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ABSTRACT 

 

 

Joshi, Kaushal .M.S., Department of Pharmacology and Toxicology, Wright State 

University, 2009. 

NOVEL NEUROPROTECTANTS FOR SARIN PLUS CBDP INDUCED 

CONVULSIONS. 
1 

 

 

Sarin,  also  known  as  Sarin  (German agent B)  is  classified  as  a  weapon  of  mass 

destruction.  Sarin (O-isopropyl methyl phosphonofluoridate) is a highly toxic nerve 

agent originally produced for chemical warfare and has been used in terrorist activities.  

Sarin is an extremely potent acetylcholinesterase inhibitor with high specificity and 

affinity for the enzyme.  High sarin doses causes death due to anoxia resulting from 

airway obstruction, weakness of the muscles of respiration, respiratory failure and 

convulsions.  Current treatments are still not effective at protecting against long term 

effects following exposure.  A current approach aims to counteract the increased 

glutamatergic and cholinergic neurotransmission occurring in sarin neurotoxicity.  In 

vitro and in vivo, serotonin (5-HT) 1A agonist prevented toxicity from glutamate.  We 

determined the neuroprotective capabilities of serotonin (5-HT) 1A agonists as novel 

pharmacological countermeasures to chemical warfare agents.  Rodents have higher 

amount of carboxylesterase enzyme and requires higher doses of sarin than other species.  

To address this issue we administered 1.5 mg/kg of CBDP (2-/o-cresyl/-4 H-1: 3: 2-

benzodioxa-phosphorin-2-oxide), which specifically blocks carboxyl esterase and makes 
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mouse model comparable to that of human exposure.  We determined 1mg/kg dose of 

serotonin (5-HT) 1A agonists 8-OH-DPAT from dose response curve based on 

neuroprotection, with toxic challenge of 1.5 mg/kg CBDP and dose of sarin yielding 25-

50 % mortality.  This mortality rate gave enough number of survivors with seizures and 

neurodegeneration for reliable baselines.  Measurements were mortality, weight loss 

AChE activity in blood and CNS, functional observational battery (FOB) and histology 

compared to control and toxic challenge mice.  In addition, a time response curve after 

toxic challenge was determined with 1mg/kg of 8-OH-DPAT at time points of 1, 15, 30, 

45, 60 minutes and 2, 4, 6 hours.  We observed neuroprotection by 8-OH-DPAT in the 

dentate gyrus of the hippocampus when administered up to two hours after Sarin.  The 

ability of the combination of serotonin (5-HT) 1A agonist’s dose and time after toxic 

challenge was tested for its ability to reinstate fear potentiated startle (FPS) response.  

However this test was invalidated by the response of the control group.  DPAT like drugs 

could be useful in treatment of long term effects produced by sarin induced convulsions.  
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Introduction  

Organophosphate nerve agents and its history 

The organophosphate (OPs) nerve agents are one of the most toxic chemical warfare 

agents developed in the 20
th
 century.  The first nerve warfare agents were produced by 

Nazi Germany during World War II.  The first was tabun (GA-German agent A) and 

second was sarin (Sarin-German agent B) known as G-type agents.  These nerve agents 

were weaponized and stocked by Germany, but there have been some debates over use of 

these weapons in World War II.  The first confirmed use of nerve agents in warfare was 

Iraq’s use of tabun and sarin against Iran during the Gulf War(1980-1988).  The United 

Nations delegation confirmed the use of nerve agents and other chemical warfare agents 

which caused at least 45,000 Iranian casualties.(Newmark, 2004)  During the Gulf War 

(GW-1991), a munitions dump at Khamisiyah, Iraq, was destroyed. Later, in 1996, it was 

found that the dump might have contained the organophosphate chemical warfare agents, 

sarin and cyclosarin. (Proctor, et al., 2006)  The most recent and significant deliberate use 

of sarin as nerve agent was two terrorist attacks in Japan.  The first nerve gas terrorism 

occurred at midnight on 27 June, 1994 in quiet residential area of Matsumoto. About 600 

people including residents and rescue staff were exposed to sarin gas.  Fifty-eight victims 

were admitted to hospitals and seven died.  The second attack was on 20
th
 March 1995 in 

Tokyo subway during rush –hour., that killed 12 people, 50 severely injured and 5000 

people with minor injuries.(Okudera, 2002;Yanagisawa, et al., 2006;Hoffman, et al., 

2007)    The possibility of terrorists using chemical warfare agents (CWA), particularly 

sarin is quite real.  Nerve agents are well within the capabilities of a good organic 

chemist who has access to the necessary raw materials and equipment. The nerve agents’ 
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formula and synthetic methods are relatively easily obtained from public information 

sources, including the internet.  For example, Iraqi military scientists used a U.S. patent 

that was declassified in 1975 to make VX (potent chemical warfare nerve agent).  The 

most popular example is terrorist group Aum-shinrikyo using sarin. (Leikin, et al., 2002)  

Sarin is colorless, odorless and most volatile of all the nerve agents; it makes sarin most 

likely to be used in terrorist attack.   

 

 

Sarin and its properties 

Sarin is an organophosphorus compound that contains both carbon and phosphorus 

atoms.  Sarin is basically a derivative of phosphonic (H3PO3) acid.  The biological action 

of sarin compounds is related to its phosphorylating abilities. (bou-Donia, 2003b)  

                              

Figure 1. Chemical structure of sarin (C4H10FO2P). It is also known as isopropyl 

methylphosphonofluoridate; isopropoxymethylphosphoryl fluoride and Sarin. 

   

Sarin is chemically similar to organophosphate pesticides and all exert their main 

biological effects by inhibiting acetylcholinesterase.  G-type agents (GA, Sarin, and GD) 

are clear, colorless, and tasteless liquids that are miscible in water and most organic 

solvents.  Nerve agent vapors are heavier than air and odorless.  Sarin is the most volatile 

nerve agent, evaporating at about the same rate as water.   
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Table 1. Comparison of Physical Properties of Nerve Agents          

 

(Agency for Toxic Substances and Disease Registry., 2003c) 

 

Mechanism of cholinesterase inhibition 

After exposure, sarin is primarily absorbed from the respiratory tract.  Vapors are 

absorbed through the skin at very high concentrations for G agents and at low 

concentrations of V agents. The nature and timing of symptoms following dermal contact 

with liquid nerve agents depend on exposure dose; effects may be delayed for several 

hours. (Agency for Toxic Substances and Disease Registry., 2003b)  Sarin causes 

neurotoxicity by inhibiting acetylcholinesterase (AChE).  AChE is required for 

degradation of acetylcholine (ACh).  ACh is released in response to nerve stimulation and 

binds to post-synaptic acetylcholine receptors.   Its action is rapidly terminated by 

Property Tabun (GA) Sarin (Sarin) Soman (GD) VX 

Description Clear, colorless 

and tasteless 

liquid 

Clear, colorless, 

tasteless and 

odorless liquid 

Pure liquid is 

Clear, colorless, 

tasteless and 

odorless liquid, 

discolors with 

aging to dark 

brown 

Ambered colored, 

tasteless and 

odorless oily 

liquid 

Molecular 

Weight 

162.3 daltons  140.1 daltons 182.2 daltons 267.4 daltons 

Flash point 172.4 °F 

(78°C)  

Nonflammable 249.8°F 

(121°C) 

318.2°F (159°C) 

Solubility in 

water 

9.8 g/100 g at 

77 °F(25°C) 

Miscible 2.1 g/100g at 68 

°F (20°C) 

3 g/100 g 

(miscible below 

48.9 °F (9.4 °C)) 

Volatility 490 mg/m
3
 at 

77 °F (25°C) 

22,000 mg/m
3
 

at 77 °F (25°C) 

3,900 mg/m
3
 at 

77 °F(25°C) 

10.5 mg/m
3
 at 77 

°F (25°C) 
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hydrolysis with AChE via the serine hydroxyl in the catalytic triad of AChE.  AChE very 

quickly hydrolyzes ACh, which is a continuous process.  Sarin inhibits AChE by 

phosphorylating the serine hydroxyl group at the catalytic triad site.  The phosphonic acid 

ester formed with the enzyme is extremely stable and is hydrolyzed very slowly.  The 

neurotransmitter ACh continues to elicit a response from the post-synaptic nerve, causing 

acute and chronic toxic effects. (bou-Donia, 2003a;Hoskins, et al., 1986;Wang, et al., 

2008) 

                        

Figure 2. The 3-dimensional structure of AChE  

It has an active center located at the base of a narrow gorge about 20 Å in depth.  The 

active center includes the following sites (a) the catalytic triad: Glu 334, His 447, and Ser 

203; (b) an acyl pocket Phe 295 and Phe 297; (c) a choline subunit: Trp 86,Glu 202, and 

Tyr 337; and (d) a peripheral site: Trp 286,Tyr 72, Tyr 124, and Asp 74. 
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          Organophosphorus esters inhibit AChE by phosphorylating the serine hydroxyl 

group at the catalytic triad site.  Phosphorylated AChE undergoes aging—a process that 

involves the loss of an alkyl group, resulting in a negatively charged monoalkyl enzyme. 

 

Sarin effects and excitotoxicity 

Sarin causes rhinorrhea and tightness in the throat or chest within seconds to minutes 

after exposure. (Agency for Toxic Substances and Disease Registry., 2003a)  Sarin 

causes death due to anoxia, weakness of the muscles of respiration, convulsions and 

respiratory failure.  The main clinical symptoms of acute toxicity by sarin are seizures, 

tremors and hypothermia. (bu-Qare and bou-Donia, 2002)  A study conducted on GW 

veterans concludes that, sarin and cyclosarin exposure in Iraq was significantly associated 

with less proficient neurobehavioral functioning on tasks involving fine psychomotor 

dexterity and visuospatial abilities 4–5 years after exposure.  The study also suggested a 

dose–response association between low-level exposure to sarin and cyclosarin and 

specific functional central nervous system effects 4–5 years after exposure. (Proctor, et 

al., 2006)  Convulsions are a major sign of OP poisoning of the CNS and OP-induced 

seizures rapidly leads to structural brain damage.  Convulsant doses of soman produce 

neuropathology in rats and guinea pigs.  Understanding the mechanisms underlying the 

pathophysiology of OP-induced neurotoxicity is a crucial step for the development of 

effective pharmacological antidotes for long-term effects. (Lemercier, et al., 1983;Filliat, 

et al., 1999;Taysse, et al., 2006)  The regions of the brain where neuronal damage is 

mostly observed are amygdala, piriform cortex, hippocampus and caudate.   

Neurodegeneration in the amygdala region of the brain is involved in seizures. (Filliat, et 
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al., 1999;Lallement, et al., 1991b)   Neuropathology is observed within 20-40 minutes 

after convulsion and leads to irreversible neuronal damage leading to long-term effects.  

A correlation has been observed between glutamate release in CA1 and CA3 regions of 

hippocampus and soman induced seizures(Lallement, et al., 1991b;Lallement, et al., 

1991a;Miller, 2005). 

          

                       Sarin exposure leads to a series of events.  It causes AChE inhibition and 

muscarinic receptor over stimulation, which leads to neuronal hyper- excitation and 

glutamate overflow.  Excessive presynaptic release of glutamate causes activation of 

NMDA postsynaptic receptors, which leads to neurodegeneration through excitotoxicity.  

Thus, antagonism of the excitotoxic mechanisms may protect the brain from the 

deleterious effects of OP nerve agents.  Ketamine is a noncompetitive NMDA receptor 

ion-channel blocker with neuroprotective and anti-epileptic properties, used for general 

anesthesia.  It is also.  However, it has shown high incidence of psychomimetic side 

effects.  The antitussive drug dextromethorphan and its active metabolite dextrorphan are 

potent NMDA receptor antagonists.  Both compounds were shown to possess anti-

excitotoxic and anti-epileptic properties, but individuals seeking its dissociative effects 

often abuse dextromethorphan. (Miller, 2005)  Several other NMDA receptor antagonists 

have been shown to exert anticonvulsant effects against nerve agent-induced seizures 

when administered as a pretreatment or as post treatment.  This antiepileptic feature of 

the NMDA receptor antagonists is fully expressed when they are administered 

concurrently with muscarinic receptor antagonists.  Thus, NMDA receptor antagonists do 

not modify the events responsible for the early phase of the seizure, but block the 
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subsequent recruitment of glutamate receptor activation and hence the maintenance of 

seizure activity.  It is important to note that NMDA receptor antagonists may have lethal 

interactive effects on respiratory function in soman-intoxicated subjects in the absence of 

muscarinic receptor antagonists.  Therefore, there is need for other alternatives for 

treatment of long-term effects. (Solberg and Belkin, 1997) 

 

Fear potentiated startle (FPS) response 

There is a correlation between neuropathology and memory impairments in Soman 

treated rats. (Filliat, et al., 1999)    Tokyo subway victims underwent the chronic decline 

of memory function after poisoning. (Nishiwaki, et al., 2001)   Pavlovian fear 

conditioning procedures are used to assess the behavioral, physiological, genetic and 

molecular correlates of learning and memory.  In the Pavlovian conditioned fear 

procedure, a neutral stimulus such as tone is paired with foot shock.  After few of these 

pairings the tone conditioned stimulus (CS) elicits a variety of behaviors, one of which is 

learned fear.  One of the prominent of these behaviors is fear-potentiated startle effect, in 

which conditioned fear is defined as elevated startle amplitude in the presence versus the 

absence of CS.  Fear potentiated startle can be measured after a single CS and shock 

pairing and can be retained over very long training to test intervals, making it ideal for 

examining long-term memory. (Falls and W, 1994;McNish, et al., 1997) 

 

  

 

Serotonin (5-HT) 1A agonists as novel treatments  
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Serotonin (5-hydroxytryptamine, 5-HT) is a neurotransmitter and utilized in a wide 

variety of physiological, sensorimotor and behavioral functions.  Serotonin signaling is 

mediated by 14 receptor subtypes with different properties.  The 5-HT1A subtype is one 

of the main mediators of the action of 5-HT which regulates the activity of 5-HT neurons 

via auto receptors and it regulates the function of several neurotransmitter systems via 

postsynaptic receptors.(Ogren, et al., 2008)  5-HT1A receptors are required for 

maintaining normal hippocampal functions.  A study of 5-HT1A receptor knockout mice 

suggests a role for 5-HT1A receptors in hippocampal-related symptoms such as learning 

and memory. (Sarnyai, et al., 2000)  Serotonin1A (5-HT1A) receptors are also localized 

in the frontal and parietal neocortex, olfactory bulb, cerebral cortex, thalamic and 

hypothalamic nuclei, raphe nuclei, septum, hippocampus, several nuclei of the brainstem    

Among  these  the hippocampus and cortex are susceptible to excitotoxic injury.(Nyakas, 

et al., 1997;Pompeiano, et al., 1992)   

                          The 5-HT1A receptor agonist repinotan is neuroprotective and attenuates 

spatial learning deficits following controlled cortical impact injury. This treatment 

strategy may be beneficial in memory impairments in humans following traumatic brain 

injury due to exposure to sarin. (Kline, et al., 2001;van der Staay, et al., 2008)  The 

neuroprotection is result of attenuation of the activity of both N-type Ca
2+

 channels and 

N-methyl-D-aspartic acid receptors and MAPK-mediated inhibition of a caspase 3-like 

enzyme pathway. (Adayev, et al., 1999;Harkany, et al., 2001;van der Staay, et al., 2008)   

                         Another full agonist, 8-OH-DPAT shows neurological protection after 

traumatic brain injury (TBI). The mechanism for the protective effects of 8-OH-DPAT 

after TBI is still not clear. (Kline, et al., 2004)  5-HT1A receptor agonist 8-OH-DPAT 
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has inhibited neuronal cell death in vivo and in vitro. (Adayev, et al., 1999;Oosterink, et 

al., 2003)  The OPs nerve agent exposure causes seizures that induce release of 

glutamate.  Glutamate causes excitotoxicity and leads to neurotoxicity.  One of the 

hypothesized mechanisms is inhibition of glutamate release by activation of 5-HT1A 

receptors.  (McDonough, Jr. and Shih, 1993;Srkalovic, et al., 1994)   Additionally, 

several full and partial 5-HT1A receptor agonists have been developed, generally with 

lower selectivity than 8-OH-DPAT.  A current approach aims to counteract the increased 

glutamatergic and cholinergic neurotransmission occurring in sarin neurotoxicity.  The 

physiological mechanisms underlying the neuromodulatory functions of 5-HT1A 

receptors are presently not well characterized.  We tested 8-OH-DPAT as a 

neuroprotectant against sarin poisoning. (Ogren, et al., 2008) 

 

Use of CBDP  

Rodents have a high amount of carboxylesterase enzyme compared to humans.  

Carboxylesterase is a chemical scavenger that inactivates organophosphate nerve agents 

among other things.  This makes rodents relatively insensitive to the toxic effects of 

organophosphorus compounds.  There will be differences in the neurotoxicity produced 

by single dose of sarin in rodents in comparison to humans.  So we propose to use CBDP 

(2-/o-cresyl/4H: 1: 3: 2-benzodioxaphosphorin-2-oxide) which is a carboxylesterase 

inhibitor. Subcutaneous CBDP has reduced LD 50 range of soman across species from 

22.8 to 125 µg/kg to 11.8 to 15.6 µg/kg. (Clement and Erhardt, 1990;Maxwell, et al., 

1987)  Doses of CBDP between 1.0 to 2.0mg/kg should prove useful as pretreatment in 

OPs induced neurotoxicity in rat, it makes mouse model comparable to actual human 
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exposure. (Jimmerson, et al., 1989)   Preliminary work has shown that an optimum dose 

of 1.5 mg/kg CBDP specifically blocks carboxylesterase, and potentiates the response of 

C57BL/6 mice to sarin.  This dose of CBDP does not inhibit AChE and produce toxic 

effects of its own. 

 

Hypothesis 

We tested the hypothesis that the 5-HT1A agonist 8-OH-DPAT (8-hydroxy-2-(di-n-

propylamino) tetralin) will work as a neuroprotectant against sarin poisoning.  The toxic 

challenge (TC) was the dose of sarin with CBDP yielding 25-50% mortality in the group.  

That gave enough number of survivors with seizure and neurodegeneration for reliable 

baselines.  We determined the neuroprotective dose response curve for   8-OH-DPAT 

against the toxic challenge.  Then, we determined time response curve of the best dose of 

5-HT1A agonist based on neuroprotection.  Finally, we tested the correlary hypothesis 

that a selected dose will prevent from memory deficits. 

 

Specific Aim 1   

Test the hypothesis that best dose of 8-OH-DPAT can act as a neuroprotectant for 

neurotoxicity produced by sarin induced convulsions in a dose dependant manner.  

Measurements were mortality, weight loss and FOB compared to control and toxic 

challenge mice.  This was used to select best dose for subsequent studies. 

 

 

Specific Aim 2  
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Test the hypothesis that best dose of 8-OH-DPAT can act as a neuroprotectant for 

neurotoxicity produced by sarin induced convulsions in a time dependant manner.  

Measurement were mortality, weight loss, FOB, ChE activity and histology compared to 

control and toxic challenge mice  

 

Specific Aim 3 

The ability of the combination of 8-OH-DPAT agonist dose of best dose and selected 

time after toxic challenge was tested for its ability to reinstate Fear potentiated startle 

(FPS) response. 
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Research design 

 

Animals 

The subjects were C57BL/6 male mice at 20-25 g body weight.  They were housed in an 

AAALAC (Association for the Assessment and Accreditation of Laboratory Animal care) 

approved facility on a 12hr light/dark cycle with free access to food and water.  All of our 

previous studies have been with this strain.  Before administration of drugs animals were 

kept 1 week in house cage so they could acclimate to the environment and handled for 3 

days to eliminate signs of stress.  Studies in mice have demonstrated interstrain 

differences both in neurochemical measures and in cognitive abilities.  A C57BL/6J 

mouse has good learning abilities and memory trace retention (at 10 days) in a simplified 

Morris maze. (Bel'nik, et al., 2009) 

 

Drugs 

We used diluted sarin (Aberdeen Proving Ground, MD) from the stock of 1.9 mg/ml 

saline solution.  It was injected in a volume of 1 ml/200g weight for each dose. Mice 

received 0.5ml/a00g body weight, for a dose of 1.5 mg/kg CBDP (a generous gift of R.A. 

Donald M.Maxwell, Pharmacology Division, United States Army Medical Institute of 

Chemical Defense, Aberdeen Proving Ground, Maryland 21010-5425, USA). We diluted 

CBDP to 0.3mg/ml in a 10% ethanol and propylene glycol solution for the dose of 

1.5mg/kg.    Sarin and CBDP injections are subcutaneous.  Our previous work established 

1.5mg/kg CBDP as the optimum dose for carboxylesterase inhibition and it does not 

interfere with cholinesterase activity.  Sarin was injected 1 hour after CBDP injection to 
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allow inhibition of carboxylesterase.  8-OH-DPAT doses of 0.3,1, 1.7 and 3 mg/ml were 

selected for dose response curve.  8-OH-DPAT was dissolved and diluted in saline for 

volume of 1ml/200g weight for each dose.  Doses of 8-OH-DPAT were given 1 minute 

after Sarin injection for dose response curve.  For the time response curve best selected 

dose (1 mg/kg) was given at different time points 1,15,30,45,60 min and 2,4,6 hours after 

toxic challenge. 

 

Weight Loss 

There was observed correlation between organophosphate nerve agent produced 

neurotoxicity and weight loss in mice. (Filliat, et al., 2007)  In our previous work, we 

observed that toxic challenge dose causes weight loss in mice.  We measured percentage 

body weight loss of mice on the first and third day after the injections. 

 

Functional Observational Battery (FOB) 

FOB contains end points that provides information of general health of mice.  It also 

provides data needed for analysis of neurotoxicity produced by neurotoxicants. (Ross J F, 

2000)  We  used a modified FOB which was used for ChE inhibitor pesticides.(Moser, 

1995;Shih and Romano, 1988)  Mice were observed for a Functional Observational 

Battery for 1-hour post Sarin dosing.  The FOB scores were taken 15, 30, 45 and 60 min 

after the sarin dose.  The FOB is based on 5 criteria with a total low score of 6 and a high 

score of 21.  It includes measures of posture, motor behavior, gait, breathing and eye 

closure.  Data is presented as percent of maximum score.   

Table 2. Functional observation battery scoring 
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Posture 
⁯ normal     ⁯ flattened   ⁯prostration ⁯ side/contorted 

Motor 

behavior 

⁯ normal    ⁯ tail twitching 

⁯ hypo-loco 

⁯ tremors ⁯ convulsions 

Gait score ⁯normal 

    

⁯ staggering 

⁯ splayed 

⁯ severe 

staggering 

⁯ unable to move 

Eyelid ⁯open ⁯ half closed ⁯ slight 

protrusion 

⁯ severe protrusion 

Breathing ⁯ normal ⁯ fast shallow ⁯ slow labored 

 

 

Blood and brain cholinesterase (ChE) activity 

We used modified version of the colorimetric assay of acetyl cholinesterase on Packard 

Fusion
TM 

Microplate Analyzer. (ELLMAN, et al., 1961)   The mice were decapitated 

after 14 days of Sarin injection and blood were collected in heparin tubes. Two eppendorf 

tubes were prepared for each blood sample inhibited for inhibition of butrylcholinesterase 

(BChE) activity and uninhibited for total cholinesterase activity.  For inhibited tubes 5ul 

10mM iso-OMPA (tetraisoproppyl-pyrophosphoramide) and for uninhibited 5ul of 

NaPO4 pH 7.4 are incubated for 45 minutes on ice.  That allows for inhibition of BChE 

activity in inhibited tubes.  Following incubation 245 µl 0.1 M NaPO4 pH 7.4 buffers is 

added in inhibited and uninhibited tubes and mixed by inverting tubes. Than 96 well plate 

is used with triplicate sample.  Total 6 wells are used for each sample, with 140 µl 0.1 M 

NaPO4 pH 8.0, 20ul sample, 20 µl 10 mM DTNB (Dithionitrobenzoate) and 20µl 10mM 

ATCh (Acetyl choline).  The plate was transferred to the plate analyser as quickly as 
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possible.  BChE activity is then calculated by subtracting AChE activity from total ChE 

activity.  Brain cholinesterase activity determined as described above.  Brain samples are 

sonicated in 0.1 M NaPO4 pH 7.4 buffer containing 0.5 % Tween 20 with a probe 

sonicator for 5 seconds for 2-3 times.  We used Tween 20 rather than Triton X-100, 

which inhibits BChE activity. (Li, et al., 2000)   Samples were centrifuged at 13000 rpm 

for 5 minutes at 4ºC.  For inhibited sample, 1µl of iso-OMPA is added to 99µl sample 

supernatant.  Protein content of the supernatant was determined using Bradford method 

(BioRad, Inc)   

 

Neuropathology 

Fourteen days post sarin treatment, mice were lightly anesthetized with CO2 ,and 

sacrificed by decapitation and brain tissue collected for histology.  Brains were quickly 

removed and quickly frozen into isopentane for 10-12 seconds and then stored at -80°C 

until sectioning. Frozen coronal sections of 10 µm were collected using cryostat (Thermo 

Shandon series, Pittsburg, PA) and TFM (TBS, INC., Durham, NC) as freezing medium).  

The section were collected on Fisher plus slides and stored in -20°C until fixed for 

staining.  We performed immunohistochemistry using Glial fibrillary acidic protein 

(GFAP) as a marker for neurodegeneration.  GFAP is a intermediate filament (IF) protein 

that is found in astrocytes in CNS. There is correlation between neurodegeneration and 

improper GFAP regulation.  Neurodegenerative condition leads to higher expression of 

GFAP that leads to glial scarring. (Liedtke, et al., 1996)  On the first day of staining, the 

slides were taken out and let dry about 30 minutes at room temperature.  A boundary was 

http://en.wikipedia.org/wiki/Intermediate_filament
http://en.wikipedia.org/wiki/Protein
http://en.wikipedia.org/wiki/Astrocytes
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made around sections with a liquid repellent PAP pen (Daido Sangyo, Tokyo, Japan) and 

let dry about 10-15 min.  Then slides were transferred to a humid chamber which is large 

petri dish with filtered paper saturated with distill water in a plastic box covered with lid 

on top.  The slides were washed with 3 times for 5 minutes and 1 time for 10 minutes 

with 0.01 M phosphate buffer solution containing 0.1 % triton (0.01 M PBS/0.1 %TX).  

The last wash was rinsed and allowed to dry.  The slides were blocked with 10 % normal 

horse serum (10 % NHS is made by using 500µl normal horse serum in 4.5 ml of 20 mM 

TBS (Tris buffered saline) for 30 minutes.  Drain off NHS and allow PAP ring to dry.  

Primary antibody solution was prepared at 1:150 dilution of rabbit anti-GFAP (Zymed, 

South San Francisco, CA) in 0.01 M PBS/0.1 %TX to block antibody.  The slides were 

kept overnight at room temperature.  Next day primary antibody was drained off from the 

slides.  Then the slides were washed with 3 times for 5 minutes and 1 time for 10 minutes 

with 0.01 M PBS/0.1 %TX.  Following this step, all steps were performed in the dark.  

Fluorescent probe-conjugated secondary antibody solution horse anti-rabbit FITC 

(Amersham, Pittsburg, PA) at a 1:50 dilution in 0.01 M PBS/0.1 % TX were prepared 

and added to slides which are kept for 2-4 hours.  Then the slides were washed with 3 

times for 5 minutes and 1 time for 10 minutes with 0.01 M PBS.  We allowed slides to 

dry and coverslip with gel –mounting medium (Bio-meda, Foster city, CA). Slides were 

stored at 4°C. We examined slides using a Leicia microscope fitted with an Optronics 

camera.  Total cell count was done specified area. Images will be analyzed using ImageJ 

(1.41O) software.   

 

Procedure for FPS testing 
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FPS consists of pre-training, training and post training sessions.  Mice are tested in 

SM100 startle monitor system version 6.12. (Kinder Scientific, 2001, Poway, CA)  In the 

fear-potentiated startle procedure, conditioned fear is operationally defined as elevated 

startle amplitude in the presence versus absence of the stimulus that was previously 

paired with shock.  This assumes that the CS does not increase or decrease startle 

amplitude prior to Pavlovian fear conditioning.  If it does then these unconditioned 

effects on startle could exaggerate or mask subsequent conditioned fear.  For these reason 

the FPS test is administered prior to Pavlovian fear conditioning and is referred to as the 

pre-test.  After a 5 min acclimation period, they are presented with 32 startle stimuli at 

two white noise intensities in 50ms pulses at 75 & 80 db ( 8 of  each), both in the 

presence and absence of the 30 sec, 12kHz pure tone of  70dB CS.  The inter interval 

between trial is 1 min.  The training session (Pavlovian fear conditioning) consists of 5 

min. acclimation, 20 tone (CS of 29.5 sec, 12 kHz pure tone of 70dB) and 0.5 sec of 

electric shock of 0.4 mA.  Pavlovian fear conditioning is repeated for two days for total 

of 40 trials.  The inter interval between trial ranges from 1 min to 3.5 min.  The post-

training test is same as pre training test and is conducted 24 hour after Pavlovian fear 

conditioning.  Finally, the percent fear-potentiated startle is computed by dividing the 

difference score by the amplitude of startle on noise burst alone trails and multiplying by 

100 (FPS= [(tone + noise burst alone- noise burst alone)/ noise burst alone] X100.  (Falls, 

2002)  

 

Statistical analysis 
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We used using Statistica software (version 7) for statistical analysis. One-way ANOVA 

was used to test for differences among two or more independent groups. Fisher Least 

significant difference test was used to identify individual group differences. In all groups 

*=p<0.05, significant, different from toxic challenge. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://en.wikipedia.org/wiki/One-way_ANOVA
http://en.wikipedia.org/wiki/Statistical_independence
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Results 

 

Mortality rates from dose response curve for 8-OH-DPAT after TC 

       We measured the mortality rate in different groups to find if there is any effects of 

DPAT on mortality.  The lower dose DPAT group showed lower mortality rate.  The 

highest dose of DPAT (3 mg/kg) increased the lethality of the TC (Table 3).  

Dose N deaths Percent 

TC 9 3 33.33% 

0.3mg/kg 8 2 25.00% 

1mg/kg 12 3 25.00% 

1.7mg/kg 9 4 44.44% 

3mg/kg 6 5 83.33% 

 

Table 3 Mortality rates comparison of different doses of 8-OH-DPAT given 1 min. after 

toxic challenge (TC).  TC was 1.5 mg/kg of CBDP and 32 µg/kg dose of sarin. 

 

 

Weight loss from dose response curve for 8-OH-DPAT after TC 

         To find out correlation of neurotoxicity and weigh loss we measured weight loss up 

to 3 days post sarin injections.  Mean percentage weight loss at day1 and day3 after 

injection, comparison of different doses of 8-OH-DPAT given 1 minute. after toxic 

challenge (TC) was measured.  TC was 1.5 mg/kg of CBDP and 32 µg/kg dose of sarin.  
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At day 1, there was greater weight loss in 0.3 and 1.7 mg/kg dose of 8-OH-DPAT group 

compared to TC group.  The weight loss of 1 mg/kg dose group was lower than TC 

group. (F3, 27 =7.2907, p<0.05)   A one way ANOVA showed significant difference of 

weight loss of 0.3 and 1.7 mg/kg dose of 8-OH-DPAT group compared to TC group.  At 

day 3, there was no significant difference in the weight loss of any of the group, but 1 

mg/kg dose group did not lose weight as much as TC group.  The two doses 0.3 and 1.7 

mg/kg showed almost similar weight loss compared to toxic challenge. Based on weight 

loss and mortality rates we selected 1mg/kg dose for subsequent studies. (Figure. 3) 

 

 

Figure. 3 mean percentage weight loss on day 1 and 3 of of different doses of DPAT 

groups compared to toxic challenge group. 
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      The mortality rate of the 1 mg/kg DPAT group was lower than toxic challenge.  The 

weight loss at day 1 and 3 was also lower than TC group.  Based on these results we 

chose 1mg/kg dose of DPAT for time response curve.  The mortality rate of 1, 15 and 30 

min 8-OH-DPAT group is not higher than TC group, but 45 and 60 min 8-OH-

DPATgroup is higher than TC group.  (Table 4)  The 2 hour and 4 hour DPAT groups’ 

toxic challenge was 1.5mg/kg of CBDP and 1 hour later 40ug/kg dose of sarin.  The 4 

hour DPAT group mortality rate was higher than toxic challenge group.  (Table 5)  The 6 

DPAT group toxic challenges were 1.5mg/kg of CBDP and 1 hour later 42ug/kg of sarin.  

The 6 hour DPAT group mortality rate was higher than toxic challenge group.  DPAT did 

not have any effects on mortality rates as some of the mice died before DPAT injections.  

(Table 6) 

 

Dose N deaths Percent 

TC 9 3 33.33% 

1 min DPAT 12 3 25.00% 

15 min DPAT 10 2 20.00% 

30 min DPAT 6 2 33.33% 

45 min DPAT 8 3 37.50% 

60 min DPAT 12 7 58.33% 

 

Table 4. Mortality rates of 1 mg/kg DPAT at various time points post toxic challenge 

(TC) injections compared to TC.  
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Dose N deaths Percent 

TC 6 2 33.33% 

2hr DPAT 9 3 33.33% 

4hr DPAT 10 6 60.00% 

 

Table 5. Mortality rates of 2 and 4 hour DPAT groups post toxic challenge (TC) 

injections compared to TC.  

 

Dose N deaths Percent 

TC 5 2 40.00% 

6hr DPAT 11 5 45.45% 

 

Table 6. Mortality rates of 6 hour DPAT group post toxic challenge (TC) injections 

compared to TC 

 

 

Weight loss from time response curve for 8-OH-DPAT 

               Mean percentage weight loss at day1 and day 3 comparisons of vehicle control, 

DPAT control, toxic challenge (TC) and 1mg/kg of 8-OH-DPAT given after TC at 

different time points was performed.   The control group received propylene glycol and 

1-hour later saline.  DPAT control group received 1 mg/kg dose of 8-OH-DPAT.  At day 

1, there was higher weight loss in 8-OH-DPAT group of 15, 30, 45 and 60 min than toxic 

challenge group.  There was lower weight loss in 1 min 8-OH-DPAT group.  There was 
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no significant difference of weight loss between TC and 8-OH-DPAT group at different 

time points at day 1.  One-way ANOVA showed significant difference between control 

group and TC, 15, 30, 45, 60-minute 8-OH-DPAT group. (F7, 53=6.2234, p<0.0001)  At 

day 3, there was higher weight loss in 60 min 8-OH-DPAT group than toxic challenge 

group.  At day 3, there was lower weight loss in 8-OH-DPAT group 1, 15, 30 and 45 min 

compared to TC group.  There was no significant difference between of weight loss 

between TC and 8-OH-DPAT group at different time points at day 3.  One way ANOVA 

showed significant difference between control group and TC, 15, 45, 60 minute 8-OH-

DPAT group.  (F7, 51=5.2500, p<0.001) (Figure 4)   There is higher weight loss on day 1 

and 3 of 2 hour DPAT group compared to toxic challenge. (Figure 5)  There is lower 

weight loss in 6 hour DPAT group compared to toxic challenge at both day 1 and 3. 

(Figure 6) 
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Figure 4. Mean percentage weight loss on day 1 and 3 of DPAT group compared to toxic 

challenge group. 
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Figure 5. Mean percentage weight loss on day 1 and 3 of 2 and 4 hour DPAT groups 

compared to toxic challenge group. 

 

 

Figure 6. Mean percentage weight loss on day 1 and 3 of 6 4 hour DPAT group compared 

to toxic challenge group. 
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Functional observational battery scores from time response curve for 8-

OH-DPAT 

                 All groups injected with Sarin showed signs of poisoning and mortality.  This 

is required in groups for brain pathology.  Functional Observational Battery scores were 

calculated for animals injected with the vehicle control, DPAT control, TC and TC+ 

DPAT at different time points thereafter.  A one way ANOVA performed on percentage 

of maximum score showed significant differences between control and Sarin treated 

groups. (F7, 65=54.520, p<0.0001)  (Figure 7)  For 2, 4 and 6 hour DPAT groups FOB 

scores were measured at longer time points until 24 hours.  At 24 hours 2 and 4 hours 

FOB scores are lower than toxic challenge group.  (Figure 8)  FOB score of 6 hour DPAT 

group is higher than toxic challenge at 24 hours. (Figure 9)   

 

Figure 7.  Percentage FOB scores of DPAT, vehicle control groups to toxic challenge 

group. 
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Figure 8. Mean percentage FOB scores of 2, 4 hour DPAT groups compared to toxic 

challenge at different time points. 

 

 

Figure 9. Mean percentage FOB scores of 6 DPAT group compared to toxic challenge at 

different time points. 
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Blood ChE and AChE activity 

     The blood ChE and AChE activity was measured 14 days post injection.  The ChE 

activity was measured on trunk blood collected by decapitation.  There is no significant 

difference of ChE activity between any of the groups.  There is also no significant 

difference between AChE activities between any of the groups (Figure 10) 

 

 

Figure 10. Blood ChE activity of different groups 14 days post Sarin injection. 
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      The frontal cortex ChE and AChE activity was measured 14 days after injection.  

Mice were euthanized using CO2 and decapitated.  The ChE activity in all 8-OH-DPAT 
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Figure 11. Frontal cortex ChE and AChE activity in DPAT groups compared to TC group 
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to these cells.  GFAP cell counts was conducted in dentate gyrus of hippocampus for 
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differences of GFAP cells in dentate gyrus of hippocampus in up to 2 hour time points 

compared to TC group, with the values the same as for background. (F7, 37=7.0575, 

p<0.0001)  (Figure 12, 13)  
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Figure 12. GFAP cells in dentate gyrus of hippocampus in different groups .   

 

Figure 13. GFAP cells in dentate gyrus of hippocampus in 2 and 4 hour DPAT groups 
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Below are images of the dentate gyrus of the hippocampus of different groups stained for 

GFAP. (Figure 14,15)  All the picture were taken on 20x magnification using  optronics 

camera using a Leica microscope.  We euthanized all the groups two weeks after 

injections. All the injections were SC. route.  The control group received propylene 

glycol and 1 hour later saline. The DPAT control group received propylene glycol, 1 hour 

later saline and 1 minute after 1 mg/kg of 8-OH-DPAT.  The toxic challenge group 

received 1.5 mg/kg of CBDP and 1 hour later 32 ug/kg of Sarin injection.   The DPAT 

groups received toxic callenge and 1mg/kg of 8-OH-DPAT at time points according to 

groups.   
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Figure 14. Dentate gyrus of hippocampus of different groups ,mouse euthanized 14 days 

after injection (a) control group dose with  propylene glycol and saline (b) toxic challenge 

group dosed with 1.5mg/kg CBDP and 32ug/kg Sarin (c) DPAT control group dosed with 

propylene glycol, saline and 1mg/kg 8-OH-DPAT (d) 1 min DPAT group dosed with 

toxic challenge and 1 minute later 1m/kg 8-OH-DPAT 
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Figure 15 Dentate gyrus of hippocampus of  time points of DPAT groups, 1mg/kg DPAT 

given after toxic challenge at (a) 15 min (b) 30 min (c) 45 min (d) 60 min  
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Fear potentiated startle (FPS) response 

               We performed fear potentiated startle response test on three groups control, 

toxic challenge and 45 min DPAT group.    Mice were assigned into groups according to 

averages of their startle amplitude.  All injections were S.C. route.  The control group 

received propylene glycol and 1-hour later saline. The toxic challenge group received 1.5 

mg/kg CBDP and 1-hour later 42ug/kg of Sarin.  The DPAT group received toxic 

challenge and 45 minute later 1mg/kg of 8-OH-DPAT.  Three weeks after injections mice 

were fear conditioned for Pavlovian fear conditioning the training session which consists 

of 5 min. acclimation, 20 tone (CS of 29.5 sec, 12 kHz pure tone of 70dB) and 0.5 sec of 

electric shock of 0.4 mA.  Pavlovian fear conditioning was repeated for two days for 40 

trials.  24 hours later mice were tested for posttest, which is same as pre test.  At 75, 80 

db white noise and average FPS TC group learned the conditioning.  We previously 

preformed three weeks FPS studies on asymptomatic doses of Sarin (0.4 LD50) and the 

Sarin group did not learn.  In our experiment the symptomatic dose of Sarin group 

learned and left our test inconclusive. 
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Figure 16. Fear potentiated startle at 75 db white noise 

 

Figure 17. Fear potentiated startle at 80 db white noise of different groups. 

 

Figure 18. Average Fear potentiated startle of 75 and 80db white noise of different 

groups. 
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                The FPS control mice were treated with propylene glycol and saline.  The TC 

group received 1.5mg/kg CBDP and 42ug/kg Sarin.  The DPAT group was injected 

1.5mg/kg CBDP and 42ug/kg Sarin and 45 minutes later 1 mg/kg of 8-OH-DPAT.  Mice 

were euthanized 4 weeks after injection.  Immunohistochemistry was performed on 

frozen sections and GFAP cells in dentate gyrus region were calculated.  GFAP cell were 

significantly lower in dentate gyrus of hippocampus in control and 45 min DPAT group 

compared to TC group. (F2, 24=82.174, p<0.0001) (Figure 19) 

 

Figure 19.   GFAP cells in dentate gyrus of hippocampus in different groups. 
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Discussion 

                The main objective of the study was to look for novel neuroprotectants for 

treatment of long-term effects produced by sarin induced convulsions.   This required 

identification of the dose of sarin that will produce a mortality rate with enough survivors 

for reliable baseline.  We also wanted to make our model comparable to actual human 

exposure.  We used CBDP with sarin to inhibit the high levels of carboxylesterase seen in 

rodents to reduce the total sarin dose and thus to make the mouse model closer to 

humans.  We tested the 5-HT-1A agonist 8-OH-DPAT for treatment of sarin and CBDP 

induced convulsions.  We performed dose response and time response curves for 8-OH-

DPAT and looked at the parameters of mortality rates, weight loss, FOB, blood and brain 

cholinesterase activity, immunohistochemistry for degenerating neurons and FPS.  We 

observed neuroprotection by DPAT in the dentate gyrus of hippocampus up to 2 hours 

after the administration of the toxin.  We also tested other 5-HT-1A agonists in our 

laboratory but they were ineffective.  The mechanism of the neuroprotection produced by 

DPAT is still not clear.  We observed that 8-OH-DPAT influenced on the pattern, 

intensity, and duration of sarin-induced seizures using ECoG; this mechanism could 

underlie the neuroprotection produced by 8-OH-DPAT in dentate gyrus of hippocampus. 

Use of Sarin and CBDP 

              Carboxylesterase are important in the detoxification of a number of 

organophosphorus insecticides.  Humans have low carboxyl esterase in blood and tissue 

in comparison of rodents. (Pope, et al., 2005)   Rodents will require higher doses of sarin 

to produce its effects.  Administration of CBDP significantly reduced the dose of sarin 

necessary to produce symptoms. Administration of CBDP potentiated Sarin almost five 
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times from 200ug/kg to 42ug/kg to produce 25-50 % mortality rates.  Carboxylesterase is 

important detoxifier of sarin.  The administration of this dose of CBDP specifically 

blocks CaE; therefore less Sarin dose was required to produce its effects.  The CBDP and 

Sarin injection were separated by 1 hour.  At the time of Sarin administration carboxyl 

esterase was blocked by CBDP.  The lower dose of Sarin irreversibly blocked 

cholinesterase and produced toxic effects.    CBDP administration reduced our Sarin dose 

from a range of 160-200 ug/kg to 32- 42 ug/kg., while even repeated low level sarin 

exposure of  64 ug/kg is asymptomatic. (Jimmerson, et al., 1989) CBDP dose of 2 mg/kg 

or higher significantly lowers cholinesterase activity in blood and brain.(Mach, et al., 

2008)  We used 1.5 mg/kg of CBDP which did not interfere with cholinesterase activity, 

making our model closer to actual human exposure.  

 

Dose response curve of 8-OH-DPAT 

            We determined the neuroprotective dose response curve for the 5-HT-1A agonist 

8-OH-DPAT against the toxic challenge of 1.5mg/kg of CBDP and 32ug/kg of Sarin over 

the range from of 0.3, 1, 1.7 and 3 mg/kg of 8-OH-DPAT.  The 5-HT1A receptor is the 

most studied and best characterized 5-HT receptor subtype to date.  5-HT1A receptors are 

abundantly expressed in cortical and hippocampal (CA1/CA3 and dentate gyrus) regions 

that are critically involved in learning and memory and susceptible to neuronal damage. 

(Kline, et al., 2007)  5-HT1A receptor involvement in modulation of the major 

neurotransmitters ACh, DA, and glutamate, the serotonin (5-HT) system, is considered a 

significant pharmacological target for the treatment of various central nervous system 

(CNS) diseases.  Administration of 5-HT1A receptor agonists before or after focal 
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cerebral ischemia provides neuroprotection as evidenced by decreased histopathology.  

Single administration 5-HT1A receptor agonist of 8-OH-DPAT decreases cortical lesion 

volume and hippocampal neuron survival.  Single systemic administration of the 5-HT1A 

receptor agonist 8-OH-DPAT enhances behavioral recovery after experimental traumatic 

brain injury (TBI). Intraperitoneal administration of 0.5 mg/kg dose of 8-OH-DPAT 

confers neurological protection after TBI in Hippocampal CA1/CA3 region. (Cheng, et 

al., 2008; Kline, et al., 2004)  8-OH-DPAT is much more potent when injected 

subcutaneously than when injected Intraperitoneal, the potency difference being 

approximately 17-fold. (Fuller and Snoddy, 1987)  The important influence of route of 

administration on the potency of 8-OH-DPAT must be considered in interpreting the 

various functional effects that have been reported with it.  After oral administration, 8-

OH-DPAT goes first-pass metabolism and shows low oral bioavailability of, rather than 

poor absorption from the GI tract. (Mason, et al., 1995)  We selected doses of in range of 

0.3 to 1.7 mg/kg of 8-OH-DPAT for subcutaneous administration for our dose response 

curve.  The mortality rate for our toxic challenge group is 33.33 %.  The lower dose 

group 0.3 and 1 mg/kg of 8-OH-DPAT showed less mortality than toxic challenge but 

mortality increased with higher doses of 1.7 and 3 mg/kg.  8-OH-DPAT is not a rescue 

drug for treatment of nerve agent exposure therefore; we did not see any significant 

effects on mortality rate.  The reason for higher mortality rate in higher doses of DPAT 

groups is still not clear.  There could be unknown interaction between higher doses of 

DPAT with CBDP or Sarin causing higher mortality.   

                      We measured total body weight loss on mice up to 3 days post sarin 

injections.  Body weight is related to general health status, periodic measurement can 
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indicate if animals are recovering or still in poor health.  Knowledge of body weight is 

crucial for neurotoxicity testing.  Body weight loss can be an indicator of neurotoxin 

effects on CNS.  Rats treated with artelinic acid showed signs of neurotoxicity and 

significantly lost weight.  (Si, et al., 2007)  At day, 1 0.3 and 1.7 mg/kg DPAT group 

showed higher weight loss compared to toxic challenge group.  Only one mouse survived 

in 3mg/kg group after injection.  We did not include that group in our results due to low 

number in the group.  At both day 1 and 3, 1 mg/kg the DPAT group weight loss was 

lower than the toxic challenge group, while at day 3 other doses had higher weight loss.  

We selected as the best dose 1mg/kg of 8-OH-DPAT for the time response curve with 

toxic challenge based on lower mortality and lower weight loss data.  

 

Time response of 1 mg/kg of 8-OH-DPAT with toxic challenge  

                We performed a time response of 8-OH-DPAT with the 1mg/kg selected dose 

from the dose response curve.  We gave DPAT at 1, 15, 30, 45, 60 minutes 2, 4 and 6 

hour after toxic challenge.  Weight loss of mice treated with DPAT 1 and 15 min after 

toxic challenge was lower than TC group.   At later time points in DPAT group the 

morality was similar or higher than toxic challenge group.  Since DPAT is not a rescue 

drug it does not reduce the mortality rate in the Sarin treated animals.  That there were no 

significant differences in lethality between DPAT groups suggests that it was without 

major effect.  The small difference in the mortality rate could be due to inter individual 

differences in susceptibility of animals to Sarin treatment.  We measured total body 

weight loss up to 3 days in all DPAT groups. Only the 1-minute DPAT group had lower 

weight loss than toxic challenge at both 1 and 3 days.  None of the DPAT group has 
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significantly lower weight loss than toxic challenge group.  Lower food and water intake 

could be the reason of weight loss after Sarin injection after 3 days.   

                  Mice were observed using a Functional Observational Battery for 1-hour post 

Sarin dosing.  As neurobehavioral assessments during the preliminary stages of chemical 

testing are important, it is critical that the screening procedures utilized be valid 

indicators of neurobehavioral function and that they be sensitive, specific, and reliable.  

In many instances, the effects observed with the FOB may be predictive of 

symptomology in humans and comparisons can be made between effects detected with 

the FOB and other methods of measuring neurotoxicity. (Moser, 1990;Si, et al., 2007)  

We observed higher FOB scores in all Sarin treated groups.  There were no significant 

differences between any of the Sarin treated groups.  We observed a significant 

difference in FOB scores between vehicle control and Sarin treated groups.  We only 

measured 1 hour time point FOB score post injection and observed no difference in 

groups, so we concluded that animals do not recover from acute symptoms if they are not 

treated with rescue therapy.  We decided to monitor FOB scores for 24 hours in 2, 4 and 

6-hour DPAT groups.  We did not observe any significant difference in FOB score 

between toxic challenge and DPAT groups in any time points.  It confirms DPAT is not a 

rescue drug and it does not have any effects on acute effects produce by neurotoxicity of 

sarin dose.   

                            We also measured blood and brain cholinesterase activity 14 days post 

injections in groups.  Acute symptoms of sarin are produced by irreversible inhibition of 

the cholinesterase enzymes.   CBDP alone does not produce any effects on total ChE 

levels.  We have previously determined in our laboratory that toxic challenge doses of 
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Sarin significantly reduce blood cholinesterase activity compared to control group 

animals 4 days post injections.   We observed no significant difference in blood ChE and 

AChE in any of the groups 14 days after treatment.  However, new red blood cell 

production rapidly restores blood AChE levels and the BuChE in plasma is available 

from the liver. Frontal cortex ChE activity was lower in DPAT groups than the toxic 

challenge group.  It is not clear why this occurred as DPAT neither inhibits nor 

regenerates AChE (Mason, 2000)  Thus, DPAT is not providing neuroprotection by 

reducing in acute symptoms, restoring the animal’s general health more rapidly or by 

regenerating AChE. 

 

Neuroprotection by 8-OH-DPAT         

                 Sarin exposure leads to neuronal damage, which includes cell degeneration in 

specific areas like the hippocampus, the piriform cortex and the thalamus. This damage 

might expand with time to include additional brain areas.  Soman exposure causes cell 

death in mice, in which damaged neurons continue to be present in hippocampal CA1 up 

to 90 days post soman exposure.  GFAP staining was evident in dentate gyrus of soman 

exposed mice, the GFAP staining consistently increased until 15
th

 days post exposure.  

The cascade of events induces long-term effects.   Inhalation of sarin vapors induced 

impaired memory processes seen at 1-month post exposure with no recovery of function 

during the 6 months follow-up period. Similarly, long-term follow-up of victims of the 

sarin attacks in Japan demonstrated neurological as well as emotional and cognitive 

changes up to 7 years post exposure. (Collombet, et al., 2007;Grauer, et al., 2008)  Long-

term impaired neurobehavioral functioning effects were also recently reported following 
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low-dose inhalation exposure to sarin and cyclosarin during the 1991 Gulf War. An 

appropriate treatment might halt the damaging processes and may even allow for 

functional recovery.  Current treatment therapies include atropine and 2-PAM, which are 

rescue therapy for acute toxicity.  Current therapy still does not protect from long term 

effects.  We found neuroprotection in dentate gyrus of hippocampus with 1mg/kg dose of 

8-OH-DPAT.  The neuroprotection was significant up to 2 hour DPAT injection after 

exposure to sarin.  The groups were euthanized 14 days post injections it shows that toxic 

challenge mice groups are still showing signs of neurodegeneration.  The four-hour 

DPAT group GFAP cell count is lower than toxic challenge but is not significant that 

shows DPAT is not effective post 2 hour as treatment. (Collombet, et al., 2007;Grauer, et 

al., 2008) Initiation and early expression of the seizures are cholinergic phenomenon; 

anticholinergics readily terminate seizures at this stage and no neuropathology is evident. 

However, if not treated, a transition phase occurs during which the neuronal excitation 

leads to neuropathology, where Control with anticholinergics becomes ineffective.  With 

prolonged epileptic form activity the seizure enters a predominantly non-cholinergic 

phase, 5-HT-1A may work as a neuroprotectant.  Since DPAT is neuroprotective up to 2 

hour it can be given to a patient who does not receive timely rescue therapy to prevent 

long term effects. (McDonough, Jr. and Shih, 1993)  In another study in our laboratory, 

we tested the hypothesis that the neuroprotective effects of 8-OH-DPAT against sarin-

induced neuropathology resulted from alteration of the seizure pattern.  Swiss Webster 

mice were implanted subcutaneously (sc) with transmitters and cortical electrodes for 

telemetry recordings.  Recordings of baseline electroencephalography (EEG) were 

obtained and mice were then injected with 200 µg/kg (sc) of Sarin and EEG recordings 
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were taken for 4 hours unless death resulted.  A second group was dosed with 200 µg/kg 

of Sarin and 1 min later DPAT (1.0 mg/kg) (sc).  All of the sarin dosed mice exhibited 

behavioral signs of seizure activity.  The recordings substantiated that seizures occurred 

and they continued increasing in severity of spikes. There was a significant difference in 

the seizure activity of mice dosed with sarin alone compared to the mice with 

sarin+DPAT.  The EEG of the sarin dosed mice indicated both high frequency and 

amplitude seizure patterns.  The seizure pattern of the sarin+DPAT dosed mice revealed 

seizure patterns with greater intervals between spikes, lower spike amplitudes, and fewer 

spike trains. (Table 6) (Figure 20, 21)  These studies demonstrate that 8-OH-DPAT 

influences the pattern, intensity, and duration of sarin-induced seizures in mice. 

(unpublished versions of work done by Belinda Sims)  

 

             

 

Figure20:  30 second baseline recording of cortical EEG of control Swiss Webster mouse.   
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Figure 21. 30 second seizure recording of cortical EEG.  Swiss Webster mouse dosed 

with 200µg/kg of Sarin, 3 hrs post injection.  Green marker shows 28 second spike train 
and the red dotted lines indicate baseline amplitude threshold.  

 

 
Figure 22. 30 second seizure recording of cortical EEG.  Swiss Webster mouse dosed 
with 200µg/kg of Sarin and 1.0 mg/kg DPAT (1 min post Sarin), 3 hrs post injection.  

Green markers show 3 second spike trains, red dotted lines indicate baseline amplitude 

threshold.  

 
 

Group 3 hr, Mean 

Spike 
Train 

Duration, 

(seconds) 

Total number 

of spike 
trains 

 

Inter Spike 

Train 
Mean  

(seconds) 

Amplitude 

3 hrs post 
injection 

(µV) 

 

 Sarin ALONE 3.7±1.4 

 

785±293 0.26±0.03 0.91± 0.24 
 
 

Sarin + DPAT 3.4±0.3 185±25 
 

 

0.43±0.06 

 
 

0.21 ± 0.08 
 
 

 

Table 6.  EEG data of Sarin group compared to DPAT group. 
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8-OH-DPAT and emotional learning 

            Sarin exposure causes memory impairment in rodents and humans. We tested the 

ability of the 8-OH-DPAT agonist dose of 1mg/kg and 45 minute after toxic challenge for 

its ability to reinstate Fear potentiated startle (FPS) response.  We have previously 

determined in our laboratory that two low doses sarin to mice produces impairment of 

acquisition of fear-potentiated startle response.  We assumed that our doses Sarin with 

CBDP would produce impairment in acquisition of startle response.  On the contrary, our 

toxic challenge group learned the conditioning.  This result negated the ability of the 

study to demonstrate the ability of 8-OH-DPAT to reverse learning deficits.  The vehicle 

control group learned the conditioning but the difference between pre and posttest was 

not significant, as we have previously determined.  The results show that our dose was on 

the breaking point between interference at low doses and noninterference at higher doses. 

 

Conclusion 

           We were able to utilize CBDP rodents to more accurately model actual human 

exposure.  CBDP reduced the dose of Sarin which produces 25-50 % mortality in mice.  

This model helps to reduce variability produce by single actual dose of Sarin.   We also 

observed significant neurodegeneration in dentate gyrus of hippocampus in toxic 

challenge group.  These results are consistent, repeatable and similar to our previous 

laboratory experiments.  We were able to produce neuroprotection with the 1mg/kg dose 

of the 5-HT-1A agonist 8-OH-DPAT.  8-OH-DPAT was able to produce neuroprotection 
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up to 2 hours post toxic challenge.  DPAT did not produce any effects on mortality rate, 

weight loss or ChE activity.  8-OH-DPAT does not produce any effects on cholinesterase 

inhibition.  Our laboratory observed that 8-OH-DPAT influences the pattern, intensity, 

and duration of sarin-induced seizures in a fashion that could account for the observed 

neuroprotection in the dentate gyrus of hippocampus.  We suggest that the efficacy of 8-

OH-DPAT treatment lies in its ability to attenuate glutamate release, thereby putting an 

end to seizure activity due to NMDA receptor stimulation. (Srkalovic, et al., 

1994;McDonough, Jr. and Shih, 1993)  We have also tested other 5-HT-1A agonists in 

our laboratory post toxic challenge injections, including buspirone and S-14506.  Both 

these compounds increased the mortality rate compare to toxic challenge group but did 

not have any effects on weight loss and FOB.  The mechanism neuroprotection of 8-OH-

DPAT is still not definitively determined.  Further work should be done to identify the 

mechanism of DPAT action.     Sarin exposure leads to long-term effects if current rescue 

therapy atropine and 2-PAM is not given to stop initial seizure activity.  Since DPAT is 

effective up to 2 hours after sarin, it may be an effective therapy for neuroprotection from 

the long-term effects produced by sarin induced convulsion.  Since DPAT does not 

protect from acute symptoms, it is not useful as rescue agent.  8-OH-DPAT may be used 

as addition to current rescue treatment of atropine and 2-PAM. 
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