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ABSTRACT 
 
Woolard, Christopher Lee. M.S., Department of Pharmacology & Toxicology, Wright 
State University, 2009. Identification of Potential Protein Biomarkers of Low Level 
Kidney Degradation.   
 
 
 
 The purpose of this research was the identification of potential dose-dependent 

and time-dependent serum protein biomarkers of low level kidney degradation in a rat 

model.  Potential biomarkers were evaluated based on differential protein expression 

between control and dosed samples in rat serum.  Proteins of interest demonstrated up-

regulation at a minimum 1.5 fold increase in protein concentration control versus dosed 

sample.  In order to identify common biomarkers of kidney decrement, three 

nephrotoxins were chosen to target specific locations of the kidney: 1) D-Serine, which 

causes necrosis of the proximal straight tubules, 2) Puromycin, an antibiotic that degrades 

the Glomerular Basement Membrane (GBM), and 3) Bromoethyl Amine (BEA), which 

affects the proximal tubules as well.  Rats were dosed with individual nephrotoxins and 

serum collected at Pre-dose, 24 hrs Post dose, and at terminal sacrifice for Puromycin and 

BEA, and at 12 hrs and 24 hrs post-dose from d-serine.  The collected serum sample was 

enriched to remove abundant proteins, separated using 2D Difference in Gel 

Electrophoresis (DIGE), and screened for potential up-regulated biomarkers based on 

difference in fluorescent intensity using computer software.  Finally, the proteins were 

trypsin digested and the resultant peptides identified by MALDI-TOF/TOF mass 

spectroscopy.  The study results indicated hornerin as a potential biomarker though no 

dose- or time-dependent toxicity could be determined. 
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I. INTRODUCTION 

A. Background 

A major challenge for health care professionals is the detection and accurate 

diagnosis of early onset renal degradation.  Traditionally, clinicians have determined 

kidney health by measuring blood urea nitrogen (BUN) in serum and creatinine levels in 

urine (Duarte and Preuss).  Unfortunately, these biological markers may not be evident 

until kidney functions have decreased by 30% - 50%, as measured by histopathology 

functional tests, nor do these biomarkers pinpoint specific regions of damage (Thukral et 

al).  At such late stages of kidney degradation, full recovery by a patient is rare and the 

outcome is often a lifetime of mitigating symptoms by dialysis treatments or, if lucky, a 

kidney transplant.    

In general, a patient has much better odds of full recovery if an accurate diagnosis 

is made early during onset of the damage.  These odds are especially true when 

combating degenerative conditions like kidney failure.  Standard methods of diagnosing a 

disease include visual diagnosis (cut or laceration), direct diagnosis (biopsy), and indirect 

diagnosis (biological markers, i.e. measurement of creatinine levels) (Veenstra).  

However, when diagnosing kidney diseases these tools are not effective simply because 

they are not available, too traumatic, or the marker response is too slow after kidney 

damage.  Decreased renal function has no visible signs or pain and can only be diagnosed 

through direct and active medical diagnoses.  While direct analysis of kidney tissue by 

biopsy can help diagnose specific ailments and direct therapeutic paths, clinical biopsies 

are not routine since they are invasive and can suffer from sampling errors (Kumar 

Sharma et al).  Therefore indirect analysis has been the best tool for routinely testing the 
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growing number of patients who suffer from deteriorating kidney function such as 

chronic kidney disease.   

Chronic kidney disease (CKD) demonstrates the need for improved renal 

diagnostic methods as it affects approximately 19 million people just in America, yet 

often goes undiagnosed until it becomes too late for a patient to fully recover.  CKD is a 

general decrease in renal function occurring over months or years and has no specific 

treatment.  Often the clinical signs of the disease only manifest as a resulting 

complication like pericarditis or anemia before diagnostic measurements are taken.  The 

current diagnostic methods look for proteinuria or elevated serum creatinine levels 

(Snyder).  Unfortunately both indicators are well documented as being too generic 

(Tomlanovich, Baboolal, Star) and can neither diagnose the type of renal injury nor be 

consistently reliable.  For instance, serum creatinine is heavily influenced by many 

factors, such as muscle mass and tubular secretion, which means serum samples must be 

taken frequently over long periods of time to normalize results (Tomlanovich).  New 

techniques utilizing proteomic research for diagnoses use biological fluid (biofluid) 

samples which are analyzed for any qualitative or quantitative changes in proteins that 

may indicate physiological injury.  This study will focus on identifying potential kidney 

injury biomarkers by analyzing serum samples from rats dosed with Puromycin, 

Bromoethyl Amine (BEA), and D-serine, and examining differential protein expression.    

The use of proteomics in biomarker discovery is well documented and consists of 

a wide array of dynamic techniques with updated and improved methodologies published 

weekly.  A good example of these techniques successfully identifying useful protein 

biomarkers in a relatively short time to a new threat was published by Chen et al. and 



 3

their examination of the SARS virus.  Chen et al compared 22 different plasma samples 

from four SARS patients with plasma samples from healthy controls.  Subsequent 2D 

PAGE analysis found seven distinct proteins in SARS patients that were absent in healthy 

controls as well as eight spots up-regulated in all 22 samples.  One of the up-regulated 

spots, peroxiredoxin II, was found to be in all 22 samples and later validated in ~36% of 

SARS patients.  This detection rate is higher than HIV testing and may be used as a 

future serum biomarker for SARS.  Thanks to their work, the quest to identify a validated 

protein biomarker for SARS can move into the next stage of development.  The work by 

Chen et al. demonstrated that biomarker research techniques can be used successfully to 

rapidly identify biomarkers for disease diagnosis even if the disease is new and not fully 

understood.  The biomarker techniques used by Chen et al. are part of biomarker research 

in general which can be divided into two main themes, biomarker discovery or diagnostic 

development. 

Biomarker research is dividedby Veenstra et al. into two main development 

tracks, biomarker discovery and diagnostic development.  Biomarker discovery uses mass 

spectroscopy techniques to identify proteins and characterize peptide sequences.  The aim 

is to find a change in relative abundance of peptides from a unique protein present in 

samples obtained from disease cases compared with matched controls (Veenstra).  

Diagnostic development is a comparative approach to identifying a disease state by 

looking at overall protein peak patterns on a mass spectrometer.  This approach uses a 

large sample size from hundreds of patients to find statistical differences between protein 

peaks then uses data mining with bioinformatic algorithms to find diagnostic protein 

peaks.  However, the exact relation between the diagnostic proteins and the disease 



 4

condition are unknown since specific proteins are not identified (Veenstra).  The 

proposed research will focus on biomarker discovery and the identification of specific 

proteins which may be used to track preclinical levels of kidney damage.  In support of 

this mass spectroscopy based approach, this study will use 2D Difference in Gel 

Electrophoresis (DIGE) coupled with Matrix Assisted Laser Desorption Ion-Time of 

Flight/Time of Flight (MALDI-TOF/TOF) analysis of rat serum samples to specifically 

identify proteins as biomarkers of preclinical levels of kidney injury.   

As of late, published proteomic results have focused on analyzing specific organ 

tissue with little published data using biological fluids like blood or urine.  The search for 

protein biomarkers in blood poses a distinct interest for clinical applications since organ 

functions could be tested using blood samples, which are less invasive than tissue 

biopsies (Bandara, A Correlation).  Published results show that protein expression can be 

characterized from biofluid samples such as serum, plasma, urine, and cerebrospinal 

fluid, as effectively as from samples of diseased tissue (Pang, James).  The abundance of 

proteins and relative ease of biofluid sample collection mean that self monitoring of 

health could become routine and diseases could be diagnosed before physical symptoms 

manifest.  Though published results from biofluid analysis lags behind tissue analysis, 

proteomic techniques used in analyzing biofluids have made rapid advancements and 

clinical uses may be in the very near future (Veenstra).   

 Of the four main biofluids that are easily obtainable to researchers and clinicians 

alike, urine and serum samples are currently thought to be the best samples for examining 

kidney injury.  While urine is a superior sample due to ease of collection, ample sample 

volume, and cost of analysis, this study will focus on analyzing serum.  According to 
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Sharma et al., proteomic studies of urine presents many challenges such as protein 

degradation during storage as well as fluctuations in protein levels depending on timing 

of collection, diet of subjects, and gender (Sharma).  Additionally, urine samples face 

many of the same problems as plasma samples, namely abundant proteins such as IgG 

and albumin.  Sharma found that IgG leads to streaking of the 2D gels and that degraded 

albumin products may account for a large number of differentially regulated spots 

(Kumar Sharma et al.).   

Using serum samples for this research project posed many challenges, primarily 

due to lack of published research on serum.   Veenstra et al. found that 22 proteins make 

up 99% of all proteins in plasma and serum.  The 22 common proteins are usually 

albumin, transferrins, immunoglobulins, and complement factors (Veenstra).  The low 

abundant proteins are circulatory proteins from live, apoptotic, and necrotic cells which 

mean that very low levels of detection are required to pinpoint these proteins from such a 

small set of diseased cells.  Discovering which proteins derive from damaged cells 

specific to a disease becomes much more difficult as a disease progresses and affects 

nearby organs.  One study by Pieper et al. identified ~20,000 spots by image processing 

(Pieper).  Of these ~20,000 spots, about 3,700 unique spots were found once redundant 

images were eliminated.  From the 3,700 spots, 1,800 were identified which yielded 350 

unique proteins (Pieper).  Of the 350 unique proteins, found that almost 39% have been 

previously characterized as circulatory proteins.  Another 9% of the identified proteins 

were characterized as proteins that are secreted into biofluids other than blood.  Very low 

abundant proteins such as IL-6, metallothionein II, cathepsins, and peptide hormones 

were also identified.  These low abundant proteins are known to be in serum at 
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concentrations less than 10 ng/ml (Pieper).  The immunodepletion step followed by 2D 

gel separation technique allow researchers to quantitatively measure protein amounts 

between samples while leaving a visual record of the many isoforms a protein can assume 

(Veenstra).   

Pieper et al performed a similar study using urine samples which yielded good 

results but were not as thorough.  In this part of the study, the urinary proteome was 

characterized using a similar strategy of protein separation by 2D-PAGE followed by MS 

identification.  The samples went through similar preparation steps including an 

immunodepletion step.  The group found 1,400 distinct spots on gels and 420 proteins 

were identified by either MALDI-TOF peptide mass fingerprinting or LC-ESI MS/MS.  

Results identified 150 unique proteins, with ~50 known classical plasma proteins shown 

also present in urine (Veenstra).  These results show that analyzing the serum produces 

more comprehensive results and can express more low abundant proteins since most of 

them will be transported by albumin and other transport proteins.   

A study by Bandara et al proved that kidney injury biomarkers can be identified 

using 2D gel separation followed by MS characterization.  The 2003 study looked at d-

serine as well as two other well characterized kidney toxins, cisplatin and 4-AP.  The d-

serine results are of particular interest since it is one of the nephrotoxins studied in this 

project.  Bandara et al found 11 main proteins exhibiting changes in expression levels as 

a result of d-serine induced nephrotoxicity.  Several of the 11 proteins were found to 

overlap with results from the cisplatin and 4-AP samples, like the cellular enzyme 

fumarylacetoacetate hydrolase (FAH) found in d-serine and 4-AP.  Of the proteins 

expressed in all samples from all toxicants tested, three very significant proteins were 



 7

identified as potential biomarkers for clinical diagnosis.  The most promising of the three 

proteins was a rat-specific protein known as T-kininogen.  This protein was found to 

exhibit distinct time and dose dependencies and showed different concentration levels 

compared to control samples and samples from rats dosed with L-serine.  The time and 

dose dependencies are exemplified by measured increases in protein concentrations and 

by peak concentration level timing.  Seven isoforms of T-kininogen were found, six in 

the d-serine samples and one from the 4-AP and cisplatin samples.  The isoform 

concentrations were found to increase directly with the extent of the observed cellular 

damage demonstrating the dose-response relationship of d-serine toxicity.  The peak 

concentration of T-kininogen occurred at the 24 hour period which correlated perfectly 

with the damage exhibited by the proximal tubule tissue.  Peak kidney damage, as shown 

by BUN and plasma creatinine levels, was observed at 24 hours then improved as the 

kidneys returned to normal function over a three-week period without d-serine exposure.      

 Three classes of kininogen, H- and L-kininogen are found in both rodents and 

humans while T-kininogen is only produced in rats (Greenbaum et al., 1992; Takano et 

al., 1997).  The liver synthesizes all three kininogen isoforms but studies have also found 

the kininogen species to be secreted into blood.  Kininogens play an important part in the 

release of bradykinin, a well-documented peptide hormone, by acting as a substrate for 

the kallikrein serine proteases.  Kallikrein serine proteases cleave proteins to release 

bradykinin (Bandara). 

Also of interest from Bandara et al. was the identification of retinol binding 

protein (RBP) in the d-serine study as RBP has previously been linked to renal toxicity. 

The regulation of RBP was treatment-specific – the changes were not observed in control 
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animals or the L-serine-treated group (Bandara).  The identification of RBP is of interest 

because of its association with renal toxicity.  Although RBP is required for the transport 

of vitamin A in blood, it is also reabsorbed and degraded in the renal proximal tubules 

(Goodman, 1977).  Several reports have focused on the elevated presence of RBP in the 

urine of patients or animals with renal damage (Brouwer et al., 1988; 1989; Jung et al., 

1993). The identification of RBP is also important as it confirms that new technologies 

such as proteomics can uncover established as well as novel markers of toxicity.  Given 

the extensive work done by Bandara and group, the expectation is that t-kininogen and 

RBP will be identified as biomarkers as well.  The difference with Bandara’s study and 

the current study is the use of 2D DIGE technology instead of the standard 2D gels used 

previously.   
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B. Kidney Anatomy and Physiology 
 

The kidney is a robust organ designed to filter waste products from the 

bloodstream and excrete them from the body.  However, since nearly 25% of the cardiac 

output goes directly to the kidney, it becomes extremely susceptible to toxic injury from 

xenobiotics and drugs.  Xenobiotics and drugs are metabolized and concentrated in the 

kidney from the blood stream placing potentially harmful substances into one localized 

area increasing potential tissue damage within the parenchyma (Toback, 1992; Bennett, 

1997).   

In the circulatory system about 25% of blood volume flows directly from the 

heart to the kidney where it is dispersed and filtered by tissue called nephrons.  

Collectively these nephrons make up the parenchyma (the functional bulk of the organ).  

Within each nephron there exists a complex system of structures designed to filter the 

blood, reabsorb necessary compounds, and excrete wastes as urine.   

The first structure to filter blood is the Renal Corpuscle which consists of the 

Glomerulus and Bowman’s capsule.  The glomerulus is a capillary tuft which receives 

blood from the afferent arteriole and sends filtered blood to the renal vein for further 

processing.  Bowman’s capsule (glomerulus capsule) surrounds the glomerulus, is made 

of epithelial cells, and works with the glomerulus to act as the first filter of the nephron.   

 The renal tubule is made up of the proximal tubule, the loop of Henle, and the 

distal convoluted tubule.  The proximal tubule, especially along the straight, descending 

portion, is the area of primary interest when preventing or treating kidney failure.  The 

proximal straight tubules are responsible for regulating reabsorbtion of fluids like salt and 

water, as well as organic solutes like glucose and amino acids, into the peritubular 
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capillaries.  Because of the steady filtering and waste concentration, these cells are 

constantly exposed to toxic xenobiotics or metabolites at concentrations much higher 

than other cells are typically exposed.  The constant filtering and reabsorbtion means that 

in the kidney, the renal tubular epithelial cells are the most susceptible to toxic injury.  

The health and status of the glomerulus and renal proximal tubules are the major concern 

when diagnosing kidney health so nephrotoxins in this study have been chosen based on 

where they cause damage.   

 

Figure 1: Cross Section views of Rat Kidney 
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C. Nephrotoxin Background 
 

1. D-Serine 
 

D-Serine is a well characterized nephrotoxin that has been studied since 1929 and 

is known to cause necrosis of the proximal straight tubules in the rat kidney.  The exact 

mechanism of toxicity remains unknown although d-serine is known to concentrate in the 

damaged areas of the nephron (Imai et al, 1998).  What is known is that d-serine is re-

absorbed into the proximal tubules where it enters cells in the pars recta and becomes 

processed by d-amino oxidase (Silbernagl et al).  The reaction with the d-amino oxidase 

enzyme produces toxic oxidative metabolites leading to necrosis of the epithelium cells 

lining the proximal tubules.  The damage to the tubules results in glucosuria, diuresis, 

aminoaciduria, and proteinuria (Ganote).  A histopathological study by Ganote et al. 

examined sections of rat kidney by light and electron microscopy and found that 

proteinuria and glucosuria are caused by the diffusion of protein and glucose from 

interstitial fluid to tubular fluid across the necrotic tubular epithelium.  Ganote et al. 

observed the stages of necrosis and recovery over a period of 6 days, and noted that the 

cells showed shrinkage during initial stages then showed either immediate lysis of 

nuclear contents or swelling and loss of apical cytoplasm.  Without the tubular epithelium 

the proteins and glucose concentrated in the interstitium, freely cross from the interstitial 

to the luminal fluids through the denuded glomerular basement membrane.   

Figure 2: Stick model of d-serine 
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2. Puromycin 
 

Puromycin aminonucleoside (PAN) is an antibiotic that is often used to study 

glomerular injury.  PAN causes the glomerular epithelial cells (GEC) to flatten which 

leads to a loss of filtration function as well as loss of epithelial cells along the glomerular 

basement membrane (GBM) resulting in proteinuria. (Fishman, J.A.)  

The normal glomerular capillary wall keeps blood cells and most proteins in the 

blood but in patients with proteinuria, cellular degeneration allow proteins to leak across 

the glomerular wall into the urine. The barriers in the capillary wall that keep protein out 

of the urine are the endothelial cell lining the capillary lumen, the basement membrane 

under the endothelial cell and the cell on the outside surface of the capillary (epithelial 

cells). The epithelial cell (podocyte) normally has little “feet” (pods) that sit on the 

basement membrane and are connected by a thin membrane. The glomerular epithelial 

cells (podocytes) appear to be the most important barrier that prevents protein from 

leaking into the urine. 

Figure 3: Image of filtration tubules in rat kidney 
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A study by Ryan et al found that focal detachment of the GEC from the GBM 

occurred at the same time that massive proteinuria was measured (Ryan).  Additionally, it 

was observed that areas stripped of GEC corresponded to an increase of ferritin leakage, 

a well-known proteinuria marker, across the GBM.  This leakage suggests that GEC 

detachment is a contributing factor to proteinuria in the PAN-induced nephrosis model.   

In the study by Sanwal et al., plated cells sustained in media were dosed with 5, 

10, 20, 50, 100, 200, and 500 ug/ml of puromycin.  Morphologic analysis using 

fluorescence staining showed that PAN enhanced GEC apoptosis in a time- and dose-

dependent manner at 24 and 48 h and only induced necrosis of GEC at high 

concentrations.  Signs of necrosis started at 100 ug/ml and but PAN induced the greatest 

amount of damage at 24 h at doses of 200 ug/ml and 500 ug/ml.  Since PAN induced 

necrosis at higher concentrations and apoptosis at lower concentrations in a 

concentration-dependent manner, the data suggests that the severity of cellular injury 

determines whether cells die by necrosis or apoptosis (Sanwal).   

The mechanism by which PAN causes apoptosis and necrosis of GECs is unclear, 

but it is known that hydrolysis of puromycin creates PAN.  PAN, which is structurally 

similar to adenosine, inhibits de novo protein synthesis and can potentially prevent 

synthesis of nucleic acids.  In vitro studies show that PAN causes premature chain 

termination by acting as an analog of the 3'-terminal end of aminoacyl-tRNA (de la Luna) 

and can attenuate de novo RNA synthesis and DNA synthesis in a variety of cells 

(Sanwal).  Additionally, free radicals have been implicated in causing kidney injury after 

exposure to PAN.  Diamond et al found that the xanthine oxidase pathway creates 

reactive oxygen species and may ultimately be the mechanism of nephrosis. 
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D.  Techniques and Instrumentation 

1.   Two-Dimensional Difference Gel Electrophoresis (2D DIGE) 

In the search for novel biomarkers, accurate and precise isolation of proteins is 

crucial to identifying small, low abundant proteins that may be up- or down-regulated as 

a direct result of organ degradation.  One of the best techniques to visualize general 

protein expression levels is two-dimensional (2D) gel electrophoresis.  A key concern 

regarding the use of 2D electrophoresis is the gel to gel reproducibility of the protein 

separations.  In general, polyacrylamide gel separations are subject to internal errors from 

non-homogenous polymerization, temperature differentials, and fluctuations in electrical 

power (Speicher).  These variables create slight differences between gels which make it 

difficult to match protein spots consistently across multiple gels.  Inconsistent protein 

patterning requires powerful analytical software to examine thousands of protein spots to 

accurately identify identical and overlapping proteins across gels to measure the changing 

concentration.  Thus, a high level of skill is needed to pour gels, run samples, and analyze 

spots to increase the statistical significance of the data (Speicher). 

2D Difference Gel Electrophoresis represents an improvement over typical 2D 

gels because two samples and an internal standard can be all tagged with fluorescent dyes 

and run in the same gel at the same time.  In a DIGE gel, a control sample and a disease 

sample are labeled with two different fluorescent tags called Cy Dyes.  By running both 

samples in the same gel, a more accurate comparison of protein size (based on location in 

the gel) and relative quantities (based on fluorescent intensity) can be made without gel to 

gel variability.  Additionally, DIGE gels allow more accurate comparisons between 
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different gels since an internal standard of all pooled samples is labeled with a third dye 

and added to every gel.   

The first improvement lies in direct comparison between samples.  The dyes 

allow two different sample groups to be labeled, mixed together, and separated on the 

same gel so they are exposed to identical electrophoretic conditions and gel 

inconsistencies.  Any proteins present in both samples will migrate to the same areas of 

the gel and the different fluorescence spectra will indicate any definitive overlap.  This 

accuracy reduces any technical variation, which may be as high as 20–30% (Molloy).  

The second improvement is the ability to more accurately compare samples between gels 

despite the variation that inherently exists in each individual gel.  This feature is possible 

because of the internal pooled standard labeled with the third dye which is added to every 

gel.  The pooled standard is crucial because it is made of equal parts from every sample 

thus contains every protein.  By applying this standard to every gel, it provides a known 

landmark in each gel that is used to align multiple gels.  This known correction factor 

gives a greater degree of confidence that protein expression differences and location are 

real, and not solely explained by chance or sample artifact (Hoorn).   

The dyes used in this method are N-hydroxyl succinimidyl ester derivatives of 

Cy2, Cy3, and Cy5 and each dye has their own excitation and emission spectra.  The dyes 

form an amide by reacting with the ε-amine group on lysine residues by nucleophilic 

substitution (Speicher).  Since the dyes react with a polar amino acid they have a positive 

charge to replace the charge lost from the lysine and thus the original isoelectric point of 

each protein is retained (Speicher).  The sensitivity of this technique depends on the 

technique used to label the sample with the fluorescent CyDyes.  The two labeling 
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methods are called “minimal” and “saturation”.  Minimal labeling uses the CyDyes and 

provides a detection limit between 150 and 500 pg (Hoorn).  Saturation labeling uses 

thiol-reactive maleimide groups to react with cysteine residues and has been shown to 

have a lower limit of detection than minimal labeling (Shaw).  While the saturation 

method is more sensitive, it is more technically challenging and is normally used only 

when samples are not limited (Lilley).       

The end result of the 2D DIGE technique allows direct comparison of two 

samples in one gel or multiple samples from multiple gels needing minimal digital or 

statistical corrections for gel variations and warping.  This technology was recently 

validated by Tonge et al. with proteomic studies on mouse liver, Zhou et al. with the 

identification of esophageal scans cell cancer-specific protein markers, and Gharbi et al. 

analyzing the effects of the hepatotoxin, N-acetyl-p-aminophenol, on mouse liver protein 

expression.   
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2.   DIGE Experimental Limitations 

While 2D DIGE is an excellent tool for proteomic studies, it is not without its 

limitations.  The first significant obstacle is developing the optimal conditions for protein 

separation.  Tissue and biofluids are incredibly complex mixtures that contain numerous 

interfering substances like proteases, salts, and nucleic acids which must be removed or 

inactivated (Hoorn).  Removing these substances requires careful methods like desalting 

techniques or DNA/RNA nuclease treatments (Hoorn).  Additionally, studies that search 

for small or low abundant proteins in blood must include an immunodepletion step before 

running the gel to remove large, over abundant carrier proteins like albumin, transferrins, 

and IgG.  These proteins mask smaller proteins and the resultant huge smears in the gel 

make analysis impossible.  Therefore, the immunodepletion step is especially crucial 

since serum samples contain a large number of proteins that range in concentrations by 

more than 10 orders of magnitude (Corzett).  Though conditions for protein separation 

can be optimized, the DIGE technique still has physical limitations using current 

protocols. 

According to Hoorn et al., the two major limitations to DIGE-based proteomics 

are the identification of low-abundant proteins and hydrophobic proteins.  Issues with 

low abundant protein identification are the capabilities of visually picking out small 

spots, preparing them using many steps, and having enough stable protein to run through 

a mass spectrometer.  Hoorn has found that even optimized systems often do not exceed 

mass spectrometry identification rates of 50%.  The difficulty with hydrophobic proteins, 

such as integral membrane proteins, is solubilization.  Strong detergents like sodium 

dodecyl sulfate (SDS) are required to suspend integral membrane proteins in solution but 
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SDS interferes with the isoelectric focusing (Hoorn ref 1, 39, 40).  The use of chaotropic 

agents like thiourea with urea or zwitterionic detergents like 3-[(3-Cholamidopropyl) 

dimethylammonio]-1-propanesulfonate (CHAPS) help with solubilization without IEF 

interference (Hoorn ref 1, 39).  Another solution is the separation of proteins based on 

molecular weight using two runs.  The first run uses a cationic detergent benzyldimethyl- 

n –hexadecylamonnium chloride while the second run uses SDS.  Macfarlane et al. 

showed that proteins migrate differently using these two detergents which helps to 

maintain high resolution while keeping hydrophobic proteins solubilized.   

  
Hoorn et al. created an excellent summary of the strengths and limitations of the DIGE 
technique as follows: 
 
1 Strengths of DIGE-based proteomics 

Currently the only routine platform for quantitative proteomics 
Differential expression pattern with statistical output 
Low experimental variation due to mixing of experimental and control sample 
and inclusion of an internal standard 
Visualization of protein isoforms including splice variants and post-translational  
modifications 
Information on molecular weight and iso-electric point 

2 Limitations of DIGE-based proteomics 
Less efficient for hydrophobic proteins (e.g., integral membrane proteins) 
Low identification rate of low abundance proteins 
Potential false positives using traditional statistics 
Difficult quantification and identification of proteins with overlapping spots 

3 Possible solutions to overcome limitations 
Use of other detergents during iso-electric focusing 
Modified 2-DE (using 16-BAC and SDS) 
Modified statistical procedures 
Combination of targeted proteomics and DIGE-based proteomics 
Combination of DIGE-based proteomics with bioinformatics pathways analysis 
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3.   Mass Spectrometry 

At a basic level, mass spectrometry can be described as the study of gas-phase 

ions.  The careful manipulation and measurements of the gas-phase ions generate 

practical data which can be used to characterize molecular structures (Kinter).  In a mass 

spectrometer, a sample is energized by an ion source, separated by its mass to charge 

(m/z) ratio in a mass analyzer, picked up by a detector, and presented visually as a mass 

spectrum (Skoog).  There are several types of ion sources and mass analyzers available, 

each with specific strengths and weaknesses which can be combined depending on the 

characteristics of the study sample.  For biological molecules in general, publications 

indicate that a Matrix Assisted Laser Desorption / Ionization (MALDI) ion source 

coupled with a Time-Of-Flight (TOF) mass analyzer produces highly sensitive, accurate, 

and precise mass spectra.  The spectra can be further analyzed using Tandem Mass 

Spectrometry to obtain protein and peptide sequences.   
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4.   Matrix Assisted Laser Desorption/Ionization (MALDI) 

Matrix-Assisted Laser Desorption/Ionization (MALDI) was introduced in 1988 by 

Karas and Hillenkamp as another technique for separation of high molecular weight 

biomolecules such as proteins and peptides (Kinter 2.57).  The MALDI ion source works 

by dissolving peptides in a solution of a UV-absorbing compound, called the “matrix”, 

and placing the sample on a plate.  As the solvent dries, the matrix compound crystallizes 

and peptide molecules are incorporated into matrix crystals.  A UV laser light then 

vaporizes small amounts of the matrix /peptide ions are carried into the gas phase.  

Ionization occurs by protonation in the acidic environments produced by the acidity of 

most matrix compounds and by the addition of dilute acid to the samples.  Because the 

laser desorption generates ions in discreet, short packets, MALDI is ordinarily combined 

with time-of-flight mass analysis.  By combining MALDI with TOF analysis, two main 

benefits are achieved: very high sensitivities due to efficient protonation and high 

tolerance levels for contaminants.  This high tolerance means that once a protein is 

digested, a MALDI spectrum can be obtained without further need for separation 

techniques like HPLC.  By allowing for direct analysis of enzymatic digest analysis, 

MALDI is one of the fastest, most efficient means of ionizing and analyzing large 

biological molecules.  (Kinter pg 37 – 39). 
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5.   Mass Analyzers 

After a sample is ionized, the next step in mass spectrometry is the measurement 

of the mass to charge ratio (m/z) via mass analyzer.  The sample ions are split into two 

general categories: molecular ions, which contain the entire analyte molecule, and 

fragment ions, which contain only a portion of the structure (Kinter).  The molecular ion 

gives the molecular weight of the analyte while the analyte fragment ions give structural 

information.  There are a wide variety of mass analyzers capable of making the necessary 

measurements such as quadrupole mass filter, ion trap, time-of-flight, magnetic sector, 

ion cyclotron resonance, among others (Kinter).  The nature of the mass analyzer 

determines several characteristics of the overall MS experiment and the two most 

important are m/z resolution (often called “mass resolution”) and the m/z range of ions 

that can be measured (often called “mass range”) (Kinter).   

 The factors that determine mass accuracy include fundamental parameters such as 

the m/z resolution used when making the measurement, type of mass analyzer used, and 

how the data were recorded, as well as practical parameters such as the quality of the 

instrument calibration (Kinter).  Assuming proper calibration, quadrupole and ion trap 

mass analyzers operated at unit resolution will provide mass accuracies in the 100- to 

200-ppm range (Kinter).  Time-of-flight instruments using delayed extraction and 

reflectron ion optics with high data-acquisition speeds to give an m/z resolution greater 

than 10,000 provide mass accuracies in the 5- to 20-ppm range (Kinter pg 42 – 43). 
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6.   TOF Mass Analyzers 

The Time-Of-Flight mass analyzer is a very simple yet incredibly effective and robust 

system.  A TOF analyzer first creates an electric field produced from a very high 

potential, typically +20 kV to +30 kV (Kinter).  Then, an analyte ion is accelerated 

through the field which imparts a fixed amount of kinetic energy.  Once accelerated, the 

ion enters a field-free region where it travels at a velocity inversely proportional to its 

m/z (Kinter).  Due to the inverse proportionality, light ions with a low m/z move faster 

than heavy ions with a high m/z.  Therefore, the time required for an ion to travel through 

the field-free region is measured and this measurement can be used to back calculate the 

velocity (Kinter et al.), which ultimately allows one to calculate the m/z, using the 

equation: 

    (V)z = ½ m v2 

Where (V) = kinetic energy in J, z = charge, m = mass in kg, and v = velocity in m/sec.  

The equation can be rearranged to give the velocity of the ion: 

    v = ((2Vz)/m)1/2  

The most important factors that determine resolution include details of the ionization 

process such as the time span of the ionization event and the energetics of the ions 

produced; the instrument dimensions, particularly the length of the flight tube; and the 

accelerating voltage used (Kinter pg 48).  While TOF mass analysis can produce accurate 

data due to the many advantages discussed previously, a single TOF analysis can only 

yield molecular weights since MALDI is a soft ionizing source, meaning analytes are 

ionized with little to no degradation in structure.  In order to identify the proteins of 

interest; actual peptides will be sequenced from the fragment data.  To accomplish this, 

analyte ions will be split and the m/z ratio measured using tandem mass spectrometry.   
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7.   Tandem Mass spectrometry 

In tandem mass spectrometry, an analyte ion is examined in two stages in one 

experiment.  The first stage is to separate parent ions by m/z and the second stage is to 

isolate and fragment the analyte in order to determine the m/z of the daughter ions 

(Kinter).  Tandem mass spectrometers typically use “collisionally activated dissociation” 

(CAD) or “collisionally induced dissociation” (CID) which means that a mass-selected 

ion is hit with high energy gas molecules in a high pressure region.  When the gas 

molecules collide with the ion, energy is transferred to the ion making it unstable and 

driving fragmentation reactions that occur prior to leaving the collision cell (Kinter).  

After fragmenting, the daughter ions produced are m/z analyzed in the second stage of 

mass analysis based on TOF similar to the first stage of analysis (Kinter pg 52 – 53). 
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8.   Interpretation of product ion spectra 

The product ion spectrum is interpreted and the peptide is sequenced by 

mathematically matching it to a finite, albeit large, set of possible amino acid sequences 

from protein sequence databases (Kinter).  By defining the set of possible amino acid 

sequences as the experimentally determined protein and gene sequences, the source 

protein sequence is also identified.  Ideally, a protein is identified when a significant 

number of peptides can be matched to peptides derived from a particular database amino 

acid sequence (Kinter).  While database mining can provide accurate peptide and protein 

identifications at incredible rates, the method does have drawbacks.  Namely, 

mathematically matching spectra becomes statistical probability rather than a positive 

identification from direct methodical sequencing.  The problem with statistical matching 

comes from the lack of absolute rules for judging significance of those scores beyond an 

intra-set ranking of possible matches between assigned scores and database information 

(Kinter).  It is also particularly difficult to judge cut-off values for the incorrect matches, 

typical minimal cut-off scores for matches are ion scores of 100 and peptide ion scores of 

50.  Additionally, until every protein possible is known, computer-based sequencing 

methods may fail to identify a significant number of proteins for such reasons as low 

homology of the protein of interest to related database entries, post-translational 

modifications, or simply that the protein is unrelated to any database entry (Kinter pg 64 

– 65).  Despite these inherent drawbacks, database mining benefits usually far outweigh 

the costs since the aim is to find concentration changes in known proteins for future 

exploration.   
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For the most part, the relative strengths and weaknesses of MALDI versus ESI-

based experiments are viewed differently by investigatiors.  An indisputable strength of 

MALDI-TOF is the ease of instrument operation and the acquisition of high-sensitivity, 

high-resolution mass spectrum, and an indisputable weakness is the difficulty of 

obtaining any product ion spectra that might be needed to characterize a structure (Kinter 

pg 194 – 195).   
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9.   Western Blot  

 A Western Blot is an immunological assay where a sample mixture is first 

separated by 1D or 2D SDS-PAGE gels and the proteins are then electrophoretically 

transferred from the gel onto an immobilizing membrane.  The membrane of choice is 

polyvinylidene fluoride (PVDF) which is a highly hydrophobic, nonpolar polymer that 

binds tightly to other nonpolar proteins through covalent bonding and Van der Waals 

forces.  Once the proteins are bound to the membrane, two different antibodies, usually 

designated the primary and secondary, are used to detect the protein of interest.  The 

primary antibody has been designed with a hypervariable region specific to a protein or 

single protein epitope captured on the immobilizing membrane.  Once the primary is 

bound to the protein of interest, the secondary antibody reacts and binds to the segment of 

the primary antibody in the Fc or Fab region.  The secondary antibody is usually labeled 

with a reporter enzyme or chemical which will produce a signal, either colorimetric or 

chemiluminescent, upon reaction with appropriate substrate, allowing visual 

identification of the protein of interest.  There are several reporter enzymes, the standards 

are usually alkaline phosphatase (AP) or horseradish peroxidase (HRP) and each has their 

own advantages and disadvantages.   

HRP is a heme-containing enzyme with a porphyrin ring exposed at the His 170 

site by a coordinate bond between the histidine side chain Nε2 atom and the heme iron 

atom (Veitch).  The reaction mechanism involves H2O2 oxidizing the Fe (III) to form the 

HRP I intermediate (www.kpl.com).  HRP I is in turn reduced by a hydrogen donor 

(typically aromatic phenols, phenolic acids, indoles, amines and sulfonates) via a one 

electron transfer to form another intermediate (HRP II) and a donor radical (Veitch, 
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KPL).  HRP II is further reduced by an additional hydrogen donor via a one electron 

transfer to regenerate the original enzyme and another donor radical and then the two 

donor radicals combine to yield a detectable product (KPL). In the presence of excess 

H2O2 additional intermediates (HRP III and IV) may be generated which lead to inactive 

peroxidase (KPL).  The main advantage of HRP versus AP is the high rate constant 

which means results appear quickly.  The disadvantage of HRP is that excess substrate 

causes the additional HRP III and IV intermediates to accumulate which inactivates the 

peroxidase causing the signal to fade over time.   

Alkaline phosphatase is a widely distributed, non-specific phosphomonoesterase 

which comprises a group of enzymes that catalyze the hydrolysis of phosphate esters.  

The reaction takes place in an alkaline environment through formation of a covalent 

phosphoseryl intermediate (E-P), generating an organic radical and inorganic phosphate.  

The enzyme also catalyzes phosphoryl transfer reactions to various alcohols (Kim, 

Reichling).  Alkaline phosphatases occur widely in nature, and are found in many 

organisms from bacteria to man. With few exceptions, APs are homodimeric enzymes 

and each catalytic site contains three metal ions, i.e., two Zn and one Mg, necessary for 

enzymatic activity.  The enzymes catalyze the hydrolysis of monoesters of phosphoric 

acid and also catalyze a transphosphorylation reaction in the presence of large 

concentrations of phosphate acceptors (Millan).   

Alkaline phosphatase was the first zinc enzyme to be discovered in which three 

closely spaced metal ions (two Zn ions and one Mg ion) are present at the active center.  

Zn ions at all three sites also produce a maximally active enzyme.  The active center Ser 

102 becomes phosphorylated after nucleophilic attack on the monoester thus catalyzing 
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the hydrolysis.  Zn1 coordinates the ester oxygen activating the leaving group in the 

phophorylation of Ser102 (Coleman).  Likewise, Zn2 coordinates the ester oxygen of the 

seryl phosphate and activates the leaving group during the hydrolysis of the phosphoseryl 

intermediate.  A water molecule (or hydroxide) coordinated to Zn1 following formation 

of the phosphoseryl intermediate acts as the nucleophile in the second step of the 

mechanism.  Dissociation of the product phosphate from the E.P intermediate is the 

slowest, 35 s-1, and therefore the rate-limiting, step of the mechanism at alkaline pH 

(Coleman).     

Because AP is easily farmed and harvested and the reaction is well characterized, 

AP is an effective reporter enzyme for western blots.  The enzyme is easily bound to the 

secondary antibody, in this case Goat Anti-Rabbit IgG, and a substrate is reacted with the 

AP to form a precipitate proportional to the amount of protein bound on the PVDF 

membrane.  A typical substrate is BCIP (5-bromo-4-chloro-3-indolyl phosphate) /NBT 

(nitroblue tetrazolium).  BCIP hydrolysis produces an indigo precipitate after oxidation 

with NBT (Gallagher).   

Common problems with using AP-labeled detection kits stems from the fact that 

the antigen is solubilized and electrophoresed in the presence of denaturing agents (SDS 

or urea), and some antibodies may not recognize the denatured form of the antigen 

transferred to the membrane (Gallagher).  The results observed may be entirely 

dependent on the denaturation and transfer system used.  For example, zwitterionic 

detergents have been shown to restore the antigenicity of outer membrane proteins in 

immunoblotting (Gallagher).  Other potential problems include high background, 

nonspecific or weak cross-reactivity of antibodies, poor protein transfer or membrane 
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binding efficiency, and insufficient sensitivity (Gallagher).  High background is a very 

common problem due to the natural ubiquity of AP in biological samples.  However, high 

background can be mitigated by limiting membrane incubation in primary antibody to 

approximately two hours, washing the membrane with TBST and TBS between 

antibodies, and using a lower concentration of the AP labeled secondary antibody. 

 
 
 
 
 
Figure 6: Diagram of Alkaline Phosphatase colorimetric protein detection using primary 
and secondary antibodies in Western Blot.   

 

http://www.invitrogen.com/etc/medialib/en/images/ics_organized/brands/molecular-
probes.Par.75374.Image.-1.0.1.gif 
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E.  Rat Model Design 

 The rat model was chosen for this project because it is a well characterized model 

used in previous nephrotoxicity studies of rat urine.  Additionally, rat serum can be drawn 

in greater volumes than from mice according to IAACUC regulations and the enrichment 

and 2D DIGE techniques used in this study require significant amounts of protein in 

order to produce reliable data.  The serum samples for the BEA and Puromycin drugs 

came from Study 1 which was aimed at studying the low level nephrotoxicity of four 

drugs: BEA, d-serine, puromycin, and amphotericin B.  However, problems arose during 

the study from a bacterial contamination of samples, equipment, and subjects resulting in 

loss of samples in irregular numbers.  Because of the contamination, only the BEA, 

puromycin, and d-serine studies had reliable samples but the contamination of random 

samples threw off the statistical confidence of much of the data.  The random number of 

viable samples led to the need to pool samples for the study which eliminated the ability 

to compare across and within each nephrotoxin in a truly statistical approach.  However, 

based on previous metabonomic data using rat urine from the d-serine study, a second d-

serine study was conducted in order to strengthen obtained data.   

 D-Serine study 2 was conducted similar to Study 1 with some changes in basic 

study design and in animal handling thanks to lessons learned from analysis of Study 1 

data.  The two major study design changes between d-serine study 1 versus study 2 were 

the source of controls and sample time points.  In study 1, an internal control sample 

came from each rat by drawing a pre-dose sample for comparison against 24 hour post 

dose and 96 hours post dose blood draws.  After 96 hours post dose, the rats were 

sacrificed and this sample labeled Terminal Sacrifice.  Though an internal control is 
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desired and multiple samples from one rat have greater confidence of variable control, 

not enough serum was obtained for the multiple studies relying on the samples.  Thus, in 

study 2 each rat was individually sacrificed at the designated time point and all the serum 

from the rat was collected at the time.  Using this method ensured enough serum 

quantities for all the studies at hand.   In addition to changing the method of sample serum 

draws, analysis of d-serine study 1 data by LC/MS/MS demonstrated most changes in 

protein concentrations occurred between 12 and 24 hours post dose.  Therefore, instead 

of a serum sample taken pre-dose, 24 hours post dose and at terminal sacrifice like in 

study 1, subjects were sacrificed at 12 hours post dose and 24 hours post dose.   

Animal/sample handling changes included randomly distributing rat subject cages 

among the three shelves in the housing room.  Study 1 placed all the animals in groups 

according to their dose and kept all the same doses on the same shelves.  LC/MS/MS 

analysis of study 1 showed protein variations that could be attributed directly to shelving 

placement of the rat subjects.  Additionally, serum and urine samples taken in Study 2 

were immediately mixed with protease inhibitor cocktails to minimize degradation during 

collection and storage times.  Explicit details for Study 1 can be found in Attachment 1.  
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II. PURPOSE 

 The kidney is highly susceptible to damage from chemical and xenobiotic 

compounds because it receives 25% of cardiac output directly from the heart and 

functions as a filter by removing and concentration bodily wastes for excretion.  The 

inherent danger to the kidneys is evident in the 19 million people who suffer from 

Chronic Kidney Disease (CKD) in the U.S. alone.  Compounding the problem is that the 

overwhelming majority of CKD patients are not diagnosed until Stage IV (Severe CKD: 

dialysis or a kidney transplant needed in the near future) which is when clinical 

symptoms begin to manifest strongest.  If kidney functions could be monitored on a 

routine basis by non-invasive means, more people could be properly diagnosed and 

treated earlier when full recovery is still an option.  Currently, clinicians’ measure urine 

samples for evidence of protein and creatinine while measuring blood serum for blood 

urea nitrogen (BUN) levels then combine the figures to estimate the Glomerular Filtration 

Rate (GFR).  The drawbacks are that these tests are not always accurate and the GFR 

varies from person to person.  The purpose of this project is to study the protein levels in 

healthy rats vs rats with low-level kidney degradation in an effort to identify small, low-

abundant proteins that could serve as biomarkers in a highly sensitive test for low-level 

kidney degradation.  Three well-characterized nephrotoxins will be used to target specific 

kidney sections in an effort to identify protein(s) useful for determining overall kidney 

health in a time- and dose-dependent manner.   

 

 

 



 35

III. HYPOTHESIS 

 The hypothesis of this study is that small, low-abundant proteins can be 

electrophoretically separated in order to compare and contrast the protein volumes of 

control rats vs diseased rats in order to identify protein biomarkers of low-level kidney 

degradation.   

 Specific Aims 

(1) Enrich serum samples by removing large, over-abundant proteins (albumin, 

transferrins, IgG, etc.) using an immunodepletion chromatography column.   

(2) Separate enriched serum based on isoelectric point and molecular weight 

using 2-dimensional Difference in Gel Electrophoresis (DIGE) 

(3) Isolate proteins of interest from the 2D DIGE gels using analytical software 

(4) Sequence and identify protein peptides using MALDI-TOF/TOF mass 

spectrometry and MASCOT database 

(5) Research identified proteins for their potential as biomarkers 
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IV. EVALUATION OF MARS COLUMN 

A.  Methods 

1.   Serum Enrichment 

The first attempt at removing high-abundant proteins from the rat serum samples 

used an HPLC version of the Multiple Affinity Removal System for Mouse Serum 

Proteins (MARS MS-3) column purchased from Agilent.  This column uses antibody-

antigen interactions to capture high-abundant proteins and remove them from the sample 

serum.  Removing the high-abundant proteins allows one to visualize and study low-

abundant proteins with proteomic analysis techniques such as 1D and 2D gel 

electrophoresis and mass spectrometry.   

To begin the serum immunodepletion, Agilent’s proprietary Buffer A and Buffer 

B were poured into the HPLC reservoirs and the HPLC lines were purged, first with 

Buffer A then with Buffer B, at a flow rate of 1.0 mL/min for 10 min without a column to 

ensure all lines were flushed of any mobile phase from previous use.  Afterwards, the 

MARS column was installed in the HPLC and the column was conditioned using Buffer 

A.  Next, the LC timetable was set up and two method blanks were run by injecting 200 

µL of Buffer A without a column.  The column was then attached and equilibrated for 4 

min with Buffer A with a flow rate of 1 mL/min at room temperature. 

Once the HPLC lines and MARS column were flushed and equilibrated, rat serum 

sample 119, a BEA control subject from study 1; sample 245, a control from D-Serine 

study 1; and sample 305, a Puromycin control subject from study1,  were diluted 1:5 by 

combining 90-µL of serum with 360-µL of Buffer A.  The diluted samples were filtered 

using a 0.22-µm spin filter for 1 min at 16,000 x g.  Next, 450 µL of each diluted serum 
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was injected into the HPLC and run through the column at a flow rate of 0.5 mL/min 

using 100% Buffer A for 10 minutes.  The Flow-Through (FT) fraction was collected by 

autosampler from 4 to 6 min in one minute intervals, giving 0.5 mL volumes then stored 

for later analysis.  The bound proteins were eluted with 100% Buffer B at a flow rate of 1 

mL/min for 7.0 min.  The autosampler was programmed to collect the Elution (E) 

fractions from 11 min to 15 min collecting 1 ml per minute.  Once the bound proteins 

were eluted, the column was regenerated by running 100% Buffer A for 11.0 min at a 

flow rate of 1 mL/min.  Once the FT and E fractions were collected, they were 

concentrated and the buffer exchanged for 2M urea.  This concentration/buffer exchange 

was done using an Amicon YM-5, a 5 kDa molecular weight cutoff spin tube in a 

standard 15 mL plastic collection tube.  The HPLC protocol is depicted with a sample 

chromatogram from the Agilent manual in Figure 1. 

 

Figure 7:  Sample chromatogram from Agilent Protocol  
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2.   Protein Assay  

In order to run 2D DIGE gels, the exact protein concentration is needed in each 

sample since equal amounts of protein mass (in µg) are required for the imaging statistics 

to work properly.  Additionally, regular 2D PAGE gels with silver staining require 

known protein concentrations so that the gels are not overloaded which decreases 

resolution and protein identification.  For this study, the protein assay also serves as a 

quality control measure since the amount of protein in the FT and E fraction of each 

sample can be compared and used to indicate column removal efficiency.   

The protein assay used most often was the Non-Interfering Protein Assay kit from 

GBiosciences.  First, the kit was laid out along with a 2 mL 96 well plate (Fisher #07-

200-701) and the serum samples sitting in ice.  A standard curve was set up by adding 25, 

20, 15, 12.5, 8, 5, 4, 2, 1, and 0 µL of BSA (2 µg/µL) in triplicate to the plate followed by 

serum samples which were added in 2 µL quantities in triplicate to the plate.  Next, 500 

µL of UPPA-1 was added to each well using a repeater pipet and 10 mL plastic syringe.  

Adhesive film (Fisher #05500-32) was placed over the plate and the entire plate was 

vortexed for approximately 30 seconds.  The plastic film was removed and the samples 

allowed to incubate at room temperature for 2 -3 minutes.  Next, 500 µL of UPPA-II was 

added to each well, a plastic adhesive film placed over top and vortexed briefly.  The 

plate was weighed and then, a balancer plate was weighed and adjusted to within 0.05 g 

of the sample plate using water.  The plates were centrifuged on a Dupont Sorvall 

RT6000D using 11093 rotor at 3400 x g and 4o Celsius for 15 minutes.  While 

centrifuging, Reagent II was mixed by adding 100 parts Color Reagent A with 1 part 

Color Reagent B with enough for 1 mL per sample.  After centrifuging, the supernatant 
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was discarded by inverting the plate in the sink and blotting off excess liquid on kim 

wipes.  Next, 500 µL of UPPA-1 was added to each well, taking care to not disturb the 

pellet at the bottom.  Then, 100 µL of UPPA-II was added to each well and the plate was 

covered with plastic adhesive film and gently inverted a few times (Do NOT Vortex!).  

The plate and a balancer plate were again weighed and adjusted until balanced and 

centrifuged as before but for only 10 minutes.  Afterwards, the supernatant was poured 

off and excess liquid blotted off with kim wipes.  Then, 100 µL of Copper Solution 

(Reagent I) was added to each well and followed by 400 µL of nanopure water in each 

well.  The plate was covered with plastic adhesive film and vortexed to dissolve the 

pellet.  Next, 1 mL of Reagent II was added to each well and the samples allowed to 

incubate for 15 – 20 minutes at room temperature.  Aftewards, 200 µL of each solution 

was transferred to a microtest 96 well plate (Fisher #12-565-501) using a 12 channel 

pipet.  Lastly, 200 µL of nanopure water was added to three wells for Blanks.  The plate 

was read using a Molecular Devices SpectraMax 190 at 480 nm and the data was 

collected using Softmax Pro software.  All data was processed using Excel.   
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3.   2-Dimensional Polyacrylamide Gel Electrophoresis (2D PAGE) 

a.   Separation in the 1st Dimension  

Isoelectric Point Gradient (IPG) strips were prepared to separate the serum 

proteins by isoelectric point in a pH gradient ranging from 4 to 7.  First, the sample was 

pippetted into the lanes of a reswelling tray.  Next, the plastic liners were removed from 

the IPG strips and the strips placed into the reswelling tray with the plastic backing facing 

down.  Mineral oil was added on top of all the IPG strips to prevent them from drying 

out, the cover was placed on the reswelling tray to protect the sample and the IPG strips 

were allowed to incubate overnight to absorb all the proteins.  The next day the IPG strips 

were carefully removed from the trays using tweezers, excess mineral oil was allowed to 

drip off onto kimwipes, and the strips were placed into a liner tray.  Two electrode strips 

were cut to fit across the liner tray and 1 mL of water was pippetted onto each side of the 

electrode strip with excess water blotted off using kimwipes.  The electrode strips were 

placed across the IPG strips at the top and bottom then the plastic electrodes clamped in 

place.  The electrode/IPG tray conglomerate was clamped in place on the electrophoresis 

apparatus and mineral oil was used to fill any remaining gaps.  The apparatus and its 

cooling system were turned on, set to 300V, and allowed to run overnight in an 18 hour 

gradient cycle reaching a max of 3000V.   

As the serum is separated in the 1st dimension, the gel tank and necessary buffers 

were prepared for running the gel in the 2nd dimension the next day.  Mike Wyder 

previously mixed stock buffer solutions in 10X concentrated form and kept them in a 

cold room.  The lower tank buffer was prepared by pouring 8 L of Millipore water into 

the lower tank and mixed with stock buffer, which was diluted by mixing 1 L of 10X 
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concentrate with 1 L of Millipore water in a 2 L graduated cylinder.  The diluted solution 

was left in the tank overnight with the cooling fan turned on and the tank covered 

overnight.  The Upper buffer was prepared by diluting 300 mL of 10X Upper buffer 

solution to 3 L in a 4 L Erlenmeyer flask with Millipore water.  The diluted solution was 

transferred to a 3 L plastic beaker and placed on a stir plate with stir bar and covered for 

the evening.   
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b.   Separation in 2nd Dimension - Protocol 

The next day, the samples and apparatus were ready for separating the serum proteins in 

the 2nd dimension.  First, two 50 mL conical tubes of equilibration buffer were taken from 

the cold room and allowed to thaw.  To one tube was added 800 mg of DTT and to the 

other tube was added 1 g of Iodoacetamide (IAA).  The IAA tube was wrapped in 

aluminum foil since IAA is light sensitive.  Both conical tubes were placed on a rocker 

plate to warm and dissolve the newly added chemicals.  Once thoroughly mixed, the 

equilibration buffer/DTT and equilibration buffer/IAA solutions were filtered in their 

own disposable 0.22 micron vacuum filter beakers (covering the IAA beaker in 

aluminum foil again) to remove any particulates.  In the mean time, the IPG strips were 

removed from the electrode tray using tweezers and kimwipes to blot off excess mineral 

oil.  The strips were placed into a reswelling tray, covered with the DTT buffer, wrapped 

in aluminum, and placed on a BellyDancer for 15 minutes.  After the 15 minutes, the 

DTT buffer was vacuumed up and the process repeated three more times, once more with 

DTT and twice with the IAA solution giving a total of four washes in equilibration 

buffers.  Next, the gel apparatus was prepared by placing spacers into the slots in the 

upper tank and double paned, pre-cast gels purchased from Nextgen Sciences Inc (cat # 

PRS-703696) were placed into the tanks as well.  Then, the Upper buffer was poured into 

the upper tank until the tops of the gels were barely covered, the IPG strips placed into 

the gel wells using tweezers, and the remaining buffer poured into the tank.  The 

apparatus was enclosed and the gel run at 500 mA for 5 hours, 51 minutes.  Once the 

proteins had separated, the gels were removed from the apparatus, cut from the glass 

plates, silver stained according to protocol, then digitally scanned for analysis.   
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c.   Proteosilver Silver Stain  

Sigma’s ProteoSilver™ Silver Stain Kit was used to silver stain the small, precast 

gels purchased from Invitrogen.  The final volume for each solution mixed for this kit 

depended on the number of gels to be stained since each gel required 200 ml of each 

solution.  First, the gels were placed into a clean tray (up to 2 gels per tray) to soak in Fix 

1 solution (50% Ethanol, 10% Acetic Acid) from 1 hour to overnight.  The gels were 

removed from the Fix 1 and placed into Fix 2 (30% Ethanol) for 10 minutes and then the 

gels were washed with Millipore water for 10 minutes.  Afterwards, the gels were placed 

into Sensitizer solution for 10 minutes which was made right before use by diluting 

ProteoSilver Sensitizer 1:100 with Millipore water.  After soaking in Sensitizer, the gels 

were washed with Millipore water twice for 10 minutes apiece.  Next, the gels were 

placed into Silver solution for 10 minutes.  The Silver solution was prepared by diluting 

the ProteoSilver Silver Solution from the kit 1:100 with Millipore water and was used 

immediately since the diluted solution only had an active life of 2 hours.  The gels were 

then removed and washed for 1 minute using Millipore water.  Once cleaned, the gels 

were placed in developer solution for 3 to 7 minutes depending on the amount of protein 

in the gel and the intensity of the staining desired.  The Developer solution was made 

right before use by adding 5 ml of ProteoSilver Developer 1 chemicals and 0.1 ml of 

ProteoSilver Developer 2 chemicals to 95 ml of Millipore water.  Like the other 

solutions, the developer was scaled up to give a final volume so that each gel would be 

immersed in 200 ml of solution.  Once the protein spots were dark enough, but before the 

background became too elevated, 5 ml of the Stop solution included in the kit, was added 

directly to the Developer Solution and allowed to incubate for 5 minutes. 
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B.  Results 

1.   Protein Assays and 2D PAGE 

After serum enrichment, samples were tested by protein assays and 2D gels to 

gauge the performance of the Agilent column.  All initial tests showed that the Agilent 

MS-3 column did not remove enough high abundant proteins to allow visualization of 

low abundant proteins.  The Agilent literature states that the MARS MS-3 column is 

capable of removing 80% of the albumin, transferrin, and IgG from rat serum.  Literature 

searches online and from Agilent point out that approximately 98% of serum proteins are 

the over abundant proteins, of which albumin, transferrin, and IgG make up the majority.  

Assuming that 80% of the top three abundant proteins are removed by the Agilent 

column, that means 78.4% of all proteins should be removed from the serum samples.  

The NI protein assay from 12 June measured a protein concentration of 2.82 µg/µl in the 

Elution fraction of sample 119 but 3.56 µg/µl in the Flow Through fraction while the 

assay from 14 June measured a 39.38 µg/µL concentration in the whole serum of sample 

119.  These values mean that 7.16% of the albumin, transferrin, and IgG were captured in 

the E fraction and 9.04% of the proteins washed through in the FT fraction.  Given the 

abundance of the top three, one would have expected to see a greater concentration of 

proteins in the E fraction compared to the FT fraction.  These values also indicated that a 

large majority of the proteins were being lost in the concentration/buffer exchange phase 

since one expects a greater protein recovery than 16.2% combined.  The evidence that the 

Agilent column was not effective was further demonstrated in the large 2D, silver stained 

gels shown below. 
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Figure 8: A) Non- Interfering (NI) Protein Assay showing protein concentrations for E 
and FT fractions of Control Samples 119, 245, 305 before concentration & buffer 
exchange. B) NI Protein Assay showing protein concentrations for E and FT fractions 
and Whole Serum (WS) of Control Samples 119, 245, 305 after concentration & buffer 
exchange. 
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Figure 9: 2D PAGE of Sample 119 Flow Through after immunodepletion with Agilent 
MARS MS-3 HPLC        
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Figure 10: 2D PAGE of Sample 119 Whole Serum after immunodepletion with Agilent 
MARS MS-3 HPLC            

 
 
  
 
 
                
 Comparison between the FT fraction gel and the Whole Serum gel shown in 

Figures 9 and 10 demonstrate that very little enrichment occurred using the Agilent 

MARS column.  The large swaths of proteins and low spot resolution indicate that 

immunodepletion requires additional optimization in order to achieve significant results.   
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C.  Discussion  

Based on the evidence from the protein assays and gel images, it was concluded 

that the Agilent HPLC MARS column did not work as advertised and optimization tests 

were needed.  The large swaths of over abundant proteins prevent any ability to visualize 

smaller, low abundant proteins by 2D DIGE gel and would also prevent any image 

analysis.  Optimization tests included reducing the amount of rat serum injected into the 

column and running the column at slower flow rates.  Additionally, the centrifuge version 

of the MARS column was tested and both HPLC and spin columns were tested with 

commercially purchased mouse serum.  The mouse serum was used as a control since the 

MARS column was advertised specifically for mouse serum.   
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V. MARS COLUMN OPTIMIZATION 

A.  Methods 

1.   Serum Dilution  

To test the theory that the MARS column was overloaded with too much rat 

serum, sequentially less volumes of serum were diluted 1: 5 per the protocol and injected 

into the column.  The spectrometry data was coupled with 1D gels to identify an optimal 

volume that would produce better separation of proteins.  The test used 5 volumes, 10, 

20, 30, 40, 50 µL, all of which were diluted 1:5 and run through the HPLC column 

according to Agilent’s protocol as detailed previously on page 36.  Results are shown in 

Figures 11 and 12.   

 

2.   Flow Rate 

To test the theory that the overabundant proteins would bind with greater 

efficiency if given more time to interact with the stationary phase, the flow rate was 

reduced from 0.5 ml/min to 0.25 ml/min.  The general protocol from Agilent was 

otherwise unchanged and followed the outline described previously on page 36 and 

shown in Figure 13.   
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3.   Positive and Negative Control Tests 

The MARS MS-3 column was designed to remove the top three over-abundant 

proteins from mouse serum but this study used rat subjects.  Since rat proteins have a 

different morphology from mouse proteins, the MARS HPLC column was tested using 

commercially purchased mouse serum.  The Agilent HPLC protocol was strictly followed 

as described previously on page 36.  Additionally, after testing the HPLC MARS MS-3 

column, a MARS MS-3 spin column was tested to discern if the HPLC column was 

manufactured incorrectly or possibly damaged during shipping.  Both commercially 

purchased mouse serum and control samples 119 and 305 from the study were used on 

the spin column according to Agilent protocol.   
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B.  Results 

1.   Serum Dilution  

Figure 11: Small 1D SDS-PAGE of collected FT and E fractions of rat control sample 
119 from MARS HPLC column with sample volumes ranging from 10 – 40 ul.  The 
samples are in lanes 2 – 9 and are as follows: 
 

1) See Blue Standard   6)  E fraction of 30 ul of sample 119 
2) E fraction of 10 ul of sample 119  7)  FT fraction of 30 ul of sample 119 
3) FT fraction of 10 ul of sample 119 8)  E fraction of 40 ul of sample 119 
4) E fraction of 20 ul of sample 119 9)  FT fraction of 40 ul of sample 119 
5) FT fraction of 20 ul of sample 119 10)  See Blue Standard 
 
Image file: sm0607-01 
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Figure 12: Small 1D SDS-PAGE of collected FT and E fractions of rat control sample 
305 at 10 – 40 ul.  The samples are in lanes 2 – 9 and are as follows: 
 

1) See Blue Standard   6)  FT fraction of 30 ul of sample 305 
2) FT fraction of 10 ul of sample 305  7)  E fraction of 30 ul of sample 305 
3) E fraction of 10 ul of sample305 8)  FT fraction of 40 ul of sample 305 
4) FT fraction of 20 ul of sample 305 9)  E fraction of 40 ul of sample 305 
5) E fraction of 20 ul of sample 305 10)  See Blue Standard 

 
Image file: sm0607-03 

 

 

  

The consistent band sizes and intensities across all samples in both gels demonstrate that 

there is no difference in column effectiveness as the amount of protein is decreased.  This 

fact meant that either this specific column was defective due to either manufacturing or 

shipping problems or simply that rat proteins do not bind well to the Agilent column.   
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2.   Flow Rate 

Figure 13 shows the FT and E fractions after changing the HPLC run to collect 

more of the FT fraction from sample 119 and 305 in gel lanes 2 – 8.  This change in 

protocol is denoted by 01A at the end of the sample name.  One unexpected result was 

the collection of a second elution peak for sample 305 run under the 01A protocol.  This 

fraction was tested in Lane 8 to see if there were any significant differences from the 

other fractions.  Lanes 9 and 10 show the FT and E fractions of sample 305 after the 

protocol was changed to a slower flow rate of 0.25 ml/min from the protocol 0.5 ml/min 

to give the top three proteins longer time to bind to the mouse-3 column.  This change in 

protocol is denoted by 02 at the end of the sample name.  The consistent protein bands 

across all FT and E fractions in the gel show that no binding improvement was achieved.  

Based on this result, it was inferred that rat protein homology differs from mouse proteins 

in ways that prevent the stationary phase from efficiently binding and removing over-

abundant proteins.   
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Figure 13: 1D SDS-PAGE of Samples 119 and 305 using Agilent HPLC MARS MS-3 
column after change in protocol to test enrichment effects of slower flow rate. 
 
1)  See Blue Standard      
2)  FT fraction 20 ul of sample 119 01A run 1   
3)  E fraction 20 ul of sample 119 01A run 1   
4)  FT fraction 20 ul of sample 119 01A run 2   
5)  E fraction 20 ul of sample 119 01A run 2   
6)  FT fraction of 20 ul of sample 305 01A 
7)  E 1 fraction of 20 ul of sample 305 01A 
8)  E 2 fraction of 20 ul of sample 305 01A 
9)  FT fraction of 20 ul of sample 305 02 
10)  E fraction of 20 ul of sample 305 02 

 
Image file: sm0607-04 
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3.   Positive and Negative Control Tests 

 Figure 14, lanes 2 – 5, show collected FT and E fractions of mouse control serum 

purchased from Sigma.  Samples of control mouse serum were run on the HPLC column 

by injecting 90 ul and following Agilent protocols.  Once fractions were collected, a 1 ul 

sample and a 10 ul sample of each fraction was prepared according to protocols and run 

on a 1 D gel since the protein concentration was unconfirmed.  Lanes 6 – 9 show the 

mouse control serum FT and E fractions after filtration using the Agilent Mouse-3 spin 

cartridge.  Once the FT and E fractions were collected, a 1 ul sample and a 10 ul sample 

were prepared using protocols and run on a 1 D gel since protein concentration was 

unconfirmed.   

Figure 14:  1D SDS-PAGE comparing Agilent MARS MS-3 HPLC and Spin columns 
using commercially purchased mouse serum enriched according to protocols 
  

1) See Blue Standard   6)  FT mouse control Spin Column 1ul  
2) FT mouse control HPLC 1 ul   7)  E mouse control Spin Column 1 ul 
3) E mouse control HPLC 1ul  8)  FT mouse control Spin Column 10 ul 
4) FT mouse control HPLC 10 ul 9)  E mouse control Spin Column 10 ul  
5) E mouse control HPLC 10 ul  10)  See Blue Standard 
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Figure 15: Negative control rat samples from puromycin (subject #305) and 
bromoethylamine (BEA) (subject #119) nephrotoxicity studies.  The samples were 
filtered through the Agilent mouse-3 spin cartridge in order to compare the depletion 
results with the HPLC column.  The samples were run in duplicate according to Agilent 
protocol and separated by 1 D gel.  The lanes are as follows: 
 
 

1) See Blue Standard   6)  FT rat sample 119 run 1   
2) FT rat sample 305 run 1  7)  E rat sample 119 run 1  
3) E rat sample 305 run 1  8)  FT rat sample 119 run 2  
4) FT rat sample 305 run 2  9)  E rat sample 119 run 2   
5) E rat sample 305 run 2  10)  See Blue Standard 

 
Figure 15: 1D SDS-PAGE  File sm0707-09 

 

 

 The distinct difference in protein band intensity between the Mouse FT and E 

fractions compared to the consistent protein band intensities of the Rat FT and E fractions 

indicate that the MARS MS-3 column does work well at enriching mouse serum samples 

but does not work as advertised on rat samples.  The stationary phase of the MS-3 

column is simply unable to adapt to the different protein morphologies and cannot enrich 

rat serum for use in this project.  The corroboration with the spin column confirmed that 

the HPLC column was not damaged and merely cannot cope with rat serum. 



 57

C.  Discussion  

All of the optimization tests demonstrated that the Agilent MARS column was 

performing at maximum effectiveness but was still unable to provide the resolution 

needed for a DIGE study.  Injecting smaller sample volumes to decrease the amount of 

protein enriched by the column showed no improvement which meant that the column 

was not being overloaded.  Slowing the flow rate to increase antigen-antibody interaction 

time did not increase enrichment resolution either.  The final testing comparing rat serum 

with mouse serum both in the HPLC column and the spin column confirmed that the 

HPLC column was not a faulty anomaly but that the MS-3 stationary phase was simply 

unable to bind rat protein as effectively as advertised by Agilent.  In order to advance the 

project, a new column was obtained from another lab that advertised as being effective at 

removing the top seven abundant proteins in rodents.  The column was the IgY, chicken 

antibody, spin column from Proteome Labs called the IgY-R7.  This column was 

purchased from Beckman-Coulter and field tested using commercially purchased rat 

serum from Sigma-Aldrich.   
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VI. PROTEOMET LAB IgY-R7 COLUMN TESTING 

A.  Methods  

1.   Enrichment 

 A demonstration IgY column kit was obtained from a sales representative and 

tested for effectiveness using 1D Gels and BCA and Non-Interfering protein assays.  

Commercially available rat serum was purchased from Sigma Aldrich for the IgY tests so 

as not to waste study samples.  The rat serum was run through the column according to 

the Proteome Lab protocol and concentrated using Microcon YM-10 and YM-3 spin 

cartridges. 

Use of the ProteomeLab IgY-R7 Spin Column Proteome Partitioning Kit strictly 

followed the protocol included with the kit.  To begin using a new column, the bottom 

snap was removed and the column was placed into a 2 mL collection tube and 

centrifuged for 30 sec at 2,000 rpm to remove the storage buffer.  Next, the column was 

conditioned by performing two complete buffer runs without adding any sample.   

A conditioning buffer run began by adding 500 µL of 1X Dilution Buffer to the 

column, inserting the top cap, inverting and shaking the column several times to fully 

immerse all the IgY beads, and placing the column in a 2 mL centrifuge collection tube.  

The column and collection tube were then centrifuged for 30 sec at 2,000 rpm.  The 

collection tube was removed, end cap placed on the column, and the previous step 

repeated a total of four times.  The next step to condition the IgY beads used 500 µL of 

1X Stripping Buffer and repeated the previous steps a total of four times.  The final step 

to condition the column was to regenerate the IgY beads using 600 µL of Neutralization 

Buffer and repeating the previous steps a total of one time.  All three steps (wash, elution, 
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neutralization) constituted one conditioning run.  The entire process was repeated a 

second time.  The column only needed to be conditioned before its first use, no 

conditioning was necessary between uses on samples.   

Before immunodepletion, 5 mL of 10X  Dilution Buffer was mixed with 100 µL 

of Protease Inhibitor and diluted to 50 mL in a conical tube.  The protease inhibitor was 

to help reduce protein degradation during the enrichment process.  To begin sample 

immunodepletion, 15 µL of rat serum was diluted in 485 µL of Dilution Buffer and 

pipetted into the spin column.  The column was sealed with the top cap, inverted and 

shaken, then incubated at room temperature for 15 minutes.  The end cap was removed 

from the bottom of the column and the column was placed into a 2 mL collection tube 

and centrifuged for 30 sec at 2,000 rpm using a desktop mini-spin centrifuge.  The 

collection tube with the Flow-Through (FT) fraction was set aside in ice and the end cap 

placed on the column.  Next, 500 µL of Dilution Buffer was added and the beads and 

buffer mixed by inverting and shaking the column.  Then, the end cap was removed, 

column placed into a 2 mL collection tube, and centrifuged for 30 sec at 2,000 rpm.  The 

second and final FT fraction was collected and placed on ice.  The same process was 

repeated three additional times with 500 µL of 1X Dilution Buffer to give the Wash 

fractions. 

After washing and collecting the low-abundant proteins, the bound proteins were 

eluted and collected.  To remove the bound proteins, the end cap was placed on the 

bottom, 500 µL of 1X Stripping Buffer was added to the column, and the top cap was 

snapped into place.  The beads were mixed by inverting and shaking the column then 

incubated at room temperature for 2 – 3 minutes.  The end cap was removed and the 
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column placed into a 2 mL collection tube.  The column and tube were centrifuged for 30 

sec at 2,000 rpm.  This process was repeated three more times for a total of 4 Elution 

fractions each approximately 500 µL in volume with each fraction being stored on ice 

during the interim.  The column should not be exposed to Stripping Buffer longer than 15 

minutes to ensure column stability.  Immediately after the final Elution fraction, the end 

cap was attached, 600 µL of Neutralization Buffer was added, and the top cap snapped on 

so the entire column could be inverted and shaken to mix the beads.  The column was left 

to incubate at room temperature for 5 minutes then the end cap removed and the column 

placed into a 2 mL collection tube.  The column and tube were centrifuged for 30 sec at 

2,000 rpm.  If another sample was ready it would be added to the column and the entire 

process repeated.  If no other sample were ready, 500 µL of 1X Dilution Buffer would be 

added with the caps in place and the beads mixed for storage until next use.   

  After all nine fractions were collected and stored on ice, the two FT fractions, 

three W fractions, and 4 E fractions were pooled according to their respective groups into 

one 2 mL collection tube per group.  The E fraction also included 220 µL of 

Neutralization Buffer to prevent protein degradation.  After all samples were prepared for 

storage, they were labeled and placed in a -20o Celsius freezer. 
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2.   1-Dimensional Polyacrylamide Gel Electrophoresis (1D PAGE) 

For the 1D gel test, 15 ul of commercially available rat serum was diluted with 485 ul of 

IgY dilution buffer for a 1:33 dilution.  The diluted sample was run through the column 

and the first generation FT fraction was collected (1 ml) and labeled Run 3.  The column 

was then washed and abundant proteins were stripped off and collected to give the first 

generation Elution fraction (2 ml).  Once the column was stable, 500 ul of the first 

generation FT fraction was run through the column as Run 4.  The Run 4 FT fraction was 

collected (1 ml) and the bound proteins were stripped to give a second generation E 

fraction (2 ml) labeled Run 4 Elution.  A BCA protein assay was next in an effort to 

quantify the protein concentrations in each fraction.  Unfortunately, the concentrations 

were so small they were below the sensitivity of the assay.  So, the fractions were 

concentrated by centrifugation using a Microcon YM-3 concentration tube.  This tube 

uses a filter and centrifugal force to collect anything greater than 3 kDa in size.  Once the 

samples were concentrated, a buffer exchange was performed by adding 1 ml of 2M urea 

to the tube and centrifuging the sample for 2 hours.  A total of 2 buffer exchanges were 

performed.  Once the samples were concentrated, a BCA assay was performed again in 

an effort to quantify the extent of the protein removal.   
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B.  Results 

 Testing of the IgY column used rat serum purchased commercially from Sigma-

Aldrich.  The serum was enriched according to Proteome Lab protocols and the 1st 

Generation FT1, FT2, W, and E fractions were labeled as Run 1 and a protein assay run 

to measure the protein concentrations.  Afterwards, the 1G FT1 and FT2 fractions were 

combined and concentrated to give a single 1G FT fraction.  This fraction was then 

diluted with Proteome Lab’s Dilution Buffer to a final volume of 500 µL and run through 

the IgY column a second time.  The 2nd Generation (2G) FT1, FT2, W, and E fractions 

from the further enriched serum were collected, labeled as Run 2, and assayed for protein 

concentration.  The first chart showing the concentrations is shown below in Figure 16: 

Figure 16:  BCA protein assay used to measure the three fractions collected after enriching rat serum 
using an IgY antibody column on 27 Aug 07.  The Run 1 (R1) label designated the FT, W, and E 1G 
samples collected after initially enriching whole rat serum.  The Run 2 (R2) label designated the 2G FT, W, 
and E samples collected after further enriching the R1 FT fraction.   

 
 

The low concentration values from the BCA assay were of concern so to ensure 

that no interfering substances distorted the assay, a Non-Interfering assay was repeated 

on the samples to confirm the results.  The NI assay results were similar enough to the 

BCA assay results that one can assume the values accurate.  The NI assay repeat is shown 

below in Figure 17. 
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Figure 17:  NI Protein Assay of commercial rat serum enriched by IgY column, repeat of 
BCA assay on sample runs 1 & 2.   

 
 
 In order for the samples to be separated by DIGE gels, the samples are required to 

have a concentration of 1 µg/µl at minimum however, the higher the concentration then 

the better.  In order to figure out how much raw sample was needed for enrichment, the 

individual samples were concentrated once using the YM-3 spin cartridge and a NI assay 

was repeated.  The results are shown below in Figure 18: 
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Figure 18: NI Protein Assay of commercially purchased rat serum enriched using IgY 
spin column and concentrated using the YM-3   

 

Each fraction, Flow Through 1, Flow Through 2, Wash, and Elution, were 

individually measured after being concentrated.  The values did not fit expected trends so 

another NI assay was repeated to ensure accurate results.  The next assay contained non-

concentrated samples and final, concentrated samples paired together.  The samples 

combined both FT fractions into one concentrated sample and combined all four E 

fractions into one concentrated sample.  The results are shown below in Figure 19: 
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Figure 19: NI protein assay comparing IgY column enriched samples after- and before- 
concentration using YM-3 spin cartridge.  The first four columns indicate samples after 
concentration and the last four columns indicate samples before concentration.   

 

 

Figure 19 demonstrated a significant increase in protein concentration and that the 

IgY column was effective at removing abundant proteins as evident by the elevated 

values from the condensed E fractions relative to the condensed FT fractions.   

After measuring the protein concentrations of the enriched samples, small 2D PAGE gels 

were run in order to provide a visual comparison of the protein resolution provided by 

each column.  The small 2D gels were chosen as a qualitative test because they gave 

cheaper and faster results.  To run the gels, the samples were prepared by first 

concentrating the FT and E fractions then exchanging the buffer using a Microcon YM-

10 spin cartridge and 2M urea.  The buffer exchange was deemed necessary since the IgY 

kit uses a buffer that is very high in salt (150 mM NaCl).  This high salt content would 

destroy any subsequent 2D gels that may be run.  The gel results can be seen below in 

Figure 20 - 23:    
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Figure 20: Small 2D PAGE gels comparing 1st Generation FT and E fractions and 2nd 
Generation FT and E fractions after buffer exchange and YM-3 concentration to 
demonstrate the increased enrichment with each pass through the IgY spin column.  A) 
Flow Through Fraction, rat serum, 1st Gen  B) Elution Fraction, rat serum, 1st Gen  C) 
Flow Through Fraction, rat serum, 2nd Gen  D) Elution Fraction of rat serum, 2nd Gen 
 
A: FT Fraction, Rat Serum, 1st Gen  B: E Fraction, Rat Serum, 1st Gen 

   
 
C: FT Fraction, Rat Serum, 2nd Gen  D: E Fraction, Rat Serum, 2nd Gen   
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Despite the buffer exchange and protein concentration, the 2D gels showed better 

resolution of protein spots than the large gels of Agilent enriched samples.  A wide range 

of proteins were evident based on both isoelectric point and molecular mass.  The 

important result seen in the gels was that the Elution fraction does show increased 

removal of significant amounts of over abundant proteins like albumin, transferrin, and 

IgG.  A visual comparison clearly showed a greater amount of protein in the albumin 

range in the E gel than the FT gel.  Unfortunately, the 2 D gels still showed a lot of 

streaking and low resolution of protein spots.  Other areas of concern were the numerous 

spots in the elution gels directly under the albumin blob and there appeared to be more 

proteins in the gel than the seven targeted over-abundant proteins listed:  albumin, IgG, 

transferrin, fibrinogen, IgM, alpha 1-antitrypsin, and haptoglobin.  The protein spots that 

appeared over multiple ranges of pHs and weights could just be artifacts of degradation 

or other isoforms for the same proteins.  The 2D gels were a good test of the column’s 

effectiveness but still took considerable time to run.  In order to monitor the IgY column 

for degradation, a faster qualitative method was needed to act as a quality control for the 

enriched samples.  Thus, a 1D SDS-PAGE gel was run (Figure 22) to see if visual results 

would be similar enough to the small 2D gel to act as a quality control for a pilot study.   

The protein assay showed that there was 9.4 times the amount of protein in the 

Run 3 E fraction than in the Run 3 FT fraction.  The greater amount of protein in the E 

fraction meant that most of the abundant proteins were removed in the first pass through 

the IgY column.  The assay showed that the serial dilution worked well and removed 

additional abundant proteins as evidenced by more protein in the Run 4 FT fraction than 

in the Run 4 E fraction.   
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Figure 21:  Average protein values for Run 3 and 4 after concentration using BCA assay 

 
 
 
 
Once the protein concentrations were known, the fractions were run on a 1D gel and 

visualized using the genomics silver stain kit.  Given the concentrations, 1 ul of each 

sample was used on the gel to see relative quantities.  Image 1 shows the four fractions in 

the following order: Run 3 FT, Run 3 E, Run 4 FT, Run 4 E 

 
Figure 22:  1D gel of Run 3 and 4 FT and E fractions after enrichment with IgY spin 
column         
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The results showed that a 1D gel was an acceptable method of testing enriched samples 

since there was a clear difference in proteins based on the darkness of the stained protein 

bands.  By combining the 1D gels with protein assays, the IgY columns could be suitably 

monitored for effectiveness throughout the pilot and full studies.   

The last step in characterizing the effectiveness of the IgY column was to directly 

compare the IgY enriched samples versus the Agilent enriched samples with one NI 

assay.  This assay is shown below in Figure 23: 

Figure 23:  NI Protein assay comparing IgY enriched samples versus Agilent MARS 
enriched samples.   

 

 

Unfortunately, this assay did not provide relevant data as many of the calculated 

concentrations were found to be negative in value.  The results from this assay were 

discarded since the other assays support the use of the IgY column as a suitable 

separation method for the study.   

 

 

 

‐2

‐1

0

1

2

3

4

FT1 
r1 2 
ul

elute 
r1 2ul

FT1 
r1 
10ul

elute 
r1 
10ul

FT1 
r2 2ul

elute 
r2 2ul

FT1 
r2 
10ul

elute 
r2 
10ul

FT 
305 
10 ul

E 305 
10 ul

FT 
305 
50 ul

E 305 
50 ul

FT 
119 
10 ul

E 119 
10 ul

FT 
119 
50 ul

E 119 
50 ul 

NI Protein Assay Agilent vs IgY comparison 
06 Sep 07



 70

C.  Discussion 

 Based on the results of the protein assays, 1D gels, and 2D gels, it was evident 

that the IgY spin column would successfully enrich the rat serum samples for use in this 

project.  Based on the values from the protein assays, the samples required two passes 

through the column in order to remove enough of the over abundant proteins.  To make 

up for the low protein concentrations, several aliquots would need to be enriched and 

concentrated using the YM-3 spin cartridges.  To ensure all steps of the study would 

work as planned, a pilot study was initiated.  All steps in the study were tested for 

optimal results using four samples, a control and high dose from Puromycin and D-Serine 

Study 1.  Originally the pilot study called for a control and high dose from BEA as well 

but the protein concentration was not high enough to use the samples after enrichment 

and concentration.   
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VII. PILOT STUDY 

A.  Methods 

1.   IgY Spin Column Enrichment 

The pilot study was an opportunity to define the optimal methods needed to ensure 

the IgY column removed the most amount of overabundant protein possible while still 

having enough sample to perform multiple DIGE gels.  The pilot study samples were 

chosen from each drug study at a high dose and a control using the Terminal Sacrifice 

time points.  From each sample, 15 µl of serum was pipette into an eppendorf tube and 

diluted with 485 µl of IgY dilution buffer.  The IgY dilution buffer was made by diluting 

100 µl of Sigma protease inhibitor cocktail to 10 ml with IgY dilution buffer.  The diluted 

serum sample was then run through the IgY column which produced the 1st Generation 

(1G) of FT, Wash, and E fractions (~1.5 ml total).  The 1G FT and E fractions were 

concentrated using the Microcon YM-3 spin filters in the Sorvall centrifuge (3200 x g at 

35 min, 4 C).  Once the fractions were concentrated, the 1G FT samples were removed 

and mixed together by drug dose to create a pooled sample.  The pooled sample was then 

diluted with IgY dilution buffer plus protease inhibitor to give a final volume of 500 ul.  

This pooled, 1G FT fraction was run through the IgY column once more to create the 2nd 

Generation (2G) of FT, Wash, and E fractions.  These 2G FT and E fractions were 

concentrated using the Microcon YM-3 spin filters as before.  The figure below details 

the drug and dose of each rat used. 

Figure 24: List of Animal subjects by dose and drug for pilot study using IgY column 
  D-Serine     Puromycin     BEA   
                  

  
control (0 
mg/kg) 

500 
mg/kg   

control (0 
mg/kg) 

300 
mg/kg   

control (0 
mg/kg) 

500 
mg/kg

Rat subject  243 247   303 320   272 285
Rat subject  246 251   305 324   274 289
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2.   CyDye Labeling of Proteins  
 

All work with the Cy Dyes must be done in as minimal light as possible since the 

dyes are light sensitive.  All work from labeling to 1st and 2nd dimension separation of the 

proteins must be done with the lights off or with the experiments covered.  First, the Cy 

Dyes needed to be reconstituted so once they were removed from the freezer and allowed 

to slowly warm for 5 minutes, 5 µL of anhydrous DMF was added to the lyphohilized 

powder to create a 1 mM stock solution.  The solution was vortexed for 30 seconds then 

centrifuged for 30 seconds at 12000 x g.  Working solutions were made from the stock 

solution by adding 1.5 volumes (7.5 µL) of DMF to a new eppendorf tube then mixed 

with the dyes.  This dilution creates a final working solution of 400 pM which is 

recommended for labeling 50 µg of protein.  Next, the pH was raised to the optimal value 

of 8.5 by adding diluted 50mM sodium hydroide and pH paper to check.  After prepping 

the Cy Dyes, the samples were labeled by adding 1 µL of Cy Dye to the eppendorf tube 

using Cy 2 to label the internal standard, Cy 3 to label the control sample, and Cy 5 to 

label the experimental sample.  Once the samples were labeled the tubes were vortexed 

and centrifuged for 30 sec each and incubated on ice for 30 minutes.  After labeling, 7 µL 

of Pharmalyte buffer was added to each Cy Dye tube to quench the labeling reaction.  

Next, Rehydration Buffer (RHB) was prepared by adding 30 mM DTT and a calculated 

amount was added to the Cy Dye labeled samples to give a final volume of 345 µL.  The 

samples, now labeled and in RHB, were kept in their eppendorf tubes and floated in a 

water sonication bath for 1 minute then placed on a shaker table for 15 minutes.  The 

cycle of 1 min sonication, 15 minute shaker table, was repeated for a total of four cycles.  

The exact volumes of Cy Dye added to each sample are listed in the figure below: 
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Figure 25: Example of volume of enriched, pooled sample added to Cy Dye for labeling  
50ug each           
comp 1            
305/303 control vs 320/324           

  
Cy2 
303/305 

Cy2 
320/324 total Cy2 

Cy3 
303/305 

Cy5 
320/324 

  67.7 33.2 100.9 135.4 66.5
comp 2           
243/246 control vs 285/289           

  
Cy2 
243/246 

 Cy2 
285/289 total Cy2 

Cy3 
243/246 

Cy5 
285/289 

  39.6 56.6 96.2 79.3 113.3
 
 
 

 

2.   Separation in the 1st Dimension  

After the samples were labeled, Isoelectric Point Gradient (IPG) strips were 

prepared to separate the serum proteins by isoelectric point in a pH gradient ranging from 

4 to 7.  First, the labeled samples were pippetted into the lanes of a reswelling tray.  Next, 

the plastic liners were removed from the IPG strips and the strips placed into the 

reswelling tray with the plastic backing facing down.  Mineral oil was added on top of all 

the IPG strips to prevent them from drying out, the cover was placed on the reswelling 

tray to protect the samples, the whole tray was wrapped in black plastic to block light, 

and lastly the IPG strips were allowed to incubate overnight to absorb all the proteins.  

The next day the IPG strips were carefully removed from the trays using tweezers, excess 

mineral oil was allowed to drip off onto kimwipes, and the strips were placed into a liner 

tray.  Two electrode strips were cut to fit across the liner tray and 1 mL of water was 

pippetted onto each side of the electrode strip with excess water blotted off using 

kimwipes.  The electrode strips were placed across the IPG strips at the top and bottom 

then the plastic electrodes clamped in place.  The electrode/IPG tray conglomerate was 
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clamped in place on the electrophoresis apparatus and mineral oil was used to fill any 

remaining gaps.  The apparatus and its cooling system were turned on, set to 300V, and 

allowed to run overnight in an 18 hour gradient cycle reaching a max of 3000V.   

As the serum is separated in the 1st dimension, the gel tank and necessary buffers 

were prepared for running the gel in the 2nd dimension the next day.  Mike Wyder 

previously mixed stock buffer solutions in 10X concentrated form and kept them in a 

cold room.  The lower tank buffer was prepared by pouring 8 L of Millipore water into 

the lower tank and mixed with stock buffer, which was diluted by mixing 1 L of 10X 

concentrate with 1 L of Millipore water in a 2 L graduated cylinder.  The diluted solution 

was left in the tank overnight with the cooling fan turned on and the tank covered 

overnight.  The Upper buffer was prepared by diluting 300 mL of 10X Upper buffer 

solution to 3 L in a 4 L Erlenmeyer flask with Millipore water.  The diluted solution was 

transferred to a 3 L plastic beaker and placed on a stir plate with stir bar and covered for 

the evening.   
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3.   Separation in 2nd Dimension  

The next day, the samples and apparatus were ready for separating the serum 

proteins in the 2nd dimension.  First, two 50 mL conical tubes of equilibration buffer were 

taken from the cold room and allowed to thaw.  To one tube was added 800 mg of DTT 

and to the other tube was added 1 g of Iodoacetamide (IAA).  The IAA tube was wrapped 

in aluminum foil since IAA is light sensitive.  Both conical tubes were placed on a rocker 

plate to warm and dissolve the newly added chemicals.  Once thoroughly mixed, the 

equilibration buffer/DTT and equilibration buffer/IAA solutions were filtered in their 

own disposable 0.22 micron vacuum filter beakers (covering the IAA beaker in 

aluminum foil again) to remove any particulates.  In the mean time, the IPG strips were 

removed from the electrode tray using tweezers and kimwipes to blot off excess mineral 

oil.  The strips were placed into a reswelling tray, covered with the DTT buffer, wrapped 

in aluminum, and placed on a BellyDancer for 15 minutes.  After the 15 minutes, the 

DTT buffer was vacuumed up and the process repeated three more times, once more with 

DTT and twice with the IAA solution giving a total of four washes in equilibration 

buffers.  Next, the gel apparatus was prepared by placing spacers into the slots in the 

upper tank and double paned, pre-cast gels purchased from Nextgen Sciences Inc (cat # 

PRS-703696) were placed into the tanks as well.  Then, the Upper buffer was poured into 

the upper tank until the tops of the gels were barely covered, the IPG strips placed into 

the gel wells using tweezers, and the remaining buffer poured into the tank.  The 

apparatus was enclosed and the gel run at 500 mA for 5 hours, 51 minutes.  Once the 

proteins had separated, the gels were removed from the apparatus, cut from the glass 
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plates, placed in Fix 1 solution (50% EtOH, 10% Acetic Acid, 1L total) for 30 min, and 

then left in Fix 2 (30% EtOH, 1 L total) overnight.   

  

4.   Gel Scanning and Silver Staining  

The next day the gels were removed from Fix 2 and washed with Millipore water 

for 5 min in preparation for scanning.  Each gel was placed on the glass plate from the 

scanner, a FUJI FLA-5100, and the gel fluorescently scanned: Cy 2 scanned at 437 nm 

with bpb1 filter with aperture, Cy 3 is scanned at 532 nm and modified Cy3/Cy5 filter 

from FUJI with aperture, and Cy 5 scanned at 635 nm with LPR filter with aperture.  All 

scans were saved as 16 bit images at 100 µm resolution with photomultiplier voltages at 

400V.     

After fluorescent scanning, the gels were silver-stained using a kit from Genomic 

Solutions.  First, the gels were placed into Fix 1 which consisted of 1.6 L of Ethanol and 

400 ml of Acetic Acid mixed and diluted to 4 L with Millipore water for 1 hour.  Next, 

the gels were placed into Fix 2 which consisted of the dry chemicals in the Proprietary 

Fix 2 bottle and 1200 ml of Ethanol mixed and diluted to 4 L with Millipore water for 1 

hour.  The Glutaraldehyde included in the kit was omitted from the solution since the 

glutaraldehyde would interfere with mass spectroscopy identification.  Then, the gels 

were washed a total of four times in Millipore water, each wash was 15 minutes in length.  

While washing in water, the Silver Nitrate Solution was prepared by mixing the liquid in 

the Silver bottle with 1 ml of Formaldehyde and diluting to 4 L with Millipore water.  

After washing in water, the gels were placed in the Silver Nitrate Solution for 45 minutes 

followed by a 1 minute wash in Millipore water.  After washing, the gels were placed in 
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Developer solution for 5 to 8 minutes.  Developer solution was prepared by mixing the 

bottle of dry chemical with 0.6 ml of Formaldehyde and diluting to 4 L with Millipore 

water.  Lastly, Stop solution was mixed using the bottle of dry chemicals and 80 ml of 

Acetic Acid all diluted to 4 L with Millipore water.  The gels were left in the final Stop 

solution for 10 minutes.  After silver staining the gels, each was digitally scanned and the 

images saved to the network drives for later analysis.   

 Once the gels were fluorescently scanned, the images were imported into the 

ProGenesis PG240 SameSpots software package.  This software allows the user to match 

the Cy 2 labeled internal standards from each gel relative to a single reference gel.  The 

software then measures the difference in fluorescent intensity between the Cy 3 labeled 

control spots and the Cy 5 labeled disease state spots.  After the protein spots were 

aligned, the SameSpots software identified approximately 3,700 individual spots.  

However, many of the spots were artifacts or background staining so each spot was 

individually reviewed for intensity, shape, location, and area to mask false spots so the 

software would only compare true proteins.  The lists of true spots are shown in gel 

images 1 and 2 listed below.  The software used various statistical devices such as 

Principal Component Analysis (PCA) to determine which spots had the greatest 

difference in fluorescent intensity which was directly related to volume of protein in a 

spot.  The final proteins identified for comparison are shown in the results section. 
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5.   Mass Spectroscpy Identification: In Gel Digestion Protocol 

The first step to identifying the proteins was to excise the spots from the gel.  To 

do this each gel was placed on a light box and a print out of the silver stain images with 

the protein spots of interest labeled was tacked to corkboard on the wall.  By carefully 

comparing the labeled print outs with the gels each spot was cut out using a razor blade 

and placed in an eppendorf tube then stored in the refrigerator.  Next, the proteins were 

digested into peptide fragments using the enzyme trypsin and a protocol from the 

researchers at GRI. 

 The first step in the digestion process was to make the necessary stock solutions 

where the final volumes depended on how many samples were to be digested .  30 mM 

Potassium Ferricyanide (PFC) solution was made by combining PFC powder from Sigma 

with Millipore water in a 49.4 mg/5ml ratio in a 15 ml conical tube.  100 mM Sodium 

Thiosulfate (STS) combined powdered STS from Sigma with Millipore water in a 

79.1mg/5 ml ratio in a 15 ml conical tube.  1M Ammonium Bicarbonate (ABC) 

combined powdered ABC from Sigma with Millipore water in a 0.79 gm/10 ml ratio in a 

15 ml conical tube.  From the stock 1M ABC solution came the 75 mM, 50 mM, and 25 

mM ABC working solutions.  The working solutions used 750 µl, 500 µl, and 250µL in 

separate conical tubes and diluted to 10 ml using Millipore water.  The final two 

solutions, DTT and Iodoacetamide (IAA), were made right before use with the IAA kept 

wrapped in aluminum foil.  10 mM DTT was made by combining powdered DTT from 

Sigma with 25 mM ABC in a ratio of 1.5 mg/1 ml in a 1.5 ml eppendorf tube.  55 mM 

Iodoacetamide was made by mixing powdered IAA from Sigma with 25 mM ABC in a 

ratio of 10 mg/1 ml in a 1.5 ml eppendorf tube.      
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 Day One of the In Gel Digestion protocol began with destaining the gel pieces.  

First, Farmers reagent was made by combining 30 mM Potassium Ferricyanide and 100 

mM Sodium Thiosulfate in a 1:1 ratio in a 15 ml conical tube.  Next, 50 µL of Farmers 

reagent was added to each gel piece in its eppendorf tube an allowed to incubate 

approximately 3 – 5 minutes until the silver stain was removed but before the gel pieces 

became a darker yellow than the Farmers reagent.  After incubating, the Farmers 

supernatant was removed and 60 µL of Millipore water was added and incubated for 10 

minutes then the supernatant removed.   

Next, the gel pieces were washed and dehydrated to shrink the polyacrylamide gel 

material so during the next stage, reduction/alkylation, the DTT and IAA would be 

evenly exposed to all of the proteins.  Washing started by adding 50 µL of 25 mM ABC 

for 10 minutes in a vortex block then removing the supernatant.  Then, 50 µL of a 

working solution of 50 mM ABC and 100% Acetonitrile (ACN) mixed 1:1 was added, 

incubated for 10 minutes in a vortex block, and then the supernatant removed.  The 

previous step with 50 µL of 50mM ABC:ACN was repeated once more.  Extra washes 

were occasionally necessary to get the gels from large, translucent pieces to small, 

opaque white pieces which indicated all excess water had been removed.  To ensure all 

water had been removed, the gel pieces were dried in a speed vacuum for approximately 

10 minutes.     

 Once the gel pieces were dehydrated, the proteins inside were reduced and 

alkylated to unfold the proteins so the trypsin could evenly digest all of the protein.  

Reduction of the disulfide bonds in the proteins was done by adding 20 µL of 10 mM 

DTT in 25 mM ABC and incubated for 60 minutes at 37oC in a heating block containing 
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water.  Afterwards, the sample was alklyated by adding 20 µL of 55 mM IAA in 25 mM 

ABC directly into the eppendorf tube without removing the DTT solution.  The IAA was 

left to incubate for 45 minutes 37oC in the dark in a heating block containing water as 

well.   

 The next stage was another washing/dehydration of the gel pieces so the trypsin 

would be able to digest as much of the protein at once in an even manner.  First, 50 µL of 

25 mM ABC was added to the tubes, incubated for 10 minutes in a vortex block, and then 

the supernatant was removed.  Next, 50 µL of the 50 mM ABC:ACN (1:1) solution was 

added, incubated for 10 minutes in a vortex block, and then supernatant was removed.  

The previous step was repeated once more, occasionally twice more until all the gel 

pieces were small and opaque white in color.  Lastly, the gel pieces were dried in a speed 

vacuum for approximately 10 minutes.   

 Once dried and shrunk, the proteins in the gel were digested with the Trypsin 

enzyme.  First, one vial of lyophilized Trypsin was dissolved with 200 µL of 50 mM 

acetic acid and mixed well.  The stock solution was divided into 12.5 µL aliquots and 

stored in 0.5 ml eppendorf tubes and stored in the -20oC freezer.  One of the 12.5 µL 

aliquots was thawed and diluted with 112.5 µL of 75 mM ABC.  Then, 5 µL of the 

diluted Trypsin (10 ng/µL in 75 mM ABC pH is ~7.6) was added to the gel pieces and 

incubated at 37oC for 20 min in a water bath.  After incubating, 45 µL of 25 mM ABC 

was added to the tube and then incubated at 37oC overnight in a water bath.   

 Day 2 of the process was the recovery of the peptide fragments, using µZip Tips 

to place the peptides on a MALDI plate, followed by MALDI-TOF/TOF sequencing, and 

finally MASCOT database identification.  Recovery of the peptides began with 
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prewashing 1.5 ml eppendorf tubes with 200 µL of 0.1% Tetrafluoroacetate (TFA) in 

60% Acetonitrile (ACN) then removing the supernatant.  Next, the digested peptides 

from Day 1 were removed from the water bath and centrifuged.  The supernatant from the 

gels was removed and placed into the newly washed eppendorf tubes.  To the dried gel 

pieces was added 30 µL of 0.1% TFA in 60% ACN and then the supernatant removed 

and placed into the new eppendorf tube.  The previous step was repeated 3 more times 

but with 10 minute incubation in a vortex block before recovering the supernatant and 

placing it in the new eppendorf tube.  The final step was to dry the extracted peptides in 

the new tubes to a final volume of 10 – 15 µL in the speed vacuum being careful to not 

completely dry the sample.  If the samples did dry out completely then the peptides could 

still be recovered if 0.1% TFA in 60% ACN is added and the samples speed vacuumed 

down to 10 – 15 µL again.  Once the peptides were concentrated, the samples were 

prepared for plating on the MALDI plate using the µZip Tips. 

 The µZip Tips are 10 µL pipette tips that use resin beads to provide a scaffolding 

substrate for protein peptides to bind as the digested mixture passes over the beads.  The 

resin beads are conglomerates of organic chains 18 Carbon atoms in length providing 

consistent pore sizes to capture the peptides.  The proteins are bound to the tips then 

eluted into a matrix that contains the peptides until analysis by MALDI mass 

spectrometry.  The process began by setting up two glass vials, one with 100% 

Acetonitrile (ACN) and the other vial with 60% ACN mixed with 0.3% TFA, and setting 

up a 1.5 ml eppendorf tube with 0.3% TFA in Millipore water.  Additionally, a new 

eppendorf tube was set up for each sample containing an aliquot of 2.5 µL of 60% ACN 

0.3% TFA.  A fixed 10 µl pipette was used since the tips must remain wet once the 
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process is initiated since air will dry the beads and prevent peptide capture or, if peptides 

are already captured, prevent their elution into the matrix.  The protocol began with 

pipetting 100% ACN to prepare the zip tip, disposing of the ACN into a waste jar, and 

repeating with 60% ACN; 0.3% TFA.  Next, the zip tip was equilibrated with two washes 

of 10 µL of 0.3% TFA.  Then, the concentrated peptides extracted earlier were bound to 

the column by pipetting the sample up and down 10 times through the equilibrated zip 

tip.  An aliquot was placed at the top of the tube and the rest of the sample pipetted 

through the column to ensure all the peptides came into contact with the zip tip.  The 

captured peptides were washed twice with 10 µL of 0.3% TFA to remove salts and 

contaminants.  Next, the peptides were eluted by pipetting the aliquot of 60% ACN 0.3% 

TFA into the new tube.  The zip tipped samples were placed into the speed vac until the 

pressure dropped to 750 mtorr as read by the digital gauge which left a final volume of 

approximately 0.5 µL in the tube.  Next, the matrix solution was made; this solution had 

to be made fresh 2 - 3 days to ensure accuracy on the MALDI.  The matrix solution was 

made by dissolving α-cyano-4-hydroxy-cinnamic acid in 60% ACN/0.1% TFA plus 10 

mM Ammonium Phosphate monobasic to a final concentration of 5 mg/ml.  Next, 1 µL 

of matrix was mixed with the 0.5 µL in the tube by pipetting up and down then spotting 

on the MALDI plate.  The last step was to make up a MALDI standard by combining 1 

µL of pre-mixed standard from the freezer with 99 µL of matrix.  The mixed standard 

was spotted on the plate before and after the samples so the MALDI could be monitored 

to ensure the settings remained optimized throughout the run.  Once the peptides were 

spotted onto the MALDI plate, the Applied Biosciences 4800 MALDI-TOF/TOF was 

optimized and then run.  This second generation of the 4800 model allows the user to 
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control the speed of the ion before entering the collision cell where fragmentation occurs.  

By tuning the speed of impact, the user can determine how much fragmentation occurs 

allowing analysis of a wide range of daughter ions compared to the parent ion. 

Once the peptides were sequenced based on mass/charge ratio and intensity, the 

data was input into the MASCOT database where the software matched the identified 

peptides with known sequences and identified the closest match.  The general criteria for 

a confirmed identification are a minimum overall ion score of 100 and minimum 

individual peptide ion score of 50.  Some peptide sequences matched more than one 

protein so all possible proteins were listed.  The final list of all the spots and their 

identifications are listed below in Figures 25 - 30 in the results section.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 84

C.  Results 

Figure 26: BCA assays quantifying and comparing 1G FT/E/W fractions for all samples 
used in the pilot study.  The assays should show greater values for the E fraction 
indicating removal of overabundant proteins.  The values are used later for 2D DIGE 
gels.  A) Set 1 B) Set 2 C) Set 3 
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After the BCA assays, 1D gels (Figure 27, A-D) were run to see which proteins were 

evident in the samples and to see if the overabundant proteins were being removed from 

the FT fractions as expected.  The gels were performed according to protocols provided 

with the invitrogen kit.  Images A and B compared the FT and E fractions of each 

sample, 1 ul of sample was used based on the high concentrations.  The gels showed little 

difference between the samples, most likely because samples were not properly pipetted 

into each well causing samples to flow across neighboring lanes.  There were some 

distinctions in band intensity between some FT and E fractions but overall every sample 

appears the same.  Because of the likely contamination, Images C and D were run with 

fewer samples and every other lane was intentionally skipped.  Unfortunately, there 

appeared to still be some lane contamination in Images C and D however, overall there 

was enough difference between the FT and E samples to conclude that overabundant 

proteins are being removed enough to proceed with the pilot study. 
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Figure 27: 1D SDS-PAGE of 1st Generation (1G) IgY enriched samples comparing FT 
and E fractions of pilot study samples.  A&B) All pilot study samples, gels inconclusive 
due to evident lane contamination.  C&D) Randomly selected pilot study samples 
showing some lane contamination but overall enough difference between FT & E 
fractions to proceed with pilot study.   
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Once the samples were all concentrated and characterized, the condensed FT 

fractions were again diluted to ~500 ul with IgY dilution buffer plus protease inhibitor 

and run through the IgY column to give the 2nd Generation Flow Through and Elution 

fractions (2G FT and 2G E).  The samples were immunodepleted, collected, and 

concentrated using the same steps and equipment listed previously.   

Another BCA protein assay was used to quantify the final concentrations of the 

condensed FT and E fractions and compare the values to evaluate the performance of the 

IgY column.  The BCA assay was performed the same as previous but 15 µl of sample 

were used to give a 5µl/well concentration.   

Figure 28: BCA assay quantifying and comparing 2G FT/E fractions  

 
 
Based on the BCA assay values, the IgY column was working as expected and improving 

depletion with each subsequent FT generation.  Once the BCA assay was done, 1D gels 

were performed on select samples to gauge the efficiency of the IgY column.  The gels 

were performed as previously outlined with the only difference being the use of 5 µl of 

sample to compensate for the lower protein concentrations.  Figure 29 show that most of 

the overabundant proteins have been removed from the FT fractions and the 2D DIGE 

gels should work appropriately.   
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Figure 29:  1D SDS-PAGE of 2nd Generation (2G) IgY enriched samples comparing FT 
and E fractions of pilot study samples.  Images A&B demonstrated clear distinction 
between bands of over abundant proteins in FT and E fractions proving the IgY column 
further enriched samples with additional passes through the column.   
 
A  

  
 
B 

  
 
 
 

 

 



 89

Figure 30: BCA protein assay comparing FT and E fractions from 1G and 2G of high 
dose samples (500 mg/kg) of d-serine, puromycin, and BEA after IgY enrichment, prior 
to YM-3 concentration.  
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Figure 30: NI assay of 2G pooled samples of pilot study   

 

 

The images used are the scans of the gels after silver staining.  After comparing 

the gels for differences in protein volume, the top protein spots that showed an increase in 
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showed a decrease in volume from control to disease state, called down-regulated, were 

identified for peptide sequencing by MALDI-TOF/TOF mass spectrometry and 

identification using the MASCOT database.  The D-Serine/BEA gel (243/246 vs 

285/289) contained 24 spots of interest, 18 up-regulated and 6 down-regulated.  The 

Puromycin gel (303/305 vs 320/324) contained 18 spots of interest, 13 up-regulated and 5 

down-regulated.   
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Figure 32: Pilot study 2D DIGE gels showing up- and down-regulated spots identified as 
potential biomarkers using SameSpots software.  A) Gel 1 – samples 243/246 vs 285/289; 
24 spots: 18 up-regulated and 6 down-regulated.  B)  Figure 33:  Gel 2 303/305 vs 
320/324; 18 spots: 13 up-regulated and 5 down-regulated 
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Figure 33: PowerPoint Summary of up-regulated proteins identified in IgY pilot study of 
d-serine control (243/246) vs BEA 500 mg/kg (285/289) – spots  1 – 12 listed 

Summary of Protein Identification
Protein identification by in gel trypsin 
digestion, extraction c18ZipTip and 
MALDI-TOF/TOF

C8- Standard — BSA
C9- Blank – Background only
C10- Spot 3719 – Inter-alpha-inhibitor H4 heavy 
chain--gi|126722991
C11- Spot 2310 – Da1-24 and complement factor 
B--gi|33086684
C12- Spot 2832 – LMW T-kininogen I precursor--
gi|205085 and T-kininogen--gi|207341
C13- Spot 2874 – LMW T-kininogen I precursor--
gi|205085 and T-kininogen--gi|60392582
C14- Spot 3474 – Hemopexin precursor--
gi|122065203
C15- Spot 1970 – Albumin--gi|158138568
C16- Spot 2389 – Hemopexin--gi|16758014
C17- Spot 2283 – Fibrinogen B beta chain--
gi|455105
C18- Spot 3496 – Fibrinogen, gamma 
polypeptide--gi|61098186
C19- Spot 3359 – Hemopexin precursor--
gi|122065203
C20- Spot 2440 – Chain A, Rat Transthyretin 
Complex With Thyroxine (T4)--gi|20663827
C21- Spot 2110 – Chain A, Crystal Structure Of 
Rat Alpha 1-Macroglobulin Receptor Binding 
Domain--gi|12084772 and pregnancy-zone 
protein--gi|21955142 and Alpha-1-macroglobulin 
precursor--gi|81872093

Spot set 020508_09161 Runs 26-27

Woolard SS (DIGE) 2D gel—243/6 vs 
285/9  14 spots  pilot study

Date of completion:  031108
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Figure 34: PowerPoint Summary of up-regulated proteins identified in IgY pilot study of 
d-serine control (243/246) vs BEA 500 mg/kg (285/289)  spots  13 - 23 listed 
 

Summary of Protein Identification
Protein identification by in gel trypsin digestion, 
extraction c18ZipTip and MALDI-TOF/TOF

E18- Standard — BSA
E19- Blank – Background only
E20- Spot 1679 – no significant identification
E21- Spot 3447 – serum amyloid P-component--
gi|148747488
E22- Spot 2840 – group specific component, 
isoform CRA_a--gi|149033741
E23- Spot 3379 – complement factor I--
gi|149025945
E24- Spot 2248 – alpha-1-inhibitor III precursor--
gi|554401
F1- Spot 932 – no significant identification
F2- Spot 3209 – serum amyloid P-component--
gi|148747488
F3- Spot 2655 – serum amyloid P-component--
gi|148747488
F4- Spot 808 – alpha-1-inhibitor III--gi|554402
F5- Spot 2780 – apolipoprotein C-III, isoform 
CRA_a --gi|149041554
F6- Spot 3769 – no significant identification

Spot set 020508_09161 Runs 26-27

Woolard SS (DIGE) 2D gel—243/6 vs 
285/9  13 spots  pilot study

Date of completion:  031108
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Figure 35: PowerPoint Summary of proteins identified in IgY pilot study of puromycin 
control (303/305) vs Puromycin 300 mg/kg (320/324)  spots 1- 9 listed 
 

Summary of Protein Identification
Protein identification by in gel trypsin digestion, 
extraction c18ZipTip and MALDI-TOF/TOF

A22- Standard — BSA
A23- Blank – Background only
A24- Spot 1 – Inter-alpha-inhibitor H4 heavy chain--
gi|2292988
B1- Spot 2 – Da1-24--gi|33086684
B2- Spot 3 – Da1-24--gi|33086684
B3- Spot 4 – Fibrinogen, gamma polypeptide--
gi|61098186
B4- Spot 5 – Hemopexin precursor--gi|122065203
B5- Spot 6 – Albumin--gi|55391508
B6- Spot 7 – Albumin--gi|55391508
B7- Spot 8 – Hemopexin precursor--gi|122065203
B8- Spot 9 – Serine protease inhibitor A3L precursor 
(Serpin A3L) (Contrapsin-like protease inhibitor 3) 
(CPI-23)--gi|2507387 and thyroid hormone-regulated 
proteinase inhibitor--gi|92880 and Alpha-2-HS-
glycoprotein precursor (Fetuin-A) (Glycoprotein 
PP63) (59 kDa bone sialic acid-containing)--gi|231468

Spot set 020508_09161 Runs 5-6

Woolard SS (DIGE) 2D gel—303/5 vs 
320/4  18 spots  pilot study

Date of completion:  031108
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Figure 36: PowerPoint Summary of proteins identified in IgY pilot study of puromycin 
control (303/305) vs Puromycin 300 mg/kg (320/324)  spots 10 - 18 of 18 listed 

Summary of Protein Identification
Protein identification by in gel trypsin digestion, 
extraction c18ZipTip and MALDI-TOF/TOF

B9- Spot 10 – Standard — BSA
B10- Spot 11 – Blank – Background only
B11- Spot 12 – Keratin contamination
B12- Spot 13 – rCG38388 or complement component 
4a-- gi|149027977
B13- Spot 14 – Transferrin--gi|1854476
B14- Spot 15 – Pregnancy-zone protein or Alpha-1-
macroglobulin precursor--gi|21955142 and Keratin 
contamination
B15- Spot 16 – Alpha-1-antiproteinase precursor--
gi|112889
B16- Spot 17 – Apolipoprotein E precursor--
gi|1703338
B17- Spot 18 – no significant identification
B18- Spot 19 – fibrinogen, gamma polypeptide--
gi|61098186
B19- Spot 20 – Fibrinogen, gamma polypeptide--
gi|61098186

Spot set 020508_09161 Runs 5-6

Woolard SS (DIGE) 2D gel—303/5 vs 
320/4  18 spots  pilot study

Date of completion:  031108
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D.  Discussion 

 The greatest success of the pilot study was in learning, practicing, and optimizing 

the protocols necessary for the full study.  However, the ultimate goal of identifying 

potential protein biomarkers did not produce as much promising data as anticipated.  

Most of the proteins identified were generic glycoproteins, which act as carrier proteins, 

or typical abundant proteins such as albumin, transferrin, and fibrinogen.  The sequenced 

proteins demonstrated how difficult serum separation can be and the pervasiveness of 

abundant carrier proteins throughout the bloodstream.  The difficulty in removing these 

proteins underscored the need to be diligent during the initial serum enrichment with the 

IgY column.  One lesson gleaned was the need to enrich several aliquots of each sample 

twice.  This redundancy was necessary to ensure each aliquot was filtered as thoroughly 

as possible yet contained a protein concentration high enough to stay above the DIGE gel 

lower limits of detection.  The low sensitivity of the DIGE gels is an inherent weakness 

of the technique which limits the ability to find low abundant proteins.  Because of the 

low sensitivity, the SameSpots software used to analyze the gels is only as accurate as the 

spot resolution in the gel and, the user refining the true spots versus the background.  This 

limit makes it crucial to have an experienced user defining and outlining the spots for the 

software to analyze.  After analyzing the pilot study results, the full study was initiated 

using the lessons learned.   
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VIII. FULL STUDY 

A.  Methods 

1.   Preparation of Samples  

The samples were prepared for pooling by first organizing the individual serum 

samples into their respective drug and dose groups.  The Puromycin and BEA drug 

studies had 4 dose groups (a control, low, medium, and high dose) with each group 

containing 5 rat subjects at the beginning of the studies.  Serum samples were collected 

from each rat subject at three time points: pre-dose, 24 hours post dose, and 96 hours post 

dose (terminal sacrifice) to give a total of 15 individual samples for the Puromycin and 

BEA studies.  The 15 individual samples were condensed to create three pooled samples 

by combining the serum from all five rats according to time points.   

The charts below breakdown the number of subjects in each dose group and the 

time points collected from each subject.  For Puromycin and BEA, the charts below have 

an “x” in a box to indicate that a serum sample was collected from the rat subject for that 

time point at that dose.  If a rat died before the specific time point, such as with BEA - 

500 mg/kg where all subjects died before 24 hours, then the serum collected was labeled 

as “Terminal Sacrifice”.  Additionally, some bacterial contamination occurred during the 

animal study so some subjects were discarded entirely from the study.  Because of the 

variation in number of subjects and time points among doses, the samples were pooled 

together using equal volumes from each subject so that a total volume of 75 µL was 

collected.  This pooling was then split into 5 aliquots, each 15 µL in volume.  The 

aliquots were then placed in the -20o Celsius freezer for storage until they could be 

enriched with the ProteomeLab IgY spin column.   
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For D-Serine, a second study was conducted with only three dose groups: a 

control-- 0 mg/kg, low dose--200 mg/kg, and high dose--500 mg/kg with two time points, 

12 hours post dose and 24 hours post dose.  The other difference between the D-Serine 

study and the Puromycin and BEA studies was the lack of internal control for each rat.  

The Puromycin and BEA studies collected three serum samples from each rat at a given 

time point.  The D-Serine study sacrificed the rat subject at the necessary time point to 

collect the serum sample.  This method ensured enough volumes of serum were collected 

with the tradeoff being a lack of positive control from the subject itself.  The D-Serine 

study had no contamination issues or early deaths so all pooled samples contained five 

rats, from which 15 µL were combined and mixed to give a total volume of 75 µL.  After 

mixing, the pooled sample was split into 5 aliquots of 15 µL and placed in the -20o 

Celsius freezer for storage.   
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2.   Serum Immnunodepletion using IgY spin column  

 The samples (seen in Amendment 3, pg 147) for the full study were enriched 

using the IgY R-7 spin column and ProteomeLab protocol as described previously in the 

pilot study section with a few tweaks to optimize immunodepletion.  One change was the 

addition of 0.1 mL of Protease Inhibitor cocktail to 9.9 mL of IgY Dilution buffer 

working solution to protect against protein degradation while working with samples at 

room temperature.  The Dilution buffer plus protease inhibitor was used only for the FT 

fractions.  The Wash fractions used regular Dilution buffer that was diluted from 10X to 

1X per protocol.   

The other significant difference between the immunodepletion protocol for the 

pilot study versus the full study was the increased number of aliquots enriched.  The 

individual full study samples were collected to give pooled samples containing 75 µL 

which was then split into 5 aliquots, 15 µL each.  The full study enriched four aliquots 

from each pooling creating a 1st Generation FT sample for each aliquot with a spare 

aliquot in case a mistake was made during the process.  After enrichment, the FT and E 

fractions were concentrated to approximately 500 µL using the Amicon YM-3 spin 

cartridges.  If a sample was concentrated to less than 500 µL, samples were diluted to the 

final volume of 500 µL and stored in a -20o Celsius freezer.  Once all the 1G FT and E 

fractions were collected from each aliquot, NI protein assays and 1D gels were run to 

monitor the column efficiency.  After the assays, the 1G FT samples from each aliquot 

were individually enriched a second time using the same protocol as before.  The 2nd 

Generation FT and E fractions were then collected and concentrated using Amicon YM-3 

spin cartridges.  ProteomeLab lists the effective life of the IgY spin columns as 100 runs 
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but column degradation was noticeable when centrifugation required higher speeds, 6000 

– 7000 x g, and longer spin times, 1 – 2 minutes.  Once the paper filter in the plastic 

column was irrevocably degraded, the protocol described the transfer of the resin beads to 

a spare plastic column housing by mixing the beads in 500 µL of dilution buffer and 

pipetting the slurry into a spare column.  The IgY kit came with two columns and six 

spare plastic housings.  Once all the spare column housings were used, the column was 

retired from use.  In all, 7 columns were required to enrich all the aliquots of the pooled 

samples twice.   

After all the 1G aliquots were concentrated, the buffer was exchanged in the 

Microcon tubes by adding 4 mL of 2M urea, centrifuged for 70 min at 4000 rpm at 4o 

Celsius using a Thermo Centra CLR with a Thermo 243 rotor.  A total of 3 buffer 

exchanges were performed with samples concentrated to a final volume between 200 - 

400 ul.  NI protein assays and small, 2D PAGE gels were run on the 2G samples to 

confirm the final enrichment and to measure the concentrations for the large DIGE gels.  

All NI protein assays and gels are shown below in the results.         
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A. Results   

1.  Protein Assays  

Figure 37: Non-Interferring Protein Assays of Full Study Samples used to monitor 
column effectiveness and values for use in 2D DIGE gels.   
A) Samples: 

Puromycin Control samples Pre dose/24 hour post dose/Terminal Sac 
BEA  Control samples Pre dose/24 hour post dose/TerminalSac 
D- Serine 0 mg/kg  12 and 24 hours 

B) Samples: 
Puromycin 75 mg/kg  Pre dose/24 hour post dose/Terminal Sac 

 BEA  15 & 500 mg/kg  Pre dose/TS (15 mg/kg) and TS (500 mg/kg) 
 D- Serine 200 mg/kg  12 and 24 hours 
C) Samples: 

Puromycin 150 mg/kg  Pre dose/24 hour post dose/Terminal Sac 
 BEA  50 mg/kg   Pre dose/TS (15 mg/kg) and TS (500 mg/kg) 
 D- Serine 500 mg/kg  12 and 24 hours 
D) Samples:  

Puromycin 300 mg/kg  Pre dose/24 hour post dose/Terminal Sac 
 BEA  150 mg/kg   Pre dose/TS (15 mg/kg) and TS (500 mg/kg) 
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D) 

 
 
 

 

The protein assays show that the immunodepletion by the IgY columns was 

successful in two ways.  First, the high protein concentration values across all samples.  

All samples had at least 1 µg/µl of protein with many in the 2 – 4 µg/µl range which 

indicated there would be enough protein for the DIGE gels after further enrichment.  The 

second positive characteristic was the higher concentration value for the Elution 

fractions.  The higher value for the Elution fractions indicated that the IgY column 

removed most of the high abundant proteins meaning greater resolution on the 2D gels.  

After the protein concentrations were measured, the samples were run on small 1D SDS-

PAGE gels in order to visualize the amount of abundant proteins that were removed. 
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2.   1st Generation Samples 1D SDS-PAGE gels: 
 

All 1D gels were silver stained with Sigma’s Proteosilver silver stain kit which 

can identify proteins in concentrations as small as 0.1 ng/µl.  Given this high degree of 

sensitivity, all samples were diluted 1:10 with Millipore water to reach a final 

concentration between 100 and 400 ng/µl and a final volume of 10 ul.  10 ul of SeeBlue 

Plus 2 marker was placed in wells 1 and 12 of each gel and 10 ul of each sample was 

placed in FT & E pairs.  Gels were run according to Invitrogen protocols using MOPS 

buffer at 120 V for approximately 1 hour 20 minutes.  Gels were immediately stained 

according to Sigma’s ProteoSilver Silver Stain kit protocol.  Afterwards, the gels were 

scanned using LabScan v 5.0 software on an Amersham Image Scanner.  All 1D gels 

were purchased from Invitrogen using the 4-12% gradient gels 1mm x 12 well, Catalog # 

NP0322BOX, Lot #’s 6071173 & 7120610.  Invitrogen SeeBlue Plus 2 Prestained 

Standard was used as the marker for each gel.  The results can be seen below in Figure 

38.   
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Figure 38: 1D SDS-PAGE gels of 1st Generation (1G) FT & E fractions after IgY 
column enrichment.  Gels were used to monitor over abundant protein removal from 
pooled samples for use in full study.  Images are as follows: A) Puromycin Controls; B) 
Puromycin 75 mg/kg dose; C) Puromycin 150 mg/kg; D) Puromycin 300 mg/kg; E) BEA 
Controls; F) BEA 15 mg/kg & 500 mg/kg; G) BEA 50 mg/kg; H) BEA 150 mg/kg; I) D-
Serine 12 hr post dose; J) D-Serine 24 hr post dose 
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C      D 
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As a reference, listed below are the 7 proteins targeted for removal by the IgY column 

and their respective molecular weights.  Immediately visible in the E fraction wells is the 

large albumin band at 68 kDa which shows up much darker in the E fraction compared to 

the FT fraction.   

 

Rat Albumin    68,731 Da Rat IgM    70,000 Da 

Rat IgG     146,000 Da Rat alpha1-antitrypsin   52,000 Da 

Rat Transferrin  76,500 Da Rat Haptoglobin    95,000 Da 

Rat Fibrinogen    340,000 Da 
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3.   2nd Generation FT fraction NI Protein Assay and small 2D gels 
 
Figure 39: NI Protein Assays measuring the final protein concentrations of the 
condensed, buffer exchanged 2G FT fractions of the Full Study samples.  Results show 
IgY column still removing over abundant proteins and the values then used to calculate 
sample volumes needed for 2D DIGE gels.     
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 The protein concentration measurements of the final, condensed samples were 

used for calculating the volume needed to run the DIGE gels.  The assay indicated 

potential problems with the Puromycin 24 hour 150 mg/kg and 300 mg/k samples 

because of low concentration values.  However, a quick calculation showed that the 

volumes of samples needed for those two specific DIGE gel would not exceed the total 

350 µL limit.  Based on those calculations and time constraints, it was deemed necessary 

to continue with the study.  After the NI assays, two FT fraction samples were run on a 

small, 2D gel as a final quality control measure to ensure that most overabundant proteins 

were removed from the serum samples.  The samples tested were:  

Gel 1:  D-Serine   0 mg/kg 24 hr post dose 

Gel 2:  Puromycin  300 mg/kg  Terminal Sacrifice 

 
In order to run the 2D gels, the two samples were prepared for separation in the 

first dimension based on isoelectric point.  First, 200 ml of Rehydration Buffer was 

generated using GRI protocols.  To the buffer was added 23.14 mg of DTT followed by 

vortexing and centrifuging the solution to dissolve all particulates.  Next the rehydration 

buffer was sonicated for 1 minute, then placed on an end to end rotator for 15 minutes.  

This series was repeated three times for a total of four sonication/mixing cycles.  Next, 

samples were pippetted into IPG trays and IPG strips, Immobiline Dry Strip pH 4 – 7, 7 

cm (GE, 17-6001-10, lot # 10 009958) , were placed into the tray wells and the ends were 

covered.  The samples were allowed to reswell overnight.  After all the protein samples 

had been fully absorbed by the IPG strip, the samples were run in the first dimension by 

placing the gel tray in a 1D gel box (zoom IPG) a new mod panel was added and filled 

with ultra-pure water.  The cover was put into place and a gradient voltage was applied in 
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the following cycle: 0 -175 V for 15 minutes, 175 – 2000 V for 45 minutes, and at 2000 

V for 1 hour 45 minutes.  

After the samples were separated in the first dimension, the IPG strips were 

removed and placed in the well of a small 2D gel cassette from Invitrogen.  10 ul of 

SeeBlue Plus 2 prestained standard was added to a separate well and the two gels were 

run at 110V for 1 hour 20 minutes.  After separation in the second dimension, the gels 

were silver stained using the Proteolab SilverStain kit using the protocol included in the 

kit.  After staining, the gels were placed on an Amersham scanner and scanned into the 

computer using LabScan software.  The gels can be seen in Figure 40.   

Figure 40: Small, 2D SDS-PAGE gels of 2nd Generation FT samples.  The gels were a 
final quality control measure to ensure that over abundant proteins were removed and that 
adequate resolution of low abundant proteins would permit spot analysis.  The images are 
listed as (A) D-Serine 0 mg/kg 24 hr small 2D gel; (B) Puromycin 300 mg/kg Term Sac 
small 2D gel 
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These small gels demonstrated a significant increase in protein resolution and 

over-abundant protein removal compared to the original gel tests of the Agilent MARS 

column.  Based on the clarity of the results it was determined that the resolution was high 

enough to warrant continuation with the project and preparation for the large DIGE gels.   
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C.  2D DIGE Methods and Results 
 

Once the small 2D gels confirmed the removal of abundant proteins from the 

samples, the large, 2D DIGE gels were begun.  All work, such as sample labeling with 

the fluorescent CyDyes, the separation in the first dimension, separation in the second 

dimension, fluorescent scanning, silver staining, and finally regular scanning of the silver 

stained gels, was done according to GRI protocols as described in earlier sections.  The 

sample list set up for the gels is listed below in Figure 41. 

Figure 41: Listing of the pairwise comparisons in each individual gel.  P – Pre dose time 
point, 24 – 24 hours post dose time point, TS – Terminal Sacrifice time point.   
  Puromycin   
pairwise 
comparisons     
75 mg/kg gel 1 control P vs 75 (P) 
  gel 2 control 24 vs 75 (24) 
  gel 3 control TS vs 75 (TS) 
150 mg/kg gel 4 control P vs 150 (P) 
  gel 5 contol 24 vs 150 (24) 
  gel 6 control TS vs 150 (TS) 
300 mg/kg gel 7 Control P vs 300  (P) 
  gel 8 Control 24 vs 300 (24) 
  gel 9 Control TS vs 300 (TS) 
      
  BEA   
15 mg/kg gel 10 Control P vs 15 (P) 
  gel 11 Control TS vs 15 (TS 
50 mg/kg gel 12 Control P vs 50 (P) 
  gel 13 Control 24 vs 50 (24) 
  gel 14 Control TS vs 50 (TS) 
150 mg/kg  gel 15 Control P vs 150 (P) 
  gel 16 Control 24 vs 150 (24) 
  gel 17 Control TS vs 150 (TS) 
500 mg/kg gel 18 Control TS vs 500 (TS) 
      
  D-Serine   
      
200mg gel 19 Control 12 vs 200 (12) 
  gel 20 Control 24 vs 200 (24) 
500mg gel 21 Control 12 vs 500 (12) 
  gel 22 Control 24 vs 500 (24) 
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Figure 42: PowerPoint results of the final reference gel showing the location of the 
protein spots targeted as potential biomarkers and their subsequent identifications using 
MALDI-TOF/TOF mass spectrometry and MASCOT database searching.  Image (A) 20 
protein spots and their identification (B) 28 protein spots and their identification 
 
A  

Summary of Protein Identification
Protein identification by in gel trypsin 
digestion, extraction c18ZipTip and 
MALDI-TOF/TOF

M9- Standard -- BSA
M10- Blank – Background only
M11- D 698 – Complement Factor B--gi|47059181 
M12- D 720 – Complement Factor B--gi|47059181 
M13- D 1384 – Murinoglobulin 1 homolog--
gi|12831225
M14- D 1843 – No significant identification
M15- D 1841 – Pregnancy-zone protein--
gi|21955142 
M16- D 1819 – Serine protease inhibitor 2b--
gi|6981576 
M17- D 2146 A – No significant identification
M18- D 2146 B – No significant identification
N3- BSA 
N4- P 1544 – Apolipoprotein E--gi|37805241 
N5- P 1157 – Angiotensinogen--gi|19705570
N6- P 217 A – Pregnancy-zone protein--
gi|21955142 
N7- P 217 B – Pregnancy-zone protein--
gi|21955142 
N8- P 1122 – Fetuin Beta--gi|17865327
N9- P 1244 – Keratin Contamination
N10- P 1263 A – Fetuin Beta--gi|17865327
N11- P 1263 B – Keratin Contamination
N12- P 1311 A – Fetuin Beta-- gi|17865327
N13- P 1311 B – No significant identification
N14- P 1121 – Serine Protease Inhibitor 2a--
gi|32563565
N15- P 1312 – No significant identification

Spot set 092508_09173; Runs 11-14, 16-17

Woolard 2D SS-DIGE gels

Date of completion:  1029808

A
B

A

B
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B 

N17- P 1041 – 1st ID) Serine (or cysteine) peptidase 
inhibitor, clade C (antithrombin), member 1--
gi|58865630; 2nd ID) Inter-alpha-inhibitor H4 heavy 
chain--gi|2292988–tentative
N18- P 1077 – Apolipoprotein H--gi|57528174
N19- P 2158 – No significant identification
N20- D 72 – Hornerin--gi|57864582—tentative
N21- D 57 – Apolipoprotein H--gi|57528174 
N22- P 1822 – Apolipoprotein A-I--gi|2145145
O1- D 2227 – Alpha-1 proteinase inhibitor 3--
gi|609246--tentative
O2- D 2166 – Alpha-1-antiproteinase precursor--
gi|112889 
O6- P 1268 – Fetuin Beta--gi|17865327 
O7- P 1228 – Fibrinogen, gamma polypeptide--
gi|61098186  
O8- P 148 A – No significant identification
O9- P 148 B – No significant identification
O10- P 220 A – Serine protease inhibitor 2b--
gi|6981576--tentative
O11- P 220B – Keratin contamination 
O12- P 1786 – Inter-alpha-inhibitor H4 heavy chain--
gi|2292988
O13- P 1072 – Apolipoprotein H-- gi|57528174 
O14- P 1336 – No significant identification
A4- P 1859 – Glutathione peroxidase--gi|1586514
A5- P 2170 – Alpha2u globulin--gi|21954404
A6- P 1491 – No significant identification
A7- P 1424 – Pregnancy-zone protein--gi|21955142
A8- P 1427 A – Pregnancy-zone protein--gi|21955142
A9- P 1427 B – No significant identification
A10- P 1505 – No significant identification

Spot set 102308_09161; Runs 2-8

Woolard 2D SS-DIGE gels

Date of completion:  102908

A11- P 1594 – Apolipoprotein E--gi|37805241
A12- P 1565 – Apolipoprotein E--gi|37805241
A13- P 1518 – No significant identification
A14- P 1420 – Pregnancy-zone protein-- gi|21955142

A
B

A
B

Proteins listed in bold red are tentative protein 
identifications indicating that the protein is likely present, 
but it is recommended that this protein be confirmed prior 
to additional experimentation based solely on this MS 
identification  
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D.  Protein Spot Selection Method and Results 

 The PG240 program was used to manipulate all data once imported into the 

program.  First, the BEA 150 mg/kg Pre-Dose gel was designated the main reference gel.  

Next, the proteins spots from each gel were sorted by increased spot intensity based on a 

comparison of the Cy 5 labeled post-dose sample versus the Cy 3 labeled Pre-dose 

control (See figure XX).  Thus, all gels act as single-point statistics with the spot intensity 

values based on a relative scale between the Cy 5 vs. Cy 3 dyes for each individual gel 

only.  This lack of statistics could not be avoided since the samples had to be pooled due 

to time and money constraints.  Once the spots were organized based on intensities, a cut-

off value of 1.5 fold increase was set and all spots with relative increases of 1.5-fold or 

greater were cut and pasted into Excel spreadsheets.  The number of protein spots varied 

from each gel.  Some gels identified 25 spots, some gels listed over 300 spots.  In order to 

quickly cull through all the spots and identify one spot listed in all gels, all the protein 

spots were grouped based on dose- and time-points and relative intensities for each drug.  

Then, a histogram was made to see which spots showed an increase in all three gels for 

each dose or time point (see Figure 44).  Once spots were picked to represent a series of 

time points or doses from the histogram, those spots were combined into a larger pool to 

identify spots across all time points and doses.  The ultimate goal was to identify as many 

protein spots as possible that showed an increase in all 22 gels.  The spots that showed up 

in the most gels and had the greatest average differences in intensities were picked for 

MS identification.    
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Figure 43: Sample charts of protein spots and their relative increases vs control samples 
for three gels.  Charts demonstrate the typical data set used for analysis when searching 
for dose- and time-dependent toxicity trends from the full study.  Data imported from the 
PG240 SameSpots software.  
Ref. 
Spot # 

Cy 3 
Control Rat, Terminal Sac, 75 mg/kg  

Cy 5 
Dosed Rat, Terminal Sac,  75 mg/kg  

Ref. 
Spot # Reference Volume of Protein Spot Relative Volume X-fold increase 

2 1 2.084
12 1 2.231
20 1 3.14
40 1 2.983
44 1 2.029
45 1 2.468
51 1 4.343
56 1 2.01
72 1 2.165

 

Ref. 
Spot # 

Cy 3 
Control Rat, Terminal Sac, 150 mg/kg 

Cy 5 
Dosed Rat, Terminal Sac, 150mg/kg  

Ref. 
Spot # Reference Volume of Protein Spot Relative Volume X-fold increase 

2 1 1.893
21 1 1.8
37 1 1.569
38 1 4.496
40 1 3.016
44 1 2.287
48 1 2.082
53 1 4.716
65 1 1.909
72 1 1.988

 

Ref. 
Spot # 

Cy 3 
Control Rat, Terminal Sac, 300 mg/kg 

Cy 5 
Dosed Rat, Terminal Sac, 300 mg/kg 

Ref.  
Spot # Reference Volume of Protein Spot Relative Volume X-fold increase 

1 1 1.582
2 1 2.382
3 1 2.008
4 1 2.588
5 1 3.143
8 1 1.536

10 1 2.42
12 1 2.777
13 1 3.7
14 1 2.652
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Figure 44: Histogram of protein spots in the three doses of the Puromycin, Terminal 
Sacrifice time point gels.  The histogram showed which protein spots were up-regulated 
in multiple gels.  The spots identified represented the Terminal Sac time point in the 
dose-dependent search.  The spots listed in all three gels were combined with other 
histogram results to make the final spot selection.   

 
 
Figure 45: Sample chart demonstrating the relative volumes between the diseased serum 
samples vs the control samples for protein spot tentatively identified as hornerin.  Ideally, 
the relative volume changes would follow a pattern and indicate dose- and time- 
dependent toxicity however the values did not support this hypothesis.   
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75 TS  
Cy3 

Control 
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Ref. 
Spot 

Control 
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Control 
TS vs 
150 TS  
Cy5  

Ref. 
Spot 

Control 
TS vs 
300 TS  
Cy3 

Control 
TS vs 
300 TS 
Cy5 

Ref. 
Spot Volume Volume  

Ref. 
Spot Volume Volume  

Ref. 
Spot Volume Volume 

72 1 2.165   72 1 1.988   72 1 3.907 
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Figure 46: Graphs of the relative change in protein volume between the control sample 
vs the disease sample for each gel as time- and dose- increase.  The graphs should show a 
general trend of increasing protein volume indicating greater amounts of the biomarker 
protein being produced as kidney functions decrease, either over time or from greater 
exposure to a nephrotoxin.  Graphs: A) Puromycin dose-dependent hornerin expression 
B) Puromycin time-dependent hornerin expression C) BEA dose-dependent hornerin 
expression D) BEA time-dependent hornerin expression E) BEA hornerin expression 
differential F) D-Serine dose-dependent hornerin expression G) D-Serine time-dependent 
hornerin expression 
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E.  Discussion 

The final results of the DIGE study did not identify a conclusive biomarker of low 

level kidney degradation.  Of the 48 protein spots tagged by the SameSpots software, 13 

spots had protein concentrations lower than the detection limit of the MALDI thus, no 

identification could be made.  Additionally, three spots were contaminated with keratin 

so no identification was possible.  Of the remaining spots, seven were Apolipoproteins 

which are found abundantly throughout serum and four spots were identified as Fetuin 

Beta which is a glycoprotein that is a member of the cystatin superfamily and also found 

in abundance throughout the body.   

Other common proteins identified were the three Serine Protease Inhibitor spots 

and one α-1 Proteinase inhibitor which are proteins designed to deactivate Serine 

Proteases.  Serine Protease is a generic name that applies to enzymes which catalyze the 

hydrolysis of peptide bonds through a nucleophilic attack by a serine active site.  

Proteases are divided into four major clans: chymotrypsin-like, the subtilisin-like, the 

alpha/beta hydrolase, and signal peptidase clans.  Since all the proteins in this study were 

digested with Trypsin, part of the chymotrypsin-like clan of serine proteases, the 

prevalence of these inhibitors is expected as they would be very common throughout 

mammals as a part of the regulatory process in the body.   

Another set of similar proteins found abundantly throughout serum appeared as 

the six spots identified as Pregnancy Zone Protein and one spot identified as α-2-

macroglobulin.  These two proteins are glycoproteins which are strongly homologous to 

one another in structure and both inhibit proteinases in blood plasma.  The inhibitors 

work by first binding to proteinases through a “bait” region which causes a 
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conformational change in the inhibitors.  The change causes the second region, the thiol-

ester, to emerge and covalently bond with a nucleophile on the proteinase which 

sterically hinders the proteinase from binding with other proteins thus, decreasing the 

overall enzymatic activity (Petersen et al.).   

After eliminating the multiple spots of one protein, the single spots were 

reviewed.  The first spot identified was Angiotensinogen.  Angiotensinogen is a precursor 

protein that is part of the Renin-Angiotensin System (RAS), a multi-functional circulating 

system that helps regulate several organs.  The scope and complexity of the RAS 

continues to expand as research delves further into the many layers of the body affected 

by RAS.  The classical view of RAS where Renin is secreted by the liver, circulates 

throughout the body, reacting with Angiotensinogen to form Ang I, then is converted to 

the active form of Ang II by ACE, now includes Ang III, Ang IV, Ang 1- 7, multiple 

ACEs, and even intracellular RAS covering both endocrine, paracrine, and intracrine 

functions.  Because of the ubiquitous nature of the RAS and its multiple physiological 

regulatory functions, it was eliminated as a potential biomarker of kidney degradation. 

(Fyhrquist et al.).   

The next spot identified was Inter-alpha-inhibitor H4 heavy chain which is a part 

of the generic Inter-alpha-inhibitor family of plasma proteins.  This family contains 

multiple polypeptide chains and a single, heavy chain designated I alpha IH4P with the 

rat PRR containing 6 repeats of a Gly-X-Pro motif in a collagen-like pattern.  IAIH4P is 

produced in the liver where its production is triggered by acute, systemic inflammation 

however, little more is known about the exact physiological role this protein plays.  

While a 2008 study of human interstitial cystitis patients suggested IAIH4P as a 
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biomarker of kidney damage (Canter et al.), this study only found this protein to be a 

tentative identification due to an overall ion score of 97 with only two peptide ion scores 

of 33 and 64.  The low score for such an abundant protein questions the validity of the 

identification and eliminates the protein as a potential biomarker in this study (Soury et 

al.).  

Another protein spot identified in this study was glutathione peroxidase.  

glutathione peroxidase is the general name of an enzyme family with peroxidase activity 

whose main biological role is to protect the organism from oxidative damage.  The 

biochemical function of glutathione peroxidase is to reduce lipid hydroperoxides to their 

corresponding alcohols and to reduce free hydrogen peroxide to water.  Glutathione 

peroxidase is a selenium-containing tetrameric glycoprotein, that is, a molecule with four 

selenocysteine amino acid residues. As the integrity of the cellular and subcellular 

membranes depends heavily on glutathione peroxidase, the antioxidative protective 

system of glutathione peroxidase itself depends heavily on the presence of selenium.  The 

mechanism is at the selenocystein site, which is in a se(-) form as resting state. This is 

oxidized by the peroxide to SeOH which is then trapped by a GSH molecule to Se-SG 

and by another GSH molecule to Se(-) again, releasing a GS-SG by-product (Epp et al., 

Muller et al.).  

The final protein identification that showed promise was the Hornerin protein spot 

however, the identification for Hornerin was judged as tentative because of the low 

MALDI ion scores.  Hornerin is a protein normally associated with epithelial cells so it is 

often used by the researchers at the Genome Research Institute (GRI) as a sign of keratin 

contamination.  However, this study has identified it as a potential biomarker and the 
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result is supported thanks to the work done by a proteomics group run by Dr. Camilla 

Mauzy and Dr Pavel Shiyanov.  Drs. Mauzy and Shiyanov identified Hornerin as a 

biomarker using LC-MS/MS and ELISA work on rat urine samples from d-serine study 

number 2 which was also used for this project. Hornerin is a protein found routinely in 

epithelial cells and is typically listed as approximately 280 to 300 kDa in size.  However, 

Drs. Mauzy and Shiyanov have noticed a smaller protein band, approximately 55 kDa in 

size, consistently appearing in gel electrophoresis experiments but it has not been 

referenced in reviews of Hornerin.  Despite the promising nature of hornerin based on 

studies by other groups, this particular project could not identify any dose- or time-

dependent toxicity for hornerin based on the statistics used in this project.   

In general the X-fold increase data from this project is not useful for determining 

dose- or time-dependent toxicity because the pooled samples negate the ability to do 

statistics.  If one of the rat subjects had an abnormally high expression but four subjects 

were normal, then the gel could show an increase that would be incorrectly attributed to 

all samples instead of the one outlier.  Despite the lack of significant statistics, the PG240 

data showing protein spot intensities was analyzed for trends that could indicate dose- or 

time-dependent toxicity.  Immediately evident in the analysis was the fact that the values 

for the differences in intensity were higher for the control vs control gels than for later 

time points.  That difference meant that the control samples were not consistent and the 

normalized volumes could not be trusted.  While the dose-dependent graphs for d-serine 

showed an increase in hornerin as the dose increased and the time-dependent graph 

showed a decrease in hornerin from 12 hours to 24 hours, no other nephrotoxin graphs 

showed useful trends for dose- or time-dependent analysis.  Since the d-serine data from 
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study 2 was the only one to show expected trends, one must consider that the older 

samples from the puromycin and BEA studies were degraded due to handling issues such 

as time and thaw cycles.  Overall, the design of this study only allowed for the narrowing 

of a broad field to a few viable biomarker candidates.  Once the candidates have been 

identified, other studies could be constructed to identify dose- and time-dependent 

toxicity for the biomarker.   

   In order to determine dose- or time-dependent toxicity, further studies would 

need to be performed with sound statistical models.  Further serum studies would require 

single animal subjects with control samples taken pre-dose then a single animal subject 

sacrifice at specific time points in order to collect enough serum.  Additionally, gel work 

would not be recommended since too many variables are possible and the DIGE 

technique is not sensitive enough to quantitatively track such small concentrations.  

Instead, a mass spectroscopy study would be recommended such as an iTRAQ 

experiment or, barring use of mass spectroscopy, possibly an ELISA assay.  Both 

experiments would provide greater sensitivity and direct quantification of known proteins 

of interest. 

In final summation, the proteins identified in this study were all well 

characterized, abundant proteins known to exist throughout the body for multiple 

functions.  The only protein spot showing any promise as a biomarker of low level kidney 

degradation was identified as hornerin.  However, because of the inherent lack of 

statistical validation in this project, dose- and time-dependent toxicity trends could not be 

sufficiently verified.  However, because of the promising nature of Hornerin as a 

potential biomarker due to identification in a urine study and a serum study, further 
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validation was deemed worthy but time and money restrictions limited the work to using 

Western blots.   Rat serum and urine from the RHPB d-serine study 2 were probed by 

Western Blot to gain a semi-quantitative measure of the abundance and concentration 

change among exposed rat subjects.  The Western data is shown in the next section. 
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IX. WESTERN BLOT 

A.  Methods  

The primary antibody used for these western blots were custom designed in-house 

by Jeanette Frey et al. and manufactured by a commercial company.  Western Blots were 

used to probe the serum samples from d-serine study 2 in order to visualize any change in 

Hornerin protein amount.  The Western blot protocol was obtained from the detection kit 

from Promega.  Samples were first diluted 1:10 since raw serum was used which meant 

the protein concentration was too high (~35 – 40 µg/µl).  Once diluted, a calculated 

volume of each sample was added to an eppendorf tube for 8 µg/µl final concentration.  

The samples were denatured and reduced by mixing water, 5X SDS sample buffer, and β-

mercaptoethanol and then placed in an 85o C water bath for 5 minutes.  The samples, 

control sample (0mg/kg, 24 hr), and Bio-Rad, Precision Plus Kaleidoscope protein 

standards, were then separated by 1D gel electrophoresis using Bio-Rad ready gels (10 

well, 50 µL wells) at 110V for approximately 75 minutes on ice.  Once separated, the 

proteins were transferred onto Bio-Rad PVDF membrane using a semi-dry procedure.  

For this procedure, a Hoefer horizontal electrophoresis system was used by laying 

Whatman filter paper, PVDF membrane, Ready Gel, and more filter paper in a stack then 

running a constant 200 mA current through the stack for 1 hour to migrate the proteins 

onto the PVDF membrane.  After the transfer, the PVDF membrane was blocked using 

1% Blot-Qualified BSA solution.  After blocking, the Hornerin proteins were probed with 

a custom primary antibody developed in-house by Jeanette Frey and mass produced by 

New England Peptide as a polyclonal antibody package with affinity purification.  Two 

antibodies were obtained from the company but optimization experiments showed 
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antibody A2 (Project #1241) performed better displaying less background versus A1 

(Project #1240).  The primary antibodies were then probed with Goat Anti-Rabbit IgG 

secondary antibody from the Promega kit which used an Alkaline Phosphatase detection 

enzyme.  Finally, the Promega detection substrate was added and the Hornernin protein 

appeared as purple bands.  A picture was taken with a CCD camera, images sharpened 

for resolution, and labeled.   
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B.  Results 

Figure 47: Western Blots of rat serum samples from d-serine study 2 used in the full 
study.  Samples used a custom designed primary antibody with and goat anti-rabbit 
labeled alkaline-phosphatase secondary antibody.  Images A – D show an individual rat 
(no sample pooling) for each dose and time point on each gel in order to visual any 
increase in hornerin expression as dose and time increase.  Image E shows all samples for 
the 200 mg/kg dose in order to visual any up-regulation in protein expression as time 
increases.   
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Figure 48: Western Blots of rat urine samples from d-serine study 2 used in the full 
study.  Samples used a custom designed primary antibody with and goat anti-rabbit 
labeled alkaline-phosphatase secondary antibody.  Images A – E show each individual rat 
(no sample pooling) for each dose and four time points after dosing to visualize any 
change in protein expression over time.  The blots paired a subject that received 200 
mg/kg with a subject that received 500 mg/kg to show any change in protein expression 
as dose increased.   
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C.  Discussion 

The Western blot images of the serum samples did not show any appreciable 

difference in protein concentration between samples.  The similar protein concentrations 

across all serum samples indicated that a steady amount of hornerin was present in the 

bloodstream at all times.  The initial 2D DIGE and mass spectrometry work was much 

more sensitive thus the subtle shifts in concentrations were not evident in the western 

blots of the rat serum.  However, western blots on the urine from the rats used in the d-

serine study 2 were tested to see if any differences were visible.  ELISA tests on the urine 

samples by another group found up-regulation in hornerin between 0, 12, and 24 hours 

post dose and those changes can be seen in the western blots results.  Additionally, 

histopathology of the rat kidneys showed dramatic increases in hornerin from control 

subjects to dosed subjects up to 24 hours post dose.     

The urine western blots clearly showed that hornerin was not present before 

dosing with d-serine but hornerin did show up in significant amounts after dosing.  

Combining the serum and urine images one can surmise that consistent levels are present 

in the body and as epithelial cells along the proximal tubules are damaged, hornerin 

protein is released into the urine and excreted from the body.  The distinct elevation in 

urine hornerin compared to the steady levels in serum suggests that hornerin would be a 

viable protein biomarker of kidney degradation but diagnosis would have to be made 

from urine samples.  Serum levels could be measured for use as a baseline or as a 

possible ratio between hornerin levels at certain disease states and static levels in the 

serum for use as a biomarker.   
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Ammendment 1: Study 1 Animal handling protocol.   

V.1. Experimental Design and General Procedures 
  
A.   Experimental Design and General Procedures:   
 
This study will be divided into two phases.  In the first phase, nephrotoxins that have 
been studied in Protocol # F-WA-2003-0074-A will be used at selected concentrations 
representative of toxicity and non-toxicity.  The chemicals, dose range, method of dosing 
and regional toxicity in kidney are shown in Table 1.  As described in Background 
(Section II.1), these dose ranges are determined based on the results generated under 
Animal Protocol # F-WA-2003-0074-A), in which the lowest dose caused no observable 
abnormality in clinical chemical and histopathology, while the highest dose resulted in 
mild histopathological lesions and/or clinical chemistry.  In the second phase of the 
study, nephrotoxins that are not covered by Protocol # F-WA-2003-0074-A will be used.   
 

    Table 1.  Chemical toxicants used in Phase I  
Dosing Solution  

(15 mL) 
Dose Range 
(~0.25 kg rat) 

Dosing Method 
(10 mL/kg) Regional Toxicity 

Bromoethylamine 
(0 – 50 mg/mL) 0 - 500 mg/kg i.p. injection 

renal papillary 
necrosis & renal 
fibrosis 

D-Serine 
(0 – 20 mg/mL) 0 - 200 mg/kg i.p. injection proximal tubular 

necrosis 
Puromycin 
(0 – 15 mg/mL) 0 - 150 mg/kg i.p. injection glomerular injury 

Amphotericin B 
(0 – 2.5 mg/mL) 0 - 25 mg/kg i.p. injection distal tubular 

damage 
Vehicle:  Vegetable oil (i.e. corn, sesame, etc.) - Hydrophobic compounds / Normal 
saline - Hydrophilic compounds   
 

B. Phase I General Experimental Design:   
Male Fischer 344 rats (200-225 gram) will be obtained from Charles River 

Laboratories and housed in Building 838.  Food and water will be available for all 
animals ad libitum.  On the seventh day after arrival 0.8 mL of blood, which serves as the 
baseline, will be collected from each rat via the lateral tail vein, using a 23 G needle 
attached to a 1 cc syringe.  At the end of the 14-day quarantine/acclimation period, the 
animals will be randomly assigned to a control or one of the four treatment groups in 
each chemical treatment study (listed in Table 1) and housed in metabolism cages.  
Selection of each test chemical was based on a complete and site specific representation 
of the regions of the kidney, as described in the Animal Protocol # F-WA-2003-0074-A.  
Based on our previous histopathology/clinical pathology results, the low-dose treatment 
is expected to result in no observable abnormality in histopathology and clinical 
chemistry, while the high-dose treatment will result in mild histopathological lesions 
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and/or clinical chemistry.  Two intermediate doses will also be included.  The range of 
possible dosages for each chemical is listed in Table 1 shown above.   

 
The schematic representation of the general experimental design is shown in Figure 1.  

Seventy-eight rats per chemical treatment experiment are required:  
 (n = 3/treatment group x 5 groups (ctl + dose) x 5 time pts + 3 animals @ time 0).  

Based on the results of Animal Protocol # F-WA-2003-0074-A and that reported in the 
open literature, the recovery period may cover a range up to 7 days. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    
 
 
         Figure 1.  Schematic representation of the general design of the experiment. 

 

On day 0 at time 0, each animal will be given a single dose of either vehicle only or 
the test chemical at the selected doses by intraperitoneal injection at a volume of 10 
mL/kg.  Urine samples for proteomics and metabonomics analysis will be collected 24 h 
prior to dosing and daily thereafter from both control and treatment groups into 50 mL 
conical tubes containing 1.0 mL of 1% sodium azide maintained at 6-10°C using I-Cups 
(Bioanalytical Systems, Inc.). 

 
On day 0 at time 0, three rats dosed with vehicle only will be sacrificed by CO2 

asphyxiation.  Blood will be drawn via the inferior vena cava with an 18-20 G needle 
fitted to a 10 cc syringe, and the kidneys will be removed.  Peripheral blood mononuclear 
cells (PBMC) and serum/plasma will be prepared from the collected blood for genomics, 

Chemical 
Exposure

(Hours)0 12 24 48 96

Time 0: scarify animals (3 controls)

Time 6, 12, 24, 48 and 96 Hours: scarify control, low-dose, intermediate dose 1, 
intermediate dose 2 and high-dose groups (3 animals/group)

Collect urine, blood & tissues

Genomics, proteomics and metabonomics profiling, clinical chemistry, histopathology, etc.

6
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proteomics, metabonomics, clinical chemistry and histopathological analyses.  A list of 
traditional renal function and previously described renal injury tests shown in Table 2 
will be performed.  Kidney tissues will be frozen in liquid nitrogen for genomic profiling 
or fixed in 10% formalin for histopathological analysis.  Tissue samples will be stained 
with hematoxylin and eosin followed by light microscopic evaluation.  Since gene/protein 
expression can be influenced by the circadian rhythm, inclusion of this control group will 
help identify gene/protein expression changes unrelated to chemical exposure and thus 
eliminate them from the list of potential biomarkers.   
 
Table 2.  Serum and Urine Analytes (Parameters) for Determination of Renal Function  
Note:  Select tests from the below table will be performed on collected sera. 

 
 

At 6, 12, 24, 48 and 96 hours (or other time points depending on the toxicity profile 
of the chemicals as described above) post-dose, 3 rats per dose group (control plus 4 dose 
groups) will be sacrificed in the same manner.  Urine, blood, and tissues will be 
collected, processed and analyzed as at time 0.  The total animal usage for the Phase I 
study is shown below:   

 
  Total # animals = 312 (78 animals per chemical x 4 chemicals) 

 

ii. Time Series Exposure Experiments:   
These experiments will be performed as described in Section V.1.B (Phase I 

experiments of this study).  Specifically, male Fischer 344 rats (200-225 gram, from 
Charles River Laboratories will be housed in Building 838.  On the seventh day after 
arrival 0.8 mL of blood (serving as the baseline) will be collected from each rat.  At the 
end of the 14-day quarantine/acclimation period, the animals will be randomly assigned 
to a control or one of the four treatment groups in each chemical study and housed in 

Creatinine Cystatin C
Urea Electrolytes (sodium, calcium and magnesium)

Volume IgG
Creatinine α1-microglobulin 
Total protein α2-microglobulin 
Glucose β2-microglobulin (Cleaved products)
Electrolytes (sodium, calcium and magnesium) N-acetyl-β-D-glucosaminidase
Albumin adenosine deaminase binding protein 
α-Glutathione-S-transferase Kidney Injury Molecule-1 
π/μ-Glutathione-S-transferase neutrophil gelatinase-associated lipocalin
Collagen IV Clusterin 
Pap X 5C10 antigen, Pap A1 IL-18 
Leucocyte esterase Lactate dehydrogenase
hemoglobin Aspartate aminotransferase
Alanine aminopeptidase Clara cell protein (CC16)
Leucine aminopeptidase retinol binding protein
Neutral endopeptidase beta 2-glycoprotein-1
gamma glutamyltransferase Cysteine-rich protein 61, CYR61 

Serum (or Plasma)

Urine
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metabolism cages.  Selection of the doses will be guided by the results of the dose-
response experiment described above (Section V.1.C.i).  As above, the low-dose 
treatment is expected to result in no observable abnormality in histopathology, clinical 
chemistry, renal function assays and metabonomic profiles while the high-dose treatment 
will result in mild nephrotoxicity.  Two intermediate doses will also be included.   

 
Seventy-eight rats per chemical treatment experiment are required (n = 3/treatment 

group; vehicle control and 4 dose groups).  Based on the results of dose-response 
experiment, as well as that reported in the open literature, experimental exposure and 
recovery period may cover a range up to 14 days. 

   
On day 0 at time 0, each animal will be given a single dose of either vehicle only or 

the test chemical at the selected doses by intraperitoneal injection (or oral gavage) at a 
volume of 10 mL/kg.  Urine samples, for proteomics and metabonomics analysis, will be 
collected 24 h prior to dosing and daily thereafter from both control and treatment groups 
into 50 mL conical tubes containing 1.0 mL of 1% sodium azide maintained at 6-10°C 
using I-Cups (Bioanalytical Systems, Inc.). 

 
On day 0 at time 0, 3 rats dosed with vehicle only will be sacrificed by CO2 

asphyxiation.  Blood will be drawn via the inferior vena cava with an 18-20 G needle 
fitted to a 10 cc syringe, and kidney will be removed.  Peripheral blood mononuclear 
cells (PBMC) and serum/plasma will be prepared from the collected blood for genomics, 
proteomics, metabonomics, clinical chemistry and histopathological analyses.  Kidney 
tissues will be frozen in liquid nitrogen for genomics profiling or fixed in 10% formalin 
for histopathological analysis.  Tissue samples will be stained with hematoxylin and 
eosin followed by light microscopic evaluation.   
 

At 6, 12, 24, 48 and 96 hours (or other time points depending on the toxicity profile 
of the chemicals as described above) post-dose, 4 rats per dose group (control plus 4 dose 
groups) will be sacrificed in the same manner.  Urine, blood and tissues collected, 
processed and analyzed as at time 0.  The total animal usage for the Phase I study is 
shown below:   

 
  Total # animals = 780 (10 chemicals X 5 dose groups X 5 time points X 3 

animals/time point) + (10 chemicals X 1 dose group (control)  X 1 time point (time 0) X 
3 animals/time point) 
 

H. Clinical Chemistry, Renal Function Test and Histopathology Analysis 
Blood samples will be collected in non-additive red top clot tubes (Becton-Dickinson) 

and serum recovered by centrifugation at 2,500 x g at 25oC for 10 min.  Serum chemistry 
for specific analytes such as creatinine, urea, sodium, calcium and magnesium will be 
analyzed using a Roche Cobas Mira Clinical Chemistry Analyzer.  Similarly, urinary 
creatinine, total protein, glucose, sodium, calcium, magnesium albumin hemoglobin, IgG, 
α1-microglobin, α2-microglobin, β2-microglobin, lactate dehydrogenase, aspartate 
aminotransferases, alanine aminotransferases and gamma glutamyltransferase will also be 
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determined.  Other urinary proteins associated with renal injury such as N-acetyl-β-D-
glucosamindase, adenosine deaminase binding protein, α-glutathione-S transferase, μ-
glutathione-S transferase, neutrophil gelatinase-associated lipocalin, kidney injury 
molecule-1, clusterin, retinol binding protein, etc. will be determined using either 
Western blots or ELISA (see Table 2 for the entire list of serum and urinary analytes).  
Tissue samples collected for histopathology will be placed in 10% neutral-buffered 
formalin followed by sectioning (1-3 mm), paraffin embedding, cutting, placement on 
slides, and staining using hematoxylin and eosin. 
 

V.3.3.5. Weight 
The animals will be ordered at 200-225 grams.  Based on the growth charts for male 

Fischer 344 rats available on the Charles River Laboratory website (www.criver.com) 
animals, prior to chemical exposure, should reach approximately 250 grams with a 
circulating blood volume of 17.50-21.00 ml, which is recommended for “safely” 
removing multiple blood samples within a 2-4 week period (NIH Office of Animal Care 
and Use, www.oacu.od.nih.gov).  
 
V.3.3.6. Sex 

Male: To ensure the genomics and proteomics data can be directly compared with 
that of the metabonomics experiment performed under the Animal Protocol # F-WA-
2003-0074-A, only males will be utilized.  However, if successful, a similar study may be 
conducted utilizing female rats to determine the effect of gender difference on genomics 
and proteomics to exposure to nephrotoxicants. 
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Amendment 2: Large 2D PAGE gels of Subject 305, comparison of serum before and 
after immunodepletion by Agilent MARS MS-3 HPLC chromatography column.  The 
gels show that very little of the over abundant proteins were removed and that the Agilent 
column did not perform as advertised by Agilent. A) Subject 305, whole serum before 
enrichment.  B) Subject 305 after 1 pass through the Agilent HPLC column. 
 
 
A 
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B      
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Amendment 3: Specific time points taken from each rat from puromycin and BEA 
study 1 and d-serine study 2 used in the Full Study.  The table demonstrates the need for 
sample pooling and shows where study contaminations may have occurred as well as 
lethal doses. 
 

Puromycin       

Control 
Pre-
Clinical 

24 hr post 
dose 

Terminal 
Sacrifice 

301 x x x 
302 x x x 
303 x   x 
304 x   x 
305 x x x 

    
75 
mg/kg 

Pre-
Clinical 

24 hr post 
dose 

Terminal 
Sacrifice 

311 x x x 
312 x x x 
313 x x x 
314 x x x 
315 x x x 

    
150 
mg/kg 

Pre-
Clinical 

24 hr post 
dose 

Terminal 
Sacrifice 

316 x x x 
317 x x x 
318 x x x 
319 x x x 
320 x   x 

    
300 
mg/kg 

Pre-
Clinical 

24 hr post 
dose 

Terminal 
Sacrifice 

321 x x x 
322 x x x 
323 x x x 
324 x x x 
325 x   x 
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BEA 

Control 
Pre-
Clinical 

24 hr post 
dose 

Terminal 
Sacrifice 

119 x   x 
154 x x x 
155 x x x 
156 x   x 

    
15 
mg/kg 

Pre-
Clinical 

24 hr post 
dose 

Terminal 
Sacrifice 

139 x   x 
140 x   x 
141 x   x 

    
50 
mg/kg 

Pre-
Clinical 

24 hr post 
dose 

Terminal 
Sacrifice 

131 x   x 
132 x x x 
133 x   x 
134 x x x 
135 x x x 

    
150 
mg/kg 

Pre-
Clinical 

24 hr post 
dose 

Terminal 
Sacrifice 

118     x 
128 x x x 
129 x x x 
130 x x x 

    
500 
mg/kg 

Pre-
Clinical 

24 hr post 
dose 

Terminal 
Sacrifice 

285     x 
286     x 
287     x 
288     x 
289     x 
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D-Serine 

Dose Time Point           Subject numbers   
            

Control  
12 hr post 
dose 1 5 15 28

0 mg/kg 
24 hr post 
dose 6 11 26 30

            
200 
mg/kg 

12 hr post 
dose 4 20 27 29

  
24 hr post 
dose 2 12 19 24

            
500 
mg/kg 

12 hr post 
dose 7 8 17 22

  
24 hr post 
dose 3 9 18 21
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