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ABSTRACT

Patel Vinit A. M.S.Egr., Department of Biomedical and Human Factor Engineering,
Wright State University, 2008. Biomechancial Evaluation Of Locked And Non-Locked
Construct With Axial And Torsional Loading.

Locking compression plates are proven to be safe for use in open reduction and in-

ternal fixation (ORIF). The ORIF is a procedure performed to treat fractures. It has

various combinations of holes, the system provides more options for clinicians to use

either locking screw or non-locking screws. This thesis investigates and determines

the best construct with special locking and non-locking screws under both axial and

torsion loading. Twenty femur constructs were assembled with 2 cm osteotomy gap

between femur shaft and condyle, bridged with 4.5 mm - 10 holes condyle plates. Fe-

murs were divided in to 4 groups according to screw types and where they were placed.

All screws were tightened to 4 Nm torque with a torque meter. Axial loads of -50 N

to -700N and ±5 degree rotation were applied for 50,000 cycles. Loosening torques of

screws, stiffness and displacement of constructs were measured. Finite element analy-

sis (FEA) was performed on locking plate and screws based on computed tomography

images and Solidworks models. Analytical simulations were run under static and lim-

ited dynamic conditions were investigated with the experimental results. Axial load

was applied and stresses induced were measured on the simulated models. Locking

screw increased the torsional resistance of adjacent non-locking screw. Deformation

and torsional stiffness in constructs with two locking screws were higher compared

to one locking screw after 50,000 cycles. Locking screws increased flexibility of the

constructs allowing reduction in osteotomy gap. FEA results show plate with locking

screws induced lower von Mises stress compared to plate with non locking screws.

This study concluded that among hybrid locked plated constructs, constructs with

two locking screws provided more stability, flexibility and durability under various

loading. A locking screw near the fracture gap increases axial and torsional strength

of locking plated system and increased torsional strength of all the other screws.
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Introduction

Osteoporosis affects 24 millions of Americans specially women over 45 years of age

[1]. Osteoporosis decreases thickness of bone and increases porosity, which cause

bone fracture especially in hip and femur. It decreases the holding strength of the

fixation devices (screws). Recent studies recommend use of locking compression plate

(LCP) for osteoporotic bone fracture [2, 3]. Conventional plating system depends

upon holding strength of bone material where LCP uses locking head screws which

reduces construct’s reliance on bone strength. LCP follows all AO (Arbeitsgemein-

schaft Osteosunthesetragen) principles, creating a toggle free and fixed-angle con-

struct. Minimally invasive plate osteosynthesis technique allows LCP to be inserted

pain free avoiding open reduction and tissue damage [4]. LCP has lowered malunion

rates in metaphyseal and diphyseal fractures [5]. LCP also contains combination holes

system which can house both types of locking and conventional screws. Many studies

have been reported to test LCP stability under axial and torsion loading [6, 7, 8].

Data on the biomechanical and clinical performance of LCP are encouraging though

cases of malunions have been reported. Failure by implant loosening, screw pull out,

infections, crack development are usually seen [9, 10, 11]. Still few biomechanical

factors such as a screw insertion torque, number and type of screw to be used, length

of plate, which screw combination to use in hybrid plating technique, are unclear to

clinicians.

This thesis explored relation between biomechanical properties of LCP and their
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effects on LCP behavior. Both experimental and analytical tests were performed un-

der axial and torsion conditions simulating in vivo conditions. Experimental analysis

was conducted at Miami Valley Hospital, Dayton. 20 synthetic femurs with locking

compression plate and screws were tested on EnduraTECH biomechanical test ma-

chine. Their insertion torque, loosening torque, axial and torsion stiffness, change

in displacement were measured. Analytical testing was performed using 3D models

created using MIMICS and Solidworks based on CT scan images. Finite Element

Analysis was conducted using ANSYS applying axial loading on prepared simulated

3D models.

This thesis provides background information about bone fracture, treatment, lock-

ing compression plate and FEA analysis. Literature review of locking compression

plate has been portrayed to create better understanding of fixation concepts and its

biomechanical behavior. Experimental set up and analytical methods are described in

experiments and methods and their results are presented in detail. Obtained results

are discussed such as insertion torque, number of screws, screw type, screw placement

to use in clinical settings.



2

Background

2.1 Bone Anatomy

Humans have 206 distinct bones in their skeleton system [12]. They are composed of

collagen fibers impregnated with mineral salts. There are mainly three types of bone

tissue: Compact tissue, Cancellous tissue and Subchondral tissue (Figure-2.1) [13].

Figure 2.1: Anatomy of bone showing three bone tissues [13].

Compact tissue creates harder layer outside. Cancellous tissue is sponge-like which

provides better elasticity to the bone. Subchondral tissue contains cartilage helpful

to develop bones in children. Blood cells, blood vessels and nerves are enclosed in

3



2.2. BONE FRACTURE 4

the solid matrix. Compact and cancellous tissue together forms periosteum which

produces canals and tunnels for blood vessels to pass and supplies nourishment to

the bone. Bone provides shape and proper structural system for body movements.

Also it stores the marrow and minerals, to develop blood cells [14].

2.2 Bone Fracture

Bone has potential to fail when applied a larger external forces. When large amount

of impact occurs on bone, it looses integrity and fracture of bone occurs. The crack

or break due to fracture makes a bone bleed and the swelling causes pain. Also nerve

fibers surrounding the bone gets damaged. Bone fracture may occur due to diseased

conditions like cancer or osteoporosis. Fracture can be divided in number of types.

Figure 2.2: Types of fracture. Simple fracture are seen common where open fractures are hard to

treat. Comminuted fracture requires insertion of fixation device. Where compound fractures can be

healed with fixation paltes [15,16].

As shown in Figure-2.2, simple fracture involves one fracture line through bone

and compound fracture contains broken bone, which fragments out and penetrates

the skin. Skin remains intact in closed fracture. Open fracture involves skin damage

and bone fragmentation. Simple and closed fractures are easy to treat rather than

multi fragmentary compound fracture [17]. Diseased fractures are called pathological

fracture [18].



2.3. BONE HEALING 5

2.3 Bone Healing

Bone healing is a physiological process that restores the bone to its original shape.

This process takes a varied time depending upon the fracture usually two weeks to

two years [19]. Fracture healing restores tissue to its original physical and mechanical

properties without creating any inflammation and damage to the surrounding tissue

and organs. Healing occurs in three different phases: reactive phase, reparative phase

and remodeling phase [20]. Reactive phase is subdivided in to fracture and inflamma-

tory phase and granulation tissue formation phase. Reparative phase is subdivided

in to callus formation phase and lamellar bone deposition phase.

Figure 2.3: Bone Healing Process: (A) Fracture inflammatory stage where blood clotting occurred.

(B) Granualation tissue formation. (C) Reparative phase where callus and lamellar bone develops.

(D) Remodelling phase [20]

1. Fracture and Inflammatory Phase :

Within the hour of injury, blood cells within the damage tissue start to clot around

the injured area and stop the blood bleeding. Extra vascular blood cells known

as ’hematoma’ causes the blood to clot.
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2. Granulation tissue formation :

Adjacent to the injury area the fibroblast survive and start to infiltrate. They

form a loose aggregate of cells with capillary sprouts, known as granulation tissue

(Figure-2.3(A)).

3. Callus formation :

Granulation tissue keeps forming day after fracture. In the meantime cells of the

periosteum also start replicating. The periosteum cells proximal to the fracture

gap developed into chondroblasts and form hyaline cartilage. The periosteal cells

distal to the fracture gap develop into osteoblast and form woven bone. Fibroblasts

in the granulation tissue also develop into chondroblasts and hyaline cartilage.

This tissue growth develops the new form of fracture bone known as the ”fracture

callus”. As shown in Figure-2.3(C), callus is formed by connective tissue and

cartilage tissue’s combination. It temporarily binds and stabilizes bone.

4. Lamellar bone deposition :

With respect to the woven bone the bony substitution and hyaline cartilage passes

through the process known as endochondral ossification and form the lamellar

bone. Osteoblasts form the new lamellar bone upon the recently exposed surface

of mineralized marix and start to form trabacular bone. This trabacular bone

starts to restore the same bone’s original strength.

5. Remodeling of the bone :

In this process trabacular bone starts to convert in to compact bone (Figure-

2.3(D)). Shallow resorption pit known as ”Howship’s Lacuna” created by osteo-

clasts resorb the trabacular bone and eventually callus is remodeled in to the

bone’s original shape and strength [20].



2.4. INTERNAL FIXATION 7

2.4 Internal Fixation

During a fracture, bone passes through healing process, it also needs support to bear

the load and movements of the body. Over the decades external fixation has been

used to provide support from outside the body. It is easy and fast also non operative

approach. It fails to heal the complex fracture or multi fragmentary fractures. In

those cases internal support becomes necessary for the bone. AO was asked to list

the most significant advances in the orthopedic treatment during 20th century and

they ranked development in internal fixation high on the list [21]. Because of the

development of the new biocompatible materials like stainless steel, cobalt-chromium

and titanium alloys, internal fixation by metallic implants became feasible. Internal

fixation devices work on the principle of load sharing. It provides support until bone

is fully healed, or can be kept during the life time of a recipient.There are many types

of internal fixation devices available in the market.

1. Wires and Pins:

Mainly used for the fracture of the small bones e.g. of the foot or hand where

large fixation devices are difficult to insert.

2. Plates:

In case of metaphyseal fracture or too large bone fracture plates are useful. It

works as the splint as external fixation device. It is inserted through the screws

and fixation is achieved with the resistance force between the screw and plate.

3. Screws:

Screws can be implanted without plate to cure fracture. In any joint fracture

or uneven surfaces like knee joint hip joint, pelvis etc, screws are easy option.

Biodegradable screws are also available in the market so that second orthopedic

surgery can be avoided.

4. Rods:
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When bone weakens or looses its strength to sustain load, rods are inserted in to

the long bones to provide functional support.

2.5 Locking Compression Plate

Working as an internal fixator, locking compression is used to treat bone fracture

with the anatomical reduction technique. It is a combination hole plate based on

bridge conventional plate and PC-Fix internal fixation plate. LCP does not make

contact with the bone reducing vascular damage. Locked screws do not allow screw

toggling. LCP provides the rigid fracture fixation which is useful to heal osteoporotic

bone fracture.

2.6 Finite Element Analysis (FEA)

Finite element analysis is a numerical method to find approximate solutions of the

partial differential equations as well as of integral equations [22] . Finite element

analysis was first developed in 1943 by R.Couraut [23]. From then it continues to

develop. FEA is based on the numerical solution so it requires better computer. With

super computers it’s easy to get satisfactory results from the FEA tools. FEA uses

a complex system of nodes and also with those nodes it makes a grid called mesh.

Converting the mesh elements in to small distributed area and finding mechanical

properties of all the elements with FEM method. With the help of FEA structural,

vibration, fatigue, heat transfer analysis are possible. It is important tool mainly

used in the new product design and existing product refinement programs..

2.7 CT Scan based Finite Element Analysis

CT scan imaging creates transverse slices of the object. All these slices contain the

transverse properties of the object. If all these slices stacked from top to bottom,

then joining them, it generates the surface 3D model of the object. With the help
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of surface extraction technique and digital signal processing, perfect geometry of the

object can be obtained [24]. This 3D model is transferred to FEA tool and can be

analyzed.



3

Overview of locking compression

plate

3.1 AO principle for internal fixation

A swiss group of surgeons began a study group called AO (Arbeitsgemeinschaft Os-

teosunthesetragen) in 1958 [25]. That group analyzed and exchanged information to

improve the art of internal fixation. AO developed the four principles, summarized

below, to achieve full, active and pain free mobilization of fractures.

1. Anatomic Reduction :

Fixation device should not affect the anatomic structure of the bone by creating

unnecessary loads or friction.

2. Stable Fixation :

While fixed, fixation device must remain stable against external loads and move-

ments, specially maintaining angular stability under torsional loading conditions.

3. Preservation of blood Supply :

Plate to bone contact should be kept minimal so that it doesn’t interrupt the

blood supply to the bone.

4. Early mobilization :

10



3.2. EVALUATION OF LCP PLATE 11

It must have proper environment and design to regain fixation as early as possible

without creating inflammation.

3.2 Evaluation of LCP Plate

In 1895 about 110 years ago, Lane first developed the fixation plate for internal fix-

ation but it failed because of corrosion [26]. Lambotte in 1909 and Sherman in 1912

continued Lane’s work but failed to come up with better design [26]. Eggers’s plate

developed in 1948 failed because of screw sliding between two long slots [26]. Danis

designed the plate that he called ’Coapteur’ in 1949. His revolutionary concept of

fixation with compression influenced all the subsequent plate designs [26]. Muller in

1965 presented a design with the concept of intra fragmentary compression by tight-

ening a tensioner [26]. In 1967 Schenk Willengegger developed the DCP (Dynamic

Compression Plate) refereeing the Bagby and Jane’s plate design [26]. Though DCP

plate proved better because of its compression fixation still scientists were looking for

improvements [27]. DCP did not provide enough rigidity and delayed union had been

reported. Detectable fracture gap caused high stresses after plate removal. Com-

pression plate (DCP) does not fit the bone anatomically resulting in the fracture

dislocation. It does not allow the fixed angled screw to the fracture line. That in-

troduces shear forces and loss of reduction. Cases of screw toggling had been seen

consistently because of the secondary loss of reduction under axial loading [27]. DCP

plate compressed the periosteum under the plate interrupting the blood supply to

the bone. Overall DCP plates failed to assure AO principles. PC-Fix plates are nar-

row plates that have a designed undersurface which allows only points of the plate

to be in contact with bone. It reduces the vascular damage of the bone allowing

early bone healing [27]. PC-Fix was developed by Tepic. Two AO Principles, stable

fixation and anatomic reduction, are not achieved fully with PC Fix plates [28,29].

LISS (Less Invasive Stabilization System) plates are developed specially to obtain the

fracture healing of distal femur, supracondylar fracture and intra medullar fractures

[30,31,32]. It contains the threaded screws with the thread plate hole. It was designed
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to heal the long bone fractures like femur. In 1990 group of doctors from Davos of

Switzerland developed the locking compression plate with combined concept of DCP,

PC-FIX and LISS plate[ 33,34]. LCP plate contains the undersurface like PC-FIX

plates and threaded hole like LISS plates. To improve the fixation, a combination

hole system was designed in LCP plates. It can house both locking and non locking

screws depending upon the fracture type and bone rigidity. LCP plates can be oper-

ated as DCP, LISS or combination hole plate. By making a correct choice in using

LCP plates significant improvements in clinical outcomes can be achieved [35].

3.3 Locking Screw

Locking plates are designed such a way that it can house two types of screws locking

and conventional screws. Four types of screws may be inserted on LCP, standard

cancellous screw, standard cortical screw, self-drilling screws and self tapping screws

[4]. Conventional screws function by pressing the plate to the bone and creating

friction at the interface of plate and bone. Screws of conventional plate are subject

to minimal bending load. Locking head screws does not press the body towards the

bone, so it transfers more bending load then conventional screws.

Figure 3.1: Locking screw with threaded screw head and self tapping drilling end (Left). Angular

stability of locking screw compared to non-locking screws (Right) [36].

Screws can be either monocortical or bicortical [37]. Monocortical screw pene-

trates only one cortex of bone where bicortical penetrate through both the cortices.

Generally self drilling screws are used as monocortical and self-tapping screws as bi-
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cortical screws [4]. When bone is loaded, the bending force is applied on the screws

which generates shear force. When axial load is more than friction force screws starts

to toggle due to shear forces. The toggle depends on the contact between bone and

plate, and quality of bone. Locking screws act as a spike fixed to the bone when load

is applied not allowing screws to toggle [38].

3.4 Mechanics Of LCP Plate

Fixation in conventional plate depends on the friction acting between plate and bone.

Generally this friction causes compressive load on fracture fragments and primary

bone healing takes place [39]. As shown in Figure-3.2 force F1 is generated by tight-

ening screw and compressive force F2 is generated on the bone. Due to these two

loads friction force F3 develops between bone and plate that leads to stable plate

fixation. Plate and screw remain stable until axial force F4 can’t exceed friction force

F3. The friction force F3 is equal to the sum of torques on each of the screws. So

the axial load F4 is proportional to the sum of torques in each screw. As axial load

F4 increases, torque in screws starts decreasing, causing screw toggle, unstable plate

fixation [40]. Locking plate and locking screw follow the all four AO Principle.

Figure 3.2: Mechanics of LCP plate [36]

Where,

F1 - Force to tighten screw in to bone.

F2 - Reaction force developed because of force F1.

F3 - Friction force between plate and bone due to F2.
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F4 - Axial load.

Once locking screws are engaged with the plate no further tightening is possible

so implant locks in to the bone and does not allow any degree of anatomic reduction

[41]. Locking plates allow the screws to be inserted perpendicular to the axis so it

transmits the axial load over the length of the plate. It minimizes the toggling of the

screw and provides absolute stability. Locking plate contains point-contact underface

that reduces the compression of plate on to bone. That protects the periosteum and

the blood supply to the bone is preserved [42]. As shown in Figure-3.3 LCP fulfilled

all AO principles. Fixed angle construct and hybrid hole technique facilitates early

callus formation and creates an environment for bone healing and early mobilization.

Figure 3.3: Locking plates gratify AO principles. (1) Primary Loss of reduction. (2) Absolute

stability. (3) Preservation of blood supply under periosteum [36].

3.5 Factors affecting LCP Behavior

3.5.1 Plate material selection

According to the ASTM volume 04-012170-54, biocompatibility of the bone plate is

the first clinical priority of the surgeons before implanting any device and biocom-

patibility of the implant depends upon the material selection [43]. For in vitro use
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of implant, ASTM has decided certain standards. In-vivo conditions for any ortho-

pedic implants are complex. For the orthopedic implant, commonly used materials

are metal, ceramic, polymer, composites etc. Metal is the first choice for the internal

fixation because of its high elastic modulus and excellent tensile properties. There are

several factors to be taken care of before choosing material like corrosion, stiffness,

Young’s modulus, tensile strength, metal sensitivity etc.

Common disadvantage of metal is its corrosion behavior when implanted inside the

body [44]. Metal ions and chemicals in tissue initiate the chemical reaction on implant

surface causing corrosion. Most common cause of corrosion is difference of metals at

plate screw interface [4]. Load bearing surfaces may also cause fretting corrosion.

Plate screw interface corrosion is galvanic corrosion. Another factor is stiffness of

the plate and screw. Plate faces static and cyclic loading in vivo which generates

extremely complicated stress system in the device [45]. Stiff plate does not generate

enough stress on the bone area making that part weaker than bone without plate. This

phenomenon called as stress shielding and causes osteopenia [43]. So materials with

good stiffness must be considered for use in bone plate. Materials with low modulus

elasticity do not provide enough rigidity to the bone to heal the fracture and material

with high elastic modulus increases rigidity and stresses. Stainless steel and titanium

alloy (Ti-6Al-4V) are two ASTM certified materials used for locking compression

plate [45,46,47,49]. Stainless steel is strong, cheap, biocompatible, and relatively

ductile. In recent times use of devices made of Cobalt-Chromium-Molybdenum is

growing because of its higher corrosion resistance and high strength. But they are

very expensive and toxic in ionic form. For the fixation devices stainless steel remains

the best choice. Stainless steel contains chromium and nickel, which cause adverse,

toxic or carcinogenic reactions when these ions come in contact with body fluid, but

with latest technologies these effects are minimized.

Figure 3.4 shows the chemical composition of several stainless steels and titanium

alloys. Preoperative adjustment or bending of the plate causes damage to the plate

which increases the corrosion risk. It is still unclear that hypersensitivity response to
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Figure 3.4: Composition of stainless steel and titanium alloy [4, 51].

metallic biomaterial affects implant performance. As use of metal increases, further

investigation is required to solve this problem [50].

3.5.2 Fracture type

Another factor associated with the plate performance is the fracture type. Selection

of type of the plate is the major consideration for surgeons before implanting fixation

plate. Gautier and Sommer defined guidelines for clinical application of the LCP [52].

As shown in Figure 3.5, concept of plate is used depending upon the fracture

type. Conventional compression plate performs well for normal quality of bone and

fracture with normal or partial contact between fragments. When both ends of bone

fragments are not in contact with each other, bridge plate technique can be used

either with locked or standard screws based the bone quality. Combination technique

is employed for simple oblique or articular fracture with more standard screws and

less number of locking screws. LCP is widely utilized for diphyseal or metaphyseal

fracture with poor bone quality (e.g. osteoporosis).

Selection of LCP plates also depends upon the type of fracture and bone. Different

sizes of plates are used for different bones. For femur fracture fixation 4.5/5.0 LCP

plates are used whereas for acetabular fractures, 3.5 LCP plates are used [52]. Also

depending upon the distal and proximal dimension of bone, a plate is chosen e.g.

4.5/5.0 LCP metaphyseal. There are many other plates available depending upon
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Figure 3.5: Selection of plate concept depends upon Fracture type and Bone Quality [52]

fracture type [52].

3.5.3 Plate Length

MIPO (Minimally Invasive Plate Osteosynthesis) was developed to minimize the soft

tissue damage and decrease non-union or infection. Before MIPO short plates were

used to reduce tissue damage. But with use of MIPO technique, a small incision is

required to place plate and biomechanical behavior was given more priority in reserch.

Plate length is dependent on fracture length and loads being applied to the plate (e.g.

bending, pull out) [4]. The ratio of plate length to fracture length is called plate span

width. [56].

Guatier and Sommer recommended plate span width 2 to 3 for comminuted frac-

ture and 8 to 10 for simple fracture [52]. This suggests that for more comminuted

fracture, a long plate provides better axial and torsion stability than short plate [53].

Working length is the length between two screws of two different fracture fragments
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Figure 3.6: Relation between plate length and fracture length. Plate screw density defined as number

of screws per number of holes in the fracture segment. Total plate screw density is 0.43,which is 6

screws divided by 14 holes [4].

(Figure-3.6). As fracture length is small, working length will be small, so that bone

ends do not come in contact with each other reducing callus formation [54]. More

stresses induced and strain increased during torsion loading as shown in Figure-3.7.

Stresses induced in the plate with 6 mm fracture gap are higher than plate with 1

mm fracture gap. Even stresses in the screw decrease with smaller fracture gap [53].

Stoeffel’s FEA study suggests same results.

3.5.4 Screw type and performance

As mentioned earlier two types of screws are available, monocortical and bicortical.

Selection of type screw depends upon bone type, fracture type, plate type and applied

loads. Working length of the screw is shown in Figure-3.8[52]. In osteoporotic bone

working length is small because of small bone thickness compared to normal bone.

Locking screws are always the choice for osteoporotic bone because of its angular

stability [8, 52]. Small working length decrease torque resistance of the screw and
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Figure 3.7: (A) FEA study suggest stresses induced in 6mm fracture gap size plate is higher (B)

stresses in screws are also higher in 6mm fracture gap plates [53]

it easily failed in torsion loads [4]. Compared to bicortical screw monocrtical screw

has small working length that decreases the torque resistance. When torsion load is

applied, chances of screw pullout increase. Length of monocortical screw must be

kept less than bone diameter otherwise the screw end directly comes in contact with

opposite side of cortex.[52].

Bicortical screw penetrates both the cortices so it increases the torque resistance.

For osteoporotic bone bicortical screws provides more strength. Bicortical screw pos-

sesses sticking out length, which needs to be taken into consideration during implant-

ing that it should not damage the neurovascular system. MIPO allowed biocortical

screw insertion easily. For clinicians, choosing a screw type, screw location and num-

ber of screws to use become important considerations. Studies related to these will

be covered in chapter 6.
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Figure 3.8: (a.c)- for normal bones, working length is higher. (b-d) for osteoporotic bone as thickness

of the bone decrease working length is small and torque resistance to torsion load decrese. (e). Length

of the monocortical screw should not go higher than bone diameter [52].

3.5.5 Clearance

LCP plates have point contact undersurface preserving periosteum blood supply. Con-

ventional plates exert 2000-3000N force when screws are tightened to bone [37]. LCP

plates reduce this load and preserve the blood supply. Reduced contact between bone

and plate also improve the bone growth [55]. But recent studies started researchers

to consider the maximum and minimum distances between plate and bone. Ahmad

et al.(2007) experimented on four constructs with different clearance between plate

and bone [7]. They used DCP plate flush with the bone. Similarly a second construct

was prepared with LCP plate. For third and fourth construct LCP plate was fixed at

distances of 2mm and 5 mm respectively from bone (Figure-3.9).

Two types of tests were performed for each construct. For dynamic testing axial

load of 5-250 N with rotational load of 5 N/s. In the static loading test, incremental

load of 100 N was applied until failure had been achieved. Similarly 0-5N was applied

over 1000 cycles if failure did not occur. As shown in Figure-3.10, LCP with 5mm

clearance requires less axial load to fail compared to LCP flushed plate. Also LCP
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Figure 3.9: Experimental setup of the mechanical study conducted with four different construct. A)

DCP flush plate B) LCP flush plate C) LCP at 2mm from bone D) LCP at 5mm from bone [7].

flushed plate shows better result than DCP plate. Under cyclic loading displacement

and deflection of LCP with 5 mm is far higher than LCP flushed plate. From the

study they recommended to place the plate less than 2 mm distance and do not

flush it on to bone to preserve periosteum blood supply [7]. Stoffel suggested that

by increasing distance of plate 2 mm to 6 mm from bone axial and torsional stability

decreased by 10-15% [53].

Figure 3.10: (A). Axial load to fail for LCP plate with 5mm distance is higher than LCP-O. (B)at

the end of 100 cycles LCP-5 shows higher deflection than LCP-0 [7].
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Experiments and methods

To evaluate biomechanical behavior of locking compression plated constructs, exper-

imental program was undertaken by testing and analytically developed simulations.

4.1 Biomechanical testing at Miami Valley Hospital

Experimental testing was conducted at biomechanics laboratory located in Miami

Valley Hospital, Dayton.

4.1.1 Materials used for testings

Femur shaft as shown in (Figure 4.1) were prepared from epoxy glass fiber made of

shallow cylinder filled with polyethylene (Model 3403, Pacific research Laboratories,

Vashon, USA). These synthetic femurs were used simulating an osteoporotic bone.

Osteoporotic femurs were tested to observe their behavior when LCP plates were ap-

plied. To fit femur firmly in to the grip under torsion loading, femur shaft simulated

by a cylinder was used instead of full femur. This shaft has density of 1.64 gm/cmˆ3

and compressive strength of 157 MPa (Sawbones worldwide). It has an elastic mod-

ulus of 16 GPa and Poisons’ ratio of 0.22 (Sawbones Worldwide). The distal part of

the femur contained a condyle as shown in Figure 4.1. It is made of same material as

shaft. Fracture gap (Osteotomy gap) between condyle and shaft was kept 2 cm.

The devices were supplied by Synthes, PA and were 4.5∗10 mm. These devices

22
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Figure 4.1: Construct prepared for Biomechanical testing with femur shaft, condyle, 10 hole 4.5 mm

LCP plate and 8 locking or non-locking screws.

Figure 4.2: EnduraTEC BOSE machine for mechanical testing at Miami Valley Hospital, Dayton.

Two Acuators with holding grip is shown.
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were used to connect the fracture gap between condyle and shaft. These plates

are designed to heal condyle fracture, osteoporotic bone fracture, malunions and

nonunions of the distal femurs etc. Plate’s head was anatomically shaped to match

the shape of condyle and have six locked screw holes to provide support structure

for entire fracture gap. The plate head accepts the 5.00mm canulated locking screws

(synthes, PA). Four locking screws were inserted in all 20 femurs’ condyle parts as

shown in Figure 4.1. Combination of 4 mm locking screws and 4.5 mm cortex(non-

locking)screws were arranged to fix shaft with LCP plate. Condyler LCP plates

were 278 mm long and made of 316L stainless steel material. All the screws were

of the same material. As shown in Figure-4.2, EnduraTEC Smart SP from BOSE

biomechanical testing machine was used for experimental program. It uses Wintest

control system which allows time control, integrated data control and multichannel

control. Bottom actuator controls torsion command and top actuator provides axial

command. Additionally, two grips were designed (Figure-4.2) for the testing of the

femur which held specimens firmly for both axial and torsion tests as a part of this

research.

4.1.2 Loads

Construct was fixed in the EnduraTEC machine shown in Figure-4.5. Axial load was

applied on the femur shaft through axial actuator and torsion load was applied to the

condyle through bottom actuator.

Axial load applied on the shaft was sine wave. Upper limit was kept at -50N

and lower limit at -700N. Normal load on the femur head was simulating the weight

bearing of a 70 kg person. Torsion load waveform was sinusoidal and its’ limit was

kept -50˚ to 50˚. Rotation of the condyle signified the internal and external rotation

of the femur during normal gait cycle which is 100˚ as shown in Figure 4.3. This

whole movement characterized external and internal rotation of the femur during

normal gait cycle.
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Figure 4.3: Rotation movement of leg and femur during normal gait cycle. It can be either internal

roation or external rotaion.

4.1.3 Groups and constructs

A total of 20 femur constructs was prepared and tested during the study. According

to the screw placement and screw type, all the 20 femur constructs were divided in

four groups. All the groups and their screws were listed in Table-4.1. Five femurs

were plated for each of the 4 groups. Four locking screws were inserted in the condyle

as shown in Figure-4.4. Fracture gap was kept 2 cm in all the femur constructs.

Four screws were inserted in shaft through locking plate. Screw-1 was inserted in

the first hole from the bottom of the osteotomy gap. Screw-2 is in the third, screw-3

in the sixth and screw in the eighth hole for the entire 20 femur construct as shown

in Figure-4.4. Table-4.1 explains which screw type was inserted at which location in

the shaft. Initial torque of all the screws was kept 4 N.m except 3rd femur set in all

groups.

4.1.4 Test setup

As discussed earlier femur shaft was gripped on the axial actuator and condyle on

the rotation actuator. Axial load of -50 to -700N and rotation of +5˚ to -5˚ was
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Figure 4.4: For femur shaft top screw is noted as screw-1,bottom as screw-4, center two screw as

screw-2 and screw-3. 4 locking screws on the condyle remained same for all constructs. Fracture

gap was kept 2 cm for all constructs.

GROUP FFMUR NO. screw-1 screw-2 screw-3 screw-4

1 1,2,3,4,5 Non Locking Non Locking Non Locking Non Locking

2 1,2,3,4,5 Non Locking Non Locking Non Locking Locking

3 1,2,3,4,5 Locking Non Locking Non Locking Non Locking

4 1,2,3,4,5 Locking Non Locking Non Locking Locking

Table 4.1: 20 femur constructs divided in four groups according to their screw location and type

applied for 50,000 cycles with sine wave of frequency 2 Hz. Limit of 0 to -750N was

set for axial command and +10˚ to -10˚ for rotation command.

Tests stopped if they crossed the set limit. If screws got failed or shafts broke,

it induced more displacement and specimen crossed the set limit. The tests ran for

50,000 cycles. Data was acquired at every 250 cycles. Reading of displacement, load,

torque and rotation degree was taken from data acquisition system. At the end of

cyclic tests 50,000 cycles, loosening of torque was measured in all the screws. A

torque meter manufactured by Sharp was procured for this study. From the test

data, stiffness and displacement had been calculated and plotted for all the groups.
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Figure 4.5: Construct fixed in the machine. Femur Shaft was tightened by axial grip and condyle

was fixed through torsion grip.

4.2 Analytical Testing

Second part of the study involved the analytical testing of the locking compression

plated femur constructs. This testing was performed in steps shown in Figure-4.6.

Figure 4.6: Flow diagram of the steps to perform analytical testing.

4.2.1 Solidworks Modeling

Solidworks is a 3D modeling software used to create 3D parts in all different planes.

Plate was created in the solidworks with same dimensions as synthes condyler 10

hole plates that were used for biomechanical testing. To analyze the plate only

one hole was taken in to consideration instead of combination hole system (Figure-
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4.7(A)). So, locking and non locking holes were constructed same way. It is difficult to

mesh threads inside screw hole so all the locking screws holes were designed without

threads. Locking screws and Non-locking screws were designed without threads to

decrease geometrical errors during meshing in ANSYS.

Figure 4.7: (A) 3D model of solidworks model. (B) 3D model of Locking and Non-locking screws.

Head of the screw for non-locking screw was kept small to decrease its contact

with the plate hole as shown in Figure-4.7(B). Condyle part was designed with loft

and fillet operation as shown in Figure-4.8. Assembly was created joining all these

models (Figure-4.8). This assembly looks similar to the femur construct tested ex-

perimentally. Condyle part and femur shaft had been removed for further analysis

in ANSYS and constrains were set on the plate head and on the screw (Figure-4.8).

Model was then saved in parasolid format.

4.2.2 MIMIC Models

Mimics is a 3D modeling software that imports the CT/MRI imaging data. CT scan

data of femur construct were taken at Miami Valley Hospital, Dayton. 3D models
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Figure 4.8: To analyze model in ANSYS, femur shaft and condyle was replaced by constaint.

of the construct were prepared using Mimics tools. As shown in Figure 4.9 CT

cross section contains scattering due to metal artifact and resulting noise of the plate

and the screw. The noise was manually minimized in Mimics. Models similar to

anatomical model were achieved using remesher tool as shown in Figure-4.9. Mimics

provides only surface mesh. Surface mesh was stored in Ansys supported format.

In Ansys, it was opened using read input file. It was diffucult to generate volume

mesh in Ansys based on surface mesh. Surface mesh automatically takes SHELL 93

element. Surface mesh does not provide displacement.

Figure 4.9: Mimics Model on right created from CT scan images of femur construct on left.
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4.2.3 FEA analysis in ANSYS

Solidworks model stored in parasolid format were imported in Ansys. Element type

SOLID187 was applied to all components. Stainless steel 316 L property was assigned

to plate and screw. Elastic modulus of 193GPa, poison’s ratio of 0.33 and density of

8000 Kg/mˆ3 was assigned in material property. Free mesh was done for all volume

as shown in Figure-4.10. Loads are applied on screws and it is constrained at bottom

of plate and on all screws. Time harmonic mode was selected for analysis type.

Loads were applied for 100Hz with 300N load on each screw in negative Y direction

(Downward). Frequency in harmonic mode represents the number of cycles test runs

and here 100Hz was selected so all test ran for 100 cycles. Results were viewed in

plot control with changing read result to frequency. Harmonic tests provide all the

results with respect to frequency but to analyze displacement and stress properties,

results converted with respect to time.

Figure 4.10: Meshing of 3D model Created in Solidworks.
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Results

Wintest software installed with the EnduraTEC machine acquired the data. Two

hundred scan points were taken through 50,000 cycles. Scan points were examined at

every 5000 cycles. Stiffness and deformation were calculated and plotted from selected

scan points. Table-5.1 shows summery of loosening torque at every screw position for

each of the femur constructs. Table 5.2 shows the average loosening torque, average

stiffness, average deformations and test result of group-1 and 2 constructs, and Table

5.3 for groups 3 and 4, respectively.

5.1 Loosening Torque

Figure 5.1 shows the differences between the loosening torque of four groups. After

the tests were completed the average torque in group-1 (non-locking construct) screws

was 0.56 Nm whereas group-2 was 2.72 Nm (semi-locked construct). The locked

construct group-4 demonstrated 2.67 Nm torque after testing. The data were analyzed

statistically with the Kruskal Wallis test, one-way Annova test and Tukey-Kramer

HSD (Figure 5.1(D,E)). Comparable results were obtained with one-way Annova.

The Tukey-Kramer HSD results suggest similarities between group-2 and group-4

and significant differences between groups 3 and 4.

Loosening torque mechanics of non locking screw and locking screw is different

so comparison of loosening torque in both screws was also done separately. Figure

5.1(A) shows the average loosening torque of all locking screws in groups 2, 3 and

31



5.1. LOOSENING TORQUE 32

FEMUR TYPE Looseing

Torque in

SCREW-1

(Nm)

Loosening

Torque in

SCREW-2

(Nm)

Loosening

Torque in

SCREW-3

(Nm)

Loosening

Torque in

SCREW-4

(Nm)

Group-1 Femur-1 0 2.59 1.58 0.2

Group-1 Femur-2 0 0 0 0

Group-1 Femur-3 0 0 0 0

Group-1 Femur-4 2.5 0.79 2.53 1.103

Group-1 Femur-5 0 0 0 0

Group-2 Femur-1 3.358 2.298 3.375 2.923

Group-2 Femur-2 2.5 3 0 2.03

Group-2 Femur-3 2.9 3 3.6 1.6

Group-2 Femur-4 2.58 3 3 3.71

Group-2 Femur-5 2.6 3 3 2.6

Group-3 Femur-1 3.6 2.6 2.6 3.38

Group-3 Femur-2 3.538 1.39 1.29 0.41

Group-3 Femur-3 0 0 0 0

Group-3 Femur-4 4 2.11 2 0

Group-3 Femur-5 2.6 0 0 0

Group-4 Femur-1 2.592 3.399 1.983 3.322

Group-4 Femur-2 2.57 2.39 2.049 2.56

Group-4 Femur-3 1.56 0 2.83 0.284

Group-4 Femur-4 3.31 2.28 3.37 1.366

Group-4 Femur-5 2.6 2 3.2 3.9

Table 5.1: Loosening torque at each screw position after test completed.
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5.6 Failure occured during testing

Though all the experiments were statistically different, a few constructs failed catas-

trophically. In group-2 femur-3 the proximal femur shaft failed adjacent to the highest

screw at the end of 50,000 cycles. Construct loosened at axial grip and slipped during

roational cycles. No effects were found in loosening torque in the screws (Figure 5.6).

Figure 5.6: Examples of catastophic failures. The proximal shaft broke without affecting test (Bot-

tom). Failure of Group-3 femur-3 where non-locked screw pulled out (upper right). Failure of

group-1 femur-1. Three screws failed by breaking (upper left).

Three of the five femur constructs from group-1 failed. In group-1 femur-2, the

highest non-locking screw disengaged from the bone. In group-1 femur-3, three screws

failed as shown in Figure-5.6 and the intact screw pulled out. In group-1 femur-5,

the lowest screw pulled out and remaining screw had 0 N m torque after the test. In
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group-3, two femurs failed during testing. In group-3 femur-3 lowest screw failed and

recorded 0 N m torque. The other failure in group-3 was femur 5 where the lowest

screw pulled out. The remaining constructs successfully completed 50,000 cycles.
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Discussion

Most studies provide evidence that locking plates with locking screws provides bet-

ter stability under axial and torsion loading [3,7,9,53]. This information is of sig-

nificant importance to clinicians for preoperation planning and to use an optimum

combination of locked/non-locked screw plate constructs for fracture treatment. The

parameters such as number of screws and where to place them to provide enhanced

biomechanical properties are investigated in this research. Stoffel et al. [53] recom-

mended screws to be placed near fracture gap when osteotomy gap was larger than

2 mm [53]. He also suggested working length (Distance between the first two screws

on each side of osteotomy gap) to be kept minimum in larger fracture gap [53]. In

case of torsion loading three to four screws in each fragment should be kept. Plate

screw density is number of screws inserted divided by number of plate holes. Gautier

et al.[52] suggested plate screw density to be 0.4 to 0.5 meaning half of the plate

holes should be filled up with screws [52]. Use of bicortical screws in torsion load also

increases stability. The AO/ASIF guidelines are not the pure applicable to decide

number of screws. Considering all these studies, femur constructs used in experimen-

tal program were designed such a way that they should maintain plate screw density

0.5 (8/15) and each fragments should contain 4 screws on each side of fracture gap.

Different than stoffel et al. study, screw positions were kept similar for all femur

constructs. But they were categorized on the basis of screw types and order. In

stoffel study, locked screw used for analysis whereas in this study locking and non

44
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locking screws combinations were used. Facture gap remained same for all groups

and 20 femurs and composite femur shaft were expected to behave similarly under

mechanical conditions.

Plot shown in Figure 5.1 was calculated to demonstrate average loosening of both

locking and non-lockigng screws in each group. Result shows maximum loosening

torque in group-1 by 84% than original and minimum in group-2 by 29.7% . Groups-

2 and 4 have almost same average loosening torque and also they are statistically

significant shown in the Tukey-cramer HSD results. Group-3 had non-locking screw

near osteotomy gap which loosened the construct and that affected total average

loosening torque. It had locking screw on top which maintained its torque but the

other non-cloking screw failed against the torsional loading. Group-1 with all non-

locking screws demonstrated very poor stability and it had only 14% average torque

remained after 50,000 cycles of the testing. Significant results between group-2 and

group-4 implies that one locking screw near osteotoy gap was sufficient to provide

stability under axial and torsion loads.

As per equation 6.1 torque is proportional to rigidity. Group-4 shows the highest

rigidity because all the constructs in that group ran for 50,000 cycles without any

screw failure. Three femurs in grop-1 and 2 femurs in group-3 failed.

This results support equation 6.1 where angle of twist increases loosening torque.

Top screw faces lower angle of twist. Similar results obtained for non-locking screws.

So in any constructs with any locking screws or non-locking screws, screws near

fracture gap need to be inserted with higher insertion torque. Inserting non-locking

screw with higher insertion torque in osteoporotic bone may cause stripping. Strip-

ping torque is the maximum torque which a bone can withstand [61]. Once screw

reaches its stripping torque it starts to toggle in bone and can be easily pulled out.

Non-locking screws have stripping torque of around 4.5 N-m in osteoporotic bones

[4].

Biomechanical behavior of locking compression plate has been evaluated in vari-

ous studies. But very few studies presented information about loosening torque and
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pulling strength of screws and how they affect the LCP stability. As discussed in

biomechanics of LCP, when non-locking screw was inserted, it generates reaction

forces in opposite direction as well as reaction torque to applied insertion torque.

When axial load was applied, the screw and plate construct maintains its stability

until axial force was larger than reaction force. Locking screws behave differently be-

cause their stability does not depend on the bone material. Locking screw lock inside

plate hole thread and resist axial and torsion loading by generating strong reaction

forces in opposite direction. The pull out strength of non-locking screw depends on

bone material property whereas pull out strength of locking screw depends on the in-

sertion torque of screw. Therefore in osteoporotic bone locking screws provides extra

stability.

This behavior was experimentally proven with the biomechanical testing results

in this research. Loosening mechanics of locking screw and non-locking screw are

different. So comparison between loosening torque for locking and non locking screws

for different groups was done separately. Figure 5.1 shows average loosening torque

in group-4 remains high because of two locking screw nearest and furthest from the

osteotomy. It was minimum for Group-2 because of only one locking screw near

osteotomy gap. Figure 5.1(B) shows average loosening torque of the non-locking

screws. Group-1 has almost 80% loosening torque from the insertion torque whereas

minimum loosening was seen in group-2. Group-2 and group-4 contained locking

screw near the osteotomy gap. These results suggest that maximum loosening for

locking screw is seen near osteotomy gap only. Locking screws near osteotomy gap

loosened 8% more than locking screws furthest from the osteotomy gap. Non-locking

screws near osteotomy gap loosened 52% more than non-locking screw furthest from

the osteotomy gap. Therefore, locking screws near osteotomy gap can maintain more

torque than non-locking screws. Figure 5.4 demonstrates similar results when average

loosening torque near and away from osteotomy gap was calculated. Non-locking

screws near osteotomy gap loosened 15% more than locking screw near osteotomy

gap. These results support stoffel experiment that locking screws provide better
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angular stability than non-locking screw. These results show that locking screws can

resist more torsional load than non-locking screws and locking screw is recommended

near the osteotomy gap than non-locking screw.

Equation 6.1 shows as the angle of twist increases loosening torque. Top screw

faces lower angle of twist. Similar results obtained for non-locking screws. So in

any constructs with any locking or non-locking screws, screws near fracture gap need

to be inserted with higher insertion torque. Inserting non-locking screw with higher

insertion torque in osteoporotic bone may cause stripping. This research demonstrates

importance of insertion torque by correlating it with other mechanical parameters

namely stiffness, rigidity and deformation. As per equation 6.1, torsion rigidity (GJ)

was proportional to insertion torque of the screw. As insertion torque decreases,

rigidity of the construct starts to decrease resulting in reduced screw holding power

of the constructs. Screws start to toggle and affect the stability of LCP under both

axial and torsion loading.

T

J
=
τ

R
=
GΦ

l
(6.1)

where,

• T= torque Nm

• J= the torsion constant for the section

• τ= the maximum shear stress at the outer surface.

• R= the outer radius of the shaft.

• G= the shear modulus

• Φ= the angle of twist in radians.

• l= the length of the object the torque is being applied to or over.

• GJ= the torsional rigidity
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T = (
GJ

l
)φ (6.2)

k =
GA

l
(6.3)

T = kAΦ (6.4)

Where,

k = Stiffness.

A= area where force applied

Gardner et al. performed mechanical study on osteoporotic humerus sawbones [57].

They applied oscillating cyclic torsion of 10 N-m for 1000 cycles and measured stiffness

in conventional, locking and hybrid plates. Results suggest that hybrid plates got

similar stiffness after 1000 cycles to LCP plates [57]. In another study [58], the author

applied 500 N compression and 10 N-m torsion on hybrid locking plates and locking

plates. Their results showed torsional stiffness and torsional rigidity of the locking

constructs were similar to the average of the hybrid construct. Both hybrid construct

and locking construct exceeded average stiffness by 23% and 53%, respectively, to

non-locking construct. Similar results were obtained in this study. Two locking

screws construct had maximum torsion stiffness among all groups. Average axial

stiffness of the plot shown in Figure 5.3 is not showing appropriate results because of

the random load and displacement data but it suggests that axial stiffness of group-4

has highest stiffness. Thus stiffness is co-related with torque of the screw. Relation

between stiffness and torque is shown above. So as torque in the screw increases, it

lowers the stiffness of the constructs.

Limited data was available on deformation of locking plates under axial and torsion

loading. Gautier discussed that in small fracture gap higher displacement caused

plate bending with locking screws inserted and screw pull out may occur in non-

locking screws [52]. Deformation depends on the change in length and load applied.

Some deformation allows flexibility in locking plates that leads to increase in the
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callus formation. If deformation leads to fracture than, two fracture fragments come

closre, increasing chance of failure. Sikes et al. studied displacement between locking

head screw and conventional screw [59]. He tested bones under load displacement

of 150 N. His results [59] showed increased resistance in two locking head construct

compared to two conventional screw construct. When same test applied to four screw

construct with both type of screws, no significant differences were found. Results

shows maximum deformation in goup-4 and group-1 showed minimum deformation.

Deformation in locking screws seen higher because of the pitch and radius of the

locking screws were smaller than non-locking screws. It increases the change in length

which allows more strain to be developed. This phenomenon allows more callus

formation in vivo and heals the osteotomy quickly. Initially increased deformation was

seen because of small cracks remained inside osteoporotic bone. Under compression

load these cracks got filled up and allowed more deformation early on. But as loading

continued, new cracks start to propagate and additional deformation is seen with

cycling.

FEA studies to support experimental results were compared. As per equations-

(6.1-6.4), stiffness increses with the insertion torque. Results of the FEA suggest that

construct with locking screw is lot stiffer and induced very low stresses compared to

other constructs. In FEA, only axial load was applied. Axial stiffness also remains

high for locked construct because of higher displacement.

Use of hybrid plate is becoming popular among clinicians. Recent studies sug-

gest that under both axial and torsion conditions, stiffness and displacement of LCP

remains the same for Hybrid and locked constructs [62, 63, 64]. We used 20 femur

constructs with hybrid screw placement, and results obtained suggest that use of

locking constructs provide better angular stability than hybrid constructs.
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Concluding Remarks

Experimental testing and analytical evaluation of locking compression plate with both

locking and non-locking screws support the thesis hypothesis that construct with lock-

ing screws perform better than construct with non-locking screws both analytically

and experimentally. During conduct of experimental program, several new behaviors

of LCP have been derived, summerized below.

1. Loosening of the locking screws was seen minimum near the osteotomy gap com-

pared to the loosening of the non-lcoking screws. Locking screws increase the

torsional rigidity of the adjacent non-locking screws. This allows surgeons to put

second locking screw away from the first locking screw in long plates to maintain

construct stable.

2. In hybrid plated constructs, construct with two locking screw showed minimum

loosening, incresed stiffness and deformation than constructs with one locking

screw and all non-locking screws. One locking screw near osteotomy gap provides

necessary axial stiffness and torsional rigidity against both axial and torsion load-

ing. Use of more than one locking screw in construct does not affect biomechanical

results.

3. Insertion torque of all screws must be maintained to 4 N-m for normal bone.

In osteoporotic bone stripping torque should be considered before inserting non-

locking screw. Screws near osteotomy gap can be tightened up more as loosening

50
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was observed more in those area.

4. Deformation among locking screw constructs was seen more than non-locking

screw constructs. This increases the flexibility of the construct and expected to

increase callus formation in-vivo.

5. Torsional Stiffness was high in locking constructs. Also torque remained high in

locking constructs. As torsional stiffness is directly proportional to torque, these

results were expected.

6. Induced stresses were minimum and displacement was maximum on locking plates

than on non-locking plates shown in the finite element analysis results.

7. The consructs prepared with locking screws were able to perform under various

loading conditions while maintaining the stability of entire construct.

7.1 Future Work

This biomechanical study will be helpful to surgeons in pre-operating planning. Fur-

ther investigations are required for in-vivo/in-vitro use of LCP and their biomechani-

cal behaviors. Analytical modeling of medical prostheses with the help of CT images

are important though difficult to design complex geometry of bones with existing

software. CT images and image processing technique will be useful to develop 3D

models with complex geometrical shapes and their further investigation with FEA.

These new results from biomechanical and computational analysis will reduce time,

and cost of complex experimental tests.



8

Reference

1. Iqbal M. 2000. Osteoporosis : Epidemiology, diagnosis, and treatment. Southern

medical journal, 2000, vol- 93, pp. 2-18.

2. Miranda M. Locking Plate Technology and its role in osteoporotic fractures.

Injury, Int.J. Care injured (2007) 38S3. S35-S39.

3. Luo C. Locking compression plating: a new solution for fractures in rheumatoid

patients. Mod Rheumatol (2005) 15: 169-172.

4. Miller D, Goswammi T. A review of locking compression plate biomechanics

and their advantages as internal fixators in fracture healing. Clinical Biomechanics

22 (2007) 1049-1062.

5. Haidukewych G. Innovations in Locking Plate Technology. J Am Acad Orthop

Surg, Vol 12, No 4, July/August 2004, 205-212.

6. Aguila, A.Z., Manos, J.M., Orlansky, A.S., Todhunter, R.J., Trotter, E.J.,

Van der Meulen, M.C., 2005. In vitro biomechanical comparison of limited contact

dynamic compression plate and locking compression plate. Vet. Comp. Orthop.

Traumatol. 18 (4), 220-226.

7. Ahmad, M., Nanda, A.S., Bajwa, A.S., Candal-Couto, J., Green, S., Hui,

A.C., 2007. Biomechanical testing of the locking compression plate: When does the

distance between bone and implant significantly reduce construct stability? Injury

38, 358-364.

8. Kim, T., Ayturk, U.M., Haskell, A., Miclau, T., Puttlitz, C.M., 2007. Fixation

52



53

of osteoporotic distal fibula fractures: A biomechanical comparison of locking versus

conventional plates. J. Foot Ankle Surg.46 (1), 2-6.

9. Sommer, C., Babst, R., Muller, M., Hanson, B., 2004. Locking compression

plate loosening and plate breakage: a report of four cases. J. Orthop. Trauma 18 (8),

571-577.

10. Hazarika, S., Chakravarthy, J., Cooper, J., 2006. Minimally invasive locking

plate osteosynthesis for fractures of the distal tibia - results in 20 patients. Injury 37,

877-887.

11. C. Kanchanomai a, V. Phiphobmongkol b, P. Muanjan. Fatigue failure of an

orthopedic implant - A locking compression plate. Engineering Failure Analysis 15

(2008) 521-530.

12. P. Brown. Forensic Anthropology. P 45-75.

13. Bone Disorders. Health Library. University of Chicago Hospital. http://www.uchospitals.edu/online-

library/content=P00109.

14. Human Anatomy and Physiology 5th edition, Benjamin Cummings, San Fran-

cisco 2001.

15. Chen A,. Fracture types (1). The Alpine Clinic, Littleton, NH. VeriMed

Healthcare Network. a. http://www.nlm.nih.gov/medlineplus/ency/imagepages/1096.htm.

16. Thomas N. Joseph,. Camden Bone and Joint, Camden, SC. Review provided

by VeriMed Healthcare Network. http://www.nlm.nih.gov/medlineplus/ency/presentations/1000771.htm.

17. Orthopaedic Trauma Association/ Committee for Coding and Classification:

Fracture and Dislocation Compendium. Orthopaedic Trauma Association (OTA).

Retrieved on 2007-11-28.

18. Cluett J. What is fracture? About.com.

19. Brighton, Hunt 1986. Two light micrographs of a typical fracture callus: one

showing the tissues and the other showing the cells. P 704.

20. Principles of Bone Healing. American Association of Neurological Surgeons.

Neurosurg Focus 10(4), 2001.

21. Internal Fixation for Fractures. Americal Academy of orthopedic surgeons.



54

AAOS- 2007.

22. Clough, Ray W.; Edward L. Wilson. Early Finite Element Research at Berke-

ley. 2007-10-25.

23. Strang, Gilbert; George Fix. An Analysis of the Finite Element Method.

Englewood Cliffs: Prentice-Hall. (1973).

24. Pearse K, McCarthy M., Generation of three Dimensional finite element bone

models from CT scan datasets.

25. Perren, S.M., 2003. Backgrounds of the technology of internal fixators. Injury

34, S-B1-S-B3.

26. Uhthoff1 H, Poitras P and Backman D. Internal plate fixation of fractures:

short history and recent developments. J Orthop Sci (2006) 11:118-126.

27. Perren, S.M., Russenberger, M., Steinmann, S., Muller, M.E., Allgower, M.,

1969. A dynamic compression plate. Acta Orthop. Scand. 125 (suppl), 31-41.

28. Tepic, S., Perren, S.M., 1995. The biomechanics of the PC-Fix internal fixator

26 (suppl 2), 5-10.

29. Perren, S.M., 1995. Point contact fixator: part I. Scientific background, design

and application. Injury 22 (Suppl 1), 1-10.

30. Sommer C. Biomechanics and clinical application principles of locking plates.Suomen

Ortopedia ja Traumatologia Vol. 29, 1o2006,20-24.

31. Wagner, M., 2003. General principles for the clinical use of the LCP. Injury

34, S-B31-S-B42.

32. Schandelmaier, P., Stephan, C., Reimers, N., Krettek, C., 1999. LISS os-

teosysnthesis for distal fractures of the femur. Trauma Berufskrankh.1, 392-397.

33. Frigg, R., 2003. Development of the locking compression plate. Injury 34,S-

B6-S-B10.

34. Frigg, R., 2001. Locking compression plate (LCP). An osteosynthesis plate

based on the dynamic compression plate and the point contact fixator (PC-Fix).

Injury 32, 63-66. Frigg, R., 2003. Development of the locking compression plate.

Injury 34, S-B6-S-B10.



55

35. Kaab, M.J., Frenk, A., Schmeling, A., Schaser, K., Schutz, M., Haas, N.P.,

2004. Locked internal fixator: sensitivity of screw/plate stability to the correct inser-

tion angle of the screw. J. Orthop. Trauma 18 (8), 483-487.

36. Small Fragment Locking Compression Plate (LCP) System. Stainless Steel

and Titanium. TECHNIQUE GUIDE.

37. Perren, S.M., 2001. Evolution and rational of locked internal fixator technol-

ogy. Introductory remarks. Injury 32 (Suppl 2), S-B3-S-B9.

38. Sheng-Mou Hou, Ching-Chi Hsu, Jaw-Lin Wang, Ching-Kong Chao, Jinn Lin.

Mechanical tests and finite element models for bone holding power of tibial locking

screws Clinical Biomechanics 19 (2004) 738-745.

39. Perren, S.M., Klaue, K., Pohler, O., Predieri, M., Steinemann, S., Gautier,

E., 1990. The limited contact dynamic compression plate (LC-DCP). Arch. Orthop.

Trauma Surg. 109, 304-310.

40. Niemeyer, P., Sudkamp, N.P., 2006. Principles and clinical application of the

locking compression plate (LCP). Acta Chir. Orthop. Traumatol. Cech. 73 (4),

221-228.

41. Greiwe, R.M., Archdeacon, M.T., 2007. Locking plate technology: current

concepts. J. Knee Surg. 20 (1), 50-55.

42. Faruok, O., Krettek, C., Miclau, T., Schandelmaier, P., Guy, P., Tscherne, H.,

1997. Minimally invasive plate osteosynthesis and vascularity: preliminary results of

a cadaver infection study. Injury 28, S-A7-SA12.

43. ASTM STP 1217. Clinical and Laboratory Performance Of Bone Plates.

J.Paul Harvey,Jr. and Robert F. Games. ASTM Publication Code Number 04-

012170-54.

44. Steinemann, S.G., 1996. Metal implants and surface reactions. Injury 27

(Suppl. 3), SC16-SC22.

45. Sudhakar K.V. Metallurgical investigation of a failure in 316L stainless steel

orthopaedic implant. Engineering Failure Analysis 12 (2005) 249-256

46. ASTM F136, 2002a. Standard Specification for Wrought Titanium-6 Aluminum-



56

4 Vanadium ELI (Extra Low Interstitial) Alloy for Surgical Implant Applications

(UNS R56401). ASTM International, West Conshohocken, PA, www.astm.org.

47. ASTM F136, 1998e1. Standard Specification for Wrought Titanium-6 Aluminum-

4 Vanadium ELI (Extra Low Interstitial) Alloy (UNS R56401) for Surgical Implant

Applications. ASTM International, West Conshohocken, PA, www.astm.org.

48. ASTM F138, 2000. Standard Specification for Wrought 18 Chromium-14

Nickel-2.5 Molybdenum Stainless Steel Bar and Wire for Surgical Implants (UNS

S31673). ASTM International, West Conshohocken, PA, www.astm.org.

49. ASTM F138, 2003. Standard Specification for Wrought 18 Chromium-14

Nickel-2.5 Molybdenum Stainless Steel Bar and Wire for Surgical Implants (UNS

S31673). ASTM International, West Conshohocken, PA, www.astm.org.

50. Hallab, N., Merritt, K., Jacobs, J.J., 2001. Metal sensitivity in patients with

orthopaedic implants. J. Bone Joint Surg. Am. 83A (3), 428-436.

51. Sargeant, A., Goswami, T., 2007. Hip implants - paper VI - ion concentrations.

Materials and Design 28, 155-171.

52. Gautier, E., Sommer, C., 2003. Guidelines for the clinical application of the

LCP. Injury 34, S-B63-S-B76.

53. Stoffel, K., Dieter, U., Stachowiak, G., Gachter, A., Kuster, M., 2003.Biome-

chanical testing of the LCP - how can stability in locked internal fixators be con-

trolled? Injury 34, S-B11-S-B19.

54. Kubiak E, Fulkerson E, Strauss E, Egol K. The Evolution Of Locked Plates.

The Journal Of Bone and Joint Surgery. Volume 88-a. Supplement 4-2006.

55. Klaue, K., Fengels, I., Perren, S.M., 2000. Long-term effects of plate osteosyn-

thesis: Comparison of four different plates. Injury 31, S-B51- S-B62.

56. Rozbruch, S.R., Muller, U., Gautier, E., Ganz, R., 1998. The evolution of

femoral shaft plating technique. Clin. Orthop., 195-208.

57. Gardner, M.J., Griffith, M.H., Demetrakopoulos, D., Brophy, R.H., Grose, A.,

Helfet, D.L., Lorich, D.G., 2006. Hybrid locked plating of osteoporotic fractures of

the humerus. J. Bone Joint Surg. Am. 88 (9), 1962-1967.



57

58. Delan Gaines, M.D. Chattanooga, TN. Timothy Ervin, B.S.Chattanooga, TN

Joseph Rudd, Ph.D. Chattanooga, TN Ronald Goullett, Ph.D. Chattanooga, TN Rick

Keyser, Ph.D. Chattanooga, TN Thomas Currey, M.D. Chattanooga, TN Peter J.

Nowotarski, M.D. Chattanooga, TN Brent L. Norris, M.D. Chattanooga, TN. Plate

Length, Screw Position, and Locking Screws Effects on Bridge Plating for Femur

Fractures.

59. Sikes J, Smith B, Mukbetjee D, Coward K. Comparison of Fixation Strengths

of Locking Head and Conventional Screws, in Fracture and Reconstruction Models.

J Oral Maxillofac Surg 56:468-473, 1998.

60. Dylan P.A. Jewell, Sabina Gheduzzi , Mark S. Mitchell , Anthony W. Miles

b Locking plates increase the strength of dynamic hip screws.. Injury, Int. J. Care

Injured (2008) 39, 209-212

61. Edwards T., Eelen G., English H., Crwford R. Stripping Torque As a Predictor

Of Successful Internal Facture Fation. Surg.2005; 75 : 1096-1099.

62. Chris Estes , Kristine R. Csavina , David J. Jacofsky , M. Wade Shrader. A

BIOMECHANICAL COMPARISON OF AN ALL-LOCKED VS. HYBRID SCREW

CONFIGURATION OF PROXIMAL TIBIAL PLATES . The CORE Institute, Sun

City West, AZ, USA 2 SHRI-CORE Orthopedic Research Labs, Sun City West, AZ,

USA E-mail: wade.shrader@thecoreinstitute.com, Web: www.thecoreinstitute.com.

63. Stoffel, Karl; Lorenz, Kai-Uwe ; Kuster, Markus. Biomechanical Consider-

ations in Plate Osteosynthesis: The Effect of Plate-to-Bone Compression With and

Without Angular Screw Stability.Journal of Orthopaedic Trauma. 21(6):362-368,

July 2007.

64. Fulkerson, Eric; Egol, Kenneth A.; Kubiak, Erik N.; Liporace, Frank; Kum-

mer, Frederick J. ; Koval, Kenneth J. Fixation of Diaphyseal Fractures with a Seg-

mental Defect: A Biomechanical Comparison of Locked and Conventional Plating

Techniques. Journal of Trauma-Injury Infection and Critical Care. 60(4):830-835,

April 2006.


