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ABSTRACT 

 
 
Pyles, John Allen. M.S., Department of Pharmacology and Toxicology, Wright State 
University, 2009. 

 
Characterization of Infectivity and Pathogenesis of Partially Reconstructed 1918 and 
Highly Pathogenic Avian Influenza Viruses in the BALB/c Mouse Model.  

 

Influenza viruses are consistently responsible for an average of 20,000 deaths and 

114,000 hospitalizations per year. To a great extent, these viruses always stay one step 

ahead of the available vaccines and people’s immunity year after year because they have 

the ability to either mutate part of their genetic material, or to be transmitted from one 

species to another. That same genetic variability explains why highly pathogenic 

influenza viruses emerge that cause great mortality over several countries resulting in 

pandemics. Highly pathogenic strains of influenza A virus have emerged occasionally in 

recent history, producing pandemics such as the one in 1918. The Spanish influenza 

pandemic of 1918–1919 was uniquely severe, causing an estimated 50 million deaths 

worldwide. Also unique was the age distribution of its victims: the death rate for young, 

previously healthy adults, who rarely suffer fatal complications from influenza, was 

exceptionally high. More recently we have seen the emergence of influenza cases and 

fatalities involving the H5N1 avian influenza strains. Until an outbreak in Hong Kong 

claimed six human lives in 1997 (A/Hong Kong/156/97 [H5N1]), avian influenza viruses 

were thought to be incapable of infecting humans directly.  However, the initial H5N1 

outbreak has revealed that avian influenza viruses could infect humans without prior 

adaptation and even cause significant morbidity and mortality in the human population. It 
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has been shown that the 1918 viral hemagglutinin sequence is more closely related to 

avian strains although it is a human HA. This indicates that the 1918 pandemic strain may 

have also jumped from avian to human with no prior adaptation or reassortment with a 

human virus.  

For these reasons, scientists have been interested in finding out what makes the 1918 

virus different from all others, why avian influenza can be so pathogenic, and how to 

prevent and better treat infections with this virus.  

For this study the 1918 pandemic influenza was partially reconstructed by placing the 

1918 influenza viral hemagglutinin and neuraminidase genes or the 1918 influenza viral 

hemagglutinin, neuraminidase and non-structural protein genes in the background of the 

low-pathogenic A/Texas/36/91 virus. The infectivity and pathogenesis of these two 

partially reconstructed 1918 influenza viruses were compared to each other as well as to 

the highly-pathogenic avian influenza A/Vietnam/1203/04 H5N1 virus in the BALB/c 

mouse model. The A/Vietnam/1203/04 influenza virus acted as a “positive” control for 

high infectivity and pathogenesis.  
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Introduction  
 

Influenza viruses are consistently responsible for an average of 20,000 deaths and 

114,000 hospitalizations per year. To a great extent, these viruses always stay one step 

ahead of the available vaccines and people’s immunity year after year because they have 

the ability to either mutate part of their genetic material, or to be transmitted from one 

species to another. That same genetic variability explains why highly pathogenic 

influenza viruses emerge that cause great mortality over several countries resulting in 

pandemics. Highly pathogenic strains of influenza A virus have emerged occasionally in 

recent history, producing pandemics such as the one in 1918. The Spanish influenza 

pandemic of 1918–1919 was uniquely severe, causing an estimated 50 million deaths 

worldwide (1, 2). Also unique was the age distribution of its victims: the death rate for 

young, previously healthy adults, who rarely suffer fatal complications from influenza, 

was exceptionally high (1, 3). More recently we have seen the emergence of influenza 

cases and fatalities involving the H5N1 avian influenza strains.  

Until an outbreak in Hong Kong claimed six human lives in 1997 (A/Hong Kong/156/97 

[H5N1]), avian influenza viruses were thought to be incapable of infecting humans 

directly.  However, the initial H5N1 outbreak has revealed that avian influenza viruses 

could infect humans without prior adaptation and even cause significant morbidity and 

mortality in the human population. It has been shown that the 1918 viral hemagglutinin 

(HA) sequence is more closely related to avian strains although it is a human HA (1). 

This indicates that the 1918 pandemic strain may have also jumped from avian to human 

with no prior adaptation or reassortment with a human virus (1).  
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For these reasons, scientists have been interested in finding out what makes the 1918 

virus different from all others, why avian influenza can be so pathogenic, and how to 

prevent and better treat infections with this virus.  

The purpose of this study is to compare the infectivity and lethality of two recombinant 

1918 pandemic influenza viruses; one containing the HA and neuraminidase (NA) genes 

of the 1918 influenza virus and another containing the HA, NA and non-structural 

proteins (NS) genes of the 1918 influenza virus. These genes will be placed in the 

background of the low pathogenic Texas/91 influenza strain. The lethality and infectivity 

of these two recombinant 1918 viruses will be compared to each other as well as to the 

parent Texas/91 influenza virus and the A/Vietnam/1203/04 H5N1 avian influenza 

viruses in the mouse model.  
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Background  
 

Influenza is a multi-partite virus containing 7-8 negative-stranded RNA genomic 

segments. These RNA segments code for ten proteins: hemagglutinin (HA), 

neuraminidase (NA), non-structural proteins (NS1 and NEP), polymerase proteins (PB1, 

PB2 and PA), matrix proteins (M and M2) and nucleoprotein (NP). Since the influenza 

genome is in the negative sense it has to provide its own RNA-dependant RNA 

polymerase in order to make RNA capable of being read by eukaryotic ribosomes. This 

polymerase complex lacks proofreading capability, such that one in five virus particles 

produced is likely to contain a change at one of its approximately 13,500 nucleotides 

(18). If such a change provides the virus with a competitive advantage, that strain quickly 

replaces its predecessor (18). In humans, the need to escape preexisting immunity exerts 

positive selection pressure on changes in amino acids comprising the antigenic sites of 

the surface glycoproteins, HA and (NA) (18). The process of progressive change in the 

antigenic properties of the virus is called antigenic drift and results in the emergence of 

an antigenically distinct variant strain every 2-3 years (18). In the pandemic influenza, 

one or both of the viral surface proteins are replaced with proteins to which the human 

population has no preexisting immunity (18). The virus then spreads explosively, 

producing symptomatic infection in up to one third of most populations (18). This 

happened with the pandemics of 1918, 1957, and 1968 with the 1918 influenza pandemic 

being the most recognized and pathogenic.  

 

Although most deaths from the 1918 pandemic were the consequence of secondary 

bacterial pneumonias (there were no antibiotics available in 1918), a subset died in just a 
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few days with massive pulmonary hemorrhage or edema. Clinical symptoms and 

pathological findings during the 1918 influenza pandemic were predominantly 

respiratory ones. Necrotic lesions in systemic organs like those seen in virulent avian 

influenza infections were not observed. Gastrointestinal symptoms and impaired hepatic 

and renal function also were described.  
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Hemagglutinin (HA)  
 

Hemagglutinin (HA) is a major influenza surface glycoprotein that is involved in binding 

of the host cell during infection. There are 16 different HA subtypes, all of which wild 

aquatic birds are the reservoirs (4). Of the 16 HA subtypes only H1, H2 and H3 have 

caused human disease and death (4). Hemagglutinin was so named because it is the 

protein responsible for the ability of influenza virus to agglutinate red blood cells. HA is 

now recognized as the major virulence factor associated with the influenza virus.  

HA is translated as a single protein, HA0, and expressed as a trimer (5). In order for 

influenza to infect the host cell, HA0 must be activated by cleavage by a trypsin-like 

serine endoprotease at a specific site, normally coded for by a single basic amino acid 

(usually arginine) between the HA1 and HA2 domains of the protein (5). Highly basic 

amino acids in the HA binding site are associated with pathogenesis in chickens and mice 

(6-8). Interestingly, the 1918 pandemic influenza virus does not have multiple basic 

amino acids at the cleavage site (9). In mammals, the suspected protease in the 

respiratory tract responsible for HA activation is tryptase Clara, a serine protease 

produced by non-ciliated Clara cells of the bronchial and bronchiolar epithelia (5). After 

cleavage, the two disulfide-bonded protein domains produce the mature form of the 

protein subunits as a prerequisite for the conformational change necessary for fusion and 

hence viral infectivity (5). The antigenic and receptor-binding sites of the HA1 domain 

represent the most variable portion of the influenza genome (10).  

 

Human influenza viruses attach to host cells via an N-acetylsialic acid attached to 

galactose with an α-2,6 linkage, whereas avian influenza viruses mostly bind to N-
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acetylsialic acid attached to galactose with an α-2,3 linkage (11). This binding specificity 

of the hemagglutinin protein determines the host range of a given influenza virus (11). 

Human tracheal epithelium contains mostly α-2,6 receptors whereas duck gut epithelium 

contains mostly α-2,3 receptors (11). However, chicken lung and intestinal epithelial cells 

contain both α-2,6 and α-2,3 receptors (11). The lack of human-to-human transmission of 

avian influenza H5N1 viruses is believed to be due to their α-2,3 sialic acid receptor 

binding preference (12). The three influenza pandemic viruses of the last century, 

occurring in 1918 (H1N1), 1957 (H2N2) and 1968 (H3N2), each possessed an HA with a 

human α-2,6 sialic acid binding preference (12).   

Tumpey et al. (12) have shown that amino acids 190 and 225 in the 1918 HA determined 

its binding specificity. Three influenza viruses were used in this study with differing 

specificities. A/South Carolina/1/18 (SC18) was specific for α-2,6 sialic acid. A single 

amino acid substitution in SC18 from aspartate to glycine at position 225 gave it a mixed 

α-2,3/α-2,6 sialic acid preference designated as NY18 (12). The virus with α-2,3 sialic 

acid preference (AV18) was made by substituting aspartate for glutamate at position 190 

in NY18 (12). Transmission of the 1918 pandemic virus was abolished when the binding 

specificity was changed from α-2,6 (human) to α-2,3 (avian) preference (12). Ferrets 

inoculated with NY18 and AV18 showed severe illness and death but failed to transmit 

the virus ferret-to-ferret (12). The AV18 virus also replicated in the upper respiratory 

tract as efficiently as the parental SC18 virus, but it failed to transmit to contact ferrets 

(12).  These same amino acid changes do not confer α-2,6 preference on H5N1 avian 

influenza viruses. It is therefore likely that different avian HA subtypes have different 
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structural requirements to confer receptor specificity (12). It is not known which amino 

acid changes will need to occur in order for H5N1 to gain α-2,6 specificity (12).  

Since the HA protein is so important in determining host specificity it has been an 

important focus in determining its role in the high pathogenicity of the 1918 pandemic 

influenza strain. Both the 1918 HA and 1918 polymerase genes have been shown to be 

essential for maximal virus replication and optimal virulence (13 - 15). In order to test 

what effect the HA protein had on the pathogenicity of the 1918 pandemic virus Kobasa 

et al. (15) placed the 1918 HA in the background of three different influenza strains,  

A/WSN/33 (WSN), A/Kawasaki/173/2001 (K173), and A/Memphis/8/88 (M88). Mice 

were inoculated intranasally with each of the three recombinant viruses. The parental 

K173 and M88 caused no discernible morbidity in mice whereas the K173 and M88 

strains bearing the HA from 1918 caused a lethal infection in mice (15). WSN with and 

without the HA from 1918 were pathogenic. Since WSN is already highly pathogenic in 

mice it could not be determined what the contribution of the 1918 HA had on the 

pathogenicity of the recombinant virus (15). Infection with viruses possessing HA from 

1918 was characterized by massive recruitment of polymorphonuclear cells (mainly 

neutrophils) accompanied by intra-alveolar haemorrhage (15). 1918 HA was found to be 

the primary determinant of enhanced pathogenicity in the recombinant viruses (15).  

In mammals, like humans and swine, influenza replication is limited to epithelial cells of 

the upper and lower respiratory tract. This tissue tropism is controlled to some extent by 

the limited expression of the appropriate protease for viral activation of the HA protein 

(5). Avian strains have been found with insertion mutations at the HA cleavage site 

which allows HA to be cleaved by ubiquitously expressed proteases (5). This allows the 
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virus to be able to replicate throughout the birds body (5). This mutation inserts an 

additional amino acid with a minimal motif of R/L-X-R/L-R (5). This has only been 

found in avian H5 and H7 subtypes recently (5). In 1997 16 people in Hong Kong were 

infected with an avian H5N1 influenza virus (5). Although the HA cleavage site mutation 

had not been found previously in humans, an influenza strain with the ability to replicate 

outside its normal host cells was described 50 years ago. WSN/33 was produced in 1940 

by forcing the parent strain, WS/33, to replicate in mouse brain (16) to develop an animal 

model for the observed neurologic complications associated with the 1918 influenza. The 

strain was passaged extensively in ferrets, in chicken eggs, in mouse lung, and finally in 

mouse brain. Although this strain was believed initially to be specifically pneumotropic 

and neurotropic, producing a lethal encephalitis in mice, it recently has been shown to be 

pantropic or capable of systemic infection in mice (17). It was found that WSN/33 had its 

HA cleaved by serum plasmin found in the brain. Schulman and Palese (33) showed that 

the NA protein of WSN/33 was a necessary component for HA cleavage, and in 1993, Li 

et al. (34) found that the NA of WSN/33 lacked a crucial glycosylation site at residue 130 

that is conserved in other influenza NA’s. The N146R change in WSN/33 alters the N-X-

S/T motif necessary for posttranslational glycosylation of NA (15). Plasminogen binds 

specifically to the NA of WSN/33. In so doing, the WSN/33 NA sequesters plasminogen 

on the cell surface so that it can be activated. Once activated, plasmin, also a serine 

protease, recognizes the single arginine motif at the cleavage site and cleaves HA0 into 

HA1 and HA2. WSN/33 neurovirulence also required the matrix (M) and nonstructural 

(NS) segments in addition to NA. The M and NS segments seemed to act as accessory 

virulence factors to enable efficient viral replication. The biological behavior of 
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neurovirulence is polygenic and cannot be fully explained by potentially pantropic HA 

cleavage alone.  
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Neuraminidase (NA)  
 

Neuraminidase (NA), like hemagglutinin, is a surface-expressed glycoprotein. Along 

with HA, NA plays an important role in virulence, host specificity and the human 

immune response (10). NA cleaves the terminal sialic acid residues that are receptors for 

the HA protein (10). Removal of sialic acids from the surface of infected cells and from 

newly formed viruses prevents the budding viruses from clumping to each other or the 

cell surface (19). The ability to cleave sialic acid is also thought to help the virus 

penetrate mucus (20). There are nine subtypes of NA that have been identified (10). The 

active site consists of 15 charged amino acids in a pocket on the surface. These amino 

acids are conserved in all influenza A viruses (21). NA demonstrates more genetic 

variability than other influenza genes (10). There are at least two antigenic sites in NA 

(22). Mutations in these amino acids can allow the virus to escape previous immunity 

(22). Shift in NA is not critical in the initiation of a pandemic, as the pandemic strain of 

1968 retained the previously circulating N2 (10). However, widespread immunity to N2 

is thought to have lessened the severity of the 1968 pandemic (23, 24).  

Phylogenetic analyses revealed that the 1918 NA sequences are most closely related to 

avian isolates, but also suggest that the 1918 sequences share enough characteristics with 

mammalian isolates to distinguish them from the avian clade (10). The results of NA 

analysis from the Spanish 1918 influenza virus, A/Brevig Mission/1/18 (Brevig/18), 

sequence is intermediate between avian and mammalian sequences, and therefore are 

consistent with the idea that pandemic viruses acquire their surface proteins directly (with 

little modification) from avian viruses. There are 22 homologous amino acids in avian 
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N1’s (21). Fifteen of these 22 amino acids show variation in human N1’s (10). The 

sequence of the Brevig/18 NA matches 14 of the 15 avian consensus sites (10).  

Normally, neuraminidase activates latent TGF-β, a potent anti-inflammatory cytokine 

that activates monocytes (4). During infection in mice with different Hong Kong H5N1 

strains it was noted that there was a decrease in TGF-β activation (4). Thus, NA may help 

contribute to the severe pathology of H5N1 infections in mice by decreasing TGF-β 

activation in the infected host (4).  
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Non-Structural Protein (NS)  
 

The non-structural protein (NS) of influenza is so named due to the fact that it is not 

incorporated into the influenza particle. Once the virus has infected a cell it will express 

the NS protein. The NS protein is cleaved into two separate proteins, NS1 and NEP 

(nuclear export protein). NEP is believed to aid in the export of viral nucleic acid across 

the nuclear envelope of the host cell. NS1 is known to attenuate the host response 

mediated by α and β interferons (25). Sang Heui Seo et al. found that H5N1 Hong Kong 

strains were not inhibited by IFN-α, IFN-γ or TNF-α when added to St. Jude porcine lung 

(SJPL) epithelial cells (26). When they added the NS gene of the H5N1 Hong Kong 

strain A/HK/156/97 to A/PR/8/34 (H1N1) with reverse genetics they found that the 

recombinant virus inherited the same cytokine resistance that the H5N1 strain had, 

whereas the parent A/PR/8/34 strain was susceptible to the cytokines (26). This study 

showed that it was the NS gene of H5N1 avian influenza that was imparting cytokine 

resistance to the virus. They also showed that the change from aspartic acid to glutamic 

acid at position 92 of NS1 was crucial for pathogenesis (26).  Post-mortem reports of two 

human deaths caused by H5N1/97 viruses indicated that the chief cause of death was due 

to hypercytokinemia and resultant hemophagocytic syndrome due to high levels of 

cytokines (26). This was also seen in non-human primates challenged with the wild-type 

1918 pandemic influenza virus (35).  
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Reverse Genetics  
 

In contrast to positive-sensed RNA viruses, the naked genomic RNA of a negative-sensed 

RNA virus is not able to initiate infection when expressed or transfected into a permissive 

cell line (27). The minimal infectious particle of negative-sensed RNA is the 

transcriptionally active ribonucleoprotein (RNP). This complex is composed of genomic 

viral RNA (vRNA) along with viral nucleoprotein (NP) and the RNA-dependant RNA 

polymerase (PA, PB1 and PB2) (27). The NP, PB1, PB2, and PA proteins are the only 

proteins required for replication and transcription of the viral RNP’s in vivo (29). These 

genomic RNPs are templates for transcription to produce naked mRNAs as well as for 

replication in order to form negative-stranded RNA for encapsulation (36).  

 

Enami et al pioneered the reverse-genetics, helper virus-dependent system for influenza 

A virus (30). The influenza ribonucleoprotein (RNP) complex is generated by in vitro 

vRNA synthesis in the presence of purified polymerase and NP proteins and then used to 

transfect eukaryotic cells (30). Subsequent infection with influenza A helper virus results 

in the generation of viruses possessing a gene derived from cloned cDNA (30).  

Whereas Enami et al (30) used in vitro techniques in order to produce transfectant virus, 

Neumann et al. (31) used in vivo synthesis of vRNA by RNA polymerase I (polI), a 

cellular enzyme that transcribes ribosomal RNA that lacks both a 5’ cap and a 3’ poly(A) 

tail (31). Transfection of cells with a plasmid containing cloned influenza virus cDNAs, 

flanked by RNA polymerase I promoter and terminator sequences, followed by influenza 

virus infection, led to the production of transfectant viruses (31).  
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Pleschka et al (27) designed a plasmid-based reverse genetics system to make RNP’s 

without the need of a recombinant helper virus or purified proteins. Four plasmids 

encoding for the P proteins (PB1, PB2 and PA) and NP, under the control of the 

hydroxymethylglutaryl-coenzyme A reductase (HMG) promoter, were used to make their 

respective proteins. A fifth plasmid encodes the chloramphenicol acetyltransferase (CAT) 

open reading frame in a negative-sense flanked by the non-coding regions of the NS gene 

of influenza A/WSN/33. A truncated human polI polymerase promoter (-250 to -1) was 

fused directly to the end of the viral cDNA in order to ensure the correct 5’ end of the 

vRNA. This promoter was selected by Pleschka et al. due to the success of Neumann et 

al. of a similarly truncated murine polI promoter to drive the expression of influenza 

virus model RNA in virus-infected cells (31). The hepatitis delta virus genomic ribozyme 

was added to the 3’ end in order to ensure that the 3’ end was correct (27). These 

plasmids were transfected into 293T cells which resulted in CAT protein expression. This 

indicates that a negative-sense RNA can be reconstituted intracellularly into functional 

RNP’s. These intracellularly reconstituted RNP’s were packed into progeny influenza 

viruses when the plasmid-transfected cells were infected with influenza WSN virus.  

All these methods required that the transfectants be selected from a vast background of 

helper viruses, which requires a strong selection system and complicates the generation 

of growth-defective viruses. Neumann et al then designed a system in which influenza 

virus was made completely from cloned cDNAs (32). This reverse-genetics approach is 

highly efficient and can be used to introduce mutations into any gene segment and to 

develop influenza virus-based gene delivery systems. All eight cDNAs representing the 
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eight viral RNA segments were placed under the control of the human RNA polymerase I 

promoter and mouse RNA polymerase I terminator in the pCAGGS plasmid (32). These 

plasmids were then transfected into 293T cells along with protein expression plasmids 

expressing influenza PB1, PB2, PA and NP. vRNAs and RNPs were successfully 

produced along with infectious viral particles (32). Producing influenza virus from cloned 

cDNAs allows for the mixing of RNA from different influenza strains. This allows for 

the testing of specific genes on the pathogenicity and infectivity of influenza viruses.  
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Mice Influenza Model  
 

Mice have been used as model hosts in a variety of viral infections. After human 

infections with the highly-pathogenic H5N1 viruses in 1997 occurred, scientists started to 

study the virus. No suitable host model had been established for highly-pathogenic 

influenza viruses. The BALB/c mouse was found to be a suitable animal model for the 

study of highly-pathogenic H5N1 human virus pathogenesis and immunity (38). The 

H5N1 virus caused lethal infection and replicated in lungs of mice with no prior 

adaptation, something normally required (38). Tumpey et al. showed that there was a 

decrease in peripheral blood and tissue lymphocytes and aberrant cytokine and 

chemokines production in mice when challenged with the H5N1 virus (39). This 

demonstrated that the BALB/c mouse was a good model for the immune response to 

H5N1. They also showed that there was an increase in apoptotic cells in the spleen and 

lung tissue, a possible cause of lymphocyte death (39).  
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Study Objectives  
 

This study looked at the pathogenic effects of the 1918 pandemic influenza viral HA, NA 

and NS genes in the background of the low-pathogenic TX91 influenza virus. The highly-

pathogenic H5N1 A/Vietnam strain was used as a “positive” control for highly 

pathogenic viral pathogenesis. BALB/c mice were utilized and lung titers and body 

weight were determined.  
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Materials and Methods  
 

Cells. 293T human embryonic kidney cells and Madin–Darby canine kidney cells 

(MDCK) were maintained in DMEM supplemented with 10% FBS and in EMEM 

containing 10% FBS, respectively. All cells were maintained in a humidified incubator at 

37°C in 5% CO2.  

Generation of Partially-Reconstructed Influenza. Influenza particles containing RNA 

segments from the 1918 pandemic influenza virus was constructed in the background of 

the innocuous influenza strain A/Texas/36/91 (TX91). In one partially reconstructed 1918 

virus we placed the 1918 HA (from A/South Carolina/1/18) and NA (from A/Brevig 

Mission/1/18) cDNAs in the background of TX91. In another we placed the 1918 HA 

(from A/South Carolina/1/18), NA (from A/Brevig Mission/1/18) and NS (from A/Brevig 

Mission/1/18) cDNAs in the background of TX91. All three of these proteins have been 

determined to be influenza virulence factors.  

 

The following plasmids were used in this study: pCAGGS-PB1, pCAGGS-PB2, 

pCAGGS-PA, and pCAGGS-NP (protein expression plasmids) along with pPolI-TX91-

PB1, pPolI-TX91-PB2, pPolI-TX91-PA, pPolI-TX91-NP, pPolI-TX91-M, pPolI-1918-

HA, pPolI-1918-NA and pPolI-1918-NS (RNA polymerase I plasmids containing viral 

cDNAs) (Figure 1). All plasmids were obtained from the laboratory of Dr. Garcia-Sastre, 

Mount Sinai Medical Center. The eight transcription plasmids expressing the individual 

vRNA genes were constructed by polymerase chain reaction (PCR), using overlapping 

deoxyoligonucleotides for the genes. The coding regions are according to the open 

reading frame sequences.  The viral genomic sequences were cloned into the 
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pPolI.SapI.Rib vector. This vector contains the human RNA polymerase I promoter (Pol-

I) and the hepatitis δ ribozyme (R) sequence and originated from Dr. Ervin Fodor at the 

University of Oxford.  

 

Figure 1.  Schematic representation of the plasmid-based rescue system for the influenza viruses. 
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Each transfection contained vRNA expression plasmids for the TX91 PA, PB1, PB2, NP, 

and M segments, the appropriate vRNA expression plasmid for the 1918 HA, NA and NS 

segments, and the protein expression plasmids pCAGGS-PA, -PB1, -PB2 and –NP.  

Two control plasmids were also used. The pCAGGS-PB1/PB2/PA/NP/GFP control 

plasmid monitored polymerase complex activity via GFP expression. The pCAGGS-GFP 

control plasmid monitored transfection efficiency via GFP expression.  

The 1918 HA gene sequence used in this study was obtained from formalin-fixed, 

paraffin-embedded right lung tissue from a 21-year-old male stationed at Ft. Jackson, 

South Carolina (A/South Carolina/1/18) (2).  

The 1918 NA and NS gene sequences used in this study came from a 1918 influenza 

virus isolated from an Inuit woman exhumed in permafrost in Brevig Mission in Alaska 

(10). History shows that the 1918 pandemic virus swept through the village of Brevig 

Mission in 5 days, leaving 72 dead (1).  

The protein expression plasmids were derived by transferring the ORFs of the WSN PA, 

PB1, PB2, and NP into the pCAGGS expression plasmid.  

In order to make 1918 HA/NA:TX91 recombinant influenza virus, 293T/MDCK cell 

mixture (7:10 ratio, respectively) were transfected with 1μg of pPolI plasmids containing 

the HA and NA genes from 1918 and the remaining six genes from TX91 along with 1μg 

pCAGGS plasmids containing the cDNA coding for NP, PB1, PB2 and PA proteins using 

Lipofectamine 2000 (Invitrogen, Carlsbad, California).  
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In order to make 1918 HA/NA/NS:TX91 recombinant influenza virus, 293T/MDCK cell 

mixture were transfected with 1μg of pPolI plasmids containing the HA, NA and NS 

genes from 1918 and the remaining five genes from TX91 along with 1μg pCAGGS 

plasmids containing the cDNA coding for NP, PB1, PB2 and PA proteins using 

Lipofectamine 2000 (Invitrogen, Carlsbad, California).  

After 18-24 hours, the media was aspirated and replaced with 1x MEM containing 

1μg/ml TPCK-trypsin. Plates of cells were continued to be incubated for an additional 48 

hours at 37˚C and 5% CO2.  

Recombinant virus was plaque-purified approximately 72 hours post-transfection. 

Briefly, 500μl of transfected supernatant was added to a well of a 6-well plate of MDCK 

cells and incubated 1 hour at room temperature in order to allow the virus to adsorb to the 

cells. Cells were then overlaid with 3mls of 1.8% agarose and incubated at 37˚C and 5% 

CO2 in order to allow virus growth. Approximately 72 hours later plaques were picked 

and placed into tubes containing 1x MEM. The picked plaques were then expanded on 

confluent MDCK cells.  

RNA was purified with TriPure (Roche Applied Science, Indianapolis, IN) and sent to 

the Mount Sinai Medical Center for sequencing in order to verify no mutations were 

present in the viral genomes of the reconstructed 1918 viruses.  

Identification of all genes in the reconstructed viruses was confirmed by RT-PCR and 

subsequent sequencing.  

Titers of the partially-reconstructed recombinant 1918 viruses were determined by 

TCID50 analysis.  
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Viruses. Stocks of 1918 HA/NA:TX91 and 1918 HA/NA/NS:TX91 were propagated on 

Madin-Darby canine kidney cells (MDCK).  The highly pathogenic A/Vietnam/1203/04 

virus (A/Vietnam) was propagated in the alloantoic cavity of 10 day old hen eggs at 

37°C.  The alloantoic fluid from infected eggs was harvested and stored at -70oC. The 

A/Vietnam virus used for challenge experiments was passed a single time in embryonated 

eggs prior to use. A/Texas/36/91 (TX91)  was obtained from the laboratory of Dr. Adolfo 

Garcia-Sastre at the Mount Sinai Medical Center (New York, New York).  Virus titers 

were determined by plaque assays in MDCK cells and are expressed as plaque forming 

units per milliliter (PFU/mL).  All viruses were stored at -70°C until use.  

Lung processing. Necropsies were carried out according to a standard protocol. Samples 

for virological examination were stored at ≤-70°C. Lungs from 9 mice from each group at 

each time point were homogenized in a single 50 cc tube containing minimal essential 

medium (MEM) containing 100 IU of penicillin per ml, 100 mg of streptomycin per ml, 

4% bovine serum albumin (fraction V; Gibco-BRL), and 4 mg of trypsin (Gibco-BRL) 

(infection medium) using Potter tissue grinders. Lungs were pooled into groups of 3 so 

that n=3 for each group at each time point. The supernatant was centrifuged at 700 x g for 

5 minutes at 4˚C. The clarified supernatant was transferred to cryovials and stored at ≤-

70˚C for viral load analysis.  

Mice. Female BALB/c mice (5-6 weeks of age) were purchased from Charles Rivers 

Laboratories (Wilmington, MA). Mice were housed in polycarbonate filter cages inside a 

Biosafety level 3 enhanced facility (BSL-3+). Food and water were provided ad libitum.  
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Lethality. To confirm lethality of the partially-reconstructed 1918 HA/NA:TX91 and 

1918 HA/NA/NS:TX91 virus stocks, groups of 3-7 mice were anesthetized with ketamine 

and xylazine and challenged via the intranasal route (IN) in a total volume of 50 

microliters with approximately 1 x 106 PFU of the 1918 HA/NA:TX91, or 1918 

HA/NA/NS:TX91 virus.  For purposes of comparison, groups of mice were also 

challenged with 2 x 104 PFU of A/Vietnam or vehicle controls (uninfected MDCK cell 

culture supernatant or alloantoic fluid).  Body weights and clinical observations were 

recorded daily over a 12 day period post-challenge.  Animals surviving challenge were 

euthanized. The experiment was repeated for the 1918 HA/NA:TX91 and TX91 viruses 

using 4 serial 10-fold or 3 serial 3-fold dilutions of virus, respectively, in phosphate 

buffered saline (4-6 mice for each dose/dilution).  

Pathogenicity. Mice were infected with 50 microliters of either A/Vietnam (2.0 x 104 

PFU), TX91 (1.1 x 106 PFU), 1918 HA/NA:TX91 (1.7 x 106 PFU), 1918 

HA/NA/NS:TX91 (1.4 x 106 PFU) or vehicle controls (uninfected MDCK cell culture 

supernatant or alloantoic fluid) via the intranasal route (Table 1).  An additional 5 naïve 

mice were anesthetized with ketamine and xylazine and a terminal blood sample taken by 

heart stick one day prior to the start of the experiment. These mice served as naïve 

controls. At approximately 24, 72 and 120 hours following infection 9 mice per group 

were sacrificed for collection of lungs. Lungs were pooled from 3 mice per time point per 

group in order to ensure sufficient sample volume for assays.  
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Table 1. Stock influenza viral titers and challenge doses.  

Group  Abbreviation Titer1 
(PFU/mL)  

Challenge 
dose (PFU) 

HA 1918 / NA 1918 / 6 genes from 
A/Texas/36/91 

1918 
HA/NA:TX91  3.4x107  1.7x106  

HA 1918 / NA 1918 / NS 1918 / 5 
genes from A/Texas/36/91  

1918 
HA/NA/NS:TX91 2.7x107  1.4x106  

A/Vietnam/1203/04 (H5N1)  A/Vietnam  1.5x108  2.0x104 

A/Texas/36/91 (H1N1)  TX91  3.0x108  1.1x106  

Cell culture vehicle control  CC 0 NA  

Allantoic culture vehicle control  AC 0 NA  

1 Titers calculated using the Spearman Kärber method from titrations in MDCK cells. 

 

TCID50. In order to assess the viral load in the lungs Tissue Culture Infectious Dose 50 

(TCID50) assay was used. Lung homogenates were added to 96-well plates seeded with 

MDCK cells. Three samples were assayed per group per time point. Samples were 

diluted 1:10 initial dilution and then nine times at 1:5 for a total of ten dilutions. Five 

replicates of each dilution were plated. Samples were incubated in a humidified incubator 

at 37˚C and 5% CO2 for approximately 72 hours. Results were calculated using Spearman 

Kärber method. 
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Results  
 

Reconstruction. Genes encoding the 1918 pandemic influenza virus were reconstructed 

from deoxyoligonucleotides and corresponded to the reported 1918 coding sequences (2, 

10, 37). Partially-reconstructed 1918 influenza viruses were produced by transfecting the 

appropriate plasmids from the 1918 pandemic virus and the Texas/91 virus into a 

293T/MDCK cell culture mixture. Control plasmids containing a GFP marker were used 

in order to verify that the viral polymerase was produced and functional for viral RNA 

replication. Approximately 24 hours post-transfection the control transfections were 

viewed under a fluorescence microscope for GFP production. It was verified that the 

transfections were successful and that the influenza RNA-dependant RNA polymerase 

was being produced and was functional (Figure 2).  

 

Figure 2. 293T/MDCK cells transfected with pCAGGS-PB1/PB2/PA/NP/GFP  
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Appropriate 1918 HA/NA:TX91 and 1918 HA/NA/NS:TX91 clones were chosen based 

on genomic RNA yield, sequence analysis, hemagglutination assay results, stock viral 

concentration and lethality in mice.  

 

Infectivity. The HA, NA and NS genes of the 1918 pandemic influenza virus rescued in 

the genetic background of TX91 virus had high infectivity titers in MDCK cells similar to 

those of the wild-type TX91 virus. See Table 1.  

 

Lethality Determination. To determine the lethality of the 1918 HA/NA:TX91 

construct, serial 10-fold dilutions of virus were inoculated into groups of four mice (1.7 x 

106 -1.7 x 103 PFUs; Figure 3). The results demonstrate that the virus was 100% lethal at 

1.7 x 106 PFU and 1.7 x 105 PFU. The 1918 HA/NA:TX91 construct was also lethal at 

1.7 x 104 PFU, although not 100%. By comparison, challenge with undiluted (1 x 106 

PFU) 1918 HA/NA/NS:TX91 resulted in only approximately 50% mortality (Figure 4). 

The parent TX91 virus was also tested and was found not to be lethal.   
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Figure 3. Lethality determination of 1918 HA/NA:TX91. BALB/c mice were inoculated intranasally with 
serial dilutions of 1918 HA/NA:TX91 from 1.7x106 PFU to 1.7x103 PFU and monitored for 14 days for 
survival. 

 

Figure 4. Lethality determination of 1918 HA/NA/NS:TX91. BALB/c mice were inoculated intranasally 
with 1.4x106 PFU of 1918 HA/NA/NS:TX91 and monitored for 14 days for survival. 
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Pathogenicity. To better understand the differences in pathogenecity among the 
recombinant 1918 viruses, we examined the mortality time course post-challenge (Figure 
5) and percent weight loss (Figure 6) over the course of 14 days, and viral replication in 
the lungs at 24, 72 and 120 hours post-challenge (p.c.) (Figure 7).  

 

Figure 5. Time course of mortality following challenge. BALB/c mice were challenged with 1.7x106 PFU 
(1918 HA/NA:TX91), 1.4x106 PFU (1918 HA/NA/NS:TX91), 1.1x106 PFU (TX91), 2x104 PFU 
(A/Vietnam), and 50µl cell culture and allantoic fluid controls.  
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Figure 6. Change in body weight following challenge. BALB/c mice were challenged with 1.7x106 PFU 
(1918 HA/NA:TX91), 1.4x106 PFU (1918 HA/NA/NS:TX91), 1.1x106 PFU (TX91), 2x104  PFU 
(A/Vietnam), and 50µl cell culture and allantoic fluid controls  

  

 
 
Figure 7. Mean viral lung titers (Tissue Culture Infectious Dose50) in BALB/c mice. Mice were 
challenged with 1.7x106 PFU (1918 HA/NA:TX91), 1.4x106 PFU (1918 HA/NA/NS:TX91), 
1.1x106 PFU (TX91), and 2x104 PFU (A/Vietnam).  
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The A/Vietnam virus was highly pathogenic in the BALB/c mouse.  Substantial weight 

loss was observed by day 5 post-challenge (31%) and all animals succumbed prior to day 

7 (Figure 6).  Similarly, mice challenged with the 1918 HA/NA:TX91 virus lost 

approximately 23% body weight by day 5 post-challenge and all mice succumbed prior to 

day 11.   The 1918 HA/NA/NS:TX91 virus was less pathogenic in that challenge with 

approximately 1 x 106 PFU resulted in 15-16% weight loss by day 5 and 50% mortality.  

Interestingly, results for mice challenged with the parent 1 x 106 PFU of TX91 were 

similar to those obtained for vehicle controls.  Mice in the TX91 and vehicle control 

groups gained weight following challenge and all animals survived.  

 

All mice challenged with cell culture control, allantoic fluid control and TX91 survived 

challenge (Figure 5). Only about 50% of mice challenged with 1918 HA/NA/NS:TX91 

survived challenge through day 14. These were the same results seen in the LD50 study at 

the same dose. Mice challenged with A/Vietnam and 1918 HA/NA:TX91 started dying 

by day 4 post-challenge. By day 7 p.c. all mice challenged with A/Vietnam had died and 

by day 11 p.c. all mice challenged with 1918 HA/NA:TX91 had died. We can see that the 

1918 HA/NA:TX91 recombinant virus is as lethal as A/Vietnam but with slower kinetics. 

The 1918 HA/NA/NS:TX91 virus was more lethal than the parent TX91 virus, but not as 

lethal as the 1918 HA/NA:TX91 recombinant virus or the highly-pathogenic A/Vietnam 

influenza virus strain. It appears that the addition of the 1918 NS gene attenuates the 

virus. This attenuation has been seen in previous studies in mice (37).  
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Influenza virus was detected in the lungs of mice challenged with A/Vietnam, TX91 and 

both 1918 reassortants at 24 hours (Figure 7). The highest viral titers were detected in 

mice at 24 hours p.c. with 1918 HA/NA:TX91 (3.89 x 106 TCID50/ml)(Table 2). Lung 

titers in these mice remained high at 72 and 120 hours p.c. (1.26 x 105 TCID50/ml and 

4.55 x 105 TCID50/ml, respectively). These lung titers were comparable at all time points 

to the highly-pathogenic A/Vietnam virus (Table 2). Lung titers in mice challenged with 

the 1918 HA/NA/NS:TX91 virus were lower than the 1918 HA/NA:TX91 virus at all 

time points. By 120 hours p.c., virus was undetectable in the lungs of mice challenged 

with the 1918 HA/NA/NS:TX91 virus. Lung titers in mice challenged with TX91 were 

lower, but comparable to mice challenged with the 1918 HA/NA/NS:TX91 virus at all 

time points. Vehicle control samples were uniformly negative for virus in the TCID50 

assay.  
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Table 2. Lung titers at 24, 72, and 120 hours post-challenge in  BALB/c mice challenged with influenza 
viruses. 

 

Group 
Time 
Point 

(hours) 

Geometric 
Mean 95% Confidence Interval 

1918 HA/NA:TX91  
24 3.89x106 (2.45x106, 6.18x106) 
72 1.26x105 (2.87x103, 5.49x106) 
120 4.55x105 (1.23x104, 1.68x107) 

1918 HA/NA/NS:TX91  
24 1.64x104 (2.18x103, 1.23x105) 
72 4.78x104 (2.88x103, 7.94x105) 
120 0 (--) 

A/Vietnam 
24 1.13x106 (1.51x105, 8.43x106) 
72 2.52x105 (1.59x105, 3.99x105) 
120 7.78x105 (4.91x105, 1.23x106) 

TX91 
24 9.21x102 (7.02x10-3, 1.21x108) 
72 1.12x103 (1.35x102, 9.26x103) 
120 0 (--) 

Cell Culture Control  
24 0 (--) 
72 0 (--) 
120 0 (--) 

Allantoic Fluid Control  
24 0 (--) 
72 0 (--) 
120 0 (--) 
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Statistical analysis of TCID50 Data  
 

In order to determine if the difference in lung titers amongst groups were statistically 

significant, an analysis of variance (ANOVA) model was performed. The p-value was < 

0.5 for each time point, indicating that there was a difference between at least two of the 

groups (Table 3). In order to determine which groups were significantly different, 

Tukey’s pairwise comparisons were carried out. We see from the Tukey’s calculations 

that that all groups had a statistically significant difference in viral lung titers except 

between groups one and two at 24 hours post-challenge (Table 3).  

 

A reduced data set was also created that shows the 1918 HA/NA:TX91, 1918 

HA/NA/NS:TX91 and the A/Vietnam viruses as compared to the TX91 virus (Table 4). 

You can see from this data set that the mean titers of all three viruses were higher than 

the TX91 virus at all time points. In this reduced data set, groups that had reported values 

that were all less than the LOD at a particular time point were not included in the analysis 

for that time point. The complete allantoic fluid and cell culture control groups (group 5 

and 6, respectively), 1918 HA/NA/NS:TX91 (group 2) on study day 5, and TX91 (group 

4) on study day 5 were removed because all observations were less than the LOD. 
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Table 3. Summary of ANOVA results and Tukey’s Pairwise. 

Time Point 
(hours)  

ANOVA 
Group 

Effect P 
value 

Tukey* 

24 <0.0001 

7.77x105 (5<1) <0.0001 
3.27x103 (5<2) 0.0034 

2.25x105 (6<3) <0.0001 
2.38x102 (2<1) 0.0499 
4.22x103 (4<1) 0.0026 
1.22x103 (4<3) 0.0092 

72 <0.0001 

2.51x104 (5<1) <0.0001 
9.57x103 (5<2) <0.0001 
2.24x102 (5<4) <0.0001 
5.03x104 (6<3) <0.0001 
1.12x102 (4<1) 0.0002 
4.28x101 (4<2) 0.0017 

2.25x102 (4<3) <0.0001 

120 <0.0001 

9.09x104 (5<1) <0.0001 
1.56x105 (5<3) <0.0001 
1.56x105 (6<3) <0.0001 
9.09x104 (2<1) <0.0001 
9.09x104 (4<1) <0.0001 
1.56x105 (2<3) <0.0001 
1.56x105 (4<3) <0.0001 

Group 1 = 1918 HA/NA:TX91, Group 2 = 1918 HA/NA/NS:TX91, Group 3 = A/Vietnam, Group 4 = 
TX91, Group 5 = Cell culture control, Group 6 = Allantoic fluid control  
 
* Cells contain all pairwise differences between all groups that are statistically significant at 0.05.  The 
format within each cell is (1) the ratio of geometric means, (2) the relationship of the corresponding pair of 
group geometric means shown in parentheses [For example, “(1<2)” indicates that the geometric mean for 
group 1 was less than that for group 2], and (3) the Tukey-adjusted P-value.  
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Table 4. Summary of ANOVA results and Tukey’s Pairwise. Comparisons for reduced data set 
 

Time Point 
(hours)  

Group 
Effect P 

value 
Tukey* 

24 0.0105 
4.22x103 (4<1) 0.0130 
1.22x103 (4<3) 0.0301 

72 0.001 
1.12x102 (4<1) 0.0024 
4.28x101 (4<2) 0.0097 
2.25x102 (4<3) 0.0010 

120 0.5602   
 
Group 1 = 1918 HA/NA:TX91, Group 2 = 1918 HA/NA/NS:TX91, Group 3 = 
A/Vietnam, Group 4 = TX91   
 
Cells contain all pairwise differences between all groups that are statistically significant 
at 0.05.  The format within each cell is (1) the ratio of geometric means, (2) the 
relationship of the corresponding pair of group geometric means shown in parentheses 
[For example, “(1<2)” indicates that the geometric mean for group 1 was less than that 
for group 2], and (3) the Tukey-adjusted P-value.  
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Discussion  
 

Highly pathogenic pandemic influenza viruses cause high mobidity and mortality in the 

human population. This study investigated the virulence factors of the 1918 pandemic 

influenza. The objective was to measure the change in pathogenesis of the low 

pathogenic A/Texas/36/91 influenza when the HA, NA, and NS genes of the 1918 

pandemic influenza were added.  

 

Tumpey et al. showed that placing the 1918 HA and NA genes together in the 

background of A/WSN/33 (WSN) caused lethality in mice that was equivalent to the 

parent WSN virus (57). However, when 1918 HA and NA were placed in the background 

of WSN individually it caused an attenuation of the virus (57). When Kobasa et al. (15) 

placed the 1918 HA gene in the background of A/Kawasaki/173/2001 (H1N1) (K173) 

and A/Memphis/8/88 (H3N2) (M88), they found that the 1918 HA was lethal by itself. 

They also found that the 1918 NA alone in the background of K173 and M88 was no 

more pathogenic than the parent strains. These studies suggested that the main lethal 

factor was the 1918 HA, not 1918 NA. We found that when 1918 HA and NA were 

placed together in the background of the low-pathogenic TX91 strain the virus was 100% 

lethal, whereas the parental TX91 strain was not. One of our objectives in this study was 

to determine the pathogenecity of recombinant viruses possessing genes from the 1918 

pandemic influenza as compared to the highly-pathogenic avian influenza 

A/Vietnam/1203/2004 strain. The lung titers of mice challenged with the 1918 

HA/NA:TX91 virus were comparable to A/Vietnam at all time points, with 1918 

HA/NA:TX91 virus being higher at 24hours p.i. than the 1918 HA/NA/NS:TX91 virus.   
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The influenza NS1 protein is a known IFN-antagonist (40, 41, 25) and is required for 

influenza A virus virulence (25, 42). It has been shown that the binding of the NS1 viral 

protein to double-stranded RNA (dsRNA) (58) prevents the activation of multiple 

proteins, including PKR (43-45). PKR is activated by dsRNA (61) which in turn 

phosphorylates eukaryotic translation initiation factor 2 (eIF2α) (43). This prevents 

cellular translation from being turned off and viral proteins continue to be produced. PKR 

also plays a role in activating NF-κB (59) and IFN regulatory factor 3 (IRF-3) (41), both 

which are important transcription factors for the initiation of the IFN-α/β cascade. 

Another way NS1 prevents PKR activity is through directly binding the PKR protein 

(48). So, the binding of NS1 to PKR and dsRNA contributes to the pathogenecity of the 

virus by preventing the activation of the IFN-α/β cascade. This prevents the cells first line 

of defense against viral infection and allows the virus to overcome the initial immune 

response.  

 

Another way the NS1 viral protein affects the host cell is by preventing the transport of 

mRNAs from the nucleus (63, 64). The NS1 protein binds to the poly(A) sequence at the 

3' ends of mRNAs and inhibits the nuclear export of all poly(A)-containing viral and 

cellular mRNAs (65). NS1 not only prevents the export of mRNAs, but also prevents 

post-transcriptional splicing of pre-mRNAs (62). NS1 does this by binding to the U6 

small nuclear RNA (snRNA) (62). NS1 allows the pre-mRNA to associate with the U1, 

U2, U4, U5, and U6 snRNAs to form spliceosomes but then remains associated with 

these spliceosomes to inhibit the catalytic steps of splicing that are normally carried out 



38 
 

by spliceosomal components (62). By preventing pre-mRNA splicing and mRNA 

transport the host cell cannot produce anti-viral proteins in the cytoplasm.  

 

One of the distinctive clinical characteristics of the 1918 influenza virus was its ability to 

rapidly produce extensive damage to the respiratory epithelium (46). This is 

representative of a virus that is able to overcome the initial host immune response and to 

replicate to high titers and spread quickly from cell to cell. An NS1 protein that was 

especially effective at blocking the type I IFN system might have contributed to the 

exceptional virulence of the 1918 strain (25, 47).  

 

We found that the addition of the 1918 NS, along with 1918 HA and NA, in the 

background of TX91 attenuated the virus. Lung titers in mice infected with 1918 

HA/NA/NS1:TX91 were lower than 1918 HA/NA:TX91 or A/Vietnam at 24 hours, 

although the titers were still higher than mice challenged with TX91. Lung titers were 

comparable to TX91 lung titers at 72 hours. By 120 p.i., virus was undetectable in lungs 

of mice challenged with 1918 HA/NA/NS1:TX91 and TX91.  

 

When the 1918 pandemic NS1 gene was placed in the background of the WSN strain of 

influenza, lung titers were higher than those challenged with the wild-type WSN virus 

(37). It has been shown that the NS1 protein of influenza is a virulence factor that 

interacts with the host immune system, attenuating the host immune response and thus 

allowing the virus to replicate unimpeded (25). We have demonstrated that NS1 

originating from the 1918 pandemic virus attenuates viral replication in mice, as noted 
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previously (37). It has been mentioned that this could be due to the NS1 protein being 

host-specific (37).  

 

The attenuating effect of NS1 in mice could be caused by relatively poor protein stability 

in mouse cells or by the inefficient interaction of either protein with specific host factors 

(37). The ability of NS1 to affect the host IFN response may involve the binding of RNA 

by NS1 (40, 41, 43) or its interaction with specific proteins, including PKR (48). 

Possibly, the interactions of the 1918 NS1 protein with mouse PKR and/or other 

components of the type I IFN system is inefficient (48). The NS1 protein has been 

reported to interact with numerous other host-cell proteins (49-56). How the NS1 anti-

IFN function is affected by interaction of NS1 with host-cell proteins is not clear (37). 

The mouse immune system may also have a pathway not present in humans that allows it 

to circumvent the effects of the NS1 protein. The mouse may also lack some of the 

proteins that NS1 normally interacts with. This would limit the capability of the NS1 

protein in its antagonism.  

 

Viral titers for A/Vietnam remained high throughout the 120 hours examined suggesting 

that the immune system was attenuated, thus preventing the mice from clearing the virus 

by 120 hours post-infection.  

 

The titers in lungs of mice challenged with TX91 were comparable to those challenged 

with the 1918 HA/NA/NS:TX91 virus suggesting that the HA and NA genes from the 

1918 pandemic strain confer high pathogenicity to the virus.  
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Summary  
 

We have shown that the addition of the 1918 HA and NA genes to the low-pathogenic 

TX91 influenza strain increased its pathogenecity nearing that of the A/Vietnam H5N1 

avian strain. Lung titers in mice challenged with 1918 HA/NA:TX91 were comparable to 

the highly pathogenic A/Vietnam strain at all time points of the study. All mice 

challenged with A/Vietnam died by day 7 whereas all mice challenged with 1918 

HA/NA:TX91 died by day 11. As has been shown previously, when we added the 1918 

NS to the TX91 the virus was attenuated. No mice died until day 8 in this group. It is 

worthwhile to further investigate the molecular interactions the NS1 viral protein has 

with host proteins in order to elucidate the cause of attenuation in mice, as well as 

virulence in humans. The NS1 protein could also be an attractive target for anti-viral 

treatments.  
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