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ABSTRACT 
 
Knapek, Katie J. M.S., Department of Biological Sciences, Microbiology and Immunology 
Program, Wright State University, 2008. The Role of Phospholipase D (PLD) and Grb2 in 
Chemotaxis. 
 
 
 Phospholipase D (PLD) is an enzyme that hydrolyzes phosphatidylcholine yielding 

choline and phosphatidic acid.  PLD is activated by mitogens (lead to cell division) and 

motogens (leading to cell migration).  PLD is known to contribute to cellular proliferation and 

deregulated expression of PLD has been implicated in several human cancers.  PLD has been 

found to play a role in leukocyte chemotaxis and adhesion as studied through the formation of 

chemokine gradients.  We have established a model of cell migration comprising three cell lines: 

macrophages RAW 264.7 and LR-5 (for innate defense), and fibroblast COS-7 cells (for wound 

healing).  COS-7 cells respond to EGF, while the other cell lines respond to MIP-1and MCP-1.   

 Transfection of cells with either PLD1-WT or PLD2-WT constructs leads to increased 

cell chemotaxis.  PLD2-WT is better (>1.5-fold) at increasing chemotaxis than PLD1 WT.  

Phospholipase inactive mutants in the HKD domain have a negative effect on chemotaxis.  Two 

PLD2 mutants in the PX domain, Y169F and Y179F, known to inhibit the ability of PLD2 to 

bind through an SH2 domain, failed to potentiate chemotaxis.  Conversely, mutation created 

near, but not in, the SH2 recognition domain in PLD2 (PLD2 Y165F) did not impair the positive 

effect on chemotaxis observed for the WT.  We have demonstrated also here that a protein-

protein interaction between PLD2 and Grb2 is needed to enhance chemotaxis.  Thus, PLD, 

signaling through Grb2, is a key regulator of the functionality of the three cells studied.  This 

may pay an important role in facilitating wound healing and innate defense capabilities of our 

body. 
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I. LITERATURE REVIEW 
 
History and Catalyic Activity of Phospholipase D 
 
 Phospholipase D (PLD), an enzyme that breaks down phosphatidylcholine (PC) at 

the ester linkage between phosphate and the choline group, (Figure 1) was discovered in 

plants by Hanahan and Chaikoff (1-3).  PLD was later found in animal cell lines in 

response to extracellular stimuli (3-5).  This enzyme has thus far been identified in 

bacteria, protozoa, fungi, plants and animals (5).   

PLD is an enzyme capable of carrying two types of reactions:  hydrolysis 

(described above) and transesterification.  Transesterification reactions use primary-

alcohols (i.e. butanol or ethanol) as phosphatdiyl-group acceptors.  Phospholipase D can 

be indirectly measured through the transphosphatidylation activity, whereby the resultant 

phosphatidylalcohols are produced.  In transesterification reactions the primary alcohol 

replaces the water molecule and becomes the nucleophilic acceptor.  These alcohols are 

not normally found in biological membranes, and they are only produced by PLDs (3, 4). 

  PLD is also involved in the regulation of essential cellular functions largely due to 

the production of second messengers such as phosphatidic acid (PA) and ultimately 

diacylglycerol (DAG) (3-10).  Once produced, PA is involved in many cellular functions, 

ranging from cytoskeletal rearrangement, phagocytosis, vesicle trafficking, exocytosis, 

and neuronal and cardiac stimulation (3, 6, 9, 11, 12). 

 

PLD (1 & 2) Structure 

There are two isoforms of the mammalian PLD gene, PLD1 and PLD2.    PLD1 cDNA 

was cloned from HeLa cells and encodes a 1074-amino acid 120 kDa protein, whereas 
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Figure 1:  

Illustration of the catalysis of the phosphodiester bond of phosphatidylcholine (PC) by 

Phospholipase D (PLD).  Hydrolysis of PC is broken down into phosphatidic acid (PA) 

and choline (C) (Adapted from 3). 
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PLD2 is a 933-amino acid 106 kDa protein (3, 6). PLD1 is located on the long arm (q) of 

chromosome 3(3q26) (13).  PLD2 is located on the short arm (p) of chromosome 17 

(17p13) (14).  PLD1 and 2 share ~50% amino acid homology (6, 11).  There are two 

splice variants of PLD2 which are, PLD2a and PLD2b.  The variants of PLD2 are 

indistinguishable when comparing their function.  Splice variants of PLD1 include:  

PLD1a1, PLD1a2, PLD1b1 and PLD1b2 (6, 9).  PLD1 and 2 contain two invariable 

sequences referred to as HKD motifs (HxKx4Dx(6)GSxN), which are responsible for 

their enzymatic activity (10, 15) (Figure 2).  Both PLD enzyme isoforms have several 

conserved regions such as a PIP2 binding site, a pleckstrin homology (PH) domain, and a 

phox homology (PX) domain located at their N-termini (3, 10, 15).  The PH domain of 

PLD2 enables it to bind SH2/SH3-containing tyrosine kinases (15).  The PH domain of 

PLD1 mediates protein to phospholipid interactions as well as protein to protein 

interactions (11).  The PX domain, composed of 100-140 amino acids, has been found in 

other proteins related to membrane trafficking and cell signaling (16).  Similarities and 

differences are shown in Figure 3. 

 

Intracellular Localization of PLD 

PLD1 localizes in the nuclear envelope, endoplasmic reticulum (ER), Golgi 

apparatus, transport/secretory vesicles and the plasma membrane (3, 16).  In HeLa cells, a 

human cervical cancer line, Hiroyama and Exton found that PLD1 localizes primarily in 

the perinuclear site, as well as in the trans-Golgi apparatus, multivesicular endosomes 

and late endosomes (17).  However, PLD1 was rarely found in early endosomes (17).  

The authors used a GFP-tagged PLD1 co-localized with Anti-CD63 staining in the 
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Figure 2:   

Schematic representation of PLD1a and PLD2 genes showing the two HKD domains, the 

PX domain as well as the PH domain (7).  Areas circled in red are areas of interest 

pertaining to this thesis.  A notable difference between these genes is the “loop” in PLD1 

that is not in PLD2. 
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Figure 3: 

Basic similarities and differences of the chromosomal location, their splice variants, size, 

location, and activators of PLD1 and PLD2. 
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perinuclear area (17).  Cluster of Differentiation-63 is a gene encoded by a protein 

specific for the cell-surface and mediates signal transduction which has roles in motility, 

growth, cell development and activation.  The anti-CD63 antibody was used to determine 

the location of multivesicular endosomes as well as late endosomes. 

 There seem to be conflicting results of PLD1 localization in the Golgi apparatus.  

One explanation for this difference was that different cell lines were used.  Using HeLa 

cells, Hiroyama and Exton used WGA-conjugated Texas-Red and anti-mannosidase II as 

markers for the trans-, cis-, and medial-Golgi apparatus.  WGA-Texas-Red had 20% 

localization with GFP-PLD1, but there was no co-localization with the anti-mannosidase 

II.  This indicates that PLD1 localizes in the trans-Golgi apparatus, but not in the cis- or 

medial-Golgi (17).  ConA-conjugated Texas-Red was used to stain the endoplasmic 

reticulum (ER) to illustrate that PLD1 does not localize in the ER (17).  Colley et al. 

found PLD1 to be localized in the Golgi apparatus of REF-52 cells (rat embryonic 

fibroblast); however, they used antibodies specific for the trans-Golgi apparatus only.  

Colley and others found that PLD1 may localize in the endoplasmic reticulum of REF-52 

cells (18). 

Using the same markers to determine PLD1 localization, Hiroyama and Exton 

also determined localization of PLD2.  Whereas PLD1 was found to be in intracellular 

membranes, PLD2 was found primarily in the plasma membrane (3, 17, 18).  PLD2 is 

predominant around the cell periphery in comparison to PLD1 (17, 18).  A notable 

difference that PLD2 has over other plasma membrane proteins in REF-52 cells is that 

overexpressed PLD2 results in filopodia function.  In one study, activated human Ras 

was injected into REF-52 cells and did not induce the production of ventral cellular 
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projections like those seen in cells with overexpressing PLD2 (18).  Ras is a signal 

transduction protein that regulates actin skeletal integrity, proliferation, differentiation, 

adhesion, apoptosis and migration.  Ras also is able to activate Raf/MEK/ERK pathway, 

PI3K, or Ral-GEF leading to cellular migration through the production of lamellopidia 

and filopodia.   

 

Regulator Molecules of PLD1 & PLD2 

PLD1 and PLD2 isoforms are highly regulated.  The low basal activity of PLD1 

versus the high basal activity of PLD2 share similarties in how they are regulated, but 

there are also differences to be noted (3, 7, 15).  One of the crucial activators of PLD1 is 

phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) (3, 19-21).  The interaction of PLD and 

lipids is highly dependent on PIP2 at least in vitro (10).  PIP2 is a polybasic molecule.  

The conserved region located within the C-terminus of the PLD subdomain is the specific 

region apparently responsible for the regulation of a lipid (i.e. polyphosphoinositide) that 

PLD can bind (10, 19, 20). 

Phosphatidic acid (PA) is a signaling lipid resulting from PLD activity and is a 

precursor to diacylglycerol (DAG), an endogenous activator of protein kinase C (PKC).  

Protein kinase C is another regulator of PLD1, and its isoforms ( and ) can directly 

activate this enzyme (11, 22).  The different isoforms of PKC associate with different 

areas of the PLD1 protein.  PKC isoform requires amino acids 1-323 to activate PLD1 

(3).  Certain growth factors (EGF, PDGF) have been found to activate PLD through PKC 

(10, 11).  PLD1 is also activated by GTPases of Rho, Ral, and ADP ribosylation factor 

families (ARF) (10, 20).   
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Phospholipase D2 is activated by PIP2 and PKC to a minimal extent (9).  It has 

been suggested that PLD2 is required for the transportation of membrane receptors from 

endosomes back to the plasma membrane through the mediation of Arf6 (23).  This was 

first proposed because PLD2 was found to localize mainly in the plasma membrane. 

 

Functions of PLD   

 Functions of PLD have been studied in a variety of cell types and in a number of 

cellular functions.  For instance, PLD has been found in macrophages, which has been 

correlated to phagocytosis of PLD containing macrophages (19).  To support this theory 

conversely, dominant negative forms of PLD1 and PLD2 were found to inhibit 

phagocytosis of macrophages (19).   

 As part of the innate immune system, neutrophils, as well as fibroblasts, can 

produce superoxide that directly kills bacteria (7, 24).  Activation of phox leads to 

generation of superoxide radicals which can then produce H2O2.  This H2O2 can then be 

converted into HOCl or other toxic products through other systems (i.e. halide-

myeloperoxidase system) (25).  PLD is a regulator of NADPH oxidase, which is 

sequentially activated by PA and DAG (24).  After adhesion of neutrophils to the 

endothelium, the oxidative burst and degranulation are activated by the action of various 

cytokines (26).  While PLD promotes the ability of cells to initiate defense mechanisms, 

the inhibition of PLD results in a diminished ability of cells to adhere (6). 

 Taking adhesion one step further, the mechanism of chemotaxis can be examined. 

Chemotaxis or direction migration is the ability of a cell to move toward a 

chemoattractant or chemical stimuli.  Chemoattractants aid to direct cell migration toward 
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a specific location to function in defense.  An in vitro study involving neutrophils was 

conducted to allow for transendothelial migration towards an extracellular matrix (26).  

Cells that migrated through the membrane and subsequently adhered to this surface were 

then found to synthesize PA and DAG (26).   

Some cytokines shown to promote the ability of cells to chemotax include: IL-8, 

fMLP (formyl-met-leu-phe), and ENA-78 (epithelial neutrophil-activating peptide-78) 

which are specific for neutrophils.  Extracellular growth factor (EGF) is a cytokine that is 

able to stimulate fibroblasts.   

There are also chemokines specific for monocytes and macrophages, which 

include: macrophage inflammatory protein 1- (MIP-1), monocytic chemotactic 

protein-1 (MCP-1) and macrophage-colony stimulating factor (M-CSF).  These cytokines 

specific for the cell types listed will be discussed in further detail.        

 

History and Role of Grb2 

 Growth factor receptor bound protein 2 (Grb2) is a 25 kDa protein composed of 

two SH3 domains and one SH2 domain (27, 28).  The crystal structure of the SH2 

domain of the Grb2 c-src is a central antiparallel -sheet that has two -helices on either 

side (29).  Peptide binding is mediated by the -sheet, intervening loops and one of the -

helices (29).  As seen with the stimulation of Grb2 by EGF, Grb2 binds to the EGF 

receptor either directly or indirectly through phosphotyrosine-containing proteins through 

its SH2 domain (15, 27).  Other proteins with phosphotyrosine (pTyr) residues include 

PLD, Shc, FAK (focal adhesion kinase), Syp and IRS-1.  What has been noticeable with 

these pTyr residues is they are bound to Grb2 in -turn conformations (27).   
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The two SH3 domains of Grb2 are known to associate with proline-rich areas of 

other proteins (28).  Son of sevenless (Sos), a protein rich in proline, associates with the 

SH3 domain of Grb2.  Sos promotes GTP loading of Ras and leads to the activation of 

Ras effectors (15).  This Grb2/Sos complex has multiple functions, associated with 

embryogenesis, cancer, regulation of the cytoskeleton, cell differentiation and DNA 

synthesis (28, 30).  Grb2 is a cytoplasmic protein and is able to transmit signals into the 

cytoplasm (31).  When Grb2 is stimulated with EGF, for example, cytoplasmic Grb2 

located in the cytoplasm relocates to the plasma membrane (28).  

Overexpression of PLD2 and Grb2 has been found in different types of cancer, 

possibly leading to its ability to metastasize.  For example, increased amounts of Grb2 

have been correlated with formation of tumors in the liver of mice as well as in human 

breast cancer cells (27).  By inhibiting the Grb2 binding domains with a potential binding 

blocker it may be possible to reduce the production of metastatic cells.  

 

Interaction of PLD2 and Grb2 

PLD was found to be elevated in cells which have been transformed by several 

oncogenes which include v-Src, v-Ras, v-Raf, and v-Fps, leading to the belief that there is 

a chronic turnover of PLD-dependent phosphatidylcholine (32). More recently, Grb2 has 

been identified as a regulator of PLD2.  Novel research has revealed that the tyrosines of 

PLD2 Y169 and Y179 are needed in order for Grb2 to interact with PLD2 (Figure 4) (15).  

These two residues were found to play differing roles in the function of PLD2.  Point 

mutation of tyrosine-169 diminishes the enzymatic activity of PLD2, whereas mutation of 

the tyrosine-179 diminishes the ability of PLD2 to regulate tyrosine phosphorylation (15, 
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28).  Both tyrosines are located in the PX domain of PLD2, but only the Y179 residue is 

conserved in mammalian PLD2 (15).  In vivo studies firmly established the involvement 

of the latter tyrosines in Sos recruitment, possibly through Grb2.  Supporting this idea is 

the knowledge that the SH3 domains of Grb2 interact directly with Sos (15).  A double 

mutant, PLD2 Y169/179F was not able to bind to the SH2 domain of Grb2 or activate the 

Ras pathway (28).    

Transfection of a stably-induced short hairpin Grb2 (shGrb2) plasmid silenced 

endogenous Grb2 in COS-7 cells, suppressing PLD2 activity (28).  Di Fulvio and others 

studied the role of Grb2 in PLD activity further by determining whether activity could be 

salvaged by transfecting silenced Grb2 cells with a plasmid refractory to shGrb2 plasmid 

referred to as xGrb2SiL (28).  The cells stably transfected with the shGrb2 plasmid were 

then studied using a mutant that was deficient in the SH2 domain, xGrb2SiLR86K (28).  

The results showed that the refractory plasmid transfected into COS-7 shGrb2 cells was 

able to rescue PLD2 activity however, transfection of a Grb2 plasmid lacking the SH2 

domain failed to rescue PLD2 activity.  The actual mechanism of Grb2 regulating PLD2 

is poorly understood, however the current proposal identifies the tyrosine residues at 169 

and 179 as the binding sites for the Grb2 SH2 domain (15, 28). 

Once the tyrosine residues mentioned interact with the SH2 domain of Grb2, the 

SH3 domain of this protein recruits tyrosine kinases and phosphatases, which have been 

found to be important to the functionality of PLD2 (33).  Following this idea, a mutant  

plasmid, GSTGrb2 P49/206L, was constructed which had the two SH3 domains of Grb2 

deleted, resulting in decreased PLD2 activity when transiently transfected into 

mammalian cells (15).   
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Figure 4: 

Sequence of PLD2 showing PX, PH, and HKD domains.  Red “Y” indicates functional 

tyrosines. 
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Later, it was found that decreased activity of PLD2 did not affect the ability of 

Grb2 to bind PLD (15, 33).  PLD2 lipase inactive mutants (K444R, K758R, K444/758R) 

were constructed, transfected into cells and protein was immunoprecipitated from cell 

lysates using antibodies to Grb2.  Western blot analysis was then performed using 

antibodies against the tagged lipase inactive mutants.  Western blotting revealed bands 

corresponding to Grb2 binding to the PLD2 mutants thus showing that PLD2-Grb2 

binding and activity are not directly associated (15).  

 

EGF, MIP, MCP, M-CSF, IL-8, fMLP, and ENA-78 Chemoattractants 

 Epidermal growth factor (EGF) triggers two main biological functions in 

fibroblasts, namely proliferation and differentiation (34, 35).  EGF also serves other 

functionsm such as cell rounding, ruffling, actin cytoskeletal reorganization, filopodia 

extension and the most important for research conducted herein, cell motility (35).  EGF 

is a polypeptide that has two sets of anti-parallel-sheet conformations with negligible 

-helical arrangement (34). Tyrosines that are autophosphorylated at the EGF receptor C-

terminus allow for the binding of Src 2 (SH2) and phosphotyrosine binding (PTB) 

domains (35).  It has previously been reported that receptor kinase activity along with at 

least one of the C-terminal tyrosine autophosphorylation sites are both required for cell 

movement (36).  In addition to the latter requirements, both phospholipase C-and 

protein kinase C (PKC) have been linked to EGF and its ability to enhance cell motility 

(37, 38).   

 Monocyte chemoattractant protein-1 (MCP-1), macrophage inflammatory protein-

1 (MIP-1) and macrophage-colony stimulating factor (M-CSF) are chemoattractants 
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found to increase cell motility among monocytes/macrophages.  MCP-1 and MIP-1, 

which have a C-C structure, activate monocytes and induce directional migration (39).  

Aside from the ability of MCP-1 to stimulate chemotaxis, it is also able to stimulate 

monocytes to become cytostatic for some tumor cells lines, increase levels of intracellular 

calcium and induce monocytes to release superoxide anions and lysosomal enzymes (39).   

MIP-1 proteins act through G-protein-coupled cell surface receptors that are 

expressed by monocytes/macrophages (40).  MIP-1 binds to chemokine receptors 

leading to a variety of cell functions including: chemotaxis, degranulation, phagocytosis 

and mediator synthesis.  Signaling events that are initiated by the previously stated G-

protein complex lead to its dissociation into two subunits: G and G.  These two 

subunits then activate the PI3K pathway and PLC, relatively (40).  Upon activation of 

PLC, an influx of Ca2+ activates a protein kinase C isoform (41). 

M-CSF plays essential roles in the ability of monocytes to survive, proliferate, 

differentiate and mature (41).  M-CSF acts by binding to cell surface receptors (CSF-1R) 

(42).  These cell surface receptors are encoded by the c-fms proto-oncogene.  Upon the 

binding of M-CSF, the CSF-R1 dimerizes, and the tyrosine kinase domain is activated, 

resulting in transphosphorylation of the receptor.  Grb2 and PI-3 kinase, two proteins 

containing SH2 domains, bind to two of the four phosphotyrosyl residues created (43).   

IL-8 and ENA-78 are strong chemoattractants for neutrophils, leukocytes that 

play critical roles in angiogenesis, tumor development and wound repair (44, 45).  IL-8 

and ENA-78 are grouped into a CXC subfamily, where the first cysteine is preceded by 

the Glu-Leu-Arg (ELR) sequence of amino acids, thus these chemokines are part of a 

group referred to as ELR+CXC (46).  These CXC chemokines signal through seven 
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transmembrane G-protein coupled receptors.  Specifically, IL-8 is able to bind to CXCR1 

and CXCR2 sites, while and ENA-78 binds with a stronger affinity to the CXCR2 

receptor site (47).  The CXCR-1 receptor site for IL-8 has been shown to activate PLD,1 

and CXCR-2 has been shown to activate PLD2.  Like the chemokines previously 

discussed, these also signal through cystolic Ca2+ changes as well as through activation of 

phospholipase D, subsequent chemotaxis, and exocytosis (48).   

N-formyl-methionine-leucine-phenylalanine (fMLP) is a bacterial derived 

tripeptide that stimulates neutrophils to migrate towards bacteria (49).  FMLP is known to 

be produced by enteric flora and contributes to inflammatory bowel disease.  Receptors 

for this peptide have been found in both monocytes and neutrophils (48).  All of the 

chemoattractants described were used to stimulate migration of COS-7, RAW 264.7, LR-

5 and dHL-60 cells, as well blood isolated neutrophils in the current study. 

  

The Physiological Importance of Cellular Migration 

 Normalcy of migration is found in the ability of leukocytes to move toward 

foreign invaders of the body in phagocytic and immunogenic responses.  Fibroblasts and 

endothelial cells migrate to aid wound repair and become collagen around the wounded 

area (50, 51).  Migration is also important in embryogenesis and angiogenesis (52).  

Cellular migration may be involved in not only the normal physiological state of some 

cells, but also in the pathological state.  With regard to abnormal migration, the most 

common example is viewed in metastasis, whereby tumor cells migrate from the initial 

tumor site into the circulatory system where they can then eventually locate to another 

site in the body (50).  Before migration can occur, cells must orient themselves to 
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establish a distinct cell front and rear.  The orientation of the cell depends on the 

inflammation site and location of the chemical stimuli or chemoattractants being released 

(50, 53).   

PA, the product of PLD, has been shown to mediate chemotaxis, as increasing 

concentrations of PA lead to a more enhanced rate of cell migration (53).  Rac, a small G-

protein downstream target of PLD during actin cytoskeleton rearrangement, is also 

involved in cellular migration (54).  Actin cytoskeletal rearrangement is subsequently 

involved in migration, phagocytosis, and axonal growth mitogenesis, morphological 

change and superoxide production (54).  While it is still unknown whether PLD is a 

primary or secondary regulator of migration, it has been shown by Lehman, et al. that 

PLD is a mediator for chemotaxis in COS-7 cells, but it does not affect chemokinesis.  

Through the inhibition of PLD, membrane ruffling and formation of lamellipodia 

structures are blocked.   

In the murine lymphoma cell line EL4, Knoepp, et al. found that activated PLD2 

promotes phosphorylation of FAK and Akt, leading to cell-substrate adhesion (54, 55).  

However, while inactivated PLD2 inhibits adhesion, migration, proliferation and tumor 

invasion, it does not alter the basal level of FAK and Akt phosphorylation (55).  Thus, it 

is not through these molecules that the inhibitory effects of PLD act (55).  Although PA 

does play a role in cell migration, the specific mechanisms involved are not completely 

understood and more precise structure-function studies are needed.   
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II. HYPOTHESIS AND SPECIFIC AIMS 

Preliminary observations in our lab have implicated PLD (as part of a complex 

intracellular signaling network) in leukocyte migration.  IL-8 and related chemokines 

stimulate PLD activity and promote chemotaxis.  There is a body of evidence of a role for 

PLD in chemotaxis in the lab after studies with neutrophils.  However, the experimental 

use of these cells is somewhat limited in that these cells are not amenable to molecular 

biology manipulation (e.g. DNA/RNA transfection) (53).  This has been addressed in this 

thesis by the use of leukocyte cell lines that are both transfectable and mobile.   

Hypothesis 
  
 We propose that specific amino acids in the PLD molecule are critical for the 

triggering of cell chemotaxis that is mediated by an interaction between PLD and 

specific signaling proteins.    

Specific Aims 

 In order to test the hypothesis, we designed the following four specific aims and 

conducted experiments directed at testing the main hypothesis. 

AIM 1: Identify a suitable cell line that is amenable to transfection and can exhibit 

chemotaxis.  Neutrophil, monocyte/macrophage and fibroblast cell lines were studied 

utilizing a multitude of methods to determine the proper cell line to use for optimal 

transfection efficiency.  Also, different methodologies to study chemotaxis were invoked 

to establish a suitable technique.   

AIM 2: Characterize a PLD/chemotaxis relationship by transfection of PLD 

plasmids.  Plasmid DNA constructs containing the exon for wild-type PLD (1 and 2) 

were transfected into cells either by electroporation or using lipofectamine/plus reagents 
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and the chemotactic response was quantitated.  Next, plasmids containing lipase dead 

mutants (PLD1 K860R, PLD2 K444R, PLD2 K758R, PLD2 K444/758R), previously 

constructed in our lab (15), were transfected to determine whether the enzymatic activity 

of PLD is required for chemotaxis.  Specific chemokines were used to study chemotaxis 

for specific cell lines depending on the cell type (EGF for COS-7; MIP-1 for LR5).  In 

addition, immunofluorescence microscopy was used to determine possible intracellular 

location of PLD. 

AIM 3: Identify PLD mutants that enhance or suppress chemotaxis.  PLD mutants 

(PLD2 Y169F, PLD2 Y179F, PLD2 Y169/179F, PLD2 Y165F) that had been previously 

constructed in our lab (15, 28, 58) were studied to examine the effect of a particular 

mutation on the ability of cells to chemotax.     

AIM 4: Characterize a protein that can associate with PLD and induce chemotaxis.  

Cells were tranfected with Grb2 mutants (Grb2, Grb2ResWT, shGrb2 and xGrb2 R86K), 

previously constructed in our lab (15, 28, 58) to determine if overexpression of Grb2 

increased chemotaxis, if silencing endogenous Grb2 decreased chemotaxis or if Grb2 

binding to PLD could increase chemotaxis.  
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III. MATERIALS AND METHODS 
 
Materials 
 
 Reduced sodium bicarbonate DMEM, RAW 264.7 and COS-7 cells were obtained 

from American Type Culture Collection (ATCC) (Rockville, MD). HPBMC human 

peripheral blood monocytes and LGM-3 growth medium were obtained from Cambrex 

Bio Science Walkersville, Inc. (Walkersville, MD).  Raw 264.7/LR-5 cells were obtained 

from Dr. Dianne Cox of Albert Einstein College of Medicine Yeshiva University.  

Peripheral blood neutrophils and monocytes were isolated from donated human whole 

blood.  Histopaque-1077 was obtained from Sigma Aldrich (St. Louis, MO).  RPMI 1640 

1x was obtained from Mediatech (Manassas, VA).  Lipofectamine transfection reagent, 

plus reagent and Opti-MEM were purchased from Invitrogen Co. (Carlsbad, CA)   

Superfect transfection reagent was obtained from Qiagen (Valencia, CA).  MIP-1, 

MCP-1, M-CSF, EGF, IL-3, and ENA-78 were from PeproTech Inc. (Rocky Hill, NJ).  

Anti-Protein G agarose, Anti-PLD and Anti-Myc tag monoclonal antibodies were 

obtained from Millipore (Temecula, CA).  c-Myc antibody conjugated (AC) agarose 

mouse monoclonal IgG beads, HA-tag AC agarose mouse monoclonal IgG2a beads and 

-actin antibody were obtained from Santa Cruz Biotechnology (Santa Cruz, CA).  HA-

tag mouse mAb was from Cell Signaling (Danves, MA).  Triton X- 100, phalloidin-FITC 

conjugate (conjugate from Amanita phalloide) and sodium citrate solution were 

purchased from Sigma (St. Louis, MO).  Enhanced chemiluminescence (ECL) western 

blotting detection reagents and Percoll/RediGrad were purchased from GE Healthcare 

(Piscataway, NJ).  Nucleofector electroporation device, transfection solution V, and GFP 

plasmid (pmax-GFP, 3486 bp) were from Amaxa Inc., (Gaithersburg, MD). 
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Methods 
 
RAW 264.7 RAW 264.7/LR5 Cell Culture, Viability, and Transfection 
 
 RAW 264.7 cells are adherent cells.  Upon receipt, cells were thawed quickly, 

washed 1x with pre-warmed complete growth medium and centrifuged (800 rpm for 7 

minutes).  Supernatant was removed, cells were resuspended in fresh complete growth 

medium (CGM) consisting of reduced sodium bicarbonate DMEM, 20% FCS (fetal calf 

serum) and 1% gentamycin and transferred to tissue culture coated flasks and maintained 

at 37◦C in 5% CO2.  After 2-3 passages, 10% NCS (newborn calf serum) was substituted 

for 20% FCS in the CGM.  Cells were fed with fresh CGM every three to four days and, 

once confluent, were split 1:4 (cell:media) ratio.  Trypan blue exclusion test was used to 

determine cell viablility.  Viability of cells prior to transfection was > 90%.  RAW 264.7 

cells were serum starved one day prior to transfection.  Cells (~ 3 x 106 per transfection) 

were lifted from flask surfaces using cell dissociation buffer, then diluted with an equal 

volume of media, pelleted at (700 rpm for 5 minutes) and resuspended in 100l of 

Amaxa nucleofection solution V containing the plasmid DNA (1-5g) of interest.  Cells, 

plasmid DNA and solution V were placed in an electroporation cuvette and then 

subjected to an appropriate electric current for an appropriate length of time by the 

electroporation instrument.  Transfected RAW 264.7 cells were plated in 6-well non-

tissue coated culture plates containing 2ml/well CGM (no antibiotics).  Experiments were 

conducted 28.5 hours post-transfection.  LR5 cells were transfected using superfect 

reagent (Qiagen).  One day prior to transfection LR5 cells were split into 6-well non-

tissue coated culture plates and maintained in CGM (antibiotic and 10% NCS).  At the 

time of transfection cells were between 80-85% confluent.  A mixture of SuperFect 
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reagent, plasmid DNA (1-5g) and CGM (no serum) was incubated for 10 minutes at 

room temperature and then added drop-wise onto the adherent monolayer of cells to a 

final volume of 2ml per well.  Cells were incubated with transfection reagent and plasmid 

for ~3 hours after which cells were washed 3 times with CGM, and incubated an 

additional 28.5 hours in the presence of CGM prior to experimental use. 

  

COS-7 Cell Culture, Viability, and Transfection 

 COS-7 cells, like LR-5 and RAW 264.7 cells, grow as an adherent monolayer.  

Cultures were established from a frozen stock by washing thawed cells 1x with pre-

warmed DMEM and placed in coated tissue culture flasks in CGM.  Cells were 

maintained in 75cm2 tissue culture coated flasks and, once confluent cells were 

trypsinized, counted and subcultured in 6-well culture plates 1 day prior to transfection.  

Viability was determined by trypan blue exclusion.  On the day of transfection, cells were 

washed 2x with warm PBS to remove serum and returned to 37◦C and 5% CO2 with 1ml 

per well of pre-warmed Opti-MEM (serum free media).  Lipid-DNA complexes were 

prepared by mixing lipofectamine reagent, plasmid DNA, plus reagent and Opti-MEM 

and incubating at room temperature for 10 minutes according to manufacturer’s 

instructions (Invitrogen).  Transfection mixtures were added drop-wise to the plated 

cultures.  Cells were incubated in the transfection media at 37◦C and 5% CO2 for 3 hours.  

Transfection media was replaced with 2ml CGM (no antibiotics) after washing 1x with 

CGM (no antibiotics).  Cells were allowed to grow for 48-55 hours prior to harvesting for 

experimentation.    
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Neutrophil and Monocyte Peripheral Blood Isolation  

 Similar to English and Anderson, blood was drawn in a syringe containing 10% 

sodium citrate and then slowly added to 6% dextran saline (56).  Blood was allowed to 

settle (30 minutes), top phase removed, sedimented (~ 700 ref for 3 minutes) and pellet 

resuspended in saline.  A ficoll (Histopaque) gradient was used to separate leukocytes 

and red blood cells (RBCs). Following centrifugation (10000 ref for 15 minutes), the 

supernatant containing the pellet consisting of RBCs and polymorphonuclear cells 

(PMNs) was resuspended in 1ml saline, then diluted in ice-cold sterile water to lyse 

remaining RBCs and returned to isotonic conditions with an equal volume of 1.8% 

sodium chloride.  Following centrifugation (7 ref for 3 minutes), the resulting pellet 

consisting primarily of neutrophils was resuspended in HBSS/Hepes buffer.  The cell 

concentration was adjusted for experimentation and diluted with the proper volume of 

RPMI media. 

   

Chemotaxis 

 Adherent cells were detached using 25% Trypsin/EDTA or a non-enzymatic cell 

dissociation buffer for COS-7 or RAW cells, respectively.  A hemocytometer was used to 

count cells, and trypan blue exclusion was used to determine cell viability.  24-well plates 

and Transwell inserts were pre-wetted with DMEM containing 0.5% BSA.  Cell 

concentration was adjusted to 5 x 104 cells per 400l of DMEM containing 0.5% BSA 

per insert.  600l of DMEM containing 5% BSA was added to the bottom of the well 

prior to placing the cells and insert in the well.  Either 10 nM macrophage inflammatory 

protein (MIP-1) for RAW 264.7 and RAW 264.7/LR5 cells or 100 ng/l EGF for COS-
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7 cells were used as chemoattractants.  The murine macrophage cells lines were allowed 

to chemotax for 3.5 hours and COS-7 cells chemotaxed for 1 hour at 37◦C, 5% CO2.   

Afterward, inserts were removed and cells that had migrated to the bottom were fixed 

with 4% paraformaldehyde per each well.  Cells that migrated to the bottom were then 

allowed to settle and adhere before being counted.  Cells were then counted using an 

inverted microscope at 20x.  The average numbers of 6 counts per well were taken and 

data is quantified.   

 

Cell Lysate Preparation 

 Lysates of cells were taken at 28 and 48 hours after transfection for RAW/LR-5 

cells and COS-7 cells respectively.  Lysates were prepared using a lysis buffer containing 

0.4% Titron X-100 and protease inhibitors, aprotinin and leupeptin (referred to as SLB).  

Cells were washed 2x with ice cold PBS, then scraped from wells and pelleted.  Cell 

pellets were resuspended in 150 l of ice cold SLB and sonicated twice for 10 seconds.  

An aliquot was removed from each sonicate to determine protein concentration using 

BioRad protein assay and total protein was detected at O.D. 595 nm using an Amersham 

BioTrack II plate reader. 

 

Western Blotting 

 Transfected cell sonicates were subjected to SDS-PAGE using Pierce 4-20% 

Precise Protein gels and Trichrom Ranger Prestained Molecular Weight Markers.  Gels 

were run at 120 Volts for approximately 45 minutes.  Proteins from the gel were 

transferred to PVDF membranes at 60mA for 2 hours.  The membranes were incubated in 
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5% BSA/TBS-T at 4◦C (blocking buffer) overnight.  Western blotting was carried out 

using the following dilutions of primary antibodies in blocking buffer:  1:1000 anti-Myc 

(rabbit or mouse IgG), 1:1000 anti-HA (rabbit or mouse IgG), 1:1500 anti-Grb2 (mouse 

IgG), 1:3000 anti--Actin (mouse IgG).  Washed blots were then incubated in 1:3000 

dilutions of the appropriate secondary antibody-HRP conjugate.  After washes with TBS-

T Amersham’s ECL reagent was used to activate the horseradish peroxidase, and x-ray 

film was exposed to the immunoblots.  Film exposures of the blots were taken and 

developed 24-48 hours after the incubation of the membrane in primary antibody.  Blots 

were then mounted in a cassette and autoradiography film was used to visualize the blots. 

 

Immunofluorescence Microscopy 

 RAW 264.7/LR5 cells transfected with myc- or HA-tagged plasmids were fixed 

onto 22mm2 glass coverslips by adding 1ml of 4% paraformaldehyde to each coverslip 

for at least 10 minutes.  Paraformaldehyde was aspirated off and cells were permeabilized 

with 1 ml 0.5% Triton X-100 in PBS for 10 minutes.  Cells fixed on coverslips were then 

blocked in IF blocking buffer (10% newborn calf serum and 0.1% Triton X-100 in PBS) 

for 4 hours.  Coverslips were then incubated overnight at 4◦C in the dark in a 1:1000 

dilution of anti-HA-FITC or anti–myc FITC IgA conjugate in PBS.  Next, coverslips 

were washed 3 times for 5 minutes in 1 ml of PBS.  Actin staining was carried out using a 

1:200 dilution of Phalloidin TRITC in PBS for 2 hours at room temperature.  Following 

washing, a final stain using DAPI, diluted in 1:2000 PBS, was used to stain cell nuclei by 

incubating coverslips for 5 minutes and then once again washing with PBS.  Excess 

liquid was aspirated off and cells were washed a final time.  Air-dried coverslips were 
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then adhered to glass microscope slides (cell side down) using Vectashield mounting 

medium for fluorescence (Vector Laboratories, Inc.) and were visualized on a Nikon 

Eclipse 50i inverted microscope with MetaVue software.   

 
Construction of Cerulean-C1-Grb2 WT and Cerulean-N1-Grb2 WT 
 
1. Backbone plasmids Cerulean-C1 and Cerulean-N1 
 

Construction of chimeric plasmids began with Homo sapiens growth factor 

receptor-bound protein 2 (Grb2) cDNA.  P-Cerulean-N1 and -C1 plasmids were provided 

as a gift by Dr. Joel Swanson, University of Michigan.  Purified DNA on filter paper was 

eluted in a sterile eppendorf tube with 30 l ultrapure water. A 1 l aliquot of the 

resulting plasmid DNA solution was used to transform DH5 competent cells.  Bacteria 

were screened for kanamycin (K+) resistance on K+ LB plates.  Isolated colonies were 

picked and used to inoculate 5 ml luria broth (LB-K+).  The Escherichia coli were grown 

overnight at 37oC with 350 rpm aeration until the cultures were turbid.  Plasmids 

Cerulean-C1 and Cerulean-N1 were purified using Qiagen QIAprep Spin Miniprep kit. 

  

2. PCR amplification of Grb2 WT and mutant Grb2 R86K cDNA 

 Grb2 and its mutant Grb2 R86K (the 86 amino acid R was mutated to K) were 

cloned into pcDNA 3.1 to yield pcDNA-Grb2 WT and pcDNA-Grb2R86K.  The Grb2 

WT and Grb2 R86 fragments were ampilified using Pfu polymerase (Primers used are in 

Table 1).  Primers were purified using PCR for thirty-six cycles: 95oC, 2 minutes, 95oC, 

45 seconds, 55oC, 1 minute, 72oC, 6 minutes and 72oC, 10 minutes.  Final products were 

stored at 4oC indefinitely.  The PCR product was gel purified with Qiaquick Gel 

Extraction Kit, then ligated to pCR-Blunt II-TOPO with Zero Blunt TOPO PCR cloning  
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Forward primer GAGTCGACATGGAAGCCATC       Tm=55.6 

Reverse primer 1 ATCCGCGGTTAGACGTTC             Tm=54.8 for mCFP-C1 

Reverse primer 2 CCGCGGGACGTTCCGGTTCAC     Tm=65.4 for mCFP-N1 

 

Table 1:  

Primers used in ligation for Grb2 WT and Grb2 R86K.  
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kit according to manufacture’s instructions.  The ligation reactions were kept on ice and 

transformed into DH5 competent cells.  Colonies positive for the plasmids were 

screened on LB/K+ agar plates.  Isolated colonies were used to inoculate luria broth (LB, 

K+) and cultures were grown overnight at 37oC with 350 rpm aeration.  Mini preparation 

of purified plasmid DNA was performed for Grb2 WT and Grb2 R86K ligated into the 

TOPO plasmid.  Plasmid verification was performed using PCR and restriction enzyme 

digestion (RED).   

 

3. Digestion and ligation 

 The TOPO-Grb2WT and TOPO-Grb2R86K plasmids were digested with 

restriction enzyme Sal I and Sac II, sequentially.  During this time, the backbone 

plasmids containing the fluorescent protein coding region, Cerulean C1 and Cerulean N1, 

were also digested using these same two restriction enzymes.  The digested fragments 

(backbone fragments, Grb2 WT and Grb2 R86K) were purified with the gel purification 

kit listed above, and the backbone fragments were treated with T4 DNA polymerase to 

avoid plasmid self-ligation.  The Cerulean and Grb2 fragments were ligated overnight at 

4oC with T4 DNA ligase.  The ligation product obtained was used to transform DH5 

cells which were then spread onto a LB/K+ agar plate.  Colonies that grew on K+ plate 

were picked randomly and used to inoculate to 5 ml LB/K+ media for plasmid extraction.  

 

4. PCR and Restriction Enyzme Digestion (RED) for positive colony identification 

The Grb2 forward and backward primers were used for PCR identification for the 

recombinant plasmids.  The PCR positive plasmids were extracted using Qiagen QIAspin 

Miniprep Kit and subjected to RED.  Size and restriction map of each of the plasmids 

was verified by RED (~ 5300 bp).  Plasmids identified as recombinant ones were 

sequence verified.   
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5. Maxiprep for the verified plasmids 

 E. coli colonies containing verified plasmids were grown in 2L LB media and 

maximum preparations of the purified DNA plasmids were made using Mo Bio 

UltraClean Plasmid Prep Kit.  Concentrations and purity of plasmid DNA was 

determined by spectrophotometry at OD260/280.  Purified plasmid DNA was used for 

transient transfections.   
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IV. RESULTS 

 
AIM 1:  Identify a suitable cell line that is amenable to transfection and can exhibit  

chemotaxis.   

We chose for this thesis three cell types:  two macrophage-derived lines (RAW 

264.7 and LR-5) and a fibroblast-derived cell line (COS-7).  We wanted first to 

understand if the cells were amenable to DNA/RNA transfection and if they were 

responsive to chemoattractants.  Available strategies for transfecting cells include 

lipofectamine and plus reagent, superfect and electroporation solution V (Amaxa, 

Gaithersburg, MD) for COS-7, LR-5 and RAW 264.7 cells respectively.  These products 

are suitable (at different levels) to use on the adherent cells studied. Prior to transfection, 

cells were found to be >90% viability by trypan blue exclusion.  Following transfection, 

viability remained stable except when using electroporation with RAW 264.7 cells, 

which had an average viability of 20% post-transfection.  Several different methodologies 

for measuring chemotaxis were studied including boyden chamber densitometry and 

Transwell quantitation (Figure 5).  Only human peripheral white blood cells studied 

(neutrophils and monocytes/macrophages) were found to yield positive results in the 

Boyden chamber, which were used initially as a positive control for chemotaxis (50) 

(Figure 5A).  Figure 2 is a representation of the Boyden chamber after cells adhered to 

the underside of the membrane and following were Wright-stained to show areas where 

neutrophils adhered to the membrane.   

Cancer cell lines used were capable of giving positive results only in Transwell 

experiments.  Transwells for experimentation were loaded with 5x105 cells per well in a 

volume of 400l.  A representative procedure of transwell chemotaxis is shown in Figure  



 
 

30

 

 

 

 

Figure 5: 

Methodologies used in performing chemotaxis. (A) An example of a 12 m pore size 

filter membrane with cells stained with Wright Stain.  (B) Transwell basic procedure that 

has 2 compartments separated by a semi-permeable membrane.   
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3B using LR-5 as the experimental cell line.  It was established that transwells were the 

best means to study a multitude of cell lines and their reactions to chemoattractants.   

A. Establish the chemotactic response of neutrophils to standard chemoattractants. 

The upper compartments of the Boyden chamber were loaded with neutrophils, 

while the lower compartments received varying amounts of IL-8 (1.5, 2.5, 12.5 and 25 

nM), fMLP (15, 150, and 300 nM), and ENA-78 (10, 30, and 50 nM) (Figure 6) (44, 49).  

Through this experiment IL-8 and FMLP showed neutrophils extracted from human 

blood were able to stimulate chemotaxis in a dose-dependent manner best.  Neutrophils 

that were tested showed significant migration in the Boyden chamber in all 

concentrations of FMLP as well as IL-8 at 12.5 and 25 nM (Figure 7).  All concentrations 

of fMLP were significant and they showed hyperbolic responses.  

 

B. Study the chemotactic response of three motile cell lines through dose and time 

dependency.   

1. RAW 264.7 Cells, a macrophage cell line that responds to MIP and MCP. 

RAW 264.7 cells are a murine macrophage cell line obtained from ATCC.  Cells 

used in these experiments were between passages ten and fifteen.  RAW 264.7 cells can 

be stimulated by many chemoattractants including: MIP-1, MCP-1, and M-CSF.  The 

RAW 264.7 cells were found to be stimulated best by MIP-1 at a 10 nM concentration 

for three hours rather than a 10nM concentration of MCP-1 (Figure 8A).  MCP-1 was 

found to stimulate chemotaxis but not to the magnitude of MIP-1.  For the studies 

conducted herein, MIP-1 was the chemoattracant of choice used to stimulate RAW  
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Figure 6: 

Analysis of a Boyden chamber membrane after chemotaxis.  Peripheral blood neutrophils 

were resuspended in RPMI-based chemotaxis bufer at a concentration of 5 x 105 cells/mL 

density and placed in the upper chamber of a 5 m pore membrane in the original 

Boyden chamber.  Bottom wells contained either buffer only or varying amounts of IL-8, 

fMLP, or ENA-78.  
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Figure 7: 

Chemotactic response of human blood neutrophils toward the indicated concentration and 

type of chemoattractants. (* indicates p-value < .05 with respect to “control”.) 
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Figure 8: 

Time-dependency of chemotaxis (A) RAW 264.7 cells were studied in a time-dependent 

manner using 10 nM of MIP (blue circles) and 10 nM MCP (red squares). (B) COS-7 

cells were studied at an EGF concentration of 100 ng/l at 30 minute increments over a 

period of 120 minutes.  
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264.7 and LR-5 cells due to its significance (Figure 9B and C).  M-CSF could also be 

used to stimulate chemotaxis (data not shown). 

2. LR-5 cells, also a macrophage cell line which is stably expressing the Lac 

repressor and are proven to be more mobile than the parental RAW 264.7 cells.   

A dose response experiment was also performed using LR-5 cells, which were 

provided by Dr. Diane Cox, Albert Einstein School of Medicine Yeshiva University, NY.  

Dr. Cox’s laboratory found LR-5 cells to be more mobile than RAW 264.7 using live-cell 

microscopy.  LR-5 cells are murine macrophages that stably express the Lac repressor 

derived from RAW 264.7.  Cells were used for dose and time experiments between 

passages ten and fifteen.  Like the RAW 264.7 cells, LR-5 cells, are found to be 

stimulated by the same chemoattractants (Figure 9C).      

3. COS-7 cells, a fibroblast cell line that is stimulated by EGF.  

COS-7 cells are fibroblast cells, which grow in the presence of EGF (33).  COS-7 

cells were used in cell migration to develop a model for wound healing.  Fibroblasts 

synthesize collagen and maintain the structural integrity of connective tissue and we have 

found that EGF could also act as a chemoattractant.  Dose and time dependent 

experiments were used with COS-7 cells between passages ten and twenty.  Dose and 

time response experiments revealed experimental optimization at 100 ng/l EGF and for 

one hour. 

We have established a model of cellular migration that is comprised of three cell 

lines that exceed our expectations when compared to neutrophils.  RAW 264.7 is a 

murine macrophage cell line that responds very well to MIP-1 and to a lesser extent, 

MCP-1 in a dose and time dependent manner.  As reported by the laboratory that first  
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Figure 9: 

Dose response of chemotaxis.  (A) COS-7 (B) RAW 264.7 and (C) LR-5 cells stimulated 

with their respective chemoattractants.  COS-7 cells were chemotaxed for 1 hour while 

RAW 264.7 and LR-5 cells were chemotaxed over a period of 3 hours. ( * are p<0.05 

with respect to no chemoattractant (B) or Mock (C).)  
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identified them (Dr. Diane Cox, Albert Einstein School of Medicine, New York) LR-5s is 

a murine macrophage cell line stably expressing the lac repressor that is: (1) more mobile 

and (2) more easily transfectable than the parental counterpart RAW 264.7 cells.  Like 

the previous macrophage cell line mentioned, LR-5 cells also respond to MIP-1 and 

MCP-1 in a similar manner.  COS-7 cells on the other hand are fibroblastic in nature and 

migrate towards EGF in a dose dependent manner as illustrated (Figure 9C).       

AIM 2:  Characterize a PLD/chemotaxis relationship by transfection of PLD 

plasmids. 

 Cells utilized in the following section were transfected with green fluorescent 

protein (GFP) to determine transfection efficiency using the strategies indicated in Aim 1 

(Figures 10 and 11).  RAW 264.7 cells were electroporated using amaxa nucleofector 

solution V at 3x106 cells per condition, which resulted in 25% viability and 18% average 

transfection efficiency for plasmids (Figure 11).  Transfection efficiency and viability 

was greater for LR-5 and COS-7 cells than that of RAW 264.7.  Viabilities of the latter 

cells lines (LR-5 and COS-7) were both >90% following transfection with GFP.  

Transfection efficiencies of these cell lines were 40% and 83%, respectively. 

 COS-7 cells were transfected with phospholipase D (PLD) 1 and 2 wild-type 

plasmids in phCMV and pcDNA 3.1 vectors to determine if an overexpression of PLD 

was able to increase chemotaxis.  To create a control for this experiment, empty vector 

plasmids were transfected into COS-7 cells and compared with the mock control and the 

PLD plasmids.  The empty vector transfections were not significantly different from the 

mock (Figure 12).  These results conclude that transfection alone does not alter the cell in 

any way structurally or metabolically that adversely or directly impacts chemotaxis.  We  
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Figure 10: 

Control experiments with Green Fluorescent Protein (GFP)-expressing cells.  (A) and (B) 

RAW 264.7 cells, (C) and (D) LR-5 cells, (E) and (F) COS-7 cells (A,C,E) mock 

transfected and (B, D, F) GFP transfected using Amaxa Solution V, Superfect and 

Lipofectamine and Plus reagent respectively.   
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Figure 11:  

Transfection efficiency of pmax GFP using manufacturer’s recommended methodologies 

and parameters for the respective cell lines. 
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Figure 12: 

Control experiment ruling out a side effect of the empty vectors.  COS-7 cells were 

transfected with the PLD1 and PLD2 mutants and their respective empty vectors 

(phCMV2 and pcDNA 3.1) to show that chemotaxis is not a mere product of transfection.  

(* are p-values of <0.05 with respect to Mock.) 
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can then conclude that overexpression of phospholipase D leads to a 2-fold increase in 

chemotaxis and since no attempts were made to separate expressing cells from non- 

expressing cells, it may be reasonable to conclude that the observed effect in enhanced 

chemotaxis could very well be underestimated. 

A. Transfect cells with PLD1 and PLD2 (WT) constructs.  Analyze cells studied 

through immunofluorescence, assess the transfection efficiency of cells and run 

controls with empty vectors to show no specificity toward transfection. 

COS-7 cells transfected with the PLD1 and PLD2 WT constructs enhance 

chemotaxis when stimulated with EGF (at p-values <0.05) and these results foreshadow 

the cellular changes induced by PLD during EGF-mediated chemotaxis.  PLD is an 

enzyme that has been connected to leukocyte function and migration.  The cells studied 

in this thesis initially have small amounts of endogenous PLD.  Through transfection of 

the PLD2 WT plasmid, stimulation of MIP-1 or MCP-1 for ten minutes leads to 

structural changes, which were visualized using immunofluorescence (Figure 13).  After 

transfection of PLD2 the cell remains in an elongated morphology, but when stimulated 

with a chemoattractant, the cell cytoskeleton changes from an elongated shape to 

compact and migratory (57). 

COS-7, RAW 264.7 and LR-5 cells were transfected with a multitude of plasmids 

that were previously constructed by researchers within our laboratory.  The PLD1 

K830R, PLD2 K444R, PLD2 K758R, and PLD2 K444/758R constructs are mutants that 

are lipase dead.  Figure 14 is a schematic representation of PLD1 and PLD2 lipase dead 

constructs.  The lipase dead mutant on the PLD1 isoform is located within the second  

HKD domain of the gene.  The PLD2 isoforms lipase dead mutants (444 and 758) are 
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Figure 13: 

Visualization of PLD in human macrophages.  Human macrophages (from Cambrex 

Walkersville, MD) were transfected with the PLD2 WT construct tagged with myc.  

Column A is stained with a FITC antibody against myc to show fluorescence.  Column B 

is Phalloidin TRITC antibody that reveals -actin.  Column C are the nuclei of cells 

stained with DAPI.  Column C is the overlay of A,B,C where the areas of light green are 

areas of PLD expression.  Row 1 of these cells is a PLD2 WT transfected cell with no 

stimulation.  Row 2 is a PLD2 WT transfected cell with MIP-1 stimulation for ten 

minutes.  Row 3 is a PLD2 WT transfected cell with MCP-1 stimulation for ten 

minutes. 
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Figure 14: 

Phospholipase D isoforms showing locations of the lipase dead mutants on PLD1 and 

PLD2 isoforms.  HKD domains are numbered according to their order on the gene. 
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located in the first and second HKD domains respectively.  The HKD 

(HxKx4Dx(6)GSxN) domains of PLD are invariable regions that are responsible for their 

enzymatic activity of PLD (10, 15).  The difference between these two regions is a loop 

section between the first and second HKD motif of PLD1 (Figure 2).   

B. Study chemotaxis 

 Chemotaxis assays were conducted in COS-7, RAW 264.7, and LR-5 cells.  

These cells both play roles in the innate immune response.  Both cells lines migrate to 

injured areas within the body.  Fibroblasts aid in wound healing by synthesizing the 

production of collagen.  These cells are important in maintaining the structural integrity 

of connective tissues.  Fibroblasts transfected with PLD2 WT construct significantly 

enhanced chemotaxis when stimulated with EGF, a four-fold increase when compared to 

mock (Figure 15A).  All other plasmids were significantly less mobile than the PLD2 WT 

construct possibly detailing that the HKD domain of PLD2 may be an important region of 

the protein in chemotaxis.  Because there was not a significant difference between mock, 

PLD1 WT and PLD1 K830R, the HKD domain of PLD1 WT may not be as involved in 

chemotaxis as PLD2 may be.   

Macrophages are antigen-presenting cells that have the ability to phagocytose 

debris and dead cells.  Macrophages are monocytes that have migrated to tissues in the 

case of injury or foreign invasion (bacteria).  In both macrophage cell lines studied, 

(RAW 264.7 and LR-5) PLD2 WT was able to increase the rate of chemotaxis as in 

COS-7 cells (compare Figures 15B and 15C to Figure 15A).  All PLD2 lipase inactive 

mutants were significantly reduced compared to the PLD2 WT plasmid in both  

macrophage cell lines.  Unexpectedly in LR-5 cells, PLD1 WT was significantly different 
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Figure 15: 

Study of chemotaxis after transfection with PLD constructs. (A) COS-7, (B) RAW 264.7, 

and (C) LR-5 cells with PLD1 and PLD2 WT constructs and lipase inactive mutants of 

PLD1 and PLD2 (“KR”).  Values are the means + the SEM of three experiments and 

asterisks indicate significant difference from values obtained with corresponding WT 

PLD (*, p < 0.05).   
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from the mock and PLD1 K830R suggesting that in this cell line the first HKD domain of 

PLD1 may be involved in chemotaxis contrary to COS-7 and RAW 264.7 results. 

C. Run controls by immunoblotting to determine equal expression of plasmids. 

-actin immunoreactivity was used as a gel loading control to show equal protein 

expression of transfected COS-7 cell lysates.  PLD1 WT and PLD1 KR constructs were 

transfected equally to yield equal expression of PLD1 (Figure 16A).  PLD2 WT and KR 

constructs also had relatively equal expression of PLD2 (Figure 16B).  In LR-5 cells 

lipase inactive mutants PLD2 K444R and PLD2 K444/758R were not significantly 

different from the mock.  In conclusion transfection of PLD2 WT constructs into RAW 

264.7, LR-5, and COS-7 cells leads to an increase in chemotaxis.  Conversely, after 

transfection of PLD1 WT chemotaxis is enhanced only in LR-5 cells.  The phospholipase 

inactive mutants residing in the HKD domain(s) of the isoforms have no enhancement 

effect on chemotaxis (compare Figure 20 and Figure 15).   

AIM 3: Identify new PLD mutants that enhance or suppress chemotaxis. 

A. Transfect cells with YF point mutants in the Phox domain of PLD and study  

chemotaxis. 

 Cell lines studied were transfected with mutants with a point mutation at a 

tyrosine.  The sites of the point mutations are represented in Figure 17.  After 

phosphorylation, tyrosines at the 169 and 179 sites are able to bind to the SH2 motif of 

other proteins.  Transfection of all YF mutants was found to be significantly different 

than PLD2 WT in all cell lines (Figure 18).  The ability of tyrosines in the PX domain of  

PLD2 to be phosphorylated by various kinases has a large effect on the ability of cells to 

chemotax.   In  LR-5  cells,  the  Y165F  mutant  significantly increases chemotaxis when  
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Figure 16: 

Western blots of transfected plasmids in COS-7 cells to show similar levels of 

expression.  (A) PLD1 WT and PLD1 KR expression. (B) PLD2 WT, PLD2 KR, and 

PLD2 YF expression. (C) Grb2 WT and Grb2Res WT expression after transfection. PLD1 

WT and KR are tagged with HA, while PLD2 WT and its mutants are tagged with myc.  

Grb2 constructs are not tagged and thus an antibody specific for Grb2 was used.  

Western-blots probed were transfected with -actin to show equal loading. O/Ex = 

overexpressed.  Endo = endogenous. 
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Figure 17: 

Schematic representation of YF mutantions of the PLD2 gene.  After phosphorylation, 

Y169 and Y179 sites are able to bind an SH2 region of other proteins.   
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Figure 18:  

Chemotaxis after cell transfection with PLD2 WT and YF mutants.  (A) COS-7 cells (B) 

RAW 264.7 and (C) LR-5 cells.  Values are the means + the SEM of three experiments 

and asterisks indicate significant difference from values obtained with corresponding WT 

PLD (*, p < 0.05). 
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compared to PLD2 WT (Figure 18C). All mutants transfected into the RAW 264.7 and 

COS-7 cells had a chemotaxis result significantly less than PLD2 WT construct, but 

significantly greater than the mock. 

B. Run controls of the YF mutants by immunoblotting and immunofluorescence. 

 Immunoblotts of the YF mutants were performed to ascertain that chemotaxis was 

due to overexpression of the PLD2 constructs and not because of an unequal expression 

of protein (Figure 16B).  Plasmids were compared with a mock transfection of COS-7 

cells, which have little to no endogenous PLD.  COS-7 cells were also transfected with 

PLD2 WT and PLD2 Y165F that express a yellow fluorescent protein (YFP) upstream of 

the PLD protein of interest (Figure 19).  PLD2 is identified by the yellow portions around 

the nucleus.   

C. Investigate whether enzymatic activity of PLD is necessary for chemotaxis  

  Enzymatic activity of PLD was determined using the procedure in the Materials 

and Method section of this thesis.  PLD1 K830R has little to no enzymatic activity when 

compared to PLD1 WT (Figure 20), but its ability to chemotax is not significantly 

different than either of the PLD1 constructs in COS-7 and RAW 264.7 cells (Figure 15A 

and B).  The reduced cell migration of the lipase inactive mutants of PLD2 may correlate 

to the significant decrease in enzymatic activity between these mutants and the PLD2 

WT.  Mutation on 165 does not affect the activity of the enzyme (and mutation does not 

effect chemotaxis).  Mutations of the 169 and 179 amino acids are part of the SH2 

binding motifs in the PX domain and it can be theorized that chemotaxis is mediated by 

the ability of PLD to bind through those sites.  However, only mutation on 169 affects the 

enzymatic activity.  Therefore, the effect of 169 on chemotaxis can be mediated through  
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Figure 19: 

Fluorescence of cells transfected with PLD chimeras.  COS-7 cells transfected with (A) 

YFP-PLD2 WT and (B) YFP-PLD2 Y165F chimeras.  Yellow fluorescence indicates 

PLD2 localization (white arrow heads).  Blue is DAPI staining of the nuclei.  
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Figure 20: 

PLD enzymatic activity of cells after transfection with PLD constructs.  (A) PLD1 WT 

and KR and (B) PLD2 WT, KR, and YF constructs in COS-7 cells.  In (A) * is p-value 

<0.05 with respect to Mock values. In (B) * are p-values <0.05 with respect to WT 

values. 
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Figure 21: 

Schematic representation of PLD binding to the SH2 region of the Grb2 protein. 
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PA while 179 mediates only protein-protein interactions.   

AIM 4: Characterize a new protein that can associate with PLD and induce 

chemotaxis. 

It was proposed that the 169 and 179 tyrosines of PLD2 served as the binding 

domain of an SH2 motif (Figure 20), such as that of the growth receptor binding domain 

2 protein (Grb2) (Figure 21) (15, 28).  The SH3 domain of Grb2 is able to recruit tyrosine 

kinases and phosphatases which have been found to be important to the functionality of 

PLD2 (33).  The Grb2 protein has been found in many types of cancer possibly leading to 

an increased ability of a cell to metastasize. 

A. Transfect cells with Grb2 constructs and study chemotaxis. 

 Western Blotting of Grb2 constructs were transfected equally to yield equal 

expression of exogenous Grb2, which is the upper band of Figure 16C while the lower 

band is endogenous Grb2.  The exogenous Grb2 has a molecule weight due to the 

Xpress-tag on the Grb2 plasmids.  -actin immunoreactivity was used a loading control.  

In all 3 cell lines (Figure 22) we observed a consistently significant increase of 

chemotaxis after Grb2 transfection.  Conversely, when LR-5 cells were transfected with a 

deficient SH2 domain, as with Grb2 R86K (Figure 22C), chemotaxis was completely 

negated similar to mock (Figure 22).  The mock and Grb2 R86K results were not 

significantly different this indicates that at least a component of chemotaxis is dependent 

on Grb2.  

B. Determine a possible association of PLD and Grb2 through immunoprecipitation 

and immunofluorescence.  
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Figure 22: 

Chemotaxis of cells after transfection with Grb2 constructs.  COS-7, RAW 264.7, and 

LR-5 cells were used.  Values are the means + the SEM of three experiments and 

asterisks indicate significant difference from values obtained with corresponding WT 

PLD (*, p-value are < 0.05 with respect to their Mock controls). 
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Figure 23: 

Schematic representation of Grb2 WT and Grb2 R86K constructs (15).  
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Figure 24: 

COS-7 cells immunoprecipitated (IP) with (A) anti-Grb2 and western blotted for anti-

Grb2; (B) IP with anti-PLD and western blotted for anti-Grb2; and (C) IP with anti-Grb2 

and western blotted for anti-HA. O/E = overexpressed. 
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Cell lysates were prepared after transfection of PLD2 WT, PLD1 WT, PLD1 

K830R constructs, as well as the Grb2-WT, Grb2Res (a variation of Grb2, also WT) and  

shGrb2 (silencing) constructs.  Immunoprecipitation (IP) was performed to detect a 

relationship between PLD(1 or 2) and Grb2.  IP with a Grb2 antibody pulled down 

endogenous and overexpressed Grb2 in cells untransfected or transfected with 

recombinant Grb2 and then immunoprobed with Grb2 antibody (Figure 24A).  

Endogenous Grb2 was 100 % in the mock, whereas shGrb2 was approximately 70 % 

silenced.  Endogenous Grb2 was also detected in lysates of cells transfected with PLD1 

or PLD2 WT constructs and subsequently pulled down using the Grb2 antibody and then 

immunoprobed for Grb2 on a western blot (Figure 24A).   

Cells transfected with Grb2 recombinants were immunoprecipitated with anti-

PLD, which binds endogenous PLD, and were then immunoprobed with anti-Grb2 

(Figure 24B).  This indicates that endogenous PLD is able to bind, with greater affinity, 

to overexpressed Grb2 rather than endogenous Grb2, since there is evidence of Grb2 

immunoreactivity in the Grb2 WT and Grb2Res WT lanes only.  IP of PLD2 did not pull 

down endogenous Grb2, as shown in the mock or shGrb2 transfected samples.  Next, 

PLD2 WT, PLD1 WT and PLD1 K830R constructs were transfected into cells, which 

were then immunoprecipitated with a Grb2 antibody and immunobloted with anti-HA 

(specific for overexpressed PLD2 or PLD1 proteins).  Immunoreactivities here show 

binding between endogenous Grb2 and overexpressed PLD (Figure 24C).  COS-7 cells 

were transfected with CFP-Grb2 WT and CFP-Grb2 R86K plasmids to show cellular 

localization of the Grb2 protein (Figure 25), which appears to localize in the cytoplasm 

(27).    
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Figure 25: 

Immunofluorescence of transfected of COS-7 cells with (A) CFP-Grb2 WT and (B) CFP-

Grb2 R86K.  Lighter blue area, Grb2, localizes in the cytoplasm of the cell (white 

arrowheads).  Darker blue is DAPI staining of the nuclei (yellow arrowhead).  
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Figure 26: 

Co-transfection (A) and Silencing (B) of cells, and chemotaxis in LR-5 cells.  (* = 

Significance compared to Mock p<0.05) 
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C. Silence endogenous Grb2 using shGrb2 plasmid. 

 Grb2 is an SH2-bearing protein and we have observed that transfection of cells 

with Grb2 constructs leads to a significant increase in chemotaxis (Figures 22).  In 

preliminary experiments, we wanted to ascertain if co-transfection of Grb2 and PLD2 

would result in a non-additive or an additive or in a synergistic effect on chemotaxis.  

Figure 26A indicated that PLD2 and Grb2 result in a modest additive effect.  Also 

preliminary experiments were performed to determine if, by removing, all of the 

endogenous Grb2 using shGrb2 whether chemotaxis would still occur.  LR-5 cells were 

transfected with the shGrb2 plasmid two days prior to transfection with PLD2 WT, Grb2 

WT, Grb2 R86K plasmids (Figure 26B).  In Grb2 silenced cells, all samples were 

significantly less migratory than the PLD2 WT plasmid.  The additive effect of PLD2 and 

Grb2 co-transfection observed in Figure 26A is negated in silenced cells (Figure 26B).   

Through the experiments conducted here, we assume an association between 

PLD2 and Grb2.   Grb2, a protein containing SH2 domains, when transfected into cells 

has significantly greater chemotaxis than the mock, which is only significantly less than 

that of PLD2 WT, unless they are co-transfected.  By silencing Grb2, the above increase 

seen above with co-transfection is abrogated.  During cell migration Grb2/PLD 

interaction is mediated by chemoattractants. 

D.  Proposed Model for participation of PLD in chemotaxis 

 Figure 27 presents our proposed model based on results in this thesis, along with 

those of other authors that could explain the participation of PLD and Grb2 in cell 

chemotaxis.   
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Figure 27: 

Proposed model for the participation of PLD2 and Grb2 in chemotaxis.  Three major 

pathways are considered here.  First [1-5], PLD uses its activity to produce PA that binds 

to target proteins mTOR [2], S6K [3] or Sos [4] (60-62).  S6K has been proposed to 

stimulate actin polymerization [5] (63).  Results in this thesis seem to indicate that Y169 is 

involved in enzyme activity (PA production) leading to chemotaxis.  Second [6-9], PLD, 

independently of its activity, can bind to either Sos or Grb2 [6, 7] (8, 15).  Results in this 

thesis indicate that Y179 is involved in a PLD2-Grb2 protein-protein interaction 

irrespective of enzymatic activity.  Grb2 can then possibly activate WASP [8] that also 

initiates actin polymerization [9].  Third, PLD can directly interact with actin [10] (64, 

65). 
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V. CONCLUSIONS 

1. We have established a model of cell migration comprising three cell lines, which 

compare favorable to neutrophils in regards to their chemotactic response: (a) RAW 

264.7 cells, a macrophage cell line that responds to chemoattractants (MCP-1 and MIP-

1) in a dose and time dependent manner;  (b) LR-5 cells, also a macrophage cell line 

that is more mobile than the parental RAW 264.7 cells;  and (c) COS-7 cells, a fibroblast 

cell line that migrates toward EGF.  

2. Transfection of cells (RAW 264.7), (LR-5), or (COS-7) with either PLD1 or PLD2 

expression constructs leads to an increase in cell chemotaxis.  PLD2 is better  ( >1.5-fold) 

at inducing chemotaxis than PLD1. 

3. Phospholipase inactive mutants in the HKD domain, particularly PLD2 KR constructs, 

are 2-fold less chemotactic than PLD2 WT, but not significantly different to mock 

transfected cells.  

4. PLD2 has two functional tyrosines, (Y169 and Y179) that, when mutated, lead to 

diminished chemotaxis when compared to PLD2 WT.  Since these are mutations of the 

SH2 binding motifs in the PLD2 PX domain, we conclude that chemotaxis is mediated by 

the PLD’s ability to bind other proteins through these sites.  Further, the activity of the 

enzyme (production of PA) seems to involve only Y169. 

5. We have discovered that Grb2’s SH2 domain interacts with PLD2.  Transfection of 

cells with Grb2 leads to an augmentation of chemotaxis. The overall conclusion is that 

triggering of cell migration by chemoattractants is mediated by PLD, which requires an 

association with Grb2. 
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VI. DISCUSSION 

 The results presented in this thesis fall within the overall study of signal 

transduction molecules:  PLD1, PLD2, and Grb2 and their interaction within a cell.  

Three different cell lines (COS-7, RAW 264.7, and LR-5) were examined to determine if 

an association of PLD and Grb2 exists during chemotaxis and if it is constant between 

different cell lines.  We wanted to use cells that were easily amenable to transfection and 

could chemotax.  The cell lines used are known to play key roles in wound healing during 

innate immunity.  We used macrophages and fibroblasts to accomplish Aim 1 of this 

thesis.  Fibroblasts are cells that synthesize collagen in the event of injury to the body and 

also maintain connective tissue in animals.  As for macrophages, they are able to 

phagocytose debris and bacteria.  Macrophages are cells that present antigens to other 

cells in order to form antibodies against them.   

Within Aim 1, we used RAW 264.7 cells, which are able to be transfected 

through electroporation, but result in a significant amount of cell death.  This issue has 

been resolved at the laboratory of Dr. D. Cox (Albert Einstein College of Medicine) by 

creating LR-5 cells, from RAW 264.7 cells, that stably express the lac repressor allowing 

them to be transfected using superfect.  This new cell line has greatly reduced cell death 

using electroporation or lipid-based transfection strategies. All cell lines studied were 

able to chemotax within a Transwell, especially when tranfected with the PLD2 WT 

plasmid. 

Chemoattractants are able to increase the ability of PLD2 to increase the 

chemotactic response within the cell lines studied.  COS-7 cells are able to be stimulated 

by EGF, whereas RAW 264.7 and LR-5 cells are stimulated by MIP-1and MCP-1 in 
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chemotactic assays.  COS-7 cells achieve maximum chemotaxis when stimulated by EGF 

for one hour.  Macrophages require three hours for cells to thoroughly migrate through 

the membrane of a Transwell to reach the chemoattractant in the bottom of the well. 

Transfection of the PLD2 WT plasmid causes a 4-fold increase over the mock 

transfected in chemotaxis in the cell lines studied.  The PLD2 KR constructs have 

significant decreases in chemotaxis compared to the PLD2 WT plasmid indicating that 

PLD activity affects chemotaxis.  The method to how these cell lines are transfected are 

all different and may leave each cell line in a different state before the chemotaxis 

procedure is carried out.  We observed that immunofluorescence of RAW 264.7 cells 

stimulated with MIP-1 or MCP-1 left macrophages in a compact migratory shape.  

Experimentation of COS-7 and LR-5 cells using immunofluorescence and 

chemoattractant stimulation would need to be conducted in order to test this idea.   

Several PLD2 point mutants have been developed in our laboratory (15, 28) and 

their ability to enhance or suppress chemotaxis was studied.  We have found that Y169 and 

Y179 residues are essential for the association of PLD2 with Grb2 and that this interaction 

is independent of PLD2 activity (15, 28).  Mutation of Y169 (to Y169F) diminishes 

enzymatic activity and mutation of Y179 (to Y179F) diminishes the ability to regulate 

tyrosine phosphorylation (28).  It has also been noted that Y169 and Y179 residues may 

recruit the Grb2/Sos complex which leads to the activation of Ras effectors and 

consequently phosphorylation of MEK through Raf (15, 58).  The double mutant, 

Y169/179F, was found to be catalytically inactive and was not able to interact with the 

Grb2/Sos complex or activate Ras (28).  Mutation of Y169 may disable its ability to 

activate the Ras/MAPK pathway since its tyrosine can no longer be phosphorylated.  



 
 

66

More so, it has been reported that Y179 regulates total tyrosine phosphorylation of PLD2 

and that it uses the Ras/MAPK pathway to negatively monitor cellular proliferation (15).  

However, Di Fulvio, et al. have demonstrated that the Y179F plasmid construct leads to 

an increase in DNA synthesis (58).  Overexpression of Y179F increased Ras activation, 

but did not increase cellular proliferation; the mechanism for this is unclear (15).  We 

have found that both Y169F and Y179F mutants are unable to confer an increase in 

chemotaxis.  Since Ras is also able to activate migration, the PLD2 Y179/Grb2/Sos 

complex may keep chemotaxis on hold in a similar fashion to how it keeps cellular 

proliferation in check, if this is indeed the mechanism that is followed (15).  Neither of 

these mechanisms are fully understood. 

By comparing the transient transfection of Grb2 constructs, specifically Grb2 

R86K, we can assume that Grb2 plays a role in chemotaxis.  Overexpressed Grb2 R86K, 

which cannot bind to PLD through its SH2 domain, is not significantly different from the 

mock, but it is significantly different compared to the PLD2 WT or Grb2 WT plasmids.  

It has already been shown that PLD2 binds to Grb2 through its SH2 domain (15, 28, 58).  

Cells coexpressing PLD2 WT and Grb2Res in stably silenced COS-7 cells were found to 

redistribute in the perinuclear Golgi region indicating that PLD2 requires Grb2 to localize 

to the Golgi after EGF stimulation (28).  There may be a signal in the Golgi that leads to 

cellular migration, which is why we see this relocalization after stimulation by EGF.   

The effect of a chemoattractant to alter not only localization, but also cell shape is 

seen earlier with immunofluorescence of macrophages after MIP-1 or MCP-1 of PLD2 

WT transient transfections.  Figure 11 shows that macrophages transfected with PLD2 

WT maintain their elongated shape, but after chemoattractant stimulation the 
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cytoskeletons change to a compact migratory shape.  Results of the same nature are seen 

in macrophage morphology after transfection of Rac 1/2-/- (57).  Membrane ruffling in 

lamellipodia is induced through actin polymerization by Rac (57).  The Grb2/Sos 

complex leads to activation of Ras, but it may also lead to activation of another GTPase, 

Rac, through which macrophage chemotaxis functions (59).  

The results presented in this thesis show that PLD is able to affect other signaling 

pathways that regulate chemotaxis independently of PLD activity.  The PLD2 Y165F 

mutant is not part of the SH2 binding motif of Grb2 and thus does not affect binding.  We 

saw that transfection of PLD2 Y165F leads to a migration that is relatively equal between 

the three cell lines.  Transfection of the PLD2 WT construct does not cause equal 

migration between the cell lines.  PLD2 WT enhances chemotaxis the most in RAW 

264.7 cells.  In RAW 264.7 cells transfection of PLD2 WT causes more migration when 

compared to COS-7 and LR-5 cells.  We determined that transfection of macrophages 

with PLD2 WT plasmid and stimulation with a chemoattractant changes their 

morphology, but we would need to do immunofluorescence with the other two cell lines 

to determine if a morphological change also occurs.   

In relation to COS-7 cells, we know that fibroblasts, by nature, are a slower 

migratory cell which may explain of PLD2 WT has less of an effect on their migration 

(35).  Two tyrosines on PLD bind to Grb2 through its SH2 motif.  It is through this 

association that PLD has an enhanced chemotactic response.  When we alter the enzymes 

ability to bind to Grb2 the chemotactic response created with the PLD2 WT construct is 

diminished.  As seen throughout this thesis, a specific chemokine that is used against a 
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specific cell line is not enough to cause a cell to migrate; it requires a signal from an 

overexpressed protein to increase the rate of chemotaxis.   
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VII. SIGNIFICANCE OF STUDY 

 The first cell line utilized in this study was COS-7.  COS-7 cells are fibroblast 

cells, which respond to the growth factor EGF (33).  COS-7 cells were used in the 

chemotaxis experimental setting of this thesis in order to develop a model for wound 

healing.  Fibroblasts synthesize collagen and maintain the structural integrity of 

connective tissue and we have found that EGF could also act as a chemoattractant.  The 

second (RAW 264.7) and third cell (LR-5) lines utilized in this study are both 

macrophage-derived.  Macrophages are antigen-presenting cells that have the ability to 

phagocytose debris and dead cells.  Macrophages are monocytes that have migrated to 

tissues in the case of injury or foreign invasion and play central roles in the innate 

immune response.  We have demonstrated that the three cell lines (COS-7, RAW 264.7 

and LR-5) are capable of chemotaxing when placed in the presence of an appropriate 

stimuli.   

Phospholipase D is an enzyme that has been found to play many roles within 

mammalian cells and is able to directly or indirectly alter several cell signals.  In this 

study, we have found that overexpression of PLD, particularly that of the isoform PLD2, 

enhanced a cell’s ability to chemotax.  We have demonstrated also here that a protein-

protein interaction between PLD2 and Grb2 enhance chemotaxis.  Thus, PLD, signaling 

through Grb2, is a key regulator of the functionality of the three cells studied.  This may 

play an important role in facilitating wound healing and innate defense capabilities of our 

body. 
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