheduled from the warehouses to distributed locations with the aim of: (a) meeting customer demands and, (b) rationalizing delivery operation costs. This thesis investigates the problem of clustering customers based on their geographical vicinity and their multi-period demands, while optimally scheduling resources. The problem is addressed with-and-without capacity constraints of vehicles at the warehouse. This problem is proven to be NP-Hard. Hence, solutions using state-of-the-art exact methods such as branch and bound are not pertinent due to the computation complexity involved. In this thesis, we develop a \textit{K-means clustering algorithm} for the initial solution and a \textit{tabu search heuristic} that combines three advanced neighborhood search algorithms: (i) shift move, (ii) shift move with supernodes, and (iii) ejection chain with supernodes, to accelerate convergence. Using extensive simulations for a variety of multi-period customer demand instances, we demonstrate that using K-means clustering is an effective strategy for initial solution in the tabu search method. Also, we show that our shift move with supernodes algorithm produces notable time savings in comparison with standard neighborhood search algorithms such as shift move, when capacity constraints are not considered. Further, when capacity constraints are considered, our ejection chain with supernodes algorithm produces best solutions for cases where solutions using shift move algorithm are infeasible. For feasible cases using the shift moves algorithm, significant cost savings are obtained using the ejection chain with supernodes algorithm at the expense of added computation time.
Contents

1 Introduction 1
 1.1 Motivation and Significance 1
 1.1.1 Clustering Customers 1
 1.1.2 Multi-period Clustering Problem 2
 1.1.3 Our Proposed Solution 2
 1.2 Thesis Outline 3

2 Related Work 4

3 Multi-period Clustering Algorithms 7
 3.1 Problem Description and Terminology 7
 3.2 Tabu Search Algorithm 9
 3.2.1 Neighborhood Search Strategies without Capacity Constraints 10
 3.2.2 Neighborhood Search Strategies with Capacity Constraints 21

4 Performance Evaluation 33
 4.0.3 Evaluation Methodology 33
 4.0.4 Results Without Capacity Constraints 34
 4.0.5 Results With Capacity Constraints 40

5 Conclusions and Future Work 46

Bibliography 48
List of Figures

3.1 K-means clustering algorithm illustration example - (a) Customers assigned to closest clusters by Algorithm 1, (b) Recomputed cluster centroids, (c) Customer reassignments to their closest cluster centroids, (d) Stationary cluster centroids upon repeated customer reassignments .. 15

3.2 Shift with supernode algorithm illustration example - (a) Grouping customers into supernodes using Algorithm 3, (b) Grouping customers into supernodes based on vicinity threshold, (c) Final supernodes of customers within a cluster, (d) Shift of supernodes between clusters .. 20

3.3 Customer grouping into clusters by: (a) K-means clustering algorithm without considering capacity constraints, (b) Modified K-means clustering algorithm with capacity constraints .. 21

3.4 Length 2 Ejection chain algorithm illustration example - (a) Ejection of supernode from cluster 4, (b) Eject move triggered in cluster 3 to form reference structure, (c) Eject move triggered in cluster 1 to form reference structure, (d) Trail move of ejected supernode from cluster 4 into cluster 2 .. 25
List of Tables

4.1 Results without capacity constraints for instances with 50 customers 37
4.2 Results without capacity constraints for instances with 100 customers 38
4.3 Results without capacity constraints for instances with 200 customers 39
4.4 Results with capacity constraints for instances with 50 customers 43
4.5 Results with capacity constraints for instances with 100 customers 44
4.6 Results with capacity constraints for instances with 200 customers 45
Acknowledgement

I am extremely thankful to Dr. Xinhui Zhang for giving me the opportunity to conduct research under his supervision. He has guided me all through my research by pointing my efforts in the right direction, and giving me the freedom to explore different research strategies. I am grateful for his consent to conduct my research remotely that allowed me to be with my Columbus-based family. He boosted my confidence in being able to perform my tasks by lauding me on good work and giving critical reviews in areas where I could improve. I also express my gratitude to Dr. Raymond R. Hill and Dr. Frank Ciarallo for reviewing my thesis and for being a part of my thesis committee.

I am thankful to my husband Dr. Prasad Calyam for all his support and guidance throughout my graduate studies. He was the one to encourage me to pursue my Master’s degree. His inspiration and affection helped me overcome challenging moments in my graduate school experience.

Finally, I would like to take the opportunity to thank my parents Mrs. Bhavani and Mr. Sarma Kambhampati for all their love and moral support. I also would like to thank my grandfather Mr. Sankara Narayana Akella and grandmother Mrs. Subbalakshmi Akella who always encouraged my decision to pursue graduate school. I also would like to thank my sister Aruna Kambhampati and brother Sundeep Kambhamapti for their love and humor.
Dedicated to:

My husband and my parents
Chapter 1

Introduction

1.1 Motivation and Significance

1.1.1 Clustering Customers

Clustering geographically distributed customers is an important step in planning delivery operations for a wide variety of applications such as waste management, school bus routing, and postal service dispatch. The scheduling of resources (e.g. personnel, trucks, stock, equipment) to satisfy customer demands is challenging for two reasons: (a) customer demands are multi-period in nature i.e., they vary over different time scales (e.g. days, weeks), (b) resources at central warehouses are limited and expensive, and hence need to be efficiently used over a finite planning horizon.

Clustering customers while scheduling resources is an intuitive strategy for rationalization of operation costs. However, the clustering needs to account for: (i) available resource allocation that may or may not be limited by capacity constraints, and (ii) delivery route selection decisions that significantly impact delivery operation costs. Similar challenges that involve scheduling based on multi-period clustering occur in practice in other domains as well. Examples of such domains include cellular-manufacturing design of electronic circuits and product marketing.
1.1.2 Multi-period Clustering Problem

Although the problem of multi-period clustering is relevant in several domains, it is still a hard combinational optimization problem to solve. Further, there are limited exact methods such as branch and bound, and column generation to solve this problem. The problem can be summarized as follows: Given a graph $G(N, E)$ where a set of N customers have inter-customer edge-set E with edge-weights or inter-customer distances ($w_e, e \in E$), partition graph G into L subgraphs or clusters such that: (a) the inter-cluster edge-weights are maximized, (b) the sum of the edge-weights in every cluster is minimized, and (c) the sum of customer demands assigned to a single cluster over a multi-period do not exceed vehicle capacity Q. Depending on the application, the vehicles in fleet L may or may not have any capacity constraints. If a capacity constraint is specified, then all the vehicles in fleet L have equal capacity Q.

1.1.3 Our Proposed Solution

We solve the multi-period clustering problem using two steps. The first step involves forming an initial solution using the K-means clustering algorithm, which is a standard algorithm used for clustering data points given by their cartesian co-ordinates (x, y) in linear space. The K-means clustering algorithm partitions the data points into L clusters with an objective of maximizing the inter-cluster distance and minimizing the distance between the data points within each cluster. Since the traditional K-means clustering algorithm does not address capacity constraints, we propose a modified K-means clustering algorithm for initial solution formation if capacity constraints are considered. The second step involves accelerating convergence of the initial solution with-or-without considering capacity constraints. For the case where capacity constraint is not considered, we develop a tabu search heuristic that involves an advanced neighborhood search algorithm called shift moves with supernodes. For the case where the capacity constraint is considered, we develop a tabu search heuristic that involves an advanced neighborhood search algorithm called ejection chain with supernodes. We evaluate the performance of our proposed algorithms using extensive simulations for
a variety of multi-period customer demand instances given in (Boudia, Louly, et. al., 2007).

1.2 Thesis Outline

The rest of this thesis is organized as follows: Chapter 2 summarizes the related work. Chapter 3 formally describes the research problem, its mathematical models and solution characteristics. Further, it presents the K-means clustering algorithm for initial solution construction and the tabu search heuristic with advanced neighborhood search algorithms for both with-and-without capacity constraint cases. Performance results obtained through extensive simulations of our algorithms are presented in Chapter 4. Finally, Chapter 5 concludes the thesis and presents directions for future work.
Chapter 2

Related Work

The NP-hard (Garey and Johnson, 1979) multi-period clustering problem can be solved using Exact methods such as the branch and bound (Al-Sultan and Khan, 1996) (Mourgaya and Vanderbeck, 2006). However, such exact methods need strict formulation for construction of tight bounds to be computationally efficient. Strict formulation refers to specifying all the constraints and objective function apriori. Also, their computation overheads are prohibitively large for practical problems that have several real-time constraints. Further, the exact methods require linear programming of integer program models that have been proven to give an extremely weak bound of 0 (Brunner et. al, 2008).

Heuristic methods such as greedy heuristics, genetic algorithm, simulated annealing, ant colony optimization, and tabu search algorithm can be used to obtain good solutions to the NP-hard multi-period clustering problem. Amongst these heuristic methods, we choose the tabu search heuristic because the other methods generally have relatively higher dependence on initial parameter settings. The tabu search heuristic has been extensively applied to solve the vehicle routing problem (VRP) in works such as (Osman, 1993) (Clarke and Wright, 1964) (Taillard, 1993) (Barbarosoglu and Ozgur, 1999) (Gendreau, et. al., 1994) (Kelly and Xu, 1999). The classical VRP defined in (Osman, 1993) involves finding efficient routes for vehicles that originate and terminate at a central warehouse while serving a set of customers under vehicle capacity and total route length constraints. Our
problem is similar to the classical VRP in the sense that we cluster customers into different routes. However, our problem differs from the classical VRP because we do not consider the constraint of minimizing the route length. Our focus is to mainly satisfy the multi-period demands of customers. Our solution addresses both the cases where the vehicle capacity constraints may or may not be an issue. We note that our customer clustering strategy is similar to the approach used in (Sung and Jin, 2000). Here, a set of customers are grouped into clusters such that the euclidean distance between each customer and center of its belonging cluster for every such allocated customer is minimized.

Our problem can also be compared to the Generalized Assignment Problem (GAP), which is defined in (Yagiura, et. al., 1998). The problem involves assigning a set of jobs to a set of agents, each having a restricted capacity. The goal is to obtain minimum cost assignment of jobs such that each job is assigned to only a single agent and the available capacity of that agent is not exceeded. Our problem is similar to GAP in the sense that we have to assign customers to clusters served by vehicles with capacity limitations. However, we consider assignment of customers based on their demands over multiple time periods, which is not addressed in GAP. The Generalized Quadratic Assignment Problem (QGAP) (Cordeau, et. al, 2006) is an extension of the GAP problem. The goal in QGAP is to assign a set of weighted facilities to a set of capacitated sites such that the sum of assignment and traffic costs is minimized. Further, the total weight of all the facilities assigned to the same site should not exceed the site capacity. Our problem is different from QGAP in the sense that we do not have the traffic cost constraints and our clustering considers customer demands over multiple time periods. The tabu search heuristic with neighborhood search algorithms has been applied to solve the GAP and QGAP in works such as (Yagiura and Ibaraki, 2004) (Yagiura, et. al., 1998) (Yagiura, et. al, 1999) (Yagiura, et. al, 1996) (Diaz and Fernandez, 2001).

The neighborhood search algorithms used in our tabu search heuristic can be compared to the algorithms in earlier works. For instance, our algorithm uses the (Osman, 1993) strategy to insert or interchange a set λ of customers between clusters. While applying the tabu search heuristic, earlier works consider different procedures to generate the initial solution. In our work, our initial solution is based on the K-means clustering algorithm (Queen, 1967). The K-means clustering problem is
used by (Cano, et. al., 2002) in a GRASP approach to solve the clustering problem without capacity constraints. They construct multiple solutions using the GRASP algorithm and locally optimize the solutions using the K-means algorithm.

While considering capacity constraints, we enhance the K-means clustering algorithm, and develop an ejection chain algorithm that is based on the algorithm proposed in (Yagiura and Ibaraki, 2004) to solve the GAP. Our problem of dealing with capacity constraints can be compared to the popular capacitated clustering problem (CCP) (Franca, et. al., 1999) (Ahmadi and Osman, 2005) (Scheuerer and Wendolsky, 2006) (Liu, Pu, et. al., 2007). In (Franca, et. al., 1999), a tabu search heuristic is used to solve the CCP. The initial solution construction involves a sequential method of clustering. The neighborhood search involves pair wise shift and swap move and adaptive adjustment of tabu tenure. In (Ahmadi and Osman, 2005), multiple restart approach of the GRASP heuristic is combined with memory structures used in adaptive memory programming (Glover, 1997). Specifically, memory structures called “elite lists” are maintained to keep track of best solutions and, shift and swap move neighborhoods with single interchanges are used. In (Scheuerer and Wendolsky, 2006), a scatter search heuristic maintains a list of solutions called the “reference set” and then using path relinking, builds new solutions by combining solutions from the reference set. In (Liu, Pu, et. al., 2007), a hybrid genetic algorithm approach is used to solve the CCP. This algorithm uses a mutation operator to partition densely populated clusters and merge sparsely populated clusters. Finally, we use the concept of ‘supernodes’ in Section 4, which is similar to the concept of cohesive locations used in (Cordeau, et. al, 2006) for solving the QGAP. Cohesive locations refer to those locations in which a group of customers close to each other are aggregated to form a single customer location, which is subsequently used in move operations to insert or interchange customers between clusters.
Chapter 3

Multi-period Clustering Algorithms

3.1 Problem Description and Terminology

The multi-period clustering problem can be formally described as follows: We are given a graph $G(N, E)$ where a set of N geographically-dispersed customers have inter-customer edge-set E with edge-weights or inter-customer distances ($w_e, e \in E$). The customers require service from a central warehouse over a planning horizon of T periods. Each customer i has a fixed non-negative demand D_{it} on day t of the planning horizon that must be satisfied i.e., no shortages are allowed.

The graph G must be partitioned into L clusters such that a feasible production and delivery plan can be constructed that takes into account daily demands at the customer sites, while at the same time rationalizing delivery operations. For this, the clustering should: (a) maximize the inter-cluster edge-weights, (b) minimize the sum of the edge-weights in every cluster, and (c) not exceed vehicle capacity Q when the customer demands assigned to a single cluster over a multi-period are summed. Note that, depending on the application, the vehicles in fleet L may or may not have any capacity constraints. If a capacity constraint is specified, then all the vehicles in fleet L have equal capacity Q.

This multi-period clustering problem can be modeled as an integer program. The notations and the model are as follows:
Indices and Sets

- l: index for clusters; $l \in L$
- i: index for customers; $i \in N$
- e: index for edges in the graph G, $e \in E$
- t: index for time periods; $t \in T$

Parameters

- w_e: weight of edge
- D_{it}: customer i’s demand in period t
- Q: vehicle capacity

Variables

- y_{el}: 1 if edge $e = (i, j)$ has both its endpoints i and j in cluster l; 0 otherwise
- x_{il}: 1 if customer i is included in cluster l; 0 otherwise

Cluster Integer Program Model

Minimize $f(S) = \sum_{e \in E, l \in L} y_{el} w_e$ \hspace{1cm} (3.1)

Subject to

\[\sum_{l \in L} x_{il} = 1, \hspace{0.5cm} \forall i \in N \] \hspace{1cm} (3.2)

\[\sum_{i \in N} D_{it} x_{il} \leq tQ, \hspace{0.5cm} \forall l \in L, t \in T \] \hspace{1cm} (3.3)

\[y_{el} \leq x_{il}, \hspace{0.5cm} \forall e = (i, j) \in E, l \in L \] \hspace{1cm} (3.4)

\[y_{el} \geq x_{il} + x_{jl} - 1, \hspace{0.5cm} \forall e = (i, j) \in E, l \in L \] \hspace{1cm} (3.5)

\[x_{il} \in \{0, 1\}, \hspace{0.5cm} \forall i \in N, l \in L \] \hspace{1cm} (3.6)

The objective function (3.1) minimizes the sum of the edge weights within clusters, which is equivalent to maximizing the sum of the edge weights between clusters. Constraint (3.2) states that each customer has to be assigned to a cluster. Constraint (3.3) states that aggregate demand of customers in each cluster over multi-periods must fit into L vehicles to prevent shortage. Constraints (3.4), (3.5) and (3.6) essentially define $y_{el} = x_{il} x_{jl}$, specifying that edge $e = (i, j)$ is in cluster l if and only if both end points i and j are in cluster l. Notice that because x is 0 or 1, y will automatically be integer 0 or 1. Hence, it is not necessary to explicitly specify them as integers.

3.2 Tabu Search Algorithm

Tabu search is a memory-based ‘meta-heuristic’ framework proposed by Glover in the works (Glover, 1989) and (Glover, 1990). In this framework, problem-specific heuristics can be embedded resulting in the Tabu search algorithm for the particular problem being addressed. Tabu search is based upon basic local search methods but has an emphasis of building extensive neighborhoods. With such an emphasis, it escapes the local optimum traps and attains global optimum solutions. The tabu search requires beginning with an initial solution, say S, following which, S is iteratively replaced with a better solution in the neighborhood, say $N(S)$, until no better solution is found or until a stopping criterion is met.

Solution Representation: Any solution to our problem is represented as an array S of integers with a length $|N|$ where, N is the number of customers. The index of the array represents the index of the customers and the associated integer represents the cluster that the customer belongs to.

In the following subsections, we describe the initial solution and neighborhood search algorithms of tabu search heuristic applied to the multi-period clustering problem. First, we address the case where no capacity constraints are considered. Next, we consider the case where capacity constraints exist.

Our general approach in developing the neighborhood search algorithms can be termed as “aggressive exploration”. It involves performing an exploration of the search space through moves that transition from a current state S_t to a state S_{t+1} at iteration t using neighborhoods of solutions states $N(S_t)$. To make the search more efficient, and to avoid exhaustive search of the entire search space, we use a *candidate list* that contains a set of candidates to be examined for the next move. To prevent revisiting the recent solutions, we declare recent moves as *tabu* for a period of the tabu tenure, say ϑ iterations, and track them using a *tabu list*. Finally, to broaden the search and quickly bridge between one feasible region to the other, we use a *strategic oscillation* component. Using this component, intermediate infeasible solutions are allowed by penalizing an objective function according to the degree of infeasibility.
3.2.1 Neighborhood Search Strategies without Capacity Constraints

Initial Solution using K-means Clustering Algorithm

Construction of a quality initial solution is important since it aids the computational efficiency of a neighborhood search process. When capacity constraints are not considered, the multi-period clustering is based on geographic vicinity. For this purpose, we use the K-means clustering algorithm proposed by MacQueen (Queen, 1967). The algorithm iteratively clusters a given set of linear spaced data into L clusters such that the squared Euclidean distance between each of the nodes and center of its allocated cluster is minimized. Also, it ensures that the squared Euclidean distances between each of the nodes and the centroid of their allocated cluster are not greater than the distances to centroids of the remaining clusters. Thus, it minimizes the inter-cluster distance and maximizes the intra-cluster distance.

Mathematically, we represent the linear space data as a vector $X = [x_1, x_2, ..., x_n]$ where each element x_i represents its linear co-ordinates in the multidimensional space. We partition X into L clusters $C_1, C_2, ..., C_L$. Let n_c represent the number of instances that belong to cluster C_l and μ_l represents the centroid of cluster C_l. Our goal is to minimize (3.7) shown below -

$$\sum_{l=1}^{L} \sum_{x_i \in C_l} \|x_i - \mu_l\|^2$$ \hspace{1cm} (3.7)

where, μ_l is calculated as shown in (3.8).

$$\mu_l = \sum_{x_i \in C_l} x_i/n_c$$ \hspace{1cm} (3.8)

1The K-means clustering algorithm is widely used in many application domains such as data mining, geographical information systems and e-commerce.

2Note that a node refers to a single customer in a cluster and we use both these terms interchangeably in the remainder of this paper.
Initial Seed Selection: The performance of the K-means clustering algorithm depends on the selection of the initial seed used for cluster construction. A survey of the different methods to generate the initial seeds can be found in works such as (Bursco, 2004) and (Stainley and Bursco, 2007). We use a sequential method to generate the initial group centroids. In this method, we first compute the centroid of all the customers. Next, we choose a point that is farthest from this centroid as the seed. Since the goal of the K-means clustering algorithm is to maximize the intra-cluster distance, we construct a cluster far away from the centroid where the density of customers is high. Following this, we assign a set of customers to this seed. Next, we calculate the centroid of the assigned customers. The next seed is chosen as the one which is farthest from this centroid. We assign customers to this next seed. This process continues until there are no unassigned customers, at which point, we would have generated L clusters. Now, the centroids of each of the L clusters are computed and these centroids become the initial centroids for the K-means clustering algorithm. The algorithm for sequential cluster construction can be formally described as follows:
Algorithm 1 To sequentially construct clusters before K-means clustering

1: **Input:** The set $X = [x_1, x_2, ..., x_n]$ of N customers
2: **Output:** The set of centers $\mu = [\mu_1, \mu_2, ..., \mu_L]$ of the L initial clusters
3: **begin procedure**
4: Compute the number of customers to be assigned to each cluster $m = \lfloor \frac{N}{L} \rfloor$
5: Compute centroid of all points $\alpha = \sum_{i=1}^{N} \frac{x_i}{N}$
6: Initialize cluster index $l = 1$
7: Assign $(x_i) = 0 \forall i$ in $1 \ldots N$
8: **repeat**
9: Choose the farthest unassigned customer from α as seed s_l
10: for each x_i in X do
11: if Assign(x_i) = 0 then
12: Compute the Euclidean distance (d_{il}) between x_i and s_l
13: end if
14: end for
15: Arrange x_i in increasing order of distance $d_{il} \forall i$ in $1 \ldots N$ and assign(i) = 0
16: Assign m closest customers to cluster l
17: Update centroid of assigned customers $\alpha = \sum_{x_i \in C_j} \frac{x_i}{n_j} \forall j$ in $1 \ldots l$
18: Increment cluster index l
19: **until** ($m * L$) customers are assigned
20: Include any unassigned customers to their closest clusters
21: /* Compute centroids of sequentially formed clusters */
22: for l in $1 \ldots L$ do
23: Compute $\mu_l = \sum_{x_i \in C_l} \frac{x_i}{n_l} \forall i$ in $1 \ldots N$
24: end for
25: Return the set of initial cluster centroids $\mu = [\mu_1, \mu_2, ..., \mu_L]$
26: **end procedure**
The cluster centroids generated using Algorithm 1 are input to the K-means clustering algorithm which then iteratively constructs clusters for the initial solution in the tabu search process. To construct the clusters, the K-means clustering algorithm first assigns each customer to its closest cluster centroid. Once all the customers are assigned, their centroids are recomputed. This process repeats until there is no change in centroids or until the current allocation of customers to a cluster does not change. The K-means clustering algorithm can be formally described as follows:

Algorithm 2 K-means clustering algorithm

1: **Input:** The set of centers $\mu = [\mu_1, \mu_2, \ldots, \mu_L]$ of the L initial clusters obtained from Algorithm 1
2: **Output:** Current solution S with L clusters
3: **begin procedure**
4: Initialize the set of cluster centers $\mu = [\mu_1, \mu_2, \ldots, \mu_L]$
5: **repeat**
6: /* Assign customers to their closest cluster centroid */
7: for each customer x_i, i in 1...N do
8: Compute the Euclidean distance $(d_{il}) = \|x_i - \mu_l\|^2 \forall l$ in 1...L
9: Assign x_i to the closest cluster C_l based on distance d_{il}
10: end for
11: /* Recompute the centroids of all the clusters */
12: for each cluster C_l, l in 1...L do
13: Recompute μ_l to be the centroid of all the customers currently assigned to C_l such that
14: $\mu_l = \sum_{x_i \in C_l} \frac{x_i}{n_l} \forall i$ in 1...N
15: end for
16: until no change in the set of cluster centers μ OR cluster-membership no longer changes
17: Compute objective function $f(S)$
18: $f^*(S) = f(S)$ /*Assign objective $f(S)$ as the best objective */
19: return S
20: **end procedure**
The steps of Algorithm 2 can be illustrated using an example shown in Figures 3.1(a)-(d). The points \(k_1, k_2, \) and \(k_3 \) shown in Figure 1(a) represent the cluster centroids generated by Algorithm 1. Each of the points other than the centroids (i.e., customers) are distinguishable based on their membership to one of the clusters \(C_1, C_2, \) and \(C_3 \) that are closest to the customers. Now, the centroids are recomputed upon which, the placements of the initial centroids \(k_1, k_2, \) and \(k_3 \) are changed to new locations \(k'_1, k'_2, \) and \(k'_3, \) respectively as shown in Figure 3.1(b). Upon reassignment of customers to their closest clusters and subsequent recomputation of the cluster centroids, the \(k'_1, k'_2, \) and \(k'_3, \) are changed to new locations \(k''_1, k''_2, \) and \(k''_3, \) respectively as shown in Figure 3.1(c). After several iterations, the solution converges, upon which, no reassignments of customers occur. At this point, we obtain the final customer assignment to clusters and the stationary cluster centroids \(k^*_1, k^*_2, \) and \(k^*_3 \) that are shown in Figure 3.1(d). Note that the cluster membership of customers, say \(x_1, x_2, \) and \(x_3 \) change upon reassignments as shown in Figures 3.1(a) and (d).

Shift Moves with Supernode Constructions

Given a solution \(S, \) a neighborhood structure \(N(S) \) defines a set of moves to be made from \(S. \) The design of an efficient neighborhood is crucial to any local search. Using a small neighborhood size tends to produce inferior solutions, however, choosing a large neighborhood size could be computationally prohibitive to evaluate. For example, \(s\)-step moves can be defined where \(N_s(S) = \{ S' \mid S' \text{ is obtained from } S \text{ by simultaneously exchanging the assignment of } N \text{ customers} \}. \) As \(s \) increases, the move evaluations become computationally expensive.

As a baseline, we use the commonly used shift neighborhood \(N_{shift}(S), \) which has a small neighborhood size but has the ability to produce reasonably good solutions. The shift neighborhood is defined to be a set of solutions that are obtained by changing the assignment of customers from one cluster to another. Formally,

\[
N_{shift}(S) = (S'_1, S'_2, \ldots, S'_n) \mid \exists j^* \text{ s. t. (i) } S'_j^{*'} \neq S_j^{*}, \text{ and (ii) } S'_j = S_j, \forall j \neq j^* \text{ with } (j, j^*) \text{ in } 1 \ldots N \tag{3.9}
\]
Figure 3.1: K-means clustering algorithm illustration example - (a) Customers assigned to closest clusters by Algorithm 1, (b) Recomputed cluster centroids, (c) Customer reassignments to their closest cluster centroids, (d) Stationary cluster centroids upon repeated customer reassignments
We now describe our modified shift move neighborhood search that improves upon the basic shift move neighborhood search. The motivation for our modification comes from the fact that shift moves are performed between clusters, only one customer at a time. Such an approach may lead to multiple shift moves of one or more customers that are likely to be moved to another cluster based on their close vicinity. By combining such likely customers into a “supernode” within a cluster, only one shift move of the supernode is sufficient to obtain the same result obtained using multiple shift moves.

For each cluster C_l with l in $1 \ldots L$, there could be m supernodes. Let $SN_j = \{SN_{j1}, SN_{j2}, \ldots, SN_{jm}\}$ be the supernode representation of customers that belong to cluster C_l. Let α_lq and NC_lq denote the centroid number of customers in supernode SN_lq, respectively. The supernodes $\{SN_{j1}, SN_{j2}, \ldots, SN_{jm}\}$ in the set SN_j are constructed sequentially as follows: A random customer in a cluster is initially designated as an independent node. For the next customer, the distance of the customer to the independent node is computed. If this distance is within a threshold value ψ, then both the customers are grouped together into a “supernode” and the centroid of the supernode is computed. Otherwise, the customers remain as independent nodes. Thereafter, the supernode construction process is repeated to obtain either new supernodes, or larger supernodes with updated centroids, or independent nodes. If there is a scenario where the distance of a customer to one or more supernode centroids is within ψ, then the customer is grouped into the supernode that has the minimal centroid-to-node distance. This process repeats until all the customers that belong to the cluster are evaluated. The supernode construction algorithm can be formally described as follows:
Algorithm 3 Supernode Construction

1: **Input:** Current solution S
2: **Output:** Supernodes of customers in each of the L clusters
3: **begin procedure**
4: **for** i **in** $1 \ldots L$ **do**
5: $m = 1$ /* Initialize the supernode index */
6: Randomly choose $x_i \in C_l \forall i$ in $1 \ldots N$
7: $SN_l = \{x_i\}$ /* Initialize the set of super nodes */
8: **for** i **in** $1 \ldots N$ and $x_i \in C_l$ **do**
9: /* Compute distance of customers to existing supernodes */
10: **for** q **in** $1 \ldots m$ **do**
11: Compute the distance d_{iq} of customer x_i to centroid of existing supernode α_{lq}
12: **if** ($d_{iq} < \psi$) **then**
13: Add SN_{iq} into $List$
14: /* $List$ keeps track of supernodes to which the customer’s distance is within ψ */
15: **end if**
16: **end for**
17: **if** ($List$ eq NULL) **then**
18: /* Assign customer as an independent node */
19: Increment m
20: Assign x_j to SN_{im}
21: Compute α_{lm}
22: **else**
23: Assign x_i to the closet supernode SN_{iq} in $List$ based on distance d_{iq}
24: $SN_{iq} = SN_{iq} \cup x_i$
25: Update $\alpha_{iq} = \sum_{x_i \in SN_{iq}} \frac{x_i}{NC_{iq}} \forall i$ in $1 \ldots N$
26: **end if**
27: **end for**
28: **end for**
29: **end procedure**
Neighborhood Search: After the supernodes are constructed as shown in Algorithm 3, neighborhood search is performed using shift moves of the supernodes, instead of individual customers. The heuristic explores the solution space by moving from the current solution S to the best solution $N(S)^*$ in its neighborhood $N(S)$. The neighborhood $N(S)$ is defined as the set of all solutions obtained by removing a supernode SN_{lq} from its current cluster C_i and inserting it into another cluster. The best solution $N(S)^*$ in $N(S)$ is computed using the savings procedure that is explained next. Let δ_q be the saving obtained by removing a supernode SN_{lq} from its current cluster C_i and inserting it into cluster C_j. A positive value of δ_q indicates an improvement in the solution, whereas, a negative value of δ_q indicates a degrading solution. We use the best admissible strategy to evaluate the moves. The move where the supernode is non-tabu and which produces maximum cost savings is accepted whether or not it produces any improvement over the exiting best solution S. In the process, when a supernode is moved from one cluster to another, the customers in the supernode are declared tabu for θ iterations. A counter η determines the number of iterations for which the neighborhood search is to be performed. Each time a degrading solution is found, η is incremented by a factor of N and when an improving solution is found, η is reset to ‘0’. The algorithm stops after a pre-determined number of iterations ϕ are reached and the best solution found so far given by S^* is returned. This algorithm of shift with supernodes can be formally described as follows:
Algorithm 4: Shift with Supernodes

1: **Input:** Initial Solution S from Algorithm 2
2: **Output:** Best Solution S^*
3: **begin procedure**
4: **while** $(\eta \leq \varphi)$ **do**
5: /* Compute the supernode to be shifted for each cluster */
6: **for** cluster l in $1 \ldots L$ **do**
7: Generate supernodes using Algorithm 3
8: Initialize the best objective in the neighborhood */
9: **for** q in $1 \ldots m$ **do**
10: /* Remove supernode SN_{lq} from its current cluster C_l with m supernodes */
11: $\text{drop}_q = \sum_{x_i \in SN_{lq}} x_i \forall i$ in $1 \ldots N$
12: Find the best vehicle v to insert into SN_{lq}
13: /* Compute the cost of this insertion */
14: $\text{add}_q = \sum_{x_i \in C_v} x_i + \sum_{x_i \in SN_{lq}} x_i \forall i$ in $1 \ldots N$
15: /* Compute the savings δ_q obtained by removal of SN_{lq} from C_l, and insertion into C_v. */
16: $\delta_q = \text{add}_q - \text{drop}_q$
17: /* Derive modified solution $N_l(S)$ by removal of SN_{lq} from C_l and insertion into C_v. */
18: Compute $f(N_l(S))$
19: **if** $(f(N_l(S)) < f(N(S)^*))$ **then**
20: $N(S)^* = N_l(S)$
21: **end if**
22: Accept the best solution $N(S)^*$ in the neighborhood
23: /* Update the best solution so far */
24: $S = N(S)^*$
25: $f(S)^* = f(N(S)^*)$
26: $S^* = N(S)^*$
27: $\eta = 0$ /* Reset the iteration counter */
28: **else**
29: $S = N(S)^*$
30: $\eta = \eta + N$ /* Increment the iteration counter */
31: **end if**
32: **end for**
33: **end while**
34: **end procedure**
The steps in Algorithm 3 and Algorithm 4 can be illustrated using an example shown in Figures 3.2(a)-(d). In Figure 3.2(a), customers relatively closer to each other in vicinity are grouped together into supernodes in cluster C_4 based on Algorithm 3. This results in cluster C_4 having three supernodes SN_{41}, SN_{42} and SN_{43} with centroids α_{41}, α_{42}, and α_{43}, respectively. In Figure 3.2(b), customers x_4 and x_9 are now grouped with the existing supernodes and distances of these two customers to the centroids α_{41}, α_{42} and α_{43} are computed. Since the distance of x_4 to supernode SN_{42} is within the threshold, x_4 is grouped into SN_{42}. However, the distance of x_9 to centroid of any of the supernodes is not within the threshold value. Hence, x_9 remains as an independent node.

The final construction of the supernodes of customers within cluster C_4 are shown in Figure 3.2(c). After these supernodes are constructed, the shift operation is performed between the clusters. In this scenario, the supernode SN_{41} can be inserted into either cluster C_1, C_2 or C_3. The shift operation on SN_{41} results in insertion of SN_{41} into cluster C_3, which produces an best insertion relative to the costly C_1 and C_2 cluster insertions.
3.2.2 Neighborhood Search Strategies with Capacity Constraints

Initial Solution using Modified K-means Clustering Algorithm

In Section 4.1, we described the K-means clustering algorithm that assigns customers to clusters solely based on their geographic vicinity, and without considering capacity constraints. Herein, we propose a modified K-means clustering algorithm that groups customers into clusters based on their geographic vicinity while also taking capacity limitations into consideration. The modified K-means clustering algorithm uses the same sequential method described in Algorithm 1 to generate the initial seeds. However, the modified K-means clustering algorithm is different from the K-means clustering algorithm in two aspects.

The first aspect is that the assignment of customers to the closest cluster centeroid in the modified K-means clustering algorithm is performed only if there is no capacity violation by such an assignment. Grouping of customers to clusters using the K-means clustering algorithm results in visually apparent concentrations of customers at the various geographical locations as shown in Figure 3.3(a). However, using the modified K-means clustering algorithm results in several cases where customers belonging to the same cluster are not within the same geographic vicinity as shown in Figure 3.3(b). The second aspect is that the stopping criterion in the modified K-means clustering algorithm is set to iterate until no improvement in the best solution is found after φ iterations. In
comparison, the stopping criterion in the K-means clustering algorithm is set to iterate until there is no change in the cluster centroids. The stopping criterion is different in case of the modified K-means clustering algorithm because the objective function is not just dependent on the distance, but on the capacity limitations as well. Hence, convergence of the K-means clustering algorithm based on centroids is not effective. The modified K-means clustering algorithm can be formally described as follows:
Algorithm 5 Modified K-means clustering algorithm

1: **Input**: The set of centers $\mu = [\mu_1, \mu_2, ..., \mu_L]$ of the L initial clusters obtained from Algorithm 1

2: **Output**: Current solution S with L clusters

3: **begin procedure**

4: Initialize the set of cluster centers $\mu = [\mu_1, \mu_2, ..., \mu_L]$

5: Initialize cluster capacity $cap_l = 0 \forall l$ in $1 \ldots L$

6: $f^∗(x) = \infty$

7: **while** ($\eta \leq \varphi$) **do**

8: **for** each customer x_i, i in $1 \ldots N$ **do**

9: Compute the Euclidean distance (d_{il}) $= \| x_i - \mu_l \|^2 \forall l$ in $1 \ldots L$

10: Let C_l be the closest cluster center to x_i based on distance d_{il}

11: **if** ($cap_l < Q^∗ T$) **then**

12: $C_l = x_i$

13: $cap_l = \sum_{t=1}^{T} \sum_{x_i \in l} D_{it}$

14: **end if**

15: **end for**

16: /* Handling of unassigned customers */

17: **for** each unassigned customer x_i in X **do**

18: /* Compute the cost of inserting into each of the clusters */

19: $add_l = \sum_{x_j \in C_l} x_j + x_i + cap_l + \sum_{t=1}^{T} D_{it} \forall l$ in $1 \ldots L$

20: Assign x_i into cluster C_l with the minimal insertion cost add_l

21: **end for**

22: /* Recompute the centroids of all the clusters */

23: **for** each cluster C_l, l in $1 \ldots L$ **do**

24: Recompute μ_l to be the centroid of all the customers currently assigned to C_l such that

25: $\mu_l = \sum_{x_i \in C_l} x_i \forall i$ in $1 \ldots N$

26: **end for**

27: **if** ($f(S) < f(S^∗)$) **then**

28: $f(S^∗) = f((S))$

29: $S^∗ = S$

30: $\varphi = 0$

31: **else**

32: $\varphi = \varphi + N$

33: **end if**

34: **end while**

35: return $S^∗$

36: **end procedure**
Ejection Chain with Supernode Constructions

When capacity constraints are considered, the size and design of solution neighborhood are crucial for a local search algorithm. Smaller neighborhoods like those generated for simple shift moves might lead to relatively inferior solutions in some cases. However, if the size of neighborhood is too large it might be computationally expensive for evaluation of numerous simple moves. As a trade-off, several simple moves are combined together to form a compound move within a manageable neighborhood size. Such moves are referred to as composite moves. A commonly used method to construct composite moves is Ejection Chains (Glover and Laguna, 1997). The reason for the name is - the state of some nodes trigger the “ejection” of other nodes from their current state during the composite moves.

In this section, we explain an ejection chain based neighborhood search that uses supernodes to accelerate the convergence of composite moves. In order to construct an ejection chain, two moves viz., ejection moves and trail moves are alternately executed. The ejection move refers to the ejection of a supernode \(SN_{lq} \) from its current cluster \(C_l \). The resulting structure after an ejection move is called a reference structure. The ejection of that supernode triggers another supernode from a different cluster to be moved to the cluster from which a supernode is recently ejected. This results in a sequence of simple moves that together form a compound move. The number of simple moves is called the ‘length of the ejection chain’. For example, an ejection chain neighborhood of length 3 implies three ejection moves. The ejection moves are followed by a trail move, which refers to the assignment of the original ejected supernode into some other cluster by taking advantage of the reference structure.

Figures 3.4(a)-(d) illustrate the length 2 ejection chain algorithm. Suppose a supernode is ejected from cluster 4, it triggers an eject move in another cluster, say cluster 3. This eject move causes the ejected supernode of cluster 3 to be assigned to cluster 4, thus forming a reference structure. Subsequently, another eject move is triggered in another cluster, say cluster 1, which causes the ejected supernode from cluster 1 to be assigned to cluster 3. This results in another...
reference structure. Lastly, a trail move is performed in which the original ejected supernode from cluster 4 is assigned to any cluster, say cluster 2. Thus, the original ejected supernode is assigned to a cluster by taking advantage of the reference structure after the eject moves.

It is easy to see why an ejection chain move is superior than a simple shift move. When a customer x_i is ejected, the ejection triggers several changes in the customer assignment to the clusters, and thus results in a solution structure that is dependent on the capacity availability. The subsequent reinsertion of the ejected customer x_i in a trail move assigns that customer into an appropriate cluster. Since several moves are considered at once, there is a greater chance of finding a better solution due to greater change in solution and traversal of search landscape. We note that the shift move is a special case of an ejection chain move in the sense that it involves an eject move of a customer from a cluster who is immediately assigned to another cluster using a trail move.

Neighborhood Search: In our ejection chain with supernodes algorithm, we consider three neighborhoods in sequence. The neighborhoods are ejection chains of length 0, 1 and 2, respectively. An
ejection chain of length 0 is a “shift neighborhood”, length 1 is referred to as “double shift neighborhood” and length 2 is referred to as a “long chain neighborhood”. To quickly search from one feasible region to another, we use strategic oscillation in our search process that allows searching into infeasible regions i.e., allows temporary infeasible solutions. However, we penalize the infeasible solutions based on the degree of infeasibility by adding a penalty factor to the objective function as follows:

\[f'(x) = f(x) + \sum_{l \in L, t \in T} \beta^* p_{lt}(x) \]

(3.10)

where

\[p_{lt} = \min(0, tQ - \sum_{i \in N} D_{il}x_{il}) \]

(3.11)

The parameter \(\beta \) can be given as a positive constant or can be dynamically changed in each iteration. If \(\beta \) is large, it penalizes moves across the infeasible region. If \(\beta \) is small, it does not introduce any penalty effects. The value of \(\beta \) is dynamically calculated in each iteration as follows: Initially, \(\beta \) is set to \(100 \times NC \). If a current solution is feasible for the given capacity constraints, then \(\beta \) is multiplied by 0.5, otherwise \(\beta \) is multiplied by 1.5. For more details regarding dynamically changing the \(\beta \) parameter, the reader is referred to (Yagiura and Ibaraki, 2004).

During the iterations, we use the best admissible strategy which involves accepting the best neighborhood amongst shift, double shift and long chain. This ejection chain with supernodes algorithm iterates until no improvement is found for a threshold \(\varphi \) iterations. The generalized ejection chain with supernodes algorithm can be explained for any length as follows: We first eject a supernode \(SN_{lq} \) from its current cluster \(C_l \). Consequently, the supernode \(SN_{lq} \) becomes free and the amount of resources available at \(C_l \) increase. Given the increased capacity in \(C_l \), we shift another supernode into the cluster from which the first supernode is ejected, thus resulting in an eject move. This eject move is repeated as determined by the length of the ejection chain. In the process, a reference structure a.k.a. partial solution is created.
Finally, a trail move is performed by inserting the free customers in SN_{iq} to the appropriate cluster by taking advantage of the reference structure. Since we perform ejection chains with supernodes, several moves are considered at once in every iteration, thus shortening the ejection chain length.

Our ejection chain with supernodes algorithm has three steps. The first step is called “cost saving procedure”, which selects a supernode to be ejected. The second step is called “eject move procedure”, which builds the reference structure by performing eject moves in sequence. The final step is called “trail move procedure”, which constructs a complete solution. In the following, we describe these three steps in detail:

Cost Saving Procedure: The cost saving procedure uses a candidate list strategy to come up with the best candidates to be ejected from their respective clusters. Ejection of appropriate candidates reduces the computation effort as opposed to exhaustive evaluation of the ejection of all customers. We compute the savings δ_q obtained by removing a supernode SN_{iq} from its current cluster and inserting it into another cluster. The supernode that produces maximum cost savings would be considered as a candidate to be ejected. Thus, the cost savings procedure removes a customer that has a better fit in another cluster rather than its current cluster. After the cost savings procedure is executed, we obtain a list $CList$ that contains all the candidates to be ejected. The cost saving procedure can be formally described as follows:
Algorithm 6 Cost Savings

1: Input: Current Solution S

2: Output: Candidate List $CList$

3: begin procedure

4: for cluster l in $1 \ldots L$ do

5: Generate supernodes using Algorithm 3

6: for q in $1 \ldots m$ do

7: /* Remove supernode SN_{lq} from its current cluster C_l with m supernodes */

8: $drop_q = \sum_{x_i \in SN_{lq}} x_i \ \forall i$ in $1 \ldots N$

9: Find the best vehicle v to insert into SN_{lq}

10: /* Compute the cost of this insertion */

11: $add_q = \sum_{x_i \in C_v} x_i + \sum_{x_i \in SN_{lq}} x_i \ \forall i$ in $1 \ldots N$

12: /* Compute the savings δ_q obtained by removal of SN_{lq} from C_l and insertion into C_v */

13: $\delta_q = add_q - drop_q$

14: end for

15: Compute the supernode SN_{lq} that obtains maximum cost savings

16: δ_q and customers in SN_{lq} that are non-tabu $\forall q$ in $1 \ldots m$

17: $best_{\text{supernode}}(l) = SN_{lq}$

18: $best_{\text{localdelta}}(l) = \delta_q$

19: end for

20: Find the supernode SN_{lq} that has the minimum value of $best_{\text{localdelta}}(l) \ \forall l$ in $1 \ldots L$

21: $CList = \{ x_l \in SN_{lq} \}$

22: end procedure
Eject Move Procedure: An eject move refers to shifting of a supernode into the cluster from which a supernode has been recently ejected. The ejection of a supernode from its current cluster C_i increases resource availability in that cluster and hence triggers insertion of another supernode (of a different cluster) into that cluster. Thus, partial solutions or reference structures are created in this process. We denote the cluster from which a supernode is ejected as ref. When supernodes from other clusters are considered for insertion into ref, we choose only the supernode whose cost of insertion into ref is minimal. To prevent the revisiting of solutions, supernodes moved from their current cluster to ref are not moved from ref until the duration of its tabu-tenure. Thus, we only consider ejection moves of supernodes that are non-tabu. This procedure takes as input the cluster ref and inserts the best supernode into ref. The cluster C_{prev} to which the best supernode previously belonged is returned as a reference cluster ref for subsequent operations. The eject move procedure can be formally described as follows:
Algorithm 7 Eject Move

1: **Input:** Current Solution S
2: **Output:** Reference Cluster ref
3: **begin procedure**
4: $prev = ref$
5: /* Remove supernodes from their current cluster for insertion into $prev$ */
6: **for** cluster l in $1 \ldots L$ and $l \neq prev$ **do**
7: Generate supernodes using Algorithm 3
8: **for** q in $1 \ldots m$ **do**
9: /* Remove supernode SN_{lq} from its current cluster C_l with m supernodes */
10: $drop_q = \sum_{x_i \in SN_{lq}} x_i \forall i$ in $1 \ldots N$
11: /* Compute the cost of insertion into $prev$ */
12: $add_q = \sum_{x_i \in C_{prev}, x_j \in SN_{lq}} x_i \forall i$ in $1 \ldots N$
13: /* Compute the savings δ_q obtained by removal of SN_{lq} from C_l and insertion into C_{prev} */
14: $\delta_q = add_q - drop_q$
15: **end for**
16: Compute the supernode SN_{lq} that obtains maximum cost savings δ_q and customers in SN_{lq}
17: that are non-tabu $\forall q$ in $1 \ldots m$, $\forall l$ in $1 \ldots L$ and $l \neq prev$
18: $best_supernode(l) = SN_{lq}$
19: $best_ref = C_l$
20: **for** i in $1 \ldots N$ and $x_i \in best_supernode$ **do**
21: Assign x_i to $prev$
22: Update current solution S
23: $tabu_eject(x_i) = \theta$
24: **end for**
25: $ref = best_ref$
26: **return** ref
27: **end for**
28: **end procedure**
Trail Move Procedure: Trail move involves insertion of free candidate supernodes to a cluster which produces minimal insertion cost. For selecting such a cluster, insertion cost of free candidates into clusters other than the cluster from which the candidates previously belonged is computed. The cluster that produces the minimal insertion cost for the candidates is selected for insertion. After such trail moves, a complete solution is constructed which takes advantage of the intermediate reference structures obtained from eject moves.

Ejection Chain Algorithm: Recall that the ejection chain algorithm uses the three procedures described above. The ejection chain algorithm first ejects a supernode using the cost saving procedure. Then, eject moves are performed for the length of the ejection chain. Finally, a trail move is performed. Starting from a current solution S, three neighborhoods $N_0(S)$, $N_1(S)$, and $N_2(S)$ are considered. Each of the neighborhoods corresponds to ejection chain of lengths 0, 1 and 2, respectively. We use a best admissible strategy and move to a best neighborhood $N(S)^*$, which has the least objective function value amongst all these neighborhoods. The algorithm iterates until no improvement in the objective function $f(S)$ is found for φ iterations and the best solution found so far S^* is returned. The ejection chain algorithm can be formally described as follows:
Algorithm 8 Ejection Chain

1: **Input:** Initial Solution \(S \) from Algorithm 5, \(\text{length} \) of ejection chain
2: **Output:** Best Solution \(S^* \)
3: begin procedure
4: while \((\eta \leq \varphi)\) do
5: \(\text{level} = 0 \)
6: while \((\text{level} \leq \text{length})\) do
7: \(f(N(S)^*) = \infty \) /* Initialize the best objective in the neighborhood */
8: \(\text{CList} = \) supernode \(S_{N_{eq}} \) returned by Algorithm 6 that needs to be ejected
9: \(\text{ref} = \) cluster \(C_i \) to which the \(\text{CList} \) customer belongs
10: \(N_{\text{level}}(S) = \) Modify \(S \) by removing \(\text{CList} \) customers from \(\text{ref} \)
11: /* Perform ejection move for the duration of ejection chain length */
12: for \(j \) in \(1 \ldots \text{level} \) and \(\text{level} \neq 0 \) do
13: /* Construct a reference structure */
14: \(\text{ref_next} = \) return value of eject move invoked with \(\text{ref} \) and \(N_{\text{level}}(S) \) inputs
15: \(\text{ref} = \text{ref_next} \)
16: end for
17: \(N_{\text{level}}(S) = \) Perform trail move on \(N_{\text{level}}(S) \) to construct a complete solution
18: Compute \(f(N_{\text{level}}(S)) \)
19: if \(f(N_{\text{level}}(S)) < f(N(S)^*) \) then
20: \(N(S)^* = N_{\text{level}}(S) \)
21: end if
22: end while
23: Accept the best solution \(N(S)^* \) in the neighborhood
24: Set tabu status of customers moved to tabu tenure
25: if \(f(N(S)^*) < f(S)^* \) then
26: /* Update the best solution so far */
27: \(S = N(S)^* \)
28: \(f(S)^* = f(N(S)^*) \)
29: \(S^* = N(S)^* \)
30: \(\eta = 0 \) /* Reset the iteration counter */
31: else
32: \(S = N(S)^* \)
33: \(\eta = \eta + N \) /* Increment the iteration counter */
34: end if
35: return \(f(S)^* \)
36: end while
37: end procedure
Chapter 4

Performance Evaluation

In this section, we first describe the performance evaluation methodology to evaluate our proposed algorithms. Next, we present the simulation results of our K-means and shift with supernodes algorithms when compared with the basic shift algorithm without considering capacity constraints. Finally, we present the simulation results of our modified K-means and ejection chain with supernodes algorithms when compared with the basic shift algorithm, in the presence of capacity constraints.

4.0.3 Evaluation Methodology

Our proposed algorithms have been implemented and executed using the Xpress-MP development environment (Guret, et. al, 2002) running on a PC with Windows XP operating system, 1.6 GHz CPU and 512 MB RAM. For the multi-period customer demands input, we use the instances that were randomly generated by the authors in (Boudia, Louly, et. al., 2007). These instances are comprised of three sets of 30 instances with 50, 100, and 200 customers respectively, all with 20 time periods \(T \). Other inputs such as number of vehicles \(L \) and the vehicle capacity \(Q \), if and when considered in the implementation, depend on the number of customers. The vehicle capacity caters to two days of consumption for the full set of customers, when no capacity constraints are considered. In the case where capacity constraints are considered, \(Q \) is calculated similar to the
method suggested in (Boudia, Louly, et. al., 2007) i.e., Q value is chosen to be less than, but close to the average demand of all the customers across time period T.

4.0.4 Results Without Capacity Constraints

Tables 4.1 - 4.3 show the simulation results of the 30 instances of data with 50, 100 and 200 customers respectively for three heuristics: (i) basic shift (BS) algorithm, (ii) K-means (KM) algorithm, and (iii) K-means plus shift with supernodes (KMS) algorithm. For each instance, we show the value of the objective function, and the run time in seconds. In addition, we show the average cost and average time across all the customers for the three heuristics. Further, we mark in bold the best solutions found in the simulation and indicate the total number of best solutions found. We define the best solution as the one that is cost-wise lesser for a particular instance among the BS, KM, and KMS algorithms.

The number of iterations ϕ for BS algorithm and the KMS algorithm is set to $N \times 50$. Consequently, as the number of customers N increases, the iterations increase correspondingly. The tabu tenure θ also depends on the number of customers and is set to $0.1 \times N$. For each of the customer sizes, the threshold ψ for grouping customers into supernodes is dynamically calculated by taking into account the average of the inter-customer distances in the data set. We choose the value of ψ such that it decreases with the increase in the number of customers. The reason for this decrease of ψ is as follows - higher the number of customers, higher are the number of clusters and lesser is the inter-cluster distance. Due to low inter-cluster distances, customers close to each other may belong to two different clusters. Hence, choosing a value of ψ to be small allows for grouping tightly close customers into supernodes that would then belong to the same cluster.

From Table 4.1 i.e., 50 customers case results, we can note that KMS algorithm produces the best solutions in terms of objective function values for 4 customer instances. For the other instances, it can be observed that BS algorithm and KM algorithm have similar values of objective function. However, KMS algorithm produces solutions with relatively lesser computation time and with better
cost than BS algorithm for all instances. Specifically, there is an average of 52% in time savings and 0.4% cost savings when KMS algorithm is used. With reference to KM algorithm, although its sole purpose is to construct the initial solution, its solutions deviate by an average of only 5% from the best solutions. Thus, we can conclude that the KM algorithm significantly accelerates the performance of neighborhood search. We can note that the reduction in computation time using KMS algorithm can be credited to the construction of supernodes, and consequently supernode shifts. With the supernode shifts, multiple nodes are shifted in one run in the KMS algorithm, as opposed to individual node shifts that require several runs with the BS algorithm.

Similar conclusions can be drawn from Table 4.2 i.e., 100 Customers case results. When KM algorithm is used, 14 best solutions are found. This number is greater than the number of best solutions found for the 50 customers case. The computation time is reduced by 71% when KMS is used, in comparison to the computation time of KMS in the 50 customers case. Solutions produced by KM algorithm deviate by an average of only 6% from the best solutions. Again, we can notice a significant contribution for faster solution convergence using the KM algorithm. BS produces best results for the 14 and 29 instances. However, for these instances, the best solutions produced by BS algorithm do not show significant improvement over KMS.

From Table 4.3 i.e., 200 customers case results, it can be observed that KMS performs the best. It obtains the best solution for 21 instances and produces a 66% savings in computation time. In addition, KM algorithm produces results that deviate by an average of only 5% from the best solutions. Interestingly, the performance of BS algorithm in Table 3 produces best results for 8 instances. However, each of these best solutions are found at the expense of greater computation time. For the best solutions corresponding to instances 5, 8, 14, 16, 18, 20, 25, and 28, the distribution of customers is non-uniform i.e., there is a sparse population in some regions and dense population in other regions. When the distribution of customers in a region is dense, customers that are very close to each other may not belong to the same cluster, making the supernode construction to be ineffective. Hence, BS algorithm which considers individual customer shifts for these instances performs better than the KMS algorithm which considers supernodes shifts.
To summarize from Tables 4.1 - 4.3, it can be observed that the KMS algorithm out performs the BS algorithm. It can also be observed that solutions obtained by KM algorithm alone are comparable with the best solutions obtained with both BS and the KMS algorithms. Hence, we can conclude that using a good initial solution such as K-means aids in faster convergence of the solution. The number of best solutions found is highest when the KMS algorithm is used. There is also a significant reduction in the computation time for all the 50, 100 and 200 customer instances using the KMS algorithm. The reduction in computation time can be accounted due to the supernode construction and also due to construction of the good initial solution using the KM algorithm. Another interesting result is that the number of best solutions found increases with the increase in customer sizes with either BS, KM or KMS algorithms.
Table 4.1: Results without capacity constraints for instances with 50 customers

<table>
<thead>
<tr>
<th>Instance</th>
<th>Cost BS</th>
<th>Time (secs)</th>
<th>Cost KM</th>
<th>Time (secs)</th>
<th>Cost KMS</th>
<th>Time (secs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4981</td>
<td>1.80</td>
<td>5026</td>
<td>0.09</td>
<td>4981</td>
<td>0.86</td>
</tr>
<tr>
<td>2</td>
<td>5137</td>
<td>1.78</td>
<td>5907</td>
<td>0.09</td>
<td>5137</td>
<td>0.95</td>
</tr>
<tr>
<td>3</td>
<td>4458</td>
<td>1.80</td>
<td>4458</td>
<td>0.09</td>
<td>4458</td>
<td>0.80</td>
</tr>
<tr>
<td>4</td>
<td>5232</td>
<td>2.08</td>
<td>5345</td>
<td>0.09</td>
<td>5232</td>
<td>0.86</td>
</tr>
<tr>
<td>5</td>
<td>5108</td>
<td>2.84</td>
<td>5972</td>
<td>0.09</td>
<td>5108</td>
<td>0.91</td>
</tr>
<tr>
<td>6</td>
<td>5172</td>
<td>1.81</td>
<td>5238</td>
<td>0.09</td>
<td>5172</td>
<td>0.95</td>
</tr>
<tr>
<td>7</td>
<td>5021</td>
<td>1.77</td>
<td>5317</td>
<td>0.09</td>
<td>5021</td>
<td>0.97</td>
</tr>
<tr>
<td>8</td>
<td>5177</td>
<td>2.63</td>
<td>5744</td>
<td>0.11</td>
<td>5186</td>
<td>0.91</td>
</tr>
<tr>
<td>9</td>
<td>5149</td>
<td>1.66</td>
<td>5274</td>
<td>0.09</td>
<td>5149</td>
<td>0.84</td>
</tr>
<tr>
<td>10</td>
<td>5031</td>
<td>2.17</td>
<td>5181</td>
<td>0.09</td>
<td>5031</td>
<td>0.81</td>
</tr>
<tr>
<td>11</td>
<td>4990</td>
<td>1.55</td>
<td>5252</td>
<td>0.09</td>
<td>4990</td>
<td>0.86</td>
</tr>
<tr>
<td>12</td>
<td>5222</td>
<td>2.19</td>
<td>5290</td>
<td>0.16</td>
<td>5222</td>
<td>0.83</td>
</tr>
<tr>
<td>13</td>
<td>5215</td>
<td>1.53</td>
<td>5442</td>
<td>0.11</td>
<td>5215</td>
<td>0.84</td>
</tr>
<tr>
<td>14</td>
<td>4977</td>
<td>1.97</td>
<td>5125</td>
<td>0.19</td>
<td>4977</td>
<td>0.83</td>
</tr>
<tr>
<td>15</td>
<td>5036</td>
<td>1.61</td>
<td>5262</td>
<td>0.14</td>
<td>5036</td>
<td>0.86</td>
</tr>
<tr>
<td>16</td>
<td>4959</td>
<td>1.86</td>
<td>5810</td>
<td>0.09</td>
<td>4959</td>
<td>1.20</td>
</tr>
<tr>
<td>17</td>
<td>5625</td>
<td>1.66</td>
<td>5654</td>
<td>0.09</td>
<td>5625</td>
<td>0.81</td>
</tr>
<tr>
<td>18</td>
<td>5645</td>
<td>1.70</td>
<td>6356</td>
<td>0.09</td>
<td>5597</td>
<td>0.95</td>
</tr>
<tr>
<td>19</td>
<td>5386</td>
<td>1.53</td>
<td>5557</td>
<td>0.13</td>
<td>5386</td>
<td>0.83</td>
</tr>
<tr>
<td>20</td>
<td>5332</td>
<td>1.81</td>
<td>5532</td>
<td>0.09</td>
<td>5332</td>
<td>0.84</td>
</tr>
<tr>
<td>21</td>
<td>5184</td>
<td>1.61</td>
<td>5365</td>
<td>0.16</td>
<td>5179</td>
<td>0.83</td>
</tr>
<tr>
<td>22</td>
<td>4950</td>
<td>1.89</td>
<td>5435</td>
<td>0.09</td>
<td>4950</td>
<td>0.89</td>
</tr>
<tr>
<td>23</td>
<td>4687</td>
<td>1.52</td>
<td>4876</td>
<td>0.11</td>
<td>4687</td>
<td>0.81</td>
</tr>
<tr>
<td>24</td>
<td>5347</td>
<td>2.17</td>
<td>5080</td>
<td>0.09</td>
<td>4865</td>
<td>0.88</td>
</tr>
<tr>
<td>25</td>
<td>5347</td>
<td>2.58</td>
<td>5396</td>
<td>0.09</td>
<td>5347</td>
<td>0.83</td>
</tr>
<tr>
<td>26</td>
<td>5232</td>
<td>2.02</td>
<td>5692</td>
<td>0.19</td>
<td>5232</td>
<td>1.07</td>
</tr>
<tr>
<td>27</td>
<td>4938</td>
<td>1.92</td>
<td>5070</td>
<td>0.13</td>
<td>4938</td>
<td>0.86</td>
</tr>
<tr>
<td>28</td>
<td>5209</td>
<td>1.84</td>
<td>5580</td>
<td>0.14</td>
<td>5209</td>
<td>1.13</td>
</tr>
<tr>
<td>29</td>
<td>4923</td>
<td>1.67</td>
<td>5109</td>
<td>0.09</td>
<td>4923</td>
<td>0.92</td>
</tr>
<tr>
<td>30</td>
<td>5312</td>
<td>2.24</td>
<td>5560</td>
<td>0.13</td>
<td>5312</td>
<td>1.30</td>
</tr>
</tbody>
</table>

Average: 5132.73 1.91 5396.80 0.11 5114.20 0.91

Average Savings (%): NA NA NA NA 0.36 52.36

Best Solutions: 0 NA NA NA 4 NA
Table 4.2: Results without capacity constraints for instances with 100 customers

<table>
<thead>
<tr>
<th>Instance</th>
<th>BS</th>
<th>KM</th>
<th>KMS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cost</td>
<td>Time (secs)</td>
<td>Cost</td>
</tr>
<tr>
<td>1</td>
<td>8640</td>
<td>10.74</td>
<td>9072</td>
</tr>
<tr>
<td>2</td>
<td>8718</td>
<td>12.83</td>
<td>9349</td>
</tr>
<tr>
<td>3</td>
<td>8272</td>
<td>14.61</td>
<td>8422</td>
</tr>
<tr>
<td>4</td>
<td>8352</td>
<td>14.50</td>
<td>8721</td>
</tr>
<tr>
<td>5</td>
<td>8497</td>
<td>10.74</td>
<td>9532</td>
</tr>
<tr>
<td>6</td>
<td>8463</td>
<td>11.88</td>
<td>9467</td>
</tr>
<tr>
<td>7</td>
<td>8009</td>
<td>13.77</td>
<td>8528</td>
</tr>
<tr>
<td>8</td>
<td>8241</td>
<td>11.53</td>
<td>8571</td>
</tr>
<tr>
<td>9</td>
<td>8237</td>
<td>10.91</td>
<td>8608</td>
</tr>
<tr>
<td>10</td>
<td>8275</td>
<td>10.72</td>
<td>8981</td>
</tr>
<tr>
<td>11</td>
<td>8405</td>
<td>18.88</td>
<td>9017</td>
</tr>
<tr>
<td>12</td>
<td>8133</td>
<td>17.31</td>
<td>8874</td>
</tr>
<tr>
<td>13</td>
<td>7566</td>
<td>10.94</td>
<td>7963</td>
</tr>
<tr>
<td>14</td>
<td>8628</td>
<td>10.80</td>
<td>8963</td>
</tr>
<tr>
<td>15</td>
<td>8543</td>
<td>11.67</td>
<td>8745</td>
</tr>
<tr>
<td>16</td>
<td>7944</td>
<td>12.53</td>
<td>9933</td>
</tr>
<tr>
<td>17</td>
<td>8168</td>
<td>11.78</td>
<td>8474</td>
</tr>
<tr>
<td>18</td>
<td>8482</td>
<td>11.38</td>
<td>9298</td>
</tr>
<tr>
<td>19</td>
<td>8191</td>
<td>14.97</td>
<td>8632</td>
</tr>
<tr>
<td>20</td>
<td>8304</td>
<td>14.88</td>
<td>8454</td>
</tr>
<tr>
<td>21</td>
<td>8473</td>
<td>12.16</td>
<td>8566</td>
</tr>
<tr>
<td>22</td>
<td>8775</td>
<td>12.55</td>
<td>9421</td>
</tr>
<tr>
<td>23</td>
<td>8648</td>
<td>12.09</td>
<td>8875</td>
</tr>
<tr>
<td>24</td>
<td>8677</td>
<td>12.48</td>
<td>9295</td>
</tr>
<tr>
<td>25</td>
<td>8412</td>
<td>15.75</td>
<td>8782</td>
</tr>
<tr>
<td>26</td>
<td>8449</td>
<td>11.38</td>
<td>8879</td>
</tr>
<tr>
<td>27</td>
<td>7839</td>
<td>11.31</td>
<td>8707</td>
</tr>
<tr>
<td>28</td>
<td>8031</td>
<td>14.41</td>
<td>8378</td>
</tr>
<tr>
<td>29</td>
<td>8646</td>
<td>11.27</td>
<td>9851</td>
</tr>
<tr>
<td>30</td>
<td>8435</td>
<td>14.97</td>
<td>9538</td>
</tr>
</tbody>
</table>

Average 8348.43 12.86 8929.90 0.25 8330.43 3.73

Average Savings (%) NA NA NA NA 0.22 71.00

Best Solutions 2 NA NA NA 14 NA
Table 4.3: Results without capacity constraints for instances with 200 customers

<table>
<thead>
<tr>
<th>Instance</th>
<th>BS</th>
<th>KM</th>
<th>KMS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cost</td>
<td>Time (secs)</td>
<td>Cost</td>
</tr>
<tr>
<td>1</td>
<td>19910</td>
<td>75.28</td>
<td>21337</td>
</tr>
<tr>
<td>2</td>
<td>19933</td>
<td>72.45</td>
<td>20583</td>
</tr>
<tr>
<td>3</td>
<td>19476</td>
<td>67.08</td>
<td>20481</td>
</tr>
<tr>
<td>4</td>
<td>19725</td>
<td>86.52</td>
<td>20207</td>
</tr>
<tr>
<td>5</td>
<td>20091</td>
<td>91.86</td>
<td>20945</td>
</tr>
<tr>
<td>6</td>
<td>20489</td>
<td>92.49</td>
<td>22600</td>
</tr>
<tr>
<td>7</td>
<td>21077</td>
<td>73.77</td>
<td>21723</td>
</tr>
<tr>
<td>8</td>
<td>19370</td>
<td>91.27</td>
<td>20002</td>
</tr>
<tr>
<td>9</td>
<td>19387</td>
<td>87.39</td>
<td>21210</td>
</tr>
<tr>
<td>10</td>
<td>20081</td>
<td>41.14</td>
<td>20937</td>
</tr>
<tr>
<td>11</td>
<td>19917</td>
<td>70.39</td>
<td>20715</td>
</tr>
<tr>
<td>12</td>
<td>19212</td>
<td>79.58</td>
<td>20657</td>
</tr>
<tr>
<td>13</td>
<td>19490</td>
<td>73.58</td>
<td>20340</td>
</tr>
<tr>
<td>14</td>
<td>19357</td>
<td>72.45</td>
<td>20246</td>
</tr>
<tr>
<td>15</td>
<td>20438</td>
<td>82.67</td>
<td>21798</td>
</tr>
<tr>
<td>16</td>
<td>20100</td>
<td>75.50</td>
<td>21561</td>
</tr>
<tr>
<td>17</td>
<td>19933</td>
<td>75.17</td>
<td>21535</td>
</tr>
<tr>
<td>18</td>
<td>20123</td>
<td>82.78</td>
<td>20898</td>
</tr>
<tr>
<td>19</td>
<td>19580</td>
<td>78.38</td>
<td>20252</td>
</tr>
<tr>
<td>20</td>
<td>19850</td>
<td>68.11</td>
<td>21170</td>
</tr>
<tr>
<td>21</td>
<td>19586</td>
<td>66.05</td>
<td>20429</td>
</tr>
<tr>
<td>22</td>
<td>20141</td>
<td>84.25</td>
<td>21518</td>
</tr>
<tr>
<td>23</td>
<td>20196</td>
<td>76.00</td>
<td>21245</td>
</tr>
<tr>
<td>24</td>
<td>20154</td>
<td>76.95</td>
<td>22447</td>
</tr>
<tr>
<td>25</td>
<td>19813</td>
<td>101.00</td>
<td>21233</td>
</tr>
<tr>
<td>26</td>
<td>20150</td>
<td>100.10</td>
<td>21478</td>
</tr>
<tr>
<td>27</td>
<td>20296</td>
<td>88.20</td>
<td>21249</td>
</tr>
<tr>
<td>28</td>
<td>19516</td>
<td>71.94</td>
<td>20295</td>
</tr>
<tr>
<td>29</td>
<td>19790</td>
<td>72.13</td>
<td>20717</td>
</tr>
<tr>
<td>30</td>
<td>20420</td>
<td>88.31</td>
<td>20897</td>
</tr>
</tbody>
</table>

Average: 19920.03 78.76 21024.00 0.77 19846.20 26.76

Average Savings (%): NA NA NA NA 0.37 66.02

Best Solutions: 8 NA NA NA 21 NA
4.0.5 Results With Capacity Constraints

Tables 4.4 - 4.6 show the results of the 30 instances of data with 50, 100 and 200 customers respectively for the following three heuristics: (i) basic shift (BS) algorithm, (ii) Ejection Chain (EC) algorithm, and (iii) Ejection Chain with modified K-means (ECK) algorithm. For each instance, we again show the value of objective function i.e., the value of the objective function, and the run time in seconds. In addition, we show the average cost and average time across all the customers for the three heuristics. Further, we mark in bold the best solutions found in the simulation and indicate the total number of best solutions found. We define the best solution as the one that is cost-wise lesser for a particular instance among the BS, EC and ECK algorithms.

Values of parameters such as ψ, ϕ, and θ are identical to the ones used in Section 5.2. Since capacity constraints are considered, infeasible solutions can occur in the simulations. In all the above heuristics, we allow infeasibilities. However, infeasible solutions are penalized according to the degree of infeasibility by a factor of β. The value of β is initially set to $100 \times NC$. However, β is changed dynamically as follows: if the current solution is feasible for the given capacity constraints, then β is multiplied by 0.5, otherwise β is multiplied by 1.5.

From Table 4.4 i.e., 50 customers case results, the EC algorithm performs better than the BS algorithm. Also, ECK algorithm outperforms the other two heuristics. Specifically, only 2 best solutions are found using the BS algorithm, and 3 best solutions are found using the EC algorithm, whereas, 15 best solutions are found using the ECK algorithm. There is on an average 0.9% cost saving that the EC algorithm generates in comparison with the BS algorithm. The ECK algorithm produces on an average 1.68% cost savings over the BS algorithm. This clearly demonstrates that both EC and ECK algorithms out perform the BS algorithm. The computation time required for EC and ECK algorithms is very high when compared to the BS algorithm. The larger computational time can be attributed to the evaluation of multiple levels of the ejection chain. Another interesting comparison is observed in the performances of the EC algorithm and the ECK algorithm. The ECK algorithm produces on an average 0.8% cost savings over the EC algorithm using almost the
same computation time. The number of best solutions found using the ECK algorithm is relatively high. Hence, we can conclude that the use of the modified K-means algorithm as initial solution accelerates the convergence of the solution and helps find better solutions in lesser amount of time.

From Table 4.5 i.e., 100 customers case results, it can be observed that the ECK algorithm obtains best solutions for 22 instances. This clearly shows that the ECK algorithm produces significant performance improvement. The BS and EC algorithms obtain best solutions for only 3 and 5 instances, respectively. For the 100 customer instances, we chose stringent capacity limitations and observed how each of the algorithms performed in extreme cases. BS and EC algorithms failed to produce a feasible solution for several instances. In Table 4.5, instances for which the solutions were infeasible are marked as NF. For such instances, the ECK algorithm produces best solutions. For instances where feasible solutions were found using the BS and EC algorithms, the ECK algorithm produces solutions that are in several orders of magnitude lesser in terms of value of objective function. However, these best solutions are obtained at the expense of higher computation time. In Table 4.5 since many infeasible solutions are found using the BS and EC algorithms, we do not show the average savings obtained and mark those fields as NA. For some instances 7, 10, 11, 13, and 26, the EC algorithm performs better than the ECK algorithm. The reason is that using the modified K-means algorithm as initial solution causes the ECK algorithm to converge prematurely. For instances such as 19, 23, and 28, the BS algorithm performs better than the EC and ECK algorithms. For the above instances, the supernode construction is not effective. Hence, the BS algorithm that examines independent customers is more effective.

Similarly from Table 4.6 i.e., 200 customers case results, it can be observed that the EC and ECK algorithms outperform the BS algorithm. BS algorithm produces infeasible solutions for some instances. Such instances are marked as NF. However, both EC and ECK algorithms produce best solutions for the same instances. The ECK algorithm generates the highest number of best solutions compared to the BS and EC algorithms. Specifically, the BS and EC algorithms produce 2 and 4 best solutions, respectively, whereas, the ECK algorithm produces 24 best solutions. Comparing the performance of the EC algorithm with the ECK algorithm, we find that the ECK algorithm on
an average produces 1% saving over the solutions produced by the EC algorithm, and with lesser computation time. ECK algorithm on an average produces 36% savings in terms of computation time over the EC algorithm. Hence, we can conclude that the ECK algorithm produces better average savings than the EC algorithm, and with lesser computation time.

To summarize from Tables 4.4 - 4.6, it can be concluded that in terms of computational cost, the EC algorithm performs better than the BS algorithm, and the ECK algorithm performs the best. However, the improvement in performance in terms of cost is at the expense of higher computation time. Also, ECK algorithm generates better solutions than those generated by the EC algorithm with lesser computation time. Hence, we can conclude that the ECK algorithm performs best under tight constraints because it uses the modified K-means for the initial solution and the complex neighborhood structure construction using ejection chain coupled with supernodes. Further, we can conclude that complex neighborhoods are essential to enhance the performance when tighter constraints such as capacity limitations are considered. Hence, the improvement in performance in terms of cost that the ECK and EC algorithm produce over the BS algorithm (as described also in Section 5.3) is significantly greater than the improvement in performance that KMS produces over the BS algorithm (as described also in Section 5.2). However, the improvement in performance in these cases is obtained again at the expense of higher computational time.
Table 4.4: Results with capacity constraints for instances with 50 customers

<table>
<thead>
<tr>
<th>Instance</th>
<th>BS Cost</th>
<th>Time (secs)</th>
<th>EC Cost</th>
<th>Time (secs)</th>
<th>ECK Cost</th>
<th>Time (secs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5053</td>
<td>2.34</td>
<td>5056</td>
<td>8.22</td>
<td>5053</td>
<td>7.35</td>
</tr>
<tr>
<td>2</td>
<td>5185</td>
<td>2.44</td>
<td>5185</td>
<td>8.44</td>
<td>5185</td>
<td>13.49</td>
</tr>
<tr>
<td>3</td>
<td>5056</td>
<td>2.59</td>
<td>4694</td>
<td>12.45</td>
<td>4699</td>
<td>11.64</td>
</tr>
<tr>
<td>4</td>
<td>5722</td>
<td>3.08</td>
<td>5429</td>
<td>7.64</td>
<td>5393</td>
<td>9.20</td>
</tr>
<tr>
<td>5</td>
<td>5180</td>
<td>2.97</td>
<td>5108</td>
<td>11.56</td>
<td>5108</td>
<td>8.48</td>
</tr>
<tr>
<td>6</td>
<td>5217</td>
<td>3.03</td>
<td>5217</td>
<td>7.99</td>
<td>5182</td>
<td>6.88</td>
</tr>
<tr>
<td>7</td>
<td>5029</td>
<td>1.94</td>
<td>5029</td>
<td>8.34</td>
<td>5029</td>
<td>8.81</td>
</tr>
<tr>
<td>8</td>
<td>5379</td>
<td>2.13</td>
<td>5693</td>
<td>7.41</td>
<td>5299</td>
<td>11.22</td>
</tr>
<tr>
<td>9</td>
<td>5602</td>
<td>2.20</td>
<td>5321</td>
<td>9.72</td>
<td>5318</td>
<td>10.68</td>
</tr>
<tr>
<td>10</td>
<td>5217</td>
<td>2.36</td>
<td>5231</td>
<td>11.33</td>
<td>5217</td>
<td>9.33</td>
</tr>
<tr>
<td>11</td>
<td>5099</td>
<td>2.33</td>
<td>5142</td>
<td>8.53</td>
<td>5089</td>
<td>9.47</td>
</tr>
<tr>
<td>12</td>
<td>5365</td>
<td>2.45</td>
<td>5056</td>
<td>8.24</td>
<td>5365</td>
<td>10.38</td>
</tr>
<tr>
<td>13</td>
<td>5346</td>
<td>1.99</td>
<td>5390</td>
<td>12.24</td>
<td>5400</td>
<td>8.70</td>
</tr>
<tr>
<td>14</td>
<td>5012</td>
<td>2.75</td>
<td>5012</td>
<td>13.17</td>
<td>5012</td>
<td>11.45</td>
</tr>
<tr>
<td>15</td>
<td>5207</td>
<td>2.38</td>
<td>5160</td>
<td>12.69</td>
<td>5154</td>
<td>7.89</td>
</tr>
<tr>
<td>16</td>
<td>5003</td>
<td>1.95</td>
<td>5003</td>
<td>9.48</td>
<td>5003</td>
<td>10.73</td>
</tr>
<tr>
<td>17</td>
<td>6484</td>
<td>3.13</td>
<td>6164</td>
<td>11.61</td>
<td>5812</td>
<td>13.87</td>
</tr>
<tr>
<td>18</td>
<td>5727</td>
<td>2.89</td>
<td>5877</td>
<td>11.56</td>
<td>5785</td>
<td>7.69</td>
</tr>
<tr>
<td>19</td>
<td>5441</td>
<td>3.66</td>
<td>5441</td>
<td>12.83</td>
<td>5441</td>
<td>11.91</td>
</tr>
<tr>
<td>20</td>
<td>5332</td>
<td>2.02</td>
<td>5332</td>
<td>8.19</td>
<td>5332</td>
<td>8.58</td>
</tr>
<tr>
<td>21</td>
<td>5317</td>
<td>2.20</td>
<td>5308</td>
<td>9.80</td>
<td>5308</td>
<td>14.09</td>
</tr>
<tr>
<td>22</td>
<td>5032</td>
<td>2.86</td>
<td>5065</td>
<td>10.30</td>
<td>5024</td>
<td>8.15</td>
</tr>
<tr>
<td>23</td>
<td>4842</td>
<td>3.50</td>
<td>4842</td>
<td>11.99</td>
<td>4837</td>
<td>11.25</td>
</tr>
<tr>
<td>24</td>
<td>4899</td>
<td>2.38</td>
<td>4970</td>
<td>8.31</td>
<td>4899</td>
<td>9.86</td>
</tr>
<tr>
<td>25</td>
<td>5505</td>
<td>2.61</td>
<td>5609</td>
<td>7.69</td>
<td>5505</td>
<td>10.30</td>
</tr>
<tr>
<td>26</td>
<td>5445</td>
<td>3.06</td>
<td>5456</td>
<td>22.63</td>
<td>5404</td>
<td>19.92</td>
</tr>
<tr>
<td>27</td>
<td>5171</td>
<td>2.69</td>
<td>5171</td>
<td>11.33</td>
<td>5138</td>
<td>8.06</td>
</tr>
<tr>
<td>28</td>
<td>5428</td>
<td>2.44</td>
<td>5411</td>
<td>14.08</td>
<td>5299</td>
<td>8.90</td>
</tr>
<tr>
<td>29</td>
<td>5666</td>
<td>2.05</td>
<td>5285</td>
<td>12.91</td>
<td>5109</td>
<td>20.70</td>
</tr>
<tr>
<td>30</td>
<td>5674</td>
<td>2.03</td>
<td>5546</td>
<td>7.75</td>
<td>5554</td>
<td>10.66</td>
</tr>
</tbody>
</table>

Average | 5321.17 | 2.55 | 5273.43 | 10.61 | 5231.77 | 10.65 |

Average Savings (%) | NA | NA | 0.90 | -316.08 | 1.68 | -317.65 |

Best Solutions | 1 | NA | 3 | NA | 15 | NA |
Table 4.5: Results with capacity constraints for instances with 100 customers

<table>
<thead>
<tr>
<th>Instance</th>
<th>BS Cost</th>
<th>Time (secs)</th>
<th>EC Cost</th>
<th>Time (secs)</th>
<th>ECK Cost</th>
<th>Time (secs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9368</td>
<td>13.41</td>
<td>8966</td>
<td>104.33</td>
<td>8955</td>
<td>88.40</td>
</tr>
<tr>
<td>2</td>
<td>10211</td>
<td>17.94</td>
<td>9295</td>
<td>125.58</td>
<td>9211</td>
<td>66.95</td>
</tr>
<tr>
<td>3</td>
<td>NF</td>
<td>NA</td>
<td>9267</td>
<td>107.02</td>
<td>8963</td>
<td>73.61</td>
</tr>
<tr>
<td>4</td>
<td>NF</td>
<td>NA</td>
<td>9330</td>
<td>68.17</td>
<td>9226</td>
<td>27.27</td>
</tr>
<tr>
<td>5</td>
<td>NF</td>
<td>NA</td>
<td>NF</td>
<td>NA</td>
<td>10807</td>
<td>32.19</td>
</tr>
<tr>
<td>6</td>
<td>NF</td>
<td>NA</td>
<td>NF</td>
<td>NA</td>
<td>10265</td>
<td>63.70</td>
</tr>
<tr>
<td>7</td>
<td>8836</td>
<td>16.19</td>
<td>8736</td>
<td>102.23</td>
<td>8891</td>
<td>62.25</td>
</tr>
<tr>
<td>8</td>
<td>8891</td>
<td>16.83</td>
<td>8560</td>
<td>102.41</td>
<td>8518</td>
<td>37.83</td>
</tr>
<tr>
<td>9</td>
<td>10059</td>
<td>28.99</td>
<td>9654</td>
<td>142.72</td>
<td>9509</td>
<td>73.06</td>
</tr>
<tr>
<td>10</td>
<td>9942</td>
<td>25.91</td>
<td>9043</td>
<td>99.88</td>
<td>9970</td>
<td>24.36</td>
</tr>
<tr>
<td>11</td>
<td>11242</td>
<td>176.34</td>
<td>9731</td>
<td>41.47</td>
<td>9882</td>
<td>123.98</td>
</tr>
<tr>
<td>12</td>
<td>8403</td>
<td>54.64</td>
<td>8306</td>
<td>37.30</td>
<td>8212</td>
<td>14.88</td>
</tr>
<tr>
<td>13</td>
<td>8770</td>
<td>40.58</td>
<td>8462</td>
<td>120.16</td>
<td>8750</td>
<td>27.75</td>
</tr>
<tr>
<td>14</td>
<td>9561</td>
<td>27.38</td>
<td>10299</td>
<td>73.58</td>
<td>9549</td>
<td>67.94</td>
</tr>
<tr>
<td>15</td>
<td>NF</td>
<td>NA</td>
<td>NF</td>
<td>NA</td>
<td>10588</td>
<td>110.80</td>
</tr>
<tr>
<td>16</td>
<td>10599</td>
<td>24.86</td>
<td>8628</td>
<td>122.61</td>
<td>8545</td>
<td>193.90</td>
</tr>
<tr>
<td>17</td>
<td>NF</td>
<td>NA</td>
<td>NF</td>
<td>NA</td>
<td>17120</td>
<td>36.34</td>
</tr>
<tr>
<td>18</td>
<td>NF</td>
<td>NA</td>
<td>NF</td>
<td>NA</td>
<td>8836</td>
<td>66.66</td>
</tr>
<tr>
<td>19</td>
<td>9261</td>
<td>31.44</td>
<td>9377</td>
<td>99.08</td>
<td>9769</td>
<td>45.91</td>
</tr>
<tr>
<td>20</td>
<td>8780</td>
<td>15.22</td>
<td>8441</td>
<td>63.33</td>
<td>8426</td>
<td>73.06</td>
</tr>
<tr>
<td>21</td>
<td>NF</td>
<td>NA</td>
<td>NF</td>
<td>NA</td>
<td>10824</td>
<td>35.63</td>
</tr>
<tr>
<td>22</td>
<td>NF</td>
<td>NA</td>
<td>24920</td>
<td>58.05</td>
<td>9824</td>
<td>46.56</td>
</tr>
<tr>
<td>23</td>
<td>9351</td>
<td>15.59</td>
<td>9364</td>
<td>84.25</td>
<td>9476</td>
<td>274.67</td>
</tr>
<tr>
<td>24</td>
<td>NF</td>
<td>NA</td>
<td>NF</td>
<td>NA</td>
<td>10365</td>
<td>79.73</td>
</tr>
<tr>
<td>25</td>
<td>NF</td>
<td>NA</td>
<td>10627</td>
<td>68.14</td>
<td>9486</td>
<td>53.30</td>
</tr>
<tr>
<td>26</td>
<td>9189</td>
<td>14.49</td>
<td>8899</td>
<td>59.09</td>
<td>9238</td>
<td>181.20</td>
</tr>
<tr>
<td>27</td>
<td>NF</td>
<td>NA</td>
<td>9011</td>
<td>80.39</td>
<td>8606</td>
<td>71.38</td>
</tr>
<tr>
<td>28</td>
<td>8600</td>
<td>21.13</td>
<td>8913</td>
<td>67.55</td>
<td>8743</td>
<td>181.70</td>
</tr>
<tr>
<td>29</td>
<td>NF</td>
<td>NA</td>
<td>NF</td>
<td>NA</td>
<td>11752</td>
<td>42.30</td>
</tr>
<tr>
<td>30</td>
<td>16082</td>
<td>44.58</td>
<td>11834</td>
<td>134.94</td>
<td>10055</td>
<td>107.81</td>
</tr>
</tbody>
</table>

Average: NA 19.52 7322.10 65.41 9745.37 79.50
Average Savings (%): NA NA NA NA NA NA
Best Solutions: 3 NA 5 NA 22 NA
Table 4.6: Results with capacity constraints for instances with 200 customers

<table>
<thead>
<tr>
<th>Instance</th>
<th>BS</th>
<th>EC</th>
<th>ECK</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cost</td>
<td>Time (secs)</td>
<td>Cost</td>
</tr>
<tr>
<td>1</td>
<td>20556</td>
<td>114.38</td>
<td>20419</td>
</tr>
<tr>
<td>2</td>
<td>20324</td>
<td>120.48</td>
<td>20030</td>
</tr>
<tr>
<td>3</td>
<td>20345</td>
<td>99.97</td>
<td>20586</td>
</tr>
<tr>
<td>4</td>
<td>20434</td>
<td>123.14</td>
<td>20813</td>
</tr>
<tr>
<td>5</td>
<td>NF</td>
<td>NA</td>
<td>20348</td>
</tr>
<tr>
<td>6</td>
<td>NF</td>
<td>21115</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>22531</td>
<td>168.33</td>
<td>21382</td>
</tr>
<tr>
<td>8</td>
<td>NF</td>
<td>20196</td>
<td>557.69</td>
</tr>
<tr>
<td>9</td>
<td>19689</td>
<td>196.06</td>
<td>19663</td>
</tr>
<tr>
<td>10</td>
<td>20453</td>
<td>163.24</td>
<td>20413</td>
</tr>
<tr>
<td>11</td>
<td>20426</td>
<td>219.69</td>
<td>20503</td>
</tr>
<tr>
<td>12</td>
<td>19771</td>
<td>270.36</td>
<td>19912</td>
</tr>
<tr>
<td>13</td>
<td>20405</td>
<td>193.09</td>
<td>20096</td>
</tr>
<tr>
<td>14</td>
<td>20730</td>
<td>264.16</td>
<td>19994</td>
</tr>
<tr>
<td>15</td>
<td>66103</td>
<td>129.14</td>
<td>20951</td>
</tr>
<tr>
<td>16</td>
<td>21188</td>
<td>170.73</td>
<td>20557</td>
</tr>
<tr>
<td>17</td>
<td>20167</td>
<td>180.63</td>
<td>20064</td>
</tr>
<tr>
<td>18</td>
<td>21156</td>
<td>209.78</td>
<td>20839</td>
</tr>
<tr>
<td>19</td>
<td>19874</td>
<td>186.88</td>
<td>20338</td>
</tr>
<tr>
<td>20</td>
<td>20847</td>
<td>153.83</td>
<td>20189</td>
</tr>
<tr>
<td>21</td>
<td>20511</td>
<td>180.00</td>
<td>20507</td>
</tr>
<tr>
<td>22</td>
<td>20850</td>
<td>133.75</td>
<td>20539</td>
</tr>
<tr>
<td>23</td>
<td>NF</td>
<td>20112</td>
<td>731.78</td>
</tr>
<tr>
<td>24</td>
<td>20720</td>
<td>157.13</td>
<td>20760</td>
</tr>
<tr>
<td>25</td>
<td>20345</td>
<td>124.47</td>
<td>20631</td>
</tr>
<tr>
<td>26</td>
<td>NF</td>
<td>22031</td>
<td>410.75</td>
</tr>
<tr>
<td>27</td>
<td>20845</td>
<td>198.67</td>
<td>20636</td>
</tr>
<tr>
<td>28</td>
<td>19976</td>
<td>201.41</td>
<td>20052</td>
</tr>
<tr>
<td>29</td>
<td>20453</td>
<td>176.84</td>
<td>21784</td>
</tr>
<tr>
<td>30</td>
<td>21059</td>
<td>138.61</td>
<td>21090</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Average</th>
<th>BS</th>
<th>EC</th>
<th>ECK</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NA</td>
<td>142.49</td>
<td>20551.67</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Average Savings (%)</th>
<th>BS</th>
<th>EC</th>
<th>ECK</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Best Solutions</th>
<th>BS</th>
<th>EC</th>
<th>ECK</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>NA</td>
<td>4</td>
<td>NA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Best Solutions</th>
<th>BS</th>
<th>EC</th>
<th>ECK</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>NA</td>
<td>4</td>
<td>NA</td>
</tr>
</tbody>
</table>
Chapter 5

Conclusions and Future Work

This thesis addressed the problem of meeting the multi-period demands of geographically distributed customers using a tabu search heuristic. The solution used a customer clustering strategy that included the K-means clustering algorithm for initial solution construction, and three advanced neighborhood search algorithms: (i) shift move, (ii) shift move with supernodes, and (iii) ejection chain with supernodes, to accelerate convergence. In addition, two variants were developed to handle the two cases where the capacity constraints of the vehicles at the warehouse may or may not be given. We evaluated our solution and compared the utility of the three neighborhood search algorithms using simulations on a well-known set of multi-period customer demand instances. Our performance evaluation results demonstrated that using the K-means clustering algorithm greatly aids the faster convergence of the final solution. Also, when capacity constraints are not considered, the shift move with supernodes algorithm produces notable time savings in comparison with standard neighborhood search algorithms such as shift move. Further, when capacity constraints are considered, the ejection chain with supernodes algorithm produces best solutions for cases where solutions using shift move algorithm are infeasible. For feasible solution cases using the shift moves algorithm, the ejection chain with supernodes algorithm produces significant cost savings at the expense of added computation time.
Future work could further investigate adaptive adjustment methods for computing the penalty factor dynamically during clustering under capacity constraints. It is believed that such an investigation could produce better savings in terms of cost and time for the ejection chain with supernodes algorithm. Further, one may apply extensive intensification and diversification strategies such as adaptive memory structures, and path re-linking similar to (Pacheco, 2005) for extensive exploration of the search space. More exploration capabilities will avoid the cases of premature convergence of solutions in our ejection chain with modified K-means algorithm.
Bibliography

