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ABSTRACT 

 
 
Titus, Haley E. M.S., Department of Neuroscience, Cell Biology, and Physiology, 
Wright State University, 2009.  Reorganization of Ia afferent synapses on 
motoneruons after peripheral nerve injuries.  

 

 

 After peripheral nerve injuries patients lose and do not recover the stretch reflex 

which leads to altered locomotor function.  The focus of this thesis is to investigate 

the structural integrity of the central connection between Ia afferents and alpha 

motoneurons that mediate the stretch reflex.  The overall hypothesis is that the density 

and distribution of Ia synapses on motoneurons is altered after peripheral nerve 

injuries.  Analysis of Ia afferent-motoneuron contacts, revealed by vesicular 

glutamate transporter 1 (VGLUT1) immunoreactivity, on the soma and dendritic 

arbor of motoneurons after peripheral nerve injuries revealed major reorganizations in 

the distribution and density of Ia synapses.  Synaptic stripping of Ia afferent synapses 

occurred on the soma and proximal dendrites and appeared to be permanent even 

after reinnervation; in contrast, VGLUT1 synapses on distal dendrites were 

unchanged.  In conclusion, after peripheral nerve injuries motoneurons are contacted 

by fewer Ia synapses and they are more distally located. This overall reorganization 

likely weakens the input and may contribute to stretch reflex anomalies.  
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I. Introduction 

 

 The stretch evoked synaptic potential (SSP) is lost after peripheral nerve injury 

despite presence of Ia monosynaptic excitatory postsynaptic potentials (EPSPs) on 

motoneurons (Cope et al., 1994; Haftel et al., 2005).  This areflexia results in altered 

locomotor activity patterns due to the loss of proprioceptive feedback from muscle 

spindle receptors in the regulation of interjoint coordination and muscle stiffness (Abelew 

et al., 2000; Maas et al., 2007).  As a result the recovery of motor function is incomplete 

even after successful reconnection and regeneration of injured peripheral nerves.  The 

finding that Ia afferents regenerate peripherally and recover normal sensitivity to stretch 

leads to the hypothesis that suppression of Ia afferent inputs occurs centrally (Haftel et al., 

2005), but the exact mechanisms remain unknown. 

 It is well known that after peripheral nerve injuries, synapses on axotomized 

motoneurons are first lost in a phenomenon denominated “synaptic striping” and then 

recovered after motoneurons reconnect with muscle.  The possibility that this process 

results in major structural synaptic remodeling and alteration of the composition of inputs 

to motoneurons has not yet been studied in detail.  For example, no anatomical study to 

date has specifically analyzed the exact fate of Ia synapses, many of which arise from 

afferents that have been peripherally injured.  This thesis explores the possibility that 

failure in Ia to motoneuron neurotransmission during stretch evoke activity is due in part 

to a central structural reorganization of Ia synapses on motoneurons.  Our overall 
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hypothesis is that the density and distribution of Ia synapses on motoneurons is altered 

after peripheral nerve injuries.  We also investigated whether possible reorganizations are 

permanent or otherwise changed when there is successful regeneration in the periphery 

compared to situations with no peripheral regeneration.  

 To test this possibility we analyzed Ia afferent-motoneuron contacts, revealed by 

vesicular glutamate transporter 1 (VGLUT1) immunoreactivity as a proprioceptive 

marker on the soma and dendritic arbor of motoneurons after peripheral nerve injuries.  

We injured both motoneurons axons and Ia afferents by transection of the tibial nerve.  In 

some animals the tibial nerve cut ends were resutured to allow regeneration to occur; 

however, in others the proximal end was ligated to impede peripheral regeneration.  The 

Ia-motoneuron synapses were then analyzed at various post-injury times in lumbar 

motoneurons that successfully reinnervated the periphery and in others that did not.  

Therefore, most of the study was focused on tibial nerve motor pools and more 

specifically on medial gastrocnemius motoneurons.  

 We concluded that after peripheral nerve injuries there are major reorganizations 

in the distribution and density of Ia synapses over motoneurons and these changes appear 

to be relatively permanent.  These anatomical analyses are compared to current 

physiological data to aid in understanding the absence of the stretch evoked synaptic 

potential (SSP) after peripheral nerve injury. 
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II. Background 
 
 
A. Topography of lumbar spinal cord motor pools 
 
 The rat lumbar spinal cord is organized cytoarchitecturally in ten lamina.  The 

dorsal horn consists of lamina I through lamina VI (Molander et al., 1984).  The focus of 

this study was on lamina VII and lamina IX in the ventral horn of the spinal cord 

(Molander et al., 1984).  Lamina VII contains the distal dendrites and lamina IX the cell 

bodies and proximal dendrites of motoneurons.  Within lamina IX we focused 

particularly on the regions containing motor pools which send axons through the tibial 

and medial gastrocnemius nerve.  These regions also contain the ventral projections of 

sensory proprioceptive afferents injured by the nerve transections performed in this study. 

  The sciatic nerve gives off articular branches (rami articulares) and muscular 

branches (rami musculares).  The focus of this study was on a muscular branch, the tibial 

nerve, and a branch of the tibial nerve, the medial gastrocnemius nerve (Moore et al., 

2006).  In the rat lumbar spinal cord, tibial nerve motoneurons comprise 49% of all 

sciatic motoneurons; in contrast, the medial gastrocnemius (MG) motoneuron pool 

represent only 7% of the total sciatic motoneuron population (Swett et al.,1986).  Using 

retrograde tracing with horseradish peroxidase (HRP) it was found that medial 

gastrocnemius motoneurons are distributed in a rostro-caudal column that extends from 

Lumbar 3 (L3) / Lumbar 4 (L4) junction through Lumbar 5 (L5) (Nicolopoulos-

Stournaras et al., 1983) and into rostral Lumbar 6 (L6) (Swett et al., 1986).  A range of 

motoneuron sizes was observed: smaller motoneurons were considered gamma 



4 

motoneurons (11-30 μm mean diameter), while medium (25-30 μm mean diameter) and 

large (32-45 μm mean diameter) alpha motoneurons, with the largest at 58 μm mean 

diameter (Swett et al., 1986). 

 

B1.  Alpha Motoneuron Anatomy: Soma and Dendritic Arbor 

 It is important to note that 95% - 97% of the membrane surface area of 

motoneurons is located in the dendritic arbor (Fyffe, 2001; Luscher et al., 1992).  The 

total membrane area of a cat hind limb alpha motoneuron can range from 250,000 to 

750,000 μm2; the soma only constitutes 6,000-15,000 μm2 (Luscher et al., 1992).  The 

dendritic arbor of cat alpha motoneurons in the lumbar spinal cord is radial (Fyffe, 2001; 

Luscher et al., 1992) and can extend up to 1600 μm from the soma in the rostro-caudal 

direction; extending into the ventral horn and reaching as dorsal as lamina V or VI 

(Brown et al., 1981).   Fully reconstructed hind limb motoneurons of the cat have 7-18 

primary dendrites and usually branch up to the 4th or 6th order (Brown et al., 1981).   

 Only one study performed similar detailed analysis on fully labeled dendritic 

arbors in triceps surae adult rat motoneurons (Chen et al., 1994).  In comparison with cat, 

rat triceps surae motoneurons had smaller average surface areas (150,000μm2 vs. 

560,000μm2), fewer primary dendrites (8 vs. 12), and shorter total dendritic lengths 

(36mm vs. 105mm).  However, there was not a species difference in number of contacts 

on the dendritic arbor; therefore, hindlimb rat motoneurons had more contacts per unit of 

dendritic length (Chen et al., 1994).   

 For all cat motoneurons, the mean diameter of the stem dendrite and the mean 

diameter of the cell body share a strong relationship (Luscher et al., 1992).  In the hind 
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limb cat motoneurons, the diameter of the stem dendrite was correlated positively with 

the dendritic membrane area, the combined dendritic length, and the number of 

terminations (Luscher et al., 1992).  Similarly, in hindlimb rat motoneurons diameter of 

the stem dendrite was also positively correlated with combined dendritic length, surface 

area, and volume (Chen et al., 1994). 

  

B2.  Alpha Motoneuron Anatomy: Synapses 

 The complexity of a motoneuron dendritic arbor is proportional to the number of 

synaptic contacts received (Luscher et al., 1992).  Of the estimated 50,000 synaptic inputs 

on the cat alpha motoneuron, the soma contain 1 - 2% but they occur at relatively high 

densities, 10-12 synapses per 100 μm2 (Fyffe, 2001).  Proximal dendritic synaptic density 

(first 100 μm) is equal to or slightly higher than the synaptic density of the soma.  

Synaptic density declines up to 20 to 30% with increasing distance from the soma (Fyffe, 

2001).  Several classes of boutons have been defined on motoneuron cells bodies and 

dendrites.  S-type (for spherical vesicles) boutons are considered to be excitatory with 

94% of boutons labeled for glutamate (Fyffe, 2001).  S-type boutons (for spherical 

vesicles) represent 20-30% of all somatic boutons, 30% of the proximal dendritic boutons, 

and 60% of the distal dendritic boutons (Fyffe, 2001).  F-type boutons (F for flattened 

vesicles) are inhibitory and represent approximately around 60% of boutons on somata 

and proximal dendrites and their density and proportions to all synapses decrease with 

distance from the soma.  There are also other more specialized classes of synapses on 

motoneurons like C-terminals and M-terminals which occur in lesser proportions (Fyffe, 

2001).   
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 M synapses in particular are large boutons with spherical vesicles that receive 

presynaptic axoaxonic synapses and were demonstrated to originate from dorsal root 

afferents (Conradi, 1969).  These terminals were initially considered to be the electron 

microscopy (EM) correlate of Ia afferent synapses; however, after these were 

intraaxonally filled with HRP and analyzed with electron microscopy it was shown that 

most Ia synapses on motoneurons have a typical S-type morphology (Conradi et al., 1983; 

Fyffe et al., 1984).  Therefore, M synapses could be some Ia afferent S-type synapses that 

are particularly large.  Ia synapses, as the ones that will be reviewed below regarding 

synaptic stripping, cannot be unambiguously identified without some specific means of 

labeling them because most Ia afferent synapses are structurally indistinguishable from S-

type synapses. 

 Including all synapses mentioned above, overall synaptic density decreases 

proximo-distally along the dendritic arbor but the proportion of synapses that are 

excitatory increases from soma to distal dendrites.  The distribution of Ia afferent 

synapses is believed to follow a similar pattern to the S-type excitatory synapses (and M-

synapses); however, Ia afferents only contribute a small portion of all excitatory synapses 

targeting the motoneuron. 

 

C1.  Ia afferents and muscle spindles: Overview of muscle spindles 

 Muscle spindles act as stretch receptors by encoding information about muscle 

length; containing 8-10 intrafusal muscle fibers and are in parallel with extrafusal muscle 

fibers (Purves et al., 2008).  The sensory component of the muscle spindle contains two 

types of endings that contribute to the monosynaptic stretch reflex.  The primary 
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(annulospiral) endings give rise to the Ia afferent fibers and the secondary endings give 

rise to the group II afferent fibers (Luscher et al., 1992).   

  

C2.  Ia afferents and muscle spindles: Physiology of Ia-motoneuron synapses  

 The circuit of the monosynaptic stretch reflex is the connection of the large 

diameter Ia afferent from an intrafusal muscle spindle to the alpha motoneuron in the 

ventral horn of the spinal cord and the connection of the alpha motoneuron in the ventral 

horn of the spinal cord with the extrafusal fibers of the homonymous muscle (Purves et 

al., 2008).  In this study the circuit included the Ia afferents from the triceps surae 

muscles (MG, LG, and Soleus), the motoneurons in tibial motor pools lamina IX of the 

lumbar spinal cord, and the extrafusal fibers of the triceps surae muscles (MG, LG, and 

Soleus).   

 Electrical stimulation of a skeletal muscle nerve activates groups of Ia afferents 

which produce a composite excitatory postsynaptic electrical potential (EPSP) on 

motoneurons (Cope et al., 2001).  The peak amplitude of the composite EPSP can be 

equated to synaptic strength and induces a proportional increase in motoneuron firing 

(Cope et al., 2001).  Stimulation frequency plays a role in the composite EPSP amplitude 

at Ia-MN synapses.  At low frequency stimulation (< 1 pps) the amplitude of the 

composite EPSP remains steady with repeated stimuli and the maximum amplitude of a 

composite EPSP is defined as the steady-state synaptic strength (Cope et al., 2001).  At 

high frequency stimulation, the amplitudes of composite EPSPs can increase or decrease 

due to variations in the properties of specific Ia-MN synapses, such as the probability of 

neurotransmitter release.  For example, the composite EPSP of synaptic connections with 
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low probability of release usually increase during high frequency stimulation (Cope et al., 

2001).    

 

C3.  Ia afferents and muscle spindles: Ia afferent projections in the spinal cord 

 The focus of this study is on the synaptic contacts between Ia afferent fibers and 

motoneurons that form the basis of the monosynaptic stretch reflex.  The stem axon of the 

Ia afferent bifurcates in the dorsal columns shortly after entering the spinal cord into 

ascending and descending branches (Luscher et al., 1992).  The ascending branch of the 

Ia afferent in the cat has a larger diameter (5.8 μm) compared with the descending branch 

diameter (3 μm) (Ishizuka et al., 1992).  In the cat, a total of 5-11 collaterals are given off 

from the ascending and descending branch at different rostro-caudal locations (Ishizuka 

et al., 1979).  The collaterals pass through the medial half of the dorsal horn before 

traveling through the deeper grey matter (Ishizuka et al., 1979).  The terminal 

arborizations of the Ia afferent collaterals occur in medial lamina V, and throughout 

lamina VII (region of postsynaptic Ia inhibitory interneurons and motoneuron distal 

dendrites), and lamina IX (motor nuclei region) (Brown et al., 1978; Ishizuka et al., 1979; 

Luscher et al., 1992).  The highest number of Ia afferent terminal branches is found in 

lamina IX and the lowest number in lamina VII (Ishizuka et al., 1979).  

 

D.  Location of Ia afferent synapses on motoneurons in the lumbar spinal cord 

 Intracellular fills with horseradish peroxidase of Ia afferent fibers and 

motoneurons coupled with electrophysiology recordings demonstrated that group Ia 

afferents make synaptic contacts preferentially on the dendritic arbor of alpha 
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motoneurons in cat (Burke et al., 1979).  A single Ia afferent collateral makes contact 

with 50-60 motoneurons (Brown et al., 1978) with an average of 10 Ia afferent synaptic 

contacts per motoneuron (range 3-32) (Fyffe, 2001; Luscher et al., 1992).  The number of 

synaptic contacts made by a specific Ia afferent collateral is dependent upon the distance 

between the motoneuron and the entry point of the Ia afferent (Luscher et al., 1992), such 

that there are more synaptic contacts on motoneurons located at segmental levels close to 

the dorsal root entry point of the afferent.   

   More than 90% of Ia synapses on motoneurons occur on the dendritic arbor, and 

the highest number (60%) occurs along rostrocaudally-oriented dendrites (Fyffe, 2001).  

Fewer Ia fiber synaptic contacts (8%) occur along dendrites oriented in the dorsolateral to 

ventromedial axis (Burke et al., 1996). Dendrites oriented in the dorsomedial-

ventrolateral axons are parallel to the trajectory of Ia afferent collaterals and receive 22% 

of all contacts.  Overall Ia synapses have been estimated to contribute between 1-2% of 

all synaptic inputs (500-1,000 synapses) to the adult cat motoneuron (Burke et al., 1996). 

 MG Ia afferent fibers contact a larger percentage of homonymous (100%) than 

heteronymous (66%) motoneurons (Scott et al., 1976).  Larger EPSPs are recorded from 

homonymous motoneurons (Cope et al., 2001; Scott et al., 1976).  This suggested 

possible differences in synapses formed by homonymous or heteronymous Ia afferent on 

MG motoneurons including greater release of transmitter (presynaptic) and/or greater 

sensitivity to the transmitter (postsynaptic) (Scott et al., 1976).  Interestingly, anatomical 

studies demonstrated that motoneurons receive more synaptic contacts from 

homonymous than heteronymous Ia afferents (Burke et al., 1979; Burke et al., 1996); 
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which could be the underlying cause for the larger EPSP in the homonymous 

motoneurons. 

 Within the lumbar spinal cord there are rostro-caudal differences in EPSP strength 

for different motoneuron pools.  For MG Ia afferents there are larger EPSPs in 

motoneuron pools relatively caudal within the lumbar spinal cord.  For LG Ia afferents 

there are larger EPSPs rostral in the motoneuron pool within the lumbar spinal cord 

(Scott et al., 1976).  This suggested that Ia afferent synaptic input varied as a function of 

position of the motoneuron.  The larger EPSPs in specific regions of the spinal cord are 

thought to be due to a higher number of boutons per Ia afferent fiber on a given 

motoneuron (Scott et al., 1976).  In summary, the number of synapses established by Ia 

afferents on a motoneuron is a major determinant of EPSP amplitude and therefore 

synaptic strength.   

 

E1.  VGLUT1 as a tool to recognize Ia afferent synapses: What is VGLUT1? 

 Ia afferents in the spinal cord form glutamatergic synapses with alpha 

motoneurons (Fyffe, 2001).  Glutamate is synthesized from local precursors, such as 

glutamine released by glial cells, in the nerve terminals (Bear et al., 2006), and then is 

packaged inside synaptic vesicles.  A brain-specific Na+-dependent inorganic phosphate 

transporter (BNPI) has been identified, using electron microscopy, in the synaptic 

vesicles of nerve terminals forming asymmetric excitatory synapses (Bellocchio et al., 

1998).  This protein was given the name vesicular glutamate transporter (VGLUT1) 

(Bellocchio et al., 2000).  Vesicular glutamate transporter (VGLUT1) loads the glutamate 
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into small, clear vesicles that once packaged can be released at the synaptic cleft by 

exocytosis (Bear et al., 2006). 

 Differentiation-associated Na+-dependent inorganic phosphate dependent 

cotransporter (DPNI) is closely related to VGLUT1, localized to synaptic vesicles, and 

found to function as a glutamate transporter; this was the second isoform, VGLUT2 

(Fremeau et al., 2001; Kaneko et al., 2002).  Later a third isoform (VGLUT3) was cloned 

by screening cDNA libraries for homologous genes (Fremeau et al., 2002; Gras et al., 

2002; Schafer et al., 2002).   

 Thus, three isoforms of the VGLUT transporter have been found, with VGLUT1 

and VGLUT2 being most widely expressed in the spinal cord (Li et al., 2003; Oliveira et 

al., 2003; Todd et al., 2003; Alvarez et al., 2004; Landry et al., 2004).  Different types of 

spinal cord glutamatergic synapses preferentially express one isoform over another (Li et 

al., 2003; Oliveira et al., 2003; Todd et al., 2003; Alvarez et al., 2004; Hughes et al., 2004; 

Landry et al., 2004).  The functional differences between isoforms are not entirely clear; 

however, they have been used as markers to identify specific types of glutamatergic 

synaptic projections in specific brain areas.  In this thesis VGLUT1 is used as a specific 

marker of Ia afferents in the ventral horn of the spinal cord.     

 

E2.  VGLUT1 as a tool to recognize Ia afferent synapses: VGLUT1 as a specific 

marker of proprioceptive synapses.  

 VGLUT1 synapses in the spinal cord are most frequently originated in sensory 

mechanoreceptors, including cutaneous and proprioceptors (Todd et al., 2003, Oliveira et 

al., 2003; Alvarez et al., 2004).  In addition some descending inputs, like the corticospinal 
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tract, express VGLUT1 (Alvarez et al., 2004; Persson et al, 2006). VGLUT2 synapses 

originate mostly from spinal interneurons (Todd et al., 2003; Oliveira et al., 2003).  

VGLUT3 synapses occur at very low density and are considered to originate from some 

descending systems as no VGLUT3 expressing neurons are found in the spinal cord or 

the dorsal root ganglion (Oliveira et al., 2003).  Here the evidence that VGLUT1 can be 

used in the ventral spinal cord as a marker of Ia afferents will be reviewed briefly.  

 An alternative marker to label proprioceptive Ia afferents during development is 

parvalbumin (PV).  In mice, 95% of parvalbumin positive cells coexpressed the 

transcription factor Er81 specific of proprioceptors (Arber et al., 2000).  Evidence 

derived from genetic experiments has shown that Er81 controls the projections of 

proprioceptors into the ventral horn (Arber et al., 2000).  Parvalbumin positive synapses 

colocalize with the vesicular glutamate transporter 1 (VGLUT1) in the projection areas of 

proprioceptors in the rat spinal cord at age P5 (Alvarez et al., 2004).  Mechanoreceptive 

afferents from the skin express high levels of VGLUT1 in lamina III-IV in the dorsal 

horn and are not parvalbumin positive (Alvarez et al., 2004).  Parvalbumin is colocalized 

with VGLUT1 in the ventral horn and medial lamina V of the lumbar spinal cord in adult 

rats.  Type Ib and type II afferents from muscle spindles project to medial lamina V and 

with Ia afferents are likely the origins of high levels of VGLUT1 in this region (Alvarez 

et al., 2004).  Ia afferents additionally project to lamina VII and IX and are the likely 

origin of most VGLUT1 synapses in the ventral horn (Alvarez et al., 2004).  Numerous 

approaches including: dorsal rhizotomies (Alvarez et al., 2004), anterograde tracing from 

dorsal roots (Mentis et al., 2006) and peripheral nerves (Todd et al., 2003), intracellular 

labeling of electrophysiologically identified Ia afferents (Alvarez, Bullinger, Cope, 
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unpublished), and depletion of VGLUT1 synapses from the ventral horn in Er81 

knockout animals (Mentis et al., 2006) all strongly suggest that the large majority of 

VGLUT1 synapses found in lamina VII and lamina IX in rodents are originated in 

proprioceptors, mostly Ia afferents.  Moreover, the peripheral sensory endings of Ia 

afferents around intrafusal muscle fibers also express VGLUT1 (Wu et al., 2004). 

 

F1. Effects of peripheral nerve injuries: Synaptic stripping of motoneuron synaptic 

contacts   

 Removal of synaptic contacts in motoneurons axotomized due to peripheral nerve 

injuries was first observed in the rat facial nucleus (Blinzinger et al., 1968) and then 

confirmed in the rat hypoglossal nucleus (Sumner et al., 1973; Sumner, 1975), as well as 

in cat spinal motoneurons (Chen, 1978).  An important observation in all of these studies 

is that axotomized motoneurons lose synaptic contacts around the cell soma and these 

changes are associated with an increase in microglial cells around the neuronal surface 

membranes.  As soon as 2-4 days post-axotomy the microglia formed overlapping sheets 

of processes between neurons and synaptic terminals (Blinzinger et al., 1968; Kerns et al., 

1973).  Astrocytic processes increase, replacing the microglia at 2 weeks (Sumner et al., 

1973; Chen, 1978) and peaking in number at 5 weeks (Sumner et al., 1973).  At the same 

time the number and size of boutons decreases on the soma and dendrites (Sumner et al., 

1973; Sumner, 1975; Chen et al., 1977; Chen, 1978).   

 There is significant depletion of total synaptic contacts on rat alpha motoneuron 

soma (75-88% depletion) and the proximal dendritic arbor (66-78% depletion) 3 weeks 

post-axotomy without regeneration (Linda et al., 2000). Different types of terminals had 
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varying levels of depletion; S-type (excitatory) terminals were depleted to a larger extent 

than F-type (inhibitory) terminals (Linda et al., 1992).  The number of S-type excitatory 

synapses per 100 μm of soma membrane was also depleted in cat motoneurons by 70% 3 

months after MG nerve axotomy without reinnervation (Brannstrom et al., 1998; 

Brannstrom et al., 1999).  In these studies of cat motoneurons, F-type synapses were 

similarly depleted contrary to the work in rat motoneurons.  The importance of 

differences in depletion between S and F-type boutons is the possibility of a shift in the 

ratio between the number of terminals that are excitatory as opposed to inhibitory (Linda 

et al., 1992).   

 Varying degrees of recovery were observed at 3 months post axotomy; from 

slightly to fully recovered depending on whether the synapse was inhibitory (F-synapses 

with flattened vesicles) or excitatory (S-synapses with spherical vesicles),  (Sumner et al., 

1973; Sumner, 1975; Chen et al., 1977; Chen, 1978).  In the cat, S-type boutons 

recovered from 70% depletion of synaptic density on the cell soma (contacts per 100μm 

of perimeter) to only 15% depletion after successful long term peripheral reinnervation 

following 3 months of axotomy without reinnervation.  Surprisingly, F-terminal coverage 

did not recover in this study to the same extent and remained approximately 50% 

depleted 2 years after reinnervation (Brannstrom et al., 1998).  None of these studies used 

specific markers for Ia afferent synapses; therefore, the fate of these synapses within the 

S-type group could not be directly analyzed.  

   To date, the synaptic contacts on the alpha motoneuron soma and proximal 

dendrites have been studied in great detail however the distal dendritic arbor has received 

less attention.  Only the studies of Brannstrom and Kellerth (1998 and 1999) in the cat 
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analyzed synapses on dendritic arbors of axotomized motoneurons.  The synaptic 

covering (area of postsynaptic membrane covered by synapses) and synaptic density of S-

terminals (number of terminals per 100μm of membrane) targeting the proximal dendritic 

arbor (up to 100 μm distance from the cell body) was depleted 24% and 28% respectively 

in 3 months post axotomy MG motoneurons that were prevented from reinnervating their 

peripheral targets.  This reduction was small in comparison to the reductions in the cell 

body (70-78%) and reductions of F-terminals in proximal dendrites (72-78%).  More 

distally, at 300 μm and 700 µm from the cell body, smaller depletions were observed in 

synaptic coverage (13 and 19%, respectively) or synaptic density (20 and 17%) of S-

terminals.  F-terminals showed no significant change at 300 µm and were surprisingly 

increased at 700 µm (27% in synaptic density and 36% in synaptic coverage).  Two years 

after motoneuron reinnervation of the MG muscle, some recovery of synapses was 

observed.  S-synapses showed a return to values similar to control in some compartments 

but not others; however, F-terminal coverage collapsed and remained decreased.  

Synaptic density of S-terminals was 5% increased up to 100 µm from the cell soma but 

20-25% decreased at 300 and 700 µm from soma.  F-terminal synaptic density was 

decreased compared to control by 35-40% at 100µm and 300 µm from soma while only 

decreased 8% compared to control at 700 µm from soma.  Overall these complex patterns 

suggest that more work is necessary to clarify synaptic remodeling on motoneuron 

dendrites after axotomy.  An important note on these studies (Brannstrom et al, 1998; 

Brannstrom et al, 1999) is that due to the time intensive nature of the electron microscopy 

methods used, the number of motoneurons analyzed for each time point and dendritic 

segment varied but was often very small (2-5 motoneurons) preventing statistical 
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comparisons.  In the second study (Brannstrom et al, 1999), control data was not directly 

gathered but obtained from previous publications (Brannstrom et al, 1998).  Thus, the 

data and conclusions from these papers must be confirmed in the future.    

 This thesis presents novel information on Ia afferent synapses on the motoneuron 

dendrites to the extent they could be labeled using a retrograde tracer, Cholera Toxin b 

subunit conjugated to Alexa 555 (CTb-555).  Given the loss after peripheral nerve injury 

of excitatory synapses along with Ia-motoneuron EPSPs in motoneurons followed by 

partial recovery, a similar loss and recovery of Ia afferent synapses was expected.  

However, it is of note that Ia afferent synapses are injured; therefore, their behavior might 

be different when compared to other excitatory synapses originated in spinal interneurons 

or descending inputs which remain uninjured by peripheral nerve transections. 

 In addition, it is important to consider alterations of the dendritic arbor as a whole. 

Intracellular fills of motoneurons using HRP were initially used to study cell soma and 

dendritic changes in morphology after nerve injury.  Cat alpha motoneuron soma size 

initially increased at 3 weeks post-axotomy before returning to normal size at 6-12 weeks 

post axotomy (Brannstrom et al., 1992).  In hind limb motoneurons of the cat there is a 

decrease in dendritic diameter along with the membrane area and volume at all time 

points post-axotomy; amounting to a 30-50% decrease in total dendritic surface area of 

the alpha motoneuron at 3 months (Brannstrom et al., 1992; Linda et al., 1992).  

Therefore, changes in synaptic densities should be interpreted with an understanding of 

the morphological changes to the total dendritic arbor.  
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F2. Effects of peripheral nerve injuries: VGLUT1 contacts on alpha motoneurons in 

the spinal cord 

 One study analyzed changes in ventral horn VGLUT1 boutons after transection of 

the sciatic nerve (Hughes et al., 2004).  Primary afferent terminals were anterogradely 

labeled in this study with CTb.  VGLUT1 content of putative Ia afferent CTb labeled 

terminals that remain in lamina IX after sciatic nerve injury were progressively depleted 

1, 2, 4 and 8 weeks post-injury to a maximum 65% decrease in luminance (Hughes et al., 

2004).  This study did not address synaptic stripping or whether these changes were 

reverted during reinnervation. In this thesis we directly investigated these important 

issues.     

 

F3. Effects of peripheral nerve injuries: The monosynaptic reflex 

 Healthy cats were used to study the role of proprioceptive feedback in the 

regulation and adaptation of locomotor activity.  Monosynaptic muscle afferent pathways 

in the spinal cord helped mediate the magnitude and duration of extensor/flexor activity 

along with disynaptic and polysynaptic muscle afferent pathways.  This allowed for rapid 

adaptation in locomotion in response to unexpected loads and obstacles (Lam et al., 

2002).  Healthy adult male humans were used to study the independent control of joint 

stiffness; based on the changes in joint stiffness the monosynaptic stretch reflex was 

suggested to participate continuously during whole-limb equilibrium points (Latash, 

1992). 

 Primates were used to study the inhibition of afferent sensory input to the spinal 

cord during voluntary movement.  The Ia afferent input from the periphery onto the 
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spinal circuit varied; the input was either combined with descending motor input or 

suppressed to minimize interference.  This study concluded that inhibition was 

presynaptic and therefore reduced the transmission at the initial synapse (Seki et al., 

2003).  Humans were used to observe change in the monosynaptic stretch reflex based on 

simple vs. difficult visuo-motor task.  Similar to the previous study there was an increase 

in presynaptic inhibition of Ia afferents.  Thus, presynaptic control of Ia afferents 

contributed to modulation of sensory inputs (Perez et al., 2005).    

 

G1. Physiological recovery from peripheral nerve injury: Motor unit recruitment 

 Peripheral nerve injury results in dramatic alterations in motor performance that 

are recovered to different extents after reinnervation is complete in the periphery.  Nerve 

sections in the human hand result in absence of orderly recruitment of muscle units 

(Thomas et al., 1987).  Reinnervation re-established the size principle of motor unit 

recruitment as long as the motoneurons reinnervated the same muscle or a close synergist.  

Peripheral reinnervation restored voluntary control over muscle contraction; however, 

finely coordinated movement sequences remained impaired suggesting the importance of 

pattern recruitment for fine movement (Thomas et al., 1987).  Similar studies in the cat 

on self-reinnervated MG nerves concluded that normal recruitment patterns recover when 

motoneurons successfully reinnervate the same muscles (Cope et al., 1993).   
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G2. Physiological recovery from peripheral nerve injury: Differences between self 

and cross reinnervation 

 Self-reinnervated hindlimb muscles in the cat, flexor digitorum longus (FDL) and 

soleus (SOL), exhibited normal locomotor activity patterns (O'Donovan et al., 1985).  

Interestingly, cross-reinnervated hindlimb muscles exhibited locomotor activity patterns 

associated with the innervating foreign motoneurons, suggesting that motoneuron 

activation and input patterns remain unaltered centrally (O'Donovan et al., 1985).  

 

G3. Physiological recovery from peripheral nerve injury: Time course of 

reinnervation in the cat and rat 

 The time course for peripheral self-reinnervation in the cat had a rapid onset; 

however, motoneuron properties were altered and required more time to recover 

(Foehring et al., 1986b).  After sectioning and self anastomosis of the MG nerve low 

reinnervation was observed from 5-6 weeks; at this time motoneuron properties were 

dramatically altered and there were no differences between motoneurons that elicited 

muscle contraction and those that did not.  Medium reinnervation was from 9-10 weeks 

in which motor unit types recovered their normal electrical properties with a slight 

increase in firing rate (Foehring et al., 1986b).  Following long term reinnervation, 10% 

of MG motoneurons elicited no contraction of the MG muscle, however the electrical 

properties in the remaining MG motoneurons as well as the proportion of each motor-unit 

type returned to control levels (Foehring et al., 1986a; Foehring et al., 1986b; Munson et 

al., 1986).  In this thesis, the time-course for self-reinnervation after injuries to the tibial 

nerve in the rat was slightly accelerated with low reinnervation before 4 weeks (25% 
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reinnervation of neuromuscular junctions) and with high reinnervation at 8 weeks (>90% 

reinnervation of neuromuscular junctions) (Alvarez unpublished). 

  

G4. Physiological recovery from peripheral nerve injury: Appropriate and 

inappropriate proprioceptive input in muscle after reinnervation 

 A self-reinnervated hindlimb muscle, medial gastrocnemius, in the cat was used 

to test the specificity of sensory reinnervation of cat skeletal muscle (Collins et al., 1986).  

The presence of field potentials in the homonymous motoneuron pool was used to 

determine afferent fiber type; Ia afferents were assumed to evoke field potentials in the 

motor group whereas Ib afferents were not (Collins et al., 1986).  In a normal MG muscle 

66% of the afferents innervated muscle spindles and 33% innervated golgi tendon organs 

(GTOs).  In long term reinnervated MG muscles 50% of the afferents innervated muscle 

spindles, 33% were abnormal and did not innervate the muscle, and 10% innervated 

GTOs.  This suggested that muscle spindles appeared to be reinnervated at random by 

former spindle and GTO afferents and that some of the connections were inappropriate.  

The inappropriate proprioceptive input could disrupt motor activity (i.e. locomotion).  

With time the improperly reinnervated receptors lost the ability to project to the 

homonymous motoneuron pool with a concurrent loss of field potentials (Collins et al., 

1986). 

  

G5. Physiological recovery from peripheral nerve injury: Loss of the stretch reflex 

 Despite regeneration of muscle afferents, self-reinnervated hindlimb triceps surae 

muscles in the cat show absent or significantly reduced stretch reflexes (Cope et al., 
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1994).  These results were then confirmed in the rat (Haftel et al., 2005).  In self-

reinnervated hindlimb muscles in the rat force production in the self-reinnervated 

muscles was restored; however, responses to the muscle stretch were not (Haftel et al., 

2005).  Surprisingly, the monosynaptic excitatory postsynaptic potentials (EPSPs) evoked 

by electrical stimulation of afferents on regenerated MG motoneurons were similar to 

normal (Haftel et al., 2005).  Lack of proprioceptive feedback is reflected in the 

regulation of interjoint coordination during locomotion after peripheral nerve injury 

(Abelew et al., 2000; Maas et al., 2007).  Small deficits were detected during level or up 

slope walking yet large deficits were detected during down slope walking.  During down 

slope walking the coordination between the ankle and the knee was disrupted.  This 

emphasized the importance of the stretch reflex for stiffness regulation during locomotion 

and implicated a possible loss of feedback from muscle spindle receptors as the cause of 

the deficit (Abelew et al., 2000).  However, muscle spindle afferents were competent to 

encode muscle strength and transmit the monosynaptic excitation onto the motoneuron 

(Haftel et al., 2005).  Despite the absence of length feedback, full recovery of kinematics 

in level and up slope walking suggested that proprioceptive loss was compensated by 

altered central drive or other sensory sources (Maas et al., 2007).    

 The behavioral consequence of areflexia could be due to multiple mechanisms.  

One of these is central suppression of sensory information from regenerated afferents, 

possibly by enhanced presynaptic inhibition of the Ia afferents sustained by segmental 

sources and/or enhanced by descending pathways.  Alternatively, increase in postsynaptic 

inhibition could suppress the SSP of Ia afferent fibers without producing detectable 
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change in the motoneuron membrane potential in response to muscle stretch (Haftel et al., 

2005).   

 In this thesis we investigate whether or not there are significant structural 

alterations in the Ia synapses themselves, such that the input to motoneurons is less 

effective.  Previously it was reviewed that Ia synaptic strength of the Ia input is strongly 

dependent on the number of synapses and that these synapses can be labeled with 

VGLUT1.  Therefore, we hypothesize that after peripheral nerve injuries regenerated 

motoneurons all show a significant change in the number or distribution of VGLUT1 

contacts.   
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III. Specific Aims 
 

 
 Aim 1 analyzed VGLUT1 content in Lamina IX (LIX) of the spinal cord in 

rats with peripheral nerve injuries in which afferents and motor axons were allowed 

to reinnervate or were prevented from reinnervation.  The specific hypothesis is that 

after peripheral reinnervation VGLUT1 content in LIX recovers suggesting Ia afferent 

reconnection with axotomized motoneurons.  To test this hypothesis we estimated the 

density of VGLUT1 contacts on the cell soma of NeuN-immunolabeled motoneurons 

located in the LIX regions of the lumbar spinal cord containing motor pools with axons in 

transected and resutured tibial nerves (NeuN is a general neuronal marker). Changes in 

density were estimated at different post injury times from 3 days to 6 months. The results 

obtained falsified the hypothesis. Ia afferent somatic contacts were lost from the 

motoneuron cell soma and did not recover after peripheral regeneration. 

  

Aim 2 analyzed changes in the density of VGLUT1 contacts on the cell bodies of MG 

motoneurons that specifically regenerated into the MG muscle. The specific 

hypothesis is that recovery of VGLUT1 contacts might be improved in motoneurons that 

are reinnervating the appropriate muscles.  Tibial nerve injuries in aim 1 transected 

axons from multiple motoneuron pools targeting different muscle groups and it is 

possible that the motoneurons analyzed reinnervated inappropriate targets.  To test 

whether motoneurons that reinnervate their original target show improved Ia afferent 
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connectivity we used a dual retrograde labeling approach to label MG motoneurons 

before injury (using Fast Blue retrograde tracer) and 1 week, 6 weeks, and 6 months after 

(using CTb 555).  The results demonstrated that MG motoneurons reinnervating the MG 

showed a similar persistent loss of Ia synapses on their cell bodies. 

  

Aim 3 analyzed changes in the density of VGLUT1 contacts on the dendritic arbor 

of MG motoneurons that regenerated into the MG muscle.  According to existing 

literature, synaptic plasticity after peripheral nerve injuries might be different in the 

dendritic arbor than in the cell soma; the dendritic arbor receives over 90% of Ia afferent 

synaptic contacts. The specific hypothesis is that VGLUT1 contacts in the dendritic arbor 

react differently from the cell soma after peripheral nerve injuries. To test the hypothesis, 

the dendritic arbors of 8 FB and CTb-labeled MG motoneurons in each group analyzed in 

aim 2 (control, 1 week, 6 week, and 6 month post injury) were fully reconstructed using 

the Neurolucida tracing system and VGLUT1 densities at different locations on the 

dendrite arbor analyzed. The results show that most of the VGLUT1 Ia afferents that are 

lost target the cell soma and proximal dendrites while little loss of synapses occurs in 

distal dendrites. 
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IV. Materials and Methods 

A. Surgical Procedures  

Animal procedures were carried out according to the NIH guidelines and were approved 

by the Laboratory Animal Use Committee of Wright State University.   

 

Aim 1: Nerve Injuries. 

 The animal procedures in these experiments were performed before my arrival 

and therefore they are only explained briefly. Nerve injuries were similar to the 

procedures explained below. Fifteen adult Whistar rats had one survival surgery in which 

the tibial nerve was isolated, cut, and then either resutured as explained below in more 

detail, or ligated by placing a double tie in the proximal stump of the cut nerve. This tie 

prevented the injured axons from regenerating. The surgeries were performed by Dr. 

Timothy Cope and Paul Nardelli.  The animals were euthanized with transcardial 

perfusions and prepared for histological analyses as explained below at 3 days, 1, 2, 4, 6, 

12 weeks and 6 months post-injury. At each date only one animal was prepared except 

for 12 weeks nerve ligation in which two animals were prepared. Some animals were 

prepared for EMG recordings before sacrifice. All animals with resutured nerves and 

were older than 4 weeks post-injury showed EMG recovery. The materials were prepared 

by a previous graduate student Ms. Eileen Fitzsimons. I analyzed the materials with 

confocal microscopy as described more in depth below.    
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Aims 2 & 3: Retrograde labeling of control MG motoneurons.  

 Four control adult Whistar rats had one survival surgery for retrogradely labeling 

MG motoneurons with Cholera Toxin B (CTb) conjugated to the Alexa-555 

fluorochrome.  Each animal was anesthetized with Isofluorane; then the left leg was 

shaved and cleaned with 70% ethanol and betadine.  A small incision was made with a 

scalpel on the midline of the left leg and skin separated from the muscle using the 

dissection scissors.  The incision was extended rostrally to the division of the biceps 

femoris and caudally down to the ankle.  The biceps femoris was reflected and the 

connective tissue around the lateral and medial gastrocnemius cleared.  A microsurgery 

retractor was used to secure the biceps femoris.  Several 2-5 μL intramuscular injections 

of CTb 555 at 0.1% were distributed evenly throughout the medial gastrocnemius muscle 

totaling 6 uL for animals 741-08-28 & 29 and 25 uL for animals 741-09-61 & 62.  Then 

the biceps femoris was closed using 4-O ethicon absorbable vicryl with a PS-5 needle in 

3-4 sutures in an interrupted pattern.  Then an interrupted subcutaneous closure of the 

skin was performed with surgical knots and irrigated with saline.  All survival surgeries 

(these and those explained below) were performed by Lori Goss, RVT. An injection of .1 

mL Buprenex was given intraperitoneal (IP) while the animal was anesthetized.  This 

injection of .1mL Buprenex IP was the repeated every 12 hours for 48 hours. None of the 

animals showed signs of distress or pain. 

 The animals were transcardially perfused (procedure described below) with 

fixatives to collect the spinal cords 1 week after injecting the retrograde tracer.   
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Aim 2 & 3: Dual retrograde labelings and nerve injuries.  

 Animals were prepared and distributed into groups according to different post-

injury survival time (1 week, 6 weeks and 6 months) and nerve injury (tibial or medial 

gastrocnemius nerve).  

 The first animal group (n=5 rats) had two survival surgeries and was used as the 1 

week group.  The first of the two survival surgeries was the same as the control survival 

surgery at a time point seven days before nerve injury (t= -7 days).  In this case a total of 

6 uL of CTb-555 at .1% were distributed evenly throughout the medial gastrocnemius 

muscle in 2-3 intramuscular injections. All other procedures were identical to those stated 

in the control group procedures. The second survival surgery implemented the nerve 

injury. Anesthesia and surgery proceeded as previously stated except that a Zeiss scope 

was now used to isolate the targeted nerve.  For animal 741-08-30 the medial 

gastrocnemius nerve was isolated, cut, and resutured.  For animals 741-08-42 through 45 

the tibial nerve was isolated, cut, and resutured.  Two sutures using 10-O ethicon were 

used to resuture the nerves through the epineurium.  Then the wounds were closed and 

the animals postoperatively treated with Buprenex as before. The animals were 

transcardially perfused with fixative 1 week after the nerve injury.   

 The following animal groups had three survival surgeries and were the 6 weeks, 4 

months, and 6 month groups.  Six animals (2 MG injury, 4 Tibial injury) were prepared 

for the 6 week survival group. Two animals (only MG injury) were prepared for the 4 

month survival groups (these data is not included). Eight animals (4 MG and 4 tibial 

injuries) were prepared for the 6 month survival group.  The first of the three survival 

surgeries involved injecting Fast Blue to prelabel MG motoneurons 7 days before 
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peripheral nerve injuries (t= -7 days). The animals were anesthetized as before and the 

medial gastrocnemius muscle exposed as explained above.  Several 5 uL intramuscular 

injections of Fast Blue 2.5% were distributed evenly throughout the medial 

gastrocnemius muscle totaling 25 uL.  Then the wounds were closed and the animals 

treated post-operatively as previously stated. The second survival surgery was the nerve 

injury and was performed at a time considered t= 0 days.  Animals were anesthetized and 

prepared as previously stated and the nerves cut and resutured using the same techniques. 

For animals 741-08-40 & 41, 741-08-56 & 57, and 741-09-70 through 73 the medial 

gastrocnemius nerve was isolated, cut, and resutured.  For animals 741-09-64 through 67 

and 741-09-81 through 84 the tibial nerve was isolated, cut, and resutured.  The third 

survival surgery consisted in labeling regenerated MG motoneurons with CTb 555 and 

was performed at t= 5.75 weeks for 741-08-40 & 41 and 741-09-64 through 67; t = 3.75 

months for 741-08-56 & 57; t= 5.75 months for 741-09-70 through 73 and 741-09-81 

through 84. Intramuscular injections of .1% CTb 555 were evenly distributed throughout 

the medial gastrocnemius muscle totaling 6 µL for 741-08-40 & 41 and 25uL for 741-08-

57, 741-09-64 through 67, 741-09-70 through 73, and 741-09-81 through 84.  

Intramuscular injections of CTb 555 in animal 741-08-56 were at 5% and totaled 5 µL. 

The animals were transcardially perfused and fixed at 6 weeks, 4 months and 6 months 

after the nerve operations.   
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B. Tissue Preparation for analysis 

Transcardial Perfusion with fixatives. 

 The animals were transcardially perfused and fixed with 4% Paraformaldehyde in 

0.1 M phosphate buffer, pH 7.3 (PB).  First, each animal was injected intraperitoneally 

(IP) with Euthasol at 2 µL/g.  Once deeply anesthetized, .05 mL of Heparin was injected 

through the retro orbital space into the bloodstream to prevent clotting during the 

perfusion.  Then the thoracic cavity was opened and resected.  A perfusion cannula was 

then inserted into the left ventricle and an incision made in the right atrium for drainage.  

The perfusates were pulsed using a peristaltic pump.  First 50-100 ml of vascular rinse 

was used to clear the vascular system and push out all blood cellular elements.  Then the 

aldehyde fixative (200-300 ml) was passed through the vascular system.  The spinal cord 

(T1-S1) was then dissected out and placed in post fixation in the same fixative for 4 hours 

to overnight.  The tissue was then cryoprotected by placing it into a solution of  15% 

sucrose in 0.1M PB at 4°C, overnight or until used. 

 

Histological sectioning 

 The lumbar spinal cord was frozen in tissue freezing medium (OCT, Tissue Tek) 

and cut in a freezing sliding microtome.  Transverse sections of the lower lumbar spinal 

cord (L4 to L6) were cut at 50 m thickness and collected free floating in .01 M PBS.  

All tissue sections were processed free-floating. 
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Immunolabeling 

 Aim 1. Spinal cord sections for all animals in Aim 1 (resutured and ligated) were 

immunostained for VGLUT1 using FITC-coupled secondary antibodies (green) and 

neuronal nuclear protein (NeuN) using Cy3-coupled secondary antibodies (red).  The 

dual color immunolabelings were performed by Eileen Fitzsimons.  The procedures are 

similar to those explained below. The NeuN antibody used was a commercially available 

(Chemicon) mouse monoclonal diluted 1:1,000 in .01M PBS. The VGLUT1 antibody 

was the same rabbit polyclonal antibody (Synaptic Systems) that was used in all other 

animals.  

 Aims 2 and 3. Spinal cord sections for control and 1 week survival animals in Aim 

2 and 3 contained retrogradely CTb 555 (red) labeled motoneurons and were 

immunostained for VGLUT1 using FITC (green) as the label and counterstained with a 

Neurotrace blue Nissl (435 nm) to delineate laminar boundaries and motor pools.  In all 

other animals, the sections contained Fast Blue MG motoneurons retrogradely labeled 

before the injury and CTb 555 labeled motoneurons that reinnervated the MG.  These 

sections were immunolabeled for VGLUT1 using FITC (green) and counterstained with a 

deep red Neurotrace Nissl (640 nm).  

 After washing the sections in PBS to remove the excess of OCT freezing medium 

they were incubated in Neurotrace Nissl (Molecular Probes) for 30 minutes to 1 hour at a 

dilution of (1:100). Then the sections were blocked for 30 minutes to 1 hour with Normal 

Donkey Serum (NDS) diluted 1:10 in PBS with 0.1% Triton X-100 (PBS/TX). The 

sections were then placed in rabbit polyclonal antibodies against the Vesicular Glutamate 

Transporter 1 (VGLUT1, Synaptic Systems) diluted 1:1000 in PBS/TX and incubated 
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overnight at room temperature in continuous agitation on a rotatory orbital shaker. The 

next day the sections were thoroughly washed and the immunoreactive sites revealed 

with species specific secondary antibodies donkey anti-rabbit IgGs coupled to fluorescein 

isothiocyanate (FITC, Jackson labs) and diluted 1:50 in PBS/TX incubated for 2 hours at 

room temperature.  All sections were then washed with 0.1M PBS, mounted on 

HistoBond slides (Fisher), cover slipped with Vectashield (Vector), and placed in a 

refrigerator at 6 degrees celsius until imaged. 

 

C. Imaging and Analysis 

 Aim 1. Imaging was performed using confocal microscopy in an Olympus 

Fluoview (FV) 300 system and excited with line lasers of 488nm (VGLUT1-FITC) and 

568nm (NeuN-Cy3).  Low magnification images were obtained with the 10X objective 

and stacks of confocal optical sections separated by 2 m z-steps collected throughout the 

thickness of the tissue section.  High magnification confocal optical sections through 

individual NeuN-IR motoneuron somata were obtained using a 60X oil objective (N.A. 

1.35) digitally zoomed X2. We obtained either a confocal stack through the whole cell 

body contained within the sections or sampled a few optical sections at mid-somatic 

levels that are well separated (at least 2-3 µm) so that the same VGLUT1-IR contacts did 

not appear in the different optical sections.  

 Aims 2 and 3.  Imaging was performed using confocal microscopy in an Olympus 

FV1000 system and the sections excited with lasers lines of 405nm (Fast Blue and blue 

Nissl), 488nm (VGLUT1-FITC), 568nm (CTb 555), and 647nm (deep red Nissl). Low 

magnification images were imaged with a 10X objective and stacks of confocal optical 
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sections separated by 2 m z-steps collected throughout the thickness of the tissue section.  

High magnification confocal stacks of individual CTb and/or Fast Blue motoneurons and 

their dendrites were obtained using a 60X oil objective (N.A. 1.35) digitally zoom X1 or 

X2 and a z-step of 0.5 m.   

 

Cell body analyses 

 Confocal optical sections were obtained throughout the cell body and analyzed 

with Fluoview software (Olympus). A mid-somatic optical section was identified as a 

region containing a well-developed nucleolus. In this section the number of VGLUT1 

contacts was counted and the total cell body perimeter (excluding dendrites) was 

measured to obtain a linear density of VGLUT1 contacts per 100 m.  The same 

measurement was repeated in optical sections above and below the mid-plane cell body 

sections and separate by approximately 3-4 m in the z-axis. Each animal average 

included data from 8-12 motoneurons in each defined motoneuron group.  For animals 

that had retrograde tracers Fast Blue and CTb there were two groups of motoneurons 

analyzed.  For the 6 week, 4 month, and 6 month groups of animals one group of 

motoneurons analyzed was Fast Blue only and the other had both Fast Blue and CTb.  

Cell body diameters (minimum, mean, and maximum) and surface areas of the 6 week 

and 6 month tibial nerve cut groups were obtained in Image Pro Plus 5.1 (Media 

Cybernetics).  The images were exported from Fluoview and calibrated in Image Pro Plus 

5.1.  The average cell body somata of Fast Blue only motoneurons and dual labeled Fast 

Blue/CTb motoneurons were compared using a t-test.   
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Dendritic analyses 

 To obtain 3D reconstruction of VGLUT1 contacts on dendrites high 

magnification was necessary to discriminate the VGLUT1 contacts and at these 

magnifications the whole dendritic arbor could not fit within a single image. Therefore 

the full CTb-555 labeled dendritic arbors was imaged by obtaining four to six 

overlapping high magnification confocal stacks in the FV 1000 confocal microscope 

(magnification 60x1) that covered the full extent of the labeled dendrite. These images 

were then imported into the Neurolucida confocal module and tiled in a single file to 

trace the cell soma and the full CTb-555 labeled dendrites. Neuron tracing was performed 

over several sessions in which cell bodies, dendrites, and VGLUT1 contacts were traced 

by moving up and down through a z-stack of confocal images.  The perimeter of the cell 

soma was traced, with the reference point in the nucleolus of the cell, every 1 μm step in 

the z-stack and throughout the entire 50 μm thick cell section. From these reconstructions 

the Neurolucida software calculated the somatic surface contained within the section. Not 

all motoneurons were fully contained within the section. In a majority of the motoneurons 

that were cut more than half of the cell body was contained within the section. To obtain 

a density of contacts the total number of VGLUT1-IR contacts was divided by the total 

amount of surface sampled. 

 Individual dendritic trees were manually traced from the proximal origin distally, 

varying in width of trace based upon CTb 555 labeling. Dendritic segments were traced 

by individual points that were more or less separated depending on the orientation of the 

dendrite or the tortuosity of its path. Section thickness was entered by adjusting the 

thickness of the cursor. From the length and thickness of the dendritic segments the 
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software calculated the dendritic surfaces and lengths. All branches of the dendritic arbor 

labeled with CTb 555 in the 50μm thick z-stack were traced.  VGLUT1 contacts were 

then plotted on the soma and along the dendritic arbor in the correct z-section correlating 

to the contact surface. The number of VGLUT1 contacts was then normalized as per 10 

µm of linear dendrite or 100 µm2 of dendritic surface. 

 Sholl analysis was performed with Neurolucida software through the formation of 

concentric rings centered around the soma and separated by 50 μm of increasing distance.  

Total dendritic length and surface area within each ring was calculated.  The number of 

VGLUT1 contacts was then normalized as per 10 µm of linear dendrite or 100 µm2 of 

dendritic surface for all dendritic segments located within each 50 μm concentric ring up 

to 250 μm. 

 

Statistics 

 Statistical analysis and graphing were performed with Excel (Microsoft), Sigma 

Stat 3.1 (Jandel), and Sigma Plot 9 (Jandel).  One way ANOVA and t-test were 

respectively used for comparisons between groups and pairwise comparisons for synaptic 

density on the cell soma and dendritic arbor.  Significance level was set at p<0.05.   

 

Figures 

 Plates were composed using Fluoview (FV) software, Image Pro Plus 5.1, and 

Corel Draw 11. Sharpening of some images was performed by applying a High Gauss 

filter in Image Pro Plus 5.1. Images were digitally retouched for brightness, contrast, and 
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gamma.  None of the digital modifications altered the content of information within the 

images. 
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V. RESULTS 

 

Aim 1:  

Changes in VGLUT1 density around the cell soma of NeuN-labeled tibial pool 

motoneurons 

 

 VGLUT1 immunoreactivities (IRs) were compared in the spinal cords of rats with 

tibial nerve cuts that were followed by either a nerve resuture (to allow regeneration) or 

ligation (to prevent regeneration).  A number of post-injury times were analyzed (3 days, 

1, 2, 4, 6, 12 weeks and 6 months) to obtain the time course of depletion and possible 

recovery of VGLUT1 synapses.  These animals were prepared and immunostained before 

my arrival and I completed their analysis (N=2 rats for 12 week ligated, N= 1 rat all other 

time points).  

 Analysis of Ia afferent synapses in tibial motoneuron pools of lamina IX (LIX) in 

low magnification (10X1) confocal images, using vesicular glutamate transporter 1 

(VGLUT1) as a proprioceptive marker, revealed a decrease in overall VGLUT1-IR 

bouton density compared to the control side at all post-injury times from 1 week to 6 

months, but not at 3 days after injury.  Similar depletions were observed in the lumbar 

spinal cords of both resutured (reinnervated) and ligated (non-reinnervated) rats (Figure1).  

Additionally, the same sections were immunostained with NeuN and a large depletion of  
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Figure 1.  Vesicular Glutamate Transporter (VGLUT1) Immunoreactivity (IR).  

VGLUT1-IR of the ventral horn in the lumbar spinal cord of rats with ligated and 

resutured tibial nerves at 3 days (A), 7 days (B), 12 weeks (C), and 6 months (D) post-

injury.  There is progressive depletion of VGLUT1-IR in lamina IX of the experimental 

side compared to control with time post-injury independent of whether there is 

reinnervation (resutured) or not (ligated).  (LF) Lateral Funiculus, (VF) Ventral Funiculus, 

(LIX) Lamina IX. 
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Figure 2.  Neuronal Nuclear Protein-IR (NeuN-IR).  NeuN-IR of motoneurons in 

lamina IX of the lumbar spinal cord of rats with ligated and resutured tibial nerves at 3 

days (B), 12 weeks (C, D), and 6 months (E, F) post-injury.  Decrease in intensity of 

NeuN-IR intensity was observed in all ligated and in early resutured rat motoneurons of 

the tibial pool in lamina IX of the experimental side (C-E) compared to control (A).  In 

resutured rat motoneurons there was some recovery of NeuN-IR intensity of the tibial 

pool in lamina IX of the experimental side (F) compared to control (A) with long term 

reinnervation.  (LF) Lateral Funiculus, (VF) Ventral Funiculus, (LIX) Lamina IX. 
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NeuN immunoreactivity in the cell somata of injured motor pools was observed (Figure 

2).  This was used to our advantage to identify the location of injured motoneurons for 

analyses. 

 NeuN-IR alpha motoneuron cell somata were imaged at high magnification (60X2) 

and through stacks of optical sections.  The density of VGLUT1 contacts on NeuN-IR 

motoneuron cell somata within the tibial motoneuron pools of lamina IX (LIX) in the 

lumbar spinal cord was estimated by measuring 8-12 motoneuron cell bodies per animal.  

The density of VGLUT1 contacts on the cell soma was rather low; therefore, we imaged 

each motoneuron through at least three optical planes.  This allowed us to sample on 

average 9.1 contacts per cell in control sides (range from 0 to 24).  The results showed a 

decrease in the number of VGLUT1 contacts in the experimental (ipsilateral) side 

compared to the control (contralateral) side in spinal cords of rats that underwent a tibial 

nerve cut followed by resuture (reinnervation allowed) or a tibial nerve cut followed by 

ligation (reinnervation not allowed) (Figures 3 and 4).   

 No statistically significant differences in VGLUT1 density (contacts per 100 μm 

perimeter) on motoneuron cell somata were found between experimental (ipsilateral) 

compared to control (contralateral) side in the spinal cord of rats at 3 days post-injury for 

ligated (t-test p=.99) or resutured animals (t-test p=.18) (Figure 4A, 4B).  At all later 

post-injury times there were statistically significant decreases in VGLUT1 density around 

alpha motoneuron cell somata in the experimental side compared to the control side of 

rats that were ligated and not allowed to regenerate; 7 days (t-test p=.006), 2 weeks (t-test 

p<.001), 4 weeks (t-test p<.001), 6 weeks (t-test p<.001), 12 weeks (t-test p=.003), and 6 

Months (t-test p=.002) (see figure 4A) as well as in resutured rats; 7 days (t-test p=.008), 
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2 weeks (t-test p=.013), 4 weeks (t-test p<.001), 6 weeks (t-test p<.001), 12 weeks (t-test 

p<.001), and 6 months (t-test p<.001) (see figure 4B).  Percent depletions in VGLUT1 

density on experimental motoneurons compared to control slowly progressed from 34-

40% 1 week post-injury to 80-90% at 4 weeks, independent of whether the animal was 

allowed to regenerate or not (Figure 4C, 4D).  After 4 weeks and up to 6 months percent 

depletion remained stable and ranged from 75% to 96% in different animals.  No 

statistically significant differences between resuture and ligated animals were apparent. 

In fact, the time-depletion curves were almost identical in both types of animals (Figure 

4C). 

 Therefore, the results rejected the original specific hypothesis in that there was no 

recovery of VGLUT1-IR contacts lost around motoneurons cell bodies after peripheral 

nerve injuries and independent of regeneration and reinnervation of peripheral targets.   
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Figure 3.  VGLUT1-IR and NeuN-IR for motoneurons within tibial motor pools.  

VGLUT1-IR and NeuN-IR for motoneurons of rats with ligated and resutured tibial 

nerves at 3 days (A), 7 days (B), 12 weeks (C), and 6 months (D) post-injury.  There is 

progressive depletion of VGLUT1-IR contacts on motoneuron cell somata within the 

tibial pools in lamina IX of the experimental side compared to control with time post-

injury independent of whether there is reinnervation (resutured) or not (ligated). (N) 

Nucleus. 
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Figure 4. VGLUT1 contact densities on the cell soma of motoneurons in the Tibial 

motor pools.  All motoneurons were immunolabeled with NeuN and Ia afferent synaptic 

contacts were immunolabeled with VGLUT1.  Grey bars represent the average (+ SEM) 

VGLUT1 synaptic density in control motoneurons sampled from the contralateral side.  

Black bars indicate the VGLUT1 density on experimental motoneurons in the side 

ipsilateral to the nerve injury (A, B).  (*) indicates significant change (p<0.05, t-test).  (A) 

Represents linear density of VGLUT1 contacts per 10 μm length of dendritic segment.  

(B) Represents surface density of VGLUT1 contacts per 100 μm2 surface area of 

dendritic segment.  (C) Time course of percent depletion of VGLUT1 synaptic density in 

experimental compared to the control. Percent depletions in VGLUT1 synaptic density 

were not significantly different between ligated (red line) and resutured (blue line) 

animals (D).  There was never any recovery of VGLUT1 synaptic density. 
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Aim 2: 

Changes in VGLUT1 density around the cell soma of retrogradely labeled MG 

motoneurons 

 The tibial nerve injuries used in aim1 transected motor axons and primary 

afferents associated with several different motoneuron pools.  No attempt was made to 

identify specific pools and it was possible that some of the motoneurons analyzed 

reinnervated inappropriate targets or did not innervate any targets at all.  To test the 

specific hypothesis in aim 2 and specifically study motoneurons that reinnervated the 

appropriate target we utilized a dual retrograde labeling approach to label MG 

motoneurons before injury (using Fast Blue retrograde tracer) and 1 week (n=4 animals), 

6 weeks (n=4), and 6 months (n=4) after injury (using CTb 555) using the same tibial 

nerve injury, cut and resuture model (Figure 5). In these animals dual Fast Blue and CTb 

555 labeled motoneurons are MG motoneurons that properly reinnervated the MG.  Fast 

Blue only motoneurons are more difficult to interpret; they could be MG motoneurons 

that failed to reinnervate the MG or neurons that failed to pick up the CTb tracer.  Data 

was always compared to retrogradely labeled MG motoneurons from the control group 

(n=4). We analyzed on average 10.5 motoneurons (range 6-14) per animal in the four 

controls and all post-injury time groups.   

 In a few animals we targeted the MG nerve for injury instead of the tibial nerve. 

The MG was resutured to allow for self-reinnervation.  In these rats there was no 

possibility of inappropriate target reinnervation, however in these animals only 

homonymous Ia connections were injured while heteronymous connections were 

preserved.  We studied 1 week (n=1) and 6 months (n=4) post-injury times. In these  
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Figure 5.  Dual retrograde labeling for identification of appropriately reinnervated 

MG motoneurons.  (A) Survival surgery timeline including injection of retrograde 

tracers and nerve injury time points.  (B-E) Low magnification confocal images of 

retrogradely labeled motoneurons and VGLUT1 immunolabeled.  Dotted lines indicate 

the ventral horn with a boundary around lamina IX.  MG motoneurons retrogradely 

labeled with Fast Blue (FB) before the injury (B), retrogradely with Cholera Toxin B 

(CTb555) after the injury only (C), dual labeled with FB/CTb555 and counterstaining 

with Neurotrace Nissl (D), and the CTb 555 retrograde label with immunolabeled 

VGLUT1 contacts (E).  Arrows indicate MG motoneurons that were labeled before injury 

(FB) and after injury (CTb555); indicating appropriate reinnervation in the MG muscle.  

(CC) Central Canal, (MN) Motoneuron, (Ia) Ia afferent fiber, (LF) Lateral Funiculus, (VF) 

Ventral Funiculus, (L) Lamina. 

 

 

 

 

 

 

 

 

 

 



49 

 

 

 

 



50 

groups we analyzed 10.6 motoneuron cell bodies per animal (range 6 to 18) and 

compared them to the uninjured control group (n=4) and to the 6 month tibial nerve 

injured group (n=4). 

 We confirmed the presence or absence of reinnervation in all animals with 

electromyography (EMG) (Figure 6).  All 6 weeks and 6 month animals in the tibial or 

MG nerve injury groups showed successful reinnervation in the EMG records.  In 

addition, in the 1 week post-injury tibial nerve cut animals one of the four displayed a 

small EMG.  None of the 1 week post-injury MG nerve cut animals had an EMG present.  

 In agreement with the results in aim 1, the analyses in aim 2 revealed a significant 

decrease in the density of VGLUT1 contacts on MG motoneuron cell somata after tibial 

(Figure 7) and MG nerve injuries (Figure 8).  Significant interanimal variability in 

VGLUT1 contacts density was detected within the 6 week and 6 month injury groups 

(Figure 7A; ANOVA, p<0.001; significant differences indicated are after post-hoc Holm-

Sidak pair-wise comparisons).  In the control group one-way ANOVA comparison 

indicated the presence of significant differences among the groups (p=0.03); however, 

post-hoc Holm-Sidak pairwise comparisons did not find any statistical differences 

between any two rats within the control group.  Therefore, this difference might be due to 

a sampling problem between animals 1 and 3 (Figure 7A).   

 To investigate the cause of interanimal variability within the 6 week and 6 month 

group fast blue (FB) only motoneurons and FB/CTb dual labeled motoneurons were 

analyzed separately (Figure 7B and 7C).  Fast Blue (FB) only labeled motoneurons 

showed no statistically significant differences 6 weeks post-injury (One-way ANOVA; 

p=0.12); however, there was a significant difference in the 6 month post-injury group 
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Figure 6.  Electromyography for reinnervated dual labeled MG motoneurons.  

Electromyographs (EMGs) of the control group and experimental groups at 1 week, 6 

weeks, and 6 months post-injury (cut and resuture).  Only one rat of eight was slightly 

reinnervated at 1 week and belonged to the tibial nerve injury group.  All 6 week and 6 

month rats were reinnervated and had EMGs slightly smaller than the control.  Group 

EMGs of experimental rats between MG and tibial nerve injuries were similar at all time 

points post-injury.   
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Figure 7. Density of VGLUT1 contacts on the soma of reinnervated MG 

motoneurons after tibial nerve cut and resuture.  Bars represent the average (+ SEM) 

VGLUT1 synaptic density (A, B, C) for individual animals (N=8-12 motoneurons).  

There was interanimal variability between all motoneurons (A) and dual labeled 

motoneurons (C) in individual animals in the 6 week (3 of 4) and 6 month (4 of 4) groups.  

There was only interanimal variability between two animals for Fast Blue only labeled 

motoneurons (B) in the 6 month group.    Bars represent the average (+ SEM) percent 

depletion VGLUT1 synaptic density compared to control group for groups of 

motoneurons within an animal (D).   Most interanimal variability seems to arise from 

slightly better recovery of VGLUT1 density in MG motoneurons that successfully 

reinnervated the MG muscle in three of the eight animals.  Bars represent the average (+ 

SEM) VGLUT1 synaptic density for a group of animals (N=4 rats) (E, F, G).  There was 

extensive and permanent depletion of VGLUT1 contacts on the soma of motoneurons 

after peripheral nerve injury for motoneurons both appropriately reinnervated (F) and 

those that were not (E).  There was not a significant difference at 6 weeks or 6 months 

between motoneurons that were appropriately reinnervated and those that were not (G).  

(*) indicates significant change (p<0.05).   
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Figure 8. Density of VGLUT1 contacts on the soma of reinnervated MG 

motoneurons after MG nerve cut and resuture.  Bars represent the average (+ SEM) 

VGLUT1 synaptic density (A, B) for individual animals (N=12 motoneurons).  There 

was not interanimal variability between individual animals in the 6 month group.  Bars 

represent the average (+ SEM) percent depletion VGLUT1 synaptic density compared to 

control group for groups of motoneurons within an animal (C).   Interanimal variability 

seemed to arise from slightly better recovery of VGLUT1 density in MG motoneurons 

that successfully reinnervated the MG muscle in one of the four animals (C).  Bars 

represent the average (+ SEM) VGLUT1 synaptic density for a group of animals (N=4 

rats) (D).  There was extensive and permanent depletion of VGLUT1 contacts on the 

soma of motoneurons after peripheral nerve injury after 6 months for both tibial and MG 

nerve cut (D).  Comparing injury models, there was not a significant difference at 6 

months between the tibial and MG nerve cut groups.  (*) indicates significant change 

(p<0.05).   
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(One-way ANOVA; p=0.026).  This was due to a significant difference between the 

animal with the largest average VGLUT1 density compared to the one with the lowest 

(post-hoc Holm-Sidak pairwise comparison, p<0.05).  Interanimal variability was larger 

within FB/CTb dual labeled motoneurons in the tibial nerve injury group, finding 

statistically significant differences for both 6 week (One-way ANOVA; p=0.004) and 6 

months rat (One-way ANOVA; p<0.001) (Figure 7C).  Holm-Sidak pairwise 

comparisons revealed statistically significant differences (p<0.05) in several animals 

within the 6 week and 6 month groups.  However, interanimal variability was not 

observed after MG nerve injuries (Figure 8A). 

 When Fast Blue and dual labeled MG motoneurons were compared within single 

animals after tibial nerve injury and reinnervation, it was observed that in the 6 week and 

6 month groups three out of the eight animals (two in the 6 week groups and one in the 6 

month group) showed significantly less depletion of VGLUT1 density in dual labeled 

MG motoneurons compared to Fast Blue only labeled motoneurons (Figure 7D; t-tests 

p<0.05).  When a similar comparison was made within single animals after MG nerve 

injury and it was observed that in the 6 month group 1 out of the 4 animals showed 

significantly less depletion of VGLUT1 density in dual labeled MG motoneurons 

compared to Fast Blue only labeled motoneurons (Figure 8C; t-tests p<0.05).  In 

conclusion, most of the interanimal variability seems to arise from slightly better 

recovery of VGLUT1 density on the MG motoneurons that successfully reinnervated the 

MG muscle (Dual Fast Blue and CTb 555 labeled) in some animals compared to others. 

 Once interanimal variability within the sample was characterized an average was 

obtained for all four animals in each experimental group and comparisons were made for 
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changes at different post-injury times or in between Fast Blue only or dual labeled MG 

motoneurons. Significant decreases in VGLUT1 density were observed at all post-injury 

times compared to control (One-way ANOVA; p<0.001) (Figure 7E). Moreover, post-

hoc pairwise comparisons revealed further significant decreases from 1 week to 6 weeks 

and 6 months; however, no differences were detected between dual labeled MG 

motoneurons 6 weeks and 6 month post-injury (Figure 7F) suggesting lack of recovery 

even long-after peripheral reinnervation.  No statistically significant differences within 

the 6 week (t-test; p=0.07) and 6 month groups (t-test; p=0.44) were found when 

comparing Fast Blue only and dual labeled motoneurons (Figure 7G) and similarly there 

were no statistical significant differences between Fast Blue labeled motoneuron at 6 

weeks or 6 months post-injury. 

 A limited analysis of the MG nerve injury model was performed and included 1 

week (n=1 rat) and 6 month (n=4 rats) time points (Figure 8). Statistical comparisons 

were only done with the 6 month MG nerve injury group. The results parallel those 

observed in the tibial nerve injury model (Figure 8A).  Fast Blue labeled motoneurons 

frequently demonstrated lower density of VGLUT1 contacts for three animals. In this 

case, Fast Blue only MG motoneurons cannot be innervating inappropriate targets. 

Therefore, possible explanations can only be failure of retrograde transport of CTb 555 or 

lack of muscle reinnervation.  Interestingly, no significant differences were found 

between tibial or MG injured motoneurons 6 months after injury (Figure 8D); perhaps 

suggesting that somatic VGLUT1 contacts are dominated by homonymous Ia inputs. 

 In conclusion, the cumulative analysis of the tibial and MG nerve injury models 

revealed a decrease in the density of VGLUT1 contacts on the cell somata of MG 
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motoneurons reinnervating the MG (dual labeled motoneurons) of 31.3% 1 week post-

injury, 77.9% 6 weeks post-injury and 64.6% 6 months post-injury after tibial nerve cut 

and resuture and 55.2% 6 months after MG nerve injuries.  These depletions are 

somewhat smaller than those estimated in aim 1 based on NeuN down regulation. One 

possibility is that each sampling strategy might have biased the results in a different 

direction; NeuN might be more down regulated in MG neurons with more limited 

recovery, while CTb labeling might favor neurons with more extensive recoveries.  

Nevertheless in both situations the depletions in VGLUT1 contacts on the cells somata 

were profound and did not significantly recover from 6 weeks to 6 months after 

peripheral reinnervation.  Therefore we concluded that peripheral reinnervation does not 

lead to significant recovery of somatic VGLUT1 contacts. 
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Aim 3:  

Changes in density of VGLUT1 contacts around the dendrites of retrogradely labeled 

MG motoneurons 

 To analyze the changes in VGLUT1 contact density along the dendritic arbor we 

analyzed three-dimensional reconstructions, obtained with the Neurolucida neuron 

tracing system (Figures 9 and 10), of the soma and dendritic arbors of 8 dual labeled (FB 

prior to injury and CTb 555 after regeneration) MG motoneurons in each experimental 

group (1 week, 6 week, and 6 month post-injury) in the tibial nerve cut model compared 

to control motoneurons that were labeled with CTb 555 only in uninjured animals (see 

Figure 10).  We analyzed the linear and surface VGLUT1 densities in reconstructed 

neurons. Linear densities were calculated as total number of boutons per 10 m of linear 

dendrite and surface densities were calculated as the number of boutons per 100 µm2 of 

available surface. Surface density analyses take into account differences in dendritic 

diameter due to of distal tapering and the concurrent change in surface membrane 

available at more distant locations for dendritic segments of equal length.  In each case 

we performed Sholl analyses in 50 m bins of distance from the cell soma to analyze 

differences at different proximo-distal locations.   

 Proximal Sholl bin analysis revealed an average of 6 primary dendrites (range of 

4-10) per motoneuron.  This correlated with previous studies where an average of 8 

primary dendrites (range of 6-12) per triceps surae motoneuron was observed (Chen et al., 

1994).  There was an average total dendritic length of 1,186 μm and an average total 

surface area of 14,105 μm2.  In comparison to the fully labeled triceps surae motoneuron 

with a surface area of 147,000 μm2 (Chen et al., 1994), only 10% of the total dendritic  
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Figure 9.  3D Analysis of Motoneuron VGLUT1 contacts.  Retrogradely labeled 

control MG Motoneurons in the ventral horn visualized in stacked z-sections at low 

magnification (A) and at high magnification single z-section for the soma (B1, B2) as 

well as stacked z-sections for dendrites (C). The large arrow (A) points to a control MG 

motoneuron that is shown reconstructed below.  Small arrows point to VGLUT1 contacts 

on the surface of the motoneuron (B1, B2, C).  Analysis included overlapping high 

magnification panels in Neurolucida (D) with tracing up and down through the confocal 

stack along with plotting VGLUT1 contacts (E).  The transverse image can be used for 

Sholl bin analysis (F).  Filled circles represent VGLUT1 contacts on the surface of the 

motoneuron.  (CC) Central Canal, (VF) Ventral Funiculus, (LF) Lateral Funiculus, and (L) 

Lamina. 
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Figure 10. Motoneuron soma and dendritic arbor reconstructions showing VGLUT1 

contacts.  Reorganization of density of VGLUT1 contacts on the soma and dendritic 

arbor of appropriately reinnervated MG motoneurons.  The control group (A) and 1 week 

(B) group of motoneurons were similar in linear and surface density throughout the 

dendritic arbor.  However, proximal synaptic stripping was observed in the dendritic 

arbor in the 6 week (C) and 6 month (D) groups compared to the control.   
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arbor was analyzed in this thesis.  The average dendritic length sampled was 202.3 μm 

and the maximum dendritic length traced was 671.7 μm.  In comparison to previous 

studies of fully labeled triceps surae motoneurons with an average dendritic length 

mediolaterally of 850 μm and dorsoventrally of 1350 μm (Chen et al., 1994), only 15-

25% of the dendritic length was analyzed in this thesis.  Existing studies in cat 

motoneurons have concluded that a majority of the dorsolateral and ventromedial Ia 

afferent contacts were within the first third (up to 500 μm) of the dendritic length 

(1600μm) (Burke et al., 1996).  Therefore, the 15-25% of dendritic length in the rat 

motoneuron analyzed in this thesis is well representative of the organization of the 

dendritic arbor for dendrites in these orientations.  Limitations in analysis of the dendritic 

arbor were due to: orientation of the motoneurons within the transverse section, the 

thickness of the section (50μm), and the incomplete fill of the distal dendritic arbor with 

CTb retrograde labeling.   

 The total CTb labeled dendritic arbor was used to calculate a total linear and 

surface dendritic densities of VGLUT1 contacts.  However, due to the limited ability of 

the retrograde tracer to label distally located dendritic segments Sholl analysis in this 

thesis was only performed up to 250 μm from the soma to assure that all or the large 

majority of analyzed motoneurons and dendrites contained comparable number of 

dendritic segments at each distance.   

 Overall there was a significant decrease in linear and surface VGLUT1 density in 

the whole dendritic arbor (One-way ANOVA; p<0.05; Figure 11A and B).  However, 

post-hoc analyses did not reveal statistical significant differences between injured 
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motoneurons and the control group.  Therefore, if there are significant decreases in 

overall density they were too small to be evident within the present limited sample.  

 The absence of statistically significant change for the total dendritic arbor was 

mainly due to differences in distribution of VGLUT1 contacts located on proximal and 

distal dendrites.  Sholl analyses revealed varying degrees of change in linear and surface 

density of VGLUT1 contacts in different dendritic compartments of MG motoneurons 

(Figure 11C and D).   A significant decrease in linear VGLUT1 density compared to 

control (One-way ANOVA;  p<0.001) was detected in the first Sholl compartment 50 m 

from soma of MG motoneurons 6 weeks and 6 months post-injury; yet not at more distal 

locations (Figure 11C).  A similar result was obtained when considering surface densities 

(Figure 11D).  In the second Sholl compartment, between 50 and 100 m, a large 

depletion was consistently observed but compared to control the differences in VGLUT1 

surface or linear density did not reach statistical significance.  The percent decrease in 

VGLUT1 density was approximately 40 to 60% for surface and linear density in the first 

50 m from the soma in 6 weeks or 6 months animals and a 10 to 30% decrease at 

distances between 50 and 100 m (Figure 11E and F).  At more distal locations there 

were similar VGLUT1 densities between control and experimental animals.  The one 

week group showed similar VGLUT1 density to controls in all dendritic compartments.  

 In conclusion, VGLUT1 loses were less marked on dendrites compared to cells 

bodies and the large majority of VGLUT1 contacts lost seemed to target the more 

proximal available surface on motoneurons in both soma and dendrites.  As observed in 

the cell body, changes in density in proximal dendrites are permanent and do not recover 

even 6 months after reinnervation. 
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Figure 11.  Density of VGLUT1 contacts on the soma of reinnervated MG 

motoneurons after tibial nerve cut and resuture.  Bars represent the average (+ SEM) 

VGLUT1 linear (A) and surface (B) VGLUT1 synaptic density for groups of animals 

(N=8 motoneurons).  Overall there was a significant decrease in linear and surface 

VGLUT1 density in the whole dendritic arbor; however, post-hoc analyses did not reveal 

statistical significant differences between injured motoneurons and the control group. 

Therefore, if there are significant decreases in overall density these were too small to be 

revealed within the present limited sample. A significant decrease in linear and surface 

VGLUT1 density compared to control was detected in the first Sholl compartment 50 m 

from soma of MG motoneurons 6 weeks and 6 months post-injury but not at more distal 

locations (11C, 11D).  Bars represent the average (+ SEM) percent depletion VGLUT1 

synaptic density compared to control group for groups of motoneurons within an animal 

(11E, 11F).   The percent decreases in VGLUT1 density was between 40-60% for surface 

or linear density in 6 weeks or 6 months animals in the first 50 m from the soma and 10-

30% decrease at distances between 50 and 100 m (11E, 11F). At more distal locations, 

there were similar VGLUT1 densities between control and experimental animals. The 

one week group showed similar VGLUT1 density to controls in all dendritic 

compartments. (*) indicates significant change (p<0.05).   
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Conclusion 

 The analyses herein suggest reorganizations of VGLUT1 Ia afferent synapses on 

motoneuron somatodendritic surfaces after peripheral nerve injuries such that the input 

now targets more distal dendrites due to the loss and lack of recovery of the more 

proximal VGLUT1 synapses located in the cell somata and in the initial primary dendrite 

segments. 
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VI. DISCUSSION 

 The anatomical analyses revealed major reorganizations in the distribution and 

density of Ia synapses on motoneurons after peripheral nerve injuries.  Synaptic stripping 

of Ia afferent synapses occurs mainly on the soma and proximal dendrites and appears to 

be permanent even after reinnervation. VGLUT1 synapses on more distal dendrites 

appear unchanged.  These anatomical analyses compared to current physiological data 

can aid in understanding the absence of the stretch evoked synaptic potential (SSP) after 

peripheral nerve injury. 

 
A1. Methodological Considerations: VGLUT1 as an effective marker of control and 

injured Ia afferent synapses 

 In this study, we used VGLUT1 to specifically label Ia afferent synaptic contacts 

in lamina VII and IX of the lumbar spinal cord.  Numerous approaches including: dorsal 

rhizotomies (Alvarez et al., 2004), anterograde tracing from dorsal roots (Mentis et al., 

2006) or peripheral nerves (Todd et al., 2003), intracellular labeling of 

electrophysiologically identified Ia afferents (Alvarez, Bullinger, Cope, unpublished) and 

depletion of VGLUT1 synapses from the ventral horn in Er81 knockout animals (Mentis 

et al., 2006) all strongly suggest that the large majority of VGLUT1 synapses found in 

the ventral horn in rodents originate in sensory afferents.  We consider that the VGLUT1 

synapses analyzed most likely originating from Ia afferents because no other sensory 

afferent projects that deep into the ventral horn.  However, without more specific markers 
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we cannot exclude contributions from Ib and II afferents in the dendritic segments 

located in LVII.  In previous studies, VGLUT1 immunoreactivity is dramatically reduced 

post-injury in anterogradely labeled proprioceptive afferents in lamina IX (Hughes et al., 

2004).  Therefore, one possible interpretation is that the reduced number of VGLUT1 

contacts is due to loss of the marker, VGLUT1.  However, anterogradely filled injured Ia 

afferents within the lumbar spinal cord contain the same level of VGLUT1-

immunoreactivity as controls (Alvarez et al, 2008); therefore, the data presented is best 

interpreted as loss of the Ia afferent contact and not due to loss of the marker.   

  

A2. Methodological Considerations: Large reductions in NeuN-labeled motoneuron 

versus MG retrogradely labeled motoneurons.  

 The depletions observed in NeuN-IR motoneurons were consistently larger than 

those observed in retrogradely labeled motoneurons.  There is an early bias toward more 

depleted NeuN stained motoneurons because motoneurons were selected based on a 

decrease in intensity of staining.  In the resutured animals, NeuN staining recovers.  

There is a bias towards less depleted dual retrogradely labeled motoneurons based on 

quality of staining which is activity dependent. 

 

A3. Methodological Considerations:  Extent of dendritic analysis 

 The dendritic analysis in this thesis was only for a portion of the total dendritic 

arbor of the MG motoneuron.  There was an average total dendritic length of 1,186 μm 

and an average total surface area of 14,105 μm2.  In comparison to the fully labeled 

triceps surae motoneuron with a surface area of 147,000 μm2 (Chen et al., 1994), only 
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10% of the total dendritic arbor was analyzed in this thesis.  The average dendritic length 

sampled was 202.3 μm and the maximum dendritic length traced was 671.7 μm.  In 

comparison to the fully labeled triceps surae motoneuron with an average dendritic length 

mediolaterally of 850 μm and dorsoventrally of 1350 μm (Chen et al., 1994), only 15-

25% of the dendritic length was analyzed in this thesis.  Limitations in analysis of the 

dendritic arbor were due to: orientation of the motoneurons within the transverse section, 

the thickness of the section (50μm), and the incomplete fill of the distal dendritic arbor 

with CTb retrograde labeling.  Quantitative analysis could only be completed up to 

250μm from the soma for all of the motoneurons; therefore, we are only analyzing a 

quarter of the total dendrite.  Previous studies in cat motoneurons revealed that a majority 

of the dorsolateral and ventromedial Ia afferent contacts were within the first third (up to 

500 μm) of the dendritic length (1600μm) (Burke et al., 1996). Hence, the 15-25% of the 

dendritic length of the rat motoneuron analyzed in this thesis is well representative of the 

organization of the dendritic arbor for dendrites at these orientations.   

 

B. VGLUT1 contacts on the cell bodies of motoneurons are depleted after 

peripheral nerve injuries and do not recover. 

 The data presented estimated that  66-96% of VGLUT1 contacts on alpha 

motoneuron cell bodies are depleted (depending on time after injury and type of analysis) 

and there is no recovery even six months after injury, a time at which peripheral 

reinnervation has been completed according to EMGs.  These data correlated with 

previous studies that suggest that 70% of S-type synapses are lost around the cell soma of 

motoneurons axotomized following peripheral nerve injuries (Brannstrom et al., 1998; 
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Linda et al., 2000; Hughes et al., 2004).  In this sense, Ia afferent synapses and S-type 

synapses are similarly removed from the cell soma of motoneurons. However, in contrast 

to VGLUT1 synapses, S-type synapses are largely recovered after motoneurons 

reinnervate their peripheral targets (Brannstrom et al., 1999).  We obtained similar results 

whether we analyzed linear densities on the perimeter of NeuN immunolabeled 

motoneurons or on the perimeter of MG motoneurons in which reinnervation of the MG 

muscle was confirmed by retrograde labeling.  Moreover, a similar result was obtained 

when we analyzed VGLUT1 contacts as linear density on the perimeter of selected cell 

soma profile cross sections or when in it was analyzed as surface density in a smaller 

sample of the whole reconstructed cell body.  There were disparities in these estimates 

perhaps due to sampling differences (see above). Regardless, all confirmed a similar 

result: the somatic VGLUT1 contacts that are lost after peripheral nerve injuries do not 

recover or the recovery is very limited after peripheral reinnervation.  Thus, differences 

in the behavior of the whole S-type population must have an alternative explanation.  One 

important difference is that most S-type terminals are originated in interneurons and 

descending systems which are not damaged by the peripheral nerve injury, while 

VGLUT1-IR synapses from afferents were injured in the periphery.     

 Another important issue arises when comparisons are made between VGLUT1 

contacts on the cell somata of MG motoneurons after tibial and MG nerve injuries.  In the 

tibial nerve cut and resuture injury model, all Ia afferents that travel within the tibial 

nerve are affected; however, in the MG nerve cut and resuture injury model only MG Ia 

afferents are effected.  Therefore, the MG alpha motoneurons in the MG nerve cut and 

resuture injury model have unaffected heteronymous afferents from the lateral 
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gastrocnemius and soleus muscles.  It was surprising that there was not a statistically 

significant difference in the VGLUT1 density 6 months after injury between the tibial 

nerve and MG nerve injury models in the number of contacts around the cell somata. 

These data could suggest that homonymous contacts have a greater impact on central 

reorganization of the soma than heteronymous contacts.  Further studies are needed on 

the origin of the contacts in order to corroborate this hypothesis. 

 Finally, significant interanimal variability of VGLUT1 density was detected in the 

tibial nerve groups, most frequently associated with appropriately reinnervated FB/CTb 

dual labeled alpha motoneurons, suggesting variability in strength of reinnervation of the 

MG afferents within the tibial nerve between animals.  When Fast Blue and dual labeled 

MG motoneurons were compared within single animals, interanimal variability seemed to 

arise from slightly better recovery or smaller depletion of VGLUT1 density in MG 

motoneurons that successfully reinnervated the MG muscle in three of the eight animals 

for the tibial nerve cut animals and one of four MG nerve cut animals.  Further analysis 

of electrophysiological data from these animals would be necessary to correlate strength 

of reinnervation with the extent of VGLUT1 depletion. 

 

C. Reorganization of VGLUT1 contacts on the dendritic arbor.  

 In hindlimb alpha motoneurons, overall synaptic density decreases proximo-

distally along the dendritic arbor but the proportion of S-type (excitatory) synapses 

increase from soma to distal dendrites (Fyffe, 2001).  In the rat, approximately 68% of 

VGLUT1 contacts on the traced dendritic arbor from 0-250 μm were proximal (0-100μm 

from the soma) and 74.5% of total Ia contacts on the traced motoneuron were on the 
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soma and proximal dendrites (0-100μm from the soma).  These data suggest that 

VGLUT1 contacts do not follow the same pattern as S-type contacts in rat MG 

motoneurons and Ia afferent synapses are more proximally concentrated than the overall 

S-type synapse population.  A similar conclusion can be deduced from the data of Burke 

and Glenn (1996) in which most of the synapses in dorso-ventrally and ventro-medially 

oriented dendrites in the cat were found within the first third of the dendritic arbors (500-

600 µm distance form the cell body).  In conclusion, it appears that a majority of  

VGLUT1 synapses are located in the dendritic regions most  affected by stripping.   

 Interestingly, VGLUT1 contacts on dendritic segments located above 100 µm 

from the cell soma seem to be relatively unaffected. Sholl analysis of linear VGLUT1 

density (contacts per 10μm of dendrite) and surface VGLUT1 density (contacts per 

100μm2 of dendrite) revealed a central reorganization of VGLUT1 through proximal 

synaptic stripping of the dendritic arbor and preservation of contacts distally.  Depletion 

in VGLUT1  surface synaptic density (57% from 0-50μm, 24% from 50-100μm) in the 

proximal dendritic arbor after 6 month appropriate reinnervation of MG motoneurons 

was similar to the trend of S-type linear synaptic density depletion (24 to 28% from 0-

100μm) in the ligated nerve injury model in the cat (Brannstrom et al., 1998; Brannstrom 

et al., 1999); however, was dissimilar to the trend of S-type synaptic density recovery (a 

5% increase from 0-100μm) in the long term reinnervated injury model in the cat 

(Brannstrom et al., 1998; Brannstrom et al., 1999).  Therefore, these data suggest that 

recovery of proximal S-type synaptic contacts is not due to recovery of Ia afferent 

VGLUT1 contacts but from other S-type synaptic contacts.  
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 In previous studies in the cat, S-type linear synaptic density remained 20% 

depleted at 300μm from the soma after peripheral nerve injury without reinnervation and 

remained 20-25% depleted at 300μm from the soma even with long term reinnervation 

(Brannstrom et al., 1998; Brannstrom et al., 1999).  Notably, at more distal locations 

(100-250μm) there were similar VGLUT1 densities between control and experimental 

rats.  Therefore, these data suggest sustained depletion of S-type synaptic contacts is not 

due to loss of VGLUT1 contacts but from other S-type contacts.  In conclusion, VGLUT1 

losses were less marked on dendrites compared to cells somata and the large majority of 

VGLUT1 contacts lost were proximally located in both soma and dendrites of 

motoneurons.  Moreover, the behavior of VGLUT1-IR synapses on the dendritic trees of 

rat MG motoneurons does not correlate to that described for S-type synapses in cat MG 

motoneurons. 

  Thus, this thesis presents novel information on Ia afferent synapses on the 

dendritic trees of motoneurons to the extent that they could be labeled using retrograde 

labeling with Cholera Toxin b subunit conjugated to Alexa 555 (CTb-555).  As observed 

in the cell body, changes in density in proximal dendrites are permanent and do not 

recover even 6 months after reinnervation. 

 

D. Correlation of VGLUT1 contacts with the physiological changes observed in the 

Ia-motoneuron connection after peripheral nerve injury and regeneration. 

 Anatomical analysis after peripheral nerve injuries revealed major reorganizations 

in the distribution and density of Ia synapses over motoneuron; these changes appear to 

be relatively permanent.  These anatomical analyses compared to current physiological 
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data can aid in understanding the absence of the stretch evoked synaptic potential (SSP) 

after peripheral nerve injury. 

 Despite regeneration of muscle afferents, self-reinnervated hindlimb triceps surae 

muscles in the cat and rat show absent or significantly reduced stretch reflexes (Cope et 

al., 1994; Haftel et al., 2005).  Surprisingly, the monosynaptic excitatory postsynaptic 

potentials (EPSPs) evoked by electrical stimulation of afferents on regenerated MG 

motoneurons were similar to normal. The VGLUT1 contacts that appear to remain in 

distal dendrites are potentially responsible for these EPSPs; however, they appear to be 

unable to sustain the SSP.   

   Due to remote dendritic connections after peripheral nerve injury and 

reinnervation, dendritic filtering and electronic decay could have an effect on the ability 

to produce an effective synaptic current at the soma.  This will be more significant for 

EPSPs arising at the soma asynchronously (as after an SSP) than synchronically fired by 

an electrical stimulus.  Another possibility is central suppression of sensory information 

from regenerated afferents, possibly by enhanced presynaptic inhibition of the Ia 

afferents sustained by segmental sources and/or enhanced by descending pathways 

(Haftel et al., 2005).  Alternatively, increase in postsynaptic inhibition could suppress the 

SSP of Ia afferent fibers without producing detectable change in the motoneuron 

membrane potential in response to muscle stretch (Haftel et al., 2005).  Finally, there is 

the possibility that remaining VGLUT1-IR synapses arise form sensory synapses that are 

not connected to muscle spindles in the periphery.  This possibility was highlighted 

recently by unpublished observations from Ms. Katie Bullinger and Dr. Timothy Cope in 

which the connection between single Ia afferents with a positive response to stretch in the 
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periphery and MG motoneurons was tested using the techniques of spike-trigger 

averaging after peripheral nerve injury followed by regeneration. It was found that in the 

large majority of pair recordings tested there was no EPSP found in between the Ia 

afferent and the motoneuron.  Yet, in controls all pair Ia-motoneurons recordings 

displayed a connection. Whether the VGLUT1 contacts retained in distal dendrites are 

connected with a sensory afferent innervating a muscle spindle or not will need to be 

studied anatomically further in future studies. 

 Finally a critical note is that VGLUT1 contacts may be present anatomically yet 

not functional.  Further analysis on the postsynaptic content of receptors will be required 

through electron microscopy to address this possibility.   

 In conclusion, the impact of the overall reorganization of synaptic contacts, 

resulting in a decrease in VGLUT1 on the soma and proximal dendritic arbor of the alpha 

motoneuron, is suggested to play a role in the strength of the central synaptic connection 

of the monosynaptic circuit.  However, further anatomical and electrophysiological 

research is needed to understand the absence of the stretch reflex.    
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