Ontology-Driven Provenance Management in eScience: An Application in Parasite Research

Satya S. Sahoo
Wright State University - Main Campus

D. Brent Weatherly

Raghava Mutharaju
Wright State University - Main Campus

Pramod Anantharam
Wright State University - Main Campus

Amit P. Sheth
Wright State University - Main Campus, amit@sc.edu

See next page for additional authors

Follow this and additional works at: https://corescholar.libraries.wright.edu/knoesis

Part of the Bioinformatics Commons, Communication Technology and New Media Commons, Databases and Information Systems Commons, OS and Networks Commons, and the Science and Technology Studies Commons

Repository Citation

https://corescholar.libraries.wright.edu/knoesis/669

This Conference Proceeding is brought to you for free and open access by the The Ohio Center of Excellence in Knowledge-Enabled Computing (Kno.e.sis) at CORE Scholar. It has been accepted for inclusion in Kno.e.sis Publications by an authorized administrator of CORE Scholar. For more information, please contact library-corescholar@wright.edu.
Ontology-driven Provenance Management in eScience: An Application in Parasite Research

Satya S. Sahoo¹, D. Brent Weatherly², Raghava Mutharaju¹, Pramod Anantharam¹, Amit Sheth¹, Rick L. Tarleton²

¹Kno.e.sis Center, Wright State University;
²Center for Tropical and Emerging Diseases, University of Georgia

ODBASE2009
Vilamoura, Algarve-Portugal
November 05, 2009
Provenance in Parasite Research

Gene Knockout and Strain Creation*

Related Queries from Biologists

- Q2: List all groups in the lab that used a Target Region Plasmid?
- Q3: Which researcher created a new strain of the parasite (with ID = 66)?
- An experiment was not successful – has this experiment been conducted earlier? What were the results?

*Trypanosoma cruzi Semantic Problem Solving Environment Project, Courtesy of D.B. Weatherly and Flora Logan, Tarleton Lab, University of Georgia
• Provenance from the French word “provenir” describes the lineage or history of a data entity
• For Verification and Validation of Data Integrity, Process Quality, and Trust
• Issues in Provenance Management
 ➢ Provenance Modeling
 ➢ A Dedicated Query Infrastructure
 ➢ Practical Provenance Management Systems
Outline

• Provenance Modeling: Provenir → Parasite Experiment ontology

• Provenance Query Infrastructure

• Provenance Query Engine

• Evaluation Results

• Query Optimization: Materialized Provenance Views
Ontologies for Provenance Modeling

• Advantages of using Ontologies
 ➢ Formal Description: Machine Readability, Consistent Interpretation
 ➢ Use Reasoning: Knowledge Discovery over Large Datasets

• Problem: A gigantic, monolithic Provenance Ontology! – not feasible

• Solution: Modular Approach using a Foundational Ontology
Provenir Ontology

AGENT

DATA

PROCESS

has_agent

participates_in

Gene Name

Sequence Extraction

3' & 5' Region

Drug Resistant Plasmid

Plasmid Construction

Knockout Construct Plasmid

T. Cruzi sample

Transfection

Transfection Machine

Transfected Sample

Drug Selection

Selected Sample

Cell Cloning

Cloned Sample
Domain-specific Provenance: Parasite Experiment ontology

Parasite Experiment ontology available at: http://wiki.knoesis.org/index.php/Trykipedia
Outline

• Provenance Modeling: Provenir → Parasite Experiment ontology

• Provenance Query Infrastructure

• Provenance Query Engine

• Evaluation Results

• Query Optimization: Materialized Provenance Views
Classified Provenance Queries into Three Categories

- **Type 1: Querying for Provenance Metadata**
 - Example: *Which gene was used create the cloned sample with ID = 66?*

- **Type 2: Querying for Specific Data Set**
 - Example: *Find all knockout construct plasmids created by researcher Michelle using “Hygromycin” drug resistant plasmid between April 25, 2008 and August 15, 2008*

- **Type 3: Operations on Provenance Metadata**
 - Example: *Were the two cloned samples 65 and 46 prepared under similar conditions – compare the associated provenance information*
Four Query Operators – based on Query Classification

- **provenance ()** – Closure operation, returns the complete set of provenance metadata for input data entity
- **provenance_context()** - Given set of constraints defined on provenance, retrieves datasets that satisfy constraints
- **provenance_compare ()** - adapt the RDF graph equivalence definition
- **provenance_merge ()** - Two sets of provenance information are combined using the RDF graph merge
Answering Provenance Queries using \textit{provenance} \circ Operator
Outline

- Provenance Modeling: Provenir → Parasite Experiment ontology
- Provenance Query Infrastructure
- Provenance Query Engine
- Evaluation Results
- Query Optimization: Materialized Provenance Views
Provenance Query Engine

• Available as API for integration with provenance management systems
• Layer on top of a RDF Data Store (Oracle 10g), requires support for:
 o Rule-based reasoning
 o SPARQL query execution
• Input:
 o Type of provenance query operator: `provenance()`
 o Input value to query operator: `cloned sample 66`
 o User details to connect to underlying RDF store
Outline

• Provenance Modeling: Provenir →Parasite Experiment ontology

• Provenance Query Infrastructure

• Provenance Query Engine

• Evaluation Results

• Query Optimization: Materialized Provenance Views
Evaluation Results

- Queries expressed in SPARQL
- Datasets using real experiment data

<table>
<thead>
<tr>
<th>Query ID</th>
<th>Number of Variables</th>
<th>Total Number of Triples</th>
<th>Nesting Levels using OPTIONAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Query 1: Target plasmid</td>
<td>25</td>
<td>84</td>
<td>4</td>
</tr>
<tr>
<td>Query 2: Plasmid_66</td>
<td>38</td>
<td>110</td>
<td>5</td>
</tr>
<tr>
<td>Query 3: Transfection attempts</td>
<td>67</td>
<td>190</td>
<td>7</td>
</tr>
<tr>
<td>Query 4: cloned_sample 66</td>
<td>67</td>
<td>190</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dataset ID</th>
<th>Number of RDF Inferred Triples</th>
<th>Total Number of RDF Triples</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS 1</td>
<td>2,673</td>
<td>3,553</td>
</tr>
<tr>
<td>DS 2</td>
<td>3,470</td>
<td>4,490</td>
</tr>
<tr>
<td>DS 3</td>
<td>4,988</td>
<td>6,288</td>
</tr>
<tr>
<td>DS 4</td>
<td>47,133</td>
<td>60,912</td>
</tr>
</tbody>
</table>
Evaluation Results

(a) Dataset Identifiers

(b) Query Identifiers
Outline

• Provenance Modeling: Provenir →Parasite Experiment ontology

• Provenance Query Infrastructure

• Provenance Query Engine

• Evaluation Results

• Query Optimization: Materialized Provenance Views
Query Optimization: Materialized Provenance Views

- Materializes a single logical unit of provenance
- Does not require query-rewriting
- View updates: addressed by characteristics of provenance
- Created using a memoization approach
Provenance Query Engine Architecture

Query Optimizer

Transitive Closure

Provenance Query Engine

Input
- Provenance Query Type
- Input Value

Provenance Query Classification
- Type of provenance query operator

SPARQL Query Composer
- PREFIX ro: <http://obofoundry.org/>
- CONSTRUCT

 ^p1 ro:has_participant trident:Ch...
 ^p1 ro:type provenir:process.

 WHERE
 { ?p1 ro:has_participant trident:Ch ;
 ro:type provenir:process}.

Data Source for Query Execution?
- To underlying database

Data Value Index
- Index data value
- from new materialized graph

Materialized Provenance Graphs
- Data value found/not found

Materialize Result Provenance Graph?
- Yes
- No

Oracle 10g RDF Database

Transitive Closure
- ("process", "preceded_by")
Evaluation Results using Materialized Provenance Views

(a) Dataset Identifiers

(b) Query Identifiers
Provenance Management System for Parasite Research
Acknowledgement

• Flora Logan – The Wellcome Trust Sanger Institute, Cambridge, UK
• Priti Parikh – Kno.e.sis Center, Wright State University
• Roger Barga – Microsoft Research, Redmond
• Jonathan Goldstein – Microsoft Research, Redmond
Contact email: satyasahoo@gmail.com
Web:
http://knoesis.wright.edu/researchers/satya/