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Abstract 

 

Kemp, Izaak V., M.S., Department of Physics, Wright State University, 2009. Sub-mm Wave 

Imaging and Waveguiding Techniques for Non-Destructive Materials Evaluation. 

 

 Sub-mm wave technology (also known as Terahertz/THz) is a rapidly developing field of 

electro-optics which has great potential in a variety of applications. Generally defined as the 

band of the electro-magnetic spectrum with frequencies spanning from 300 GHz to 30 THz, sub-

mm waves are non-ionizing and are capable of passing through a wide range of dielectric 

substances making them well suited for imaging purposes such as non-destructive materials 

evaluation (NDE). Because of their high sensitivity to metals and ability to penetrate surface 

obscurants such as paint, oil, and epoxy sub-mm waves are capable of imaging corrosion damage 

on metallic surfaces as well as burn damage in composites routinely used in aerospace structures, 

with resolution comparable to many of the currently employed NDE techniques. In order to 

avoid failure of components during operation, many aircraft parts are replaced earlier than 

necessary leading to higher costs that could be reduced if the degree of damage in the component 

material could be determined non-destructively without requiring contact with the section to be 

imaged, thus a portable real-time sub-mm wave imaging system if developed would posses 

significant promise in the NDE market. We have developed a sub-mm wave imaging system and 

have compiled a library of images which successfully demonstrate the potential of such a system 

in evaluating aerospace materials.   

 However there are still many unsolved issues related to the propagation of sub-mm wave 

radiation that need to be addressed before a practical system can be produced for use in the field. 
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One major problem is that all of the substances which posses the refractive index profile and 

absorption coefficients necessary for the production of a sub-mm waveguide equivalent to fiber-

optic cables are crystalline, making them impractical for use in NDE applications. Since the sub-

mm wave imaging systems we have researched are active a practical NDE system would either 

need a compact source or a method of propagating sub-mm radiation over substantial distances 

to the sample to be imaged. One proposed method is the utilization of what are known as 

Sommerfield-Zenneck waves, or surface plasmon polaritons (SPPs). These surface electron 

density waves are capable of propagating over large distances and many metals posses SPP 

modes with frequencies in the sub-mm wave band. In addition to our NDE efforts, we have 

constructed a wire waveguide capable of exciting and transmitting these modes, and have 

characterized a number of its properties via imaging of the diffracted outgoing wave.    
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Figure 1: Graph illustrating the advancement of electromagnetic-wave technology and the so called “Terahertz gap”1 

I. Introduction 

Sub-mm wave or Terahertz (THz) radiation is loosely defined as the region of the 

electromagnetic spectrum with frequencies ranging between 300 GHz and 30 THz (with 

corresponding wavelengths between 1mm and 10μm). This band is composed of 

frequencies within what is known as the “Terahertz gap”, the range of frequencies that 

fall between bands where radiation is typically generated by electronic devices (such as 

radio and microwave frequencies) and bands where radiation is usually created using 

optical techniques (see Figure 1). Although THz frequencies have been eagerly studied 

by astronomers for quite some time
2
, only recently have advances in photonics allowed 

for the investigation of more earthbound applications. Because this research is relatively 

new, Terahertz radiation is known by a variety of different names within the scientific 

community including T-ray, sub-mm wave, and far IR. In this work we will refer to the 

band as either THz or sub-mm wave. Today, THz technology research has expanded to 

include a wide variety of functions: biomedical imaging, homeland security, 

environmental modeling, molecular spectroscopy, and non-destructive materials 

evaluation
3
. The motive for this preponderance of research is that the THz band possesses 
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many useful properties; THz radiation is non-ionizing meaning that it is non-destructive 

and safe for use on living tissue, many molecules possess resonant frequencies in the THz 

band making it particularly useful for spectroscopy, and THz radiation is capable of 

passing through a wide variety of dielectrics such as fabrics, paints, and dirt giving it 

great potential in a number of imaging applications
4
. In this thesis, we will explore the 

potential for sub-mm waves to be used as a means for non-destructive materials 

evaluation and will detail some experimental waveguide techniques with the potential to 

expand our already existing system.  
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1.1 Background 

Aircraft components such as wings and fuselages are constantly exposed to harsh 

environments making them susceptible to corrosion initiation and growth. In order to 

ensure safe operation aircraft parts are routinely replaced before the end of their life-span 

which leads to higher costs, the US Air Force alone currently spends billions of dollars in 

preventative maintenance on aircraft,
5
 the cost of which could be reduced if a better 

method of evaluation were developed. Currently the US air force and major airliners 

employ ultrasound techniques to look for pitting and cracking due to corrosion, however 

these techniques require direct contact with the surface of the component part meaning 

they are only useable during an aircraft‟s „tear-down‟ inspection, a lengthy process 

involving the disassembly of a large portion of the aircraft
6
. THz imaging has the 

potential to replace this technology as it is non-contact, has better resolution, and is not 

affected by surface dielectrics such as paint, oil, and epoxy commonly found on the 

surface of aircraft and is thus usable during routine inspection. Sub-mm waves also have 

the potential to image structural damage in composite materials such as polyamides 

which are becoming more and more predominant as primary aircraft structure materials. 

We have demonstrated that metallic corrosion and composite damage can be successfully 

imaged using THz, however there are still limitations to the practical use of THz in the 

field. 

 One of the major problems hindering the application of THz radiation is the lack 

of materials which exhibit the refractive index and absorption behavior necessary to make 



4 
 

fiber-optic waveguides. All of the materials whose properties are suited for THz fiber-

optics are crystalline
7
 which limits their usefulness as transmission cable due to their 

fragility. One proposed method of THz propagation that seeks to overcome these 

challenges is the utilization of what are known both as Sommerfield-Zenneck waves or 

Surface-Plasmon-Polaritons (SPPs). These are surface electron density waves that can 

propagate over large distances, and many common metals such as copper and tungsten 

exhibit SPP modes at frequencies in the THz regime. In this thesis we present one 

proposed method of coupling linearly polarized THz radiation to these modes in 

cylindrical metal wires and discuss their potential applications as sub-mm wave 

transmission lines and for THz near-field imaging. 
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1.2 Terahertz Imaging and Non-Destructive Materials Evaluation (NDE) 

The two main types of THz imaging systems currently being used today are known as 

continuous-wave systems (CW), which can be either active or passive, and Time-

Domain-Systems (TDS), which are active. These two types of systems illustrate the 

opposing technological approaches which seek to bridge the THz gap. CW systems 

utilize a variety of technical schemes including diode-based frequency multipliers, 

backward wave oscillators, and free-electron lasers to either increase the frequency of an 

initial microwave signal, as fundamental oscillators, or down convert optical radiation to 

sub-mm wavelengths via photomixing. TDS systems on the other hand utilize ultra-fast 

optics and non-linear crystals to generate a single-cycle pulse with pulse widths on the 

order of picoseconds. Aside from the fundamental methods of detection and propagation, 

the main differences between TDS and CW imaging systems are size, cost, data 

complexity, and processing time
8
. CW imaging systems simply measure the power of the 

radiation scattered by the sample, while TDS systems are capable of measuring a variety 

of parameters including electric field magnitude, phase, and optical path length. While 

this makes TDS systems a more attractive experimental technique, the cost and size of 

TDS systems (at the time this thesis is written) make them impractical for routine 

evaluation of materials during maintenance inspections. In addition, passive sub-mm 

wave systems lack the signal to noise (SNR) requirements to provide good contrast for 

accurate grading of damage and defects
9
. For this reason we have focused our studies on 

active CW techniques as a method for materials evaluation.    
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Non-destructive materials evaluation (NDE) is, as the name implies, a method for 

evaluating the structure and composition of a component material that leaves the material 

intact and safe for continued use. NDE methods are routinely used in maintenance 

inspections of vehicles and aircraft and there are a wide variety of techniques used. 

Examples of currently implemented NDE technologies are pulse/echo ultrasound 

imaging, eddy current testing, thermographic inspection, and microradiography
10

. Each 

of these methods has its own set of advantages and disadvantages, but ultrasound is by far 

the most widely used method because of its relatively low cost and image processing 

time. Ultrasound techniques, however, require direct contact with the sample to be 

imaged and thus can only be used on active vehicles and aircraft during a „tear down‟ 

inspection, as mentioned previously. Sub-mm wave systems are non-contact and can 

easily penetrate obscurants such as paint, oil, and epoxy commonly found on the surface 

of vehicles and thus could be utilized for more routine maintenance of vehicles. Sub-mm 

waves also boast advantages in terms of resolution compared to ultrasound, making them 

a more reliable method of evaluation. The tradeoff is that sub-mm wave systems are 

incapable of passing though metal and are thus incapable of subsurface imaging for 

metallic components, however many types of corrosion exhibit surface defects which are 

clearly identifiable to a trained technician.        
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1.3 Sub-mm Cylindrical Wire Wave Guides  

The concept of surface electro-magnetic wave propagation along an infinitely long 

cylindrical wire of finite conductivity was first addressed by A. Sommerfeld in 1899 as a 

theoretical set of solutions to Maxwell‟s equations given the appropriate boundary 

conditions
11

.  The physical reality of these waves was long debated as the boundary 

conditions used by Sommerfeld required a conductor of infinite length and plane electro-

magnetic waves, in other words the source of the radiation was required to be infinitely 

far removed from the cylindrical surface. Because Sommerfeld‟s cylindrical surface 

waves were similar in terms of boundary conditions to the solutions for ground wave 

propagation along the surface of the earth proposed by his student, J. Zenneck, they are 

referred to as Sommerfeld-Zenneck waves in the literature. However, while the existence 

and/or practicality of Zenneck‟s surface wave continues to be debated, it was 

experimentally verified that Sommerfeld‟s cylindrical surface waves could be generated 

with high enough efficiency to be employed for guided power transmission in the late 

1940s. Goubau was the first to propose the use of these waves for transmission lines
12

, 

but due to the advent of fiber-optic technology shortly thereafter the method was never 

fully realized. 

Because standard waveguides and fiber-optic materials in the sub-mm wave band are 

impractical for field use due to their high attenuation or crystalline structure, interest in 

the use of Sommerfeld-Zenneck waves (also known as surface plasmon polaritons or 

SPPs for short) for transmission lines has resurfaced. Although exact analytical solutions 

to Maxwell‟s equations for the propagation of these modes across a conductor of finite 



8 
 

length are not known, several groups have been successful in developing numerical 

solutions based on finite-element analysis algorithms
13

. In addition a number of different 

techniques have been proposed and studied for efficiently coupling incoming linearly 

polarized sub-mm radiation to the radially polarized Sommerfeld-Zenneck modes of a 

cylindrical conductor
14

. All of the research conducted thus far on SPP waveguides has 

either been simulation or TDS experiments. To this author‟s knowledge no experiments 

have been preformed with these waves using a CW system, and since CW systems have 

greater output power than TDS they are less affected by the relatively low coupling 

efficiencies involved in exciting these modes. By coupling outgoing sub-mm wave 

radiation to the SPP modes of metal wires one creates a wire waveguide capable of acting 

as a transmission line in the THz band, which has the potential to solve some of the 

problems inherent in creating a practical sub-mm wave imaging system for NDE use in 

the field, as well as having potential uses for sub-mm wave microscopy and near-field 

imaging. Although these investigations are very preliminary, they suggest a line of 

investigation which could prove significant in the transition of sub-mm wave technology 

from the lab to applications in the outside world. 

 

 

 

 

 



9 
 

 

II.       Theory and Experimental Procedure  

2.1 Continuous Sub-mm Wave Generation and Detection 

   

Figure 2: Images of Schottky diode chain and graph of its output power vs. frequency. The direct detector can be seen on the 

right in the picture, behind the beam-splitter. 

 

As mentioned in the introduction, CW sub-mm wave systems typically begin with 

a signal in the microwave band and use frequency multiplication techniques to generate 

an outgoing wave in the sub-mm wave regime. In the case of our experiments microwave 

generation was achieved through the use of a YIG crystal oscillator contained within a 

commercial microwave synthesizer produced by the company Agilent. The outgoing 

microwave signal, between 6-15 GHz, was then transferred using co-axial cable to our 

frequency multiplication chain, another commercial system produced by Virginia Diodes 

Inc. (VDI). The frequency multiplication chain consists of a series of second and third 

harmonic multiplier diodes, known as Schottky Diodes, which generate the outgoing sub-

mm wave radiation. 
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 Conceptually, the frequency multiplication of microwaves is analogous to the 

harmonic generation of optical waves in a non-linear crystal. Within the frequency 

multiplier, Schottky diodes function as nonlinear media, converting the incoming 

microwaves into their harmonic waves. The Schottky diode consists of a metal-

semiconductor junction, known as a Schottky barrier, where the semiconductor (usually 

GaAs) is monolithically fabricated on top of an ohmic metal. Though conceptually 

similar to a common p-n junction, Schottky barriers have much faster switching times (on 

the order of 100 picoseconds), allowing for the creation of higher frequency signals
15

. 

Although Schottky diodes tend to have low output power compared to other diode 

configurations (our system had an output of approximately 0.8 mW at 610 GHz), their 

output power is large when compared to other methods of generating sub-mm waves and 

can easily be detected. CW systems are also highly coherent, our system possesed a 

spectral linewidth of less than 1 kHz.  

 Our detection scheme employed a direct Schottky diode detector, also 

manufactured by VDI, which utilizes Schottky barriers to convert incoming sub-mm 

wave radiation into an electric voltage. The detector was capable of operating over the 

same range of frequencies as our source, with a peak responsivity of 1400 V/W at 

610GHz. This output was then sent through a lock-in amplifier, which utilizes a 

technique known as phase-sensitive detection to filter out noise sources which in this case 

can be thousands of times larger than the signal
16

. The lock-in uses an external reference 

signal provided by the signal generator (amplitude modulation from the Agilent 

microwave generator) to reject noise which is not at the same frequency as the desired 

signal. The lock-in also amplifies the output, allowing for small differences in signal 
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intensity to be measured accurately. It should be noted that our detection scheme only 

measures the power of the incoming radiation, in other words it is not sensitive to electric 

field magnitude, phase, or optical path length. While this means that a great deal of 

information about the signal is lost, it also means that the system can collect data very 

quickly, with time-constants on the order of milliseconds.  
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2.2 Scattering Theory 

 Scattering refers to the physical process of the forced deviation of electromagnetic 

radiation from its trajectory as predicted by the law of reflection, caused by the 

inhomogeneous nature of the medium through which it travels. The three most well 

known types of scattering are Raman (inelastic), Mie-Debye, and Rayleigh (elastic) all of 

which have been extensively covered in the literature
17

; in the case of sub-mm waves 

interacting with aircraft materials Mie-Debye scattering is the most prominent since the 

size of the defects (scattering sources) are comparable to the wavelength of the radiation. 

Because of the importance of the Mie-Debye solution to understanding our NDE images 

it is briefly introduced herein. 

 The Debye solution assumes the incident material is a homogeneous and isotropic 

and that defects such as voids, cracks, and delaminations are of homogeneous spherical 

or cylindrical shape. For perpendicular incidence upon a cylindrical defect, the scattered 

wave will be polarized the same way as the incident radiation and propagate in the plane 

perpendicular to the cylinder‟s surface in the plane including the incident ray
18

. Radiation 

scattered in such a manner is likely to not be captured by the detector. The intensity of 

perpendicularly incident radiation (integrated over solid angle d  on a cylindrical 

defect is approximated by: 

4 4
2 2

3
( 1)o

a
I I m

r




    (1) 
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where Io is the expected (non-scattered) intensity, a is the radius of the cylindrical defect, 

r is the distance between the detector and the center of the cylinder, and m is the ratio of 

the refractive indices (defect/medium). In the case of spherical defects, the intensity of 

perpendicularly incident radiation is approximated by: 

                                                                         

4 6 2

4 2 2

2

16 1

2
o

a m
I I

r m





 




 
 

 (2) 

In both cases the reflected intensity is greatly reduced by the factors of r (which in our 

case is much larger than a and λ) and m (which can be roughly approximated as 1.4 for 

defects and 0.7 for voids) which means that sampled radiation in the area of defects will 

be decreased by orders of magnitude. The net effect is that defects will appear as dark 

spots in an image. Although the Mie-Debye solution takes different forms for non-

perpendicular incidence and detection, these approximate solutions illustrate the fact that 

inconsistencies in an otherwise homogeneous medium will generally result in lowered 

reflected intensity, which for our purposes is sufficient.   
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2.3 Sommerfeld-Zenneck Surface Wave 

Theory

 

Figure 3: Graphical representation of a cylindrical coordinate system and the electric and magnetic fields of a Sommerfeld-

Zenneck wave. The radially polarized field vectors are shown with respect to a transverse cross-section of the cylinder. 

As mentioned above, it was Sommerfeld who first investigated the problem of a 

surface wave traveling along a cylindrical conductor. For the problem of an infinitely 

long cylindrical conductor embedded in an infinite homogeneous dielectric, an analytic 

solution to Maxwell‟s equations can be found to be: 

(3) 

(4) 

Note that both of these fields have azimuthal symmetry (have no dependence on φ), thus 

in the transverse plane the electric field only has a radial component and the magnetic 

field has only a azimuthal component, resulting in fields as shown on the right in Figure 

3. Such a field is said to be radially polarized, since the electric field points in a radial 
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direction at all points along the cylinder. Using the universal wave equation, one can find 

Ez(r)   in equation (3) to be: 

  (5) 

where Io and Ko are the first order modified Bessel functions. Our β coefficients obey the 

relation: 

(6) 

where ε and μ are the permittivity and permeability constants associated with the 

respective mediums (and thus are a function of r) and ω is the angular frequency of the 

radiation. Because Ez is represented by a modified Bessel function, it decays rapidly 

away from the surface of the conductor resulting in a very small area of strong field 

distribution. Also note that Ez does not depend on the distance traveled along the 

conductor, meaning that the wave travels across the surface with zero attenuation (in this 

theoretical model, at least). Though the use of the condition that our two Ez‟s must equal 

one another at the boundary r = R the components Er and Bφ may also be found: 

   (7) 

  (8) 
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where k is the wavenumber and (using the recurrence relations of the modified Bessel 

functions): 

(9) 

since the other components of the magnetic and electric fields are also represented by 

modified Bessel functions (in this case of first order) they also decay rapidly away from 

the surface of the conductor. 

It is interesting to note that historically it was long debated whether or not 

Sommerfeld‟s surface wave actually existed; since the solution requires an infinitely long 

conductor and an incident plane wave (in other words a radiation source infinitely far 

away from the surface of the conductor). It was shown experimentally in the 1940s that 

these types of surface modes could actually be excited in a finite conductor, and Gobau 

proposed their potential application as transmission lines
12

, but only recently have 

experiments been carried out to investigate this potential in the context of sub-mm waves. 

Since there are no closed form analytic solutions for the problem of surface waves on a 

cylindrical conductor of finite length numerical simulations must be carried out to get an  
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Figure 4: FEM simulation of the electric field of a SPP mode traveling along a conductor of finite length
14

. Close-ups of the x 

and y components of the field are shown. Compare these shapes with the experimental results shown in Figure 18, keeping in 

mind that our detector measures power (E2) and is thus not sensitive to the phase of the outgoing wave (shown as red and blue 

in the simulation).  

idea of what such a field should look like. In the case of sub-mm waves the field is found 

to exist almost entirely on the outside of the conductor (r > R) because of the high 

attenuation sensitivity of the band to metals (penetration depth for the field is less than 

1μm), and the field only extends several mm (depending on wavelength and the 

waveguide diameter) off the wire‟s surface. Figure 4 shows an example of one such 

simulation and the resulting field shape, using these results and through understanding 

the theory behind Sommerfeld waves we were able to characterize the radiation patterns 

in our experiment and confirm the presence of SPP modes. 

  

 

 

 

 



18 
 

 

 

 

 

 

 

 

Figure 5: Schematic diagram of imaging system. Radiation exits the multiplier chain and is focused on our raster-scanned sample. 

The scattered radiation is then sent to a direct detector, which monitors the reflected power. 

 

2.4 CW Sub-mm Wave Imaging Procedure 

The basic theory behind sub-mm wave imaging is no different than that of any other 

imaging system. In an active system, radiation is sent from the source through a series of 

optics to illuminate the target, which then reflects and scatters radiation into a detector 

which composites the image. In our set up the source was the previously mentioned diode 

multiplier chain, and an output frequency of 610 GHz was chosen due to the fact that it 

was the highest output power the system was capable of according to the spec data 

provided by the manufacturer (0.8mW). Our optics consisted of a circular collimating 

mirror, a 50/50 Mylar beam splitter, and a 90 degree off-axis parabolic mirror with a 4 

inch diameter and a 6 inch reflected effective focal length. The off-axis mirror was 
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chosen due to its low f-number, and was a crucial component in enabling the production 

of high resolution images. The reflected/scattered radiation off the sample then went back 

through the optics and half the radiation reflected off the beam-splitter into our direct 

detector, which was in turn connected to our lock-in amplifier. The lock-in then sent the 

amplified signal to a National Instruments data acquisition (DAQ) board which was 

connected to our computer software program. This series of steps enabled the creation of 

a single pixel in the final image, to produce a full image the technique of raster-scanning 

was employed as the final step. 

 Raster-scanning is a rectangular pattern of image capture and reconstruction 

commonly employed in a variety of imaging applications including television and 

computer bitmaps
19

 . It involves a pattern of movement as illustrated in Figure 5 section 

[6], where the detector, source, or sample (depending on the configuration) is moved 

pixel by pixel across the entire image area first in one dimension, then moved over in the 

second dimension by one pixel, than back in the first dimension in the opposite direction, 

repeated until the entire image area is covered. It allows for the efficient collection and 

processing of the desired image, and in our case was accomplished though the use of 

motorized linear stages. Our samples were placed on the stages which were controlled by 

the same software involved in the collection of data from the DAQ and were moved in a 

raster pattern, with a time delay between each movement equal to the step size divided by 

the stage velocity plus two lock-in time constants to ensure that the pixel measurement 

was averaged and collected before the next move was made. Once the scan was finished 

the stages then moved back to their initial position to prepare for another image to be 

taken. The process took approximately 45 minutes for a 20 × 20 cm image with a 
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resolution of 0.1mm, the long time due to the fact that our detection scheme only allowed 

the imaging of a single pixel at a time. To help keep this data collection time at a 

minimum the stages were set to move at their maximum velocity and our step sizes were 

set equal to the desired resolution, while these measures did make images quicker to 

obtain they resulted in several issues which had to be dealt with in image processing.        
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2.5 Wire Waveguide Procedure 

 

Figure 6: Schematic diagram of wire waveguide system. Outgoing radiation is focused on the gap between the vertical 

coupling wire and the horizontal transmission wire, exciting the SPP modes. The outgoing conical radiation pattern off the  

end of the transmission wire is then imaged by 3D raster-scanning the detector, which is mounted on linear stages. 

 

Figure 7: Photographs of the wire waveguide experimental apparatus. Note how the detector is mounted to the linear stages in 

the left of the first picture, and how the vertical coupling wire is mounted to a micrometer stage to allow for easy manipulation 

of its position with respect to the transmission wire. The white material (polyethalene) was chosen to hold the wires in place 

due to the fact that it is largely transparent in the sub-mm wave regime. 
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The arrangement for the wire waveguide involved a similar design to our imaging 

experiments, the same signal generator and schottky diode chain was used as in the 

previous section, and a free standing 5mm focal length converging lens was used to focus 

the outgoing radiation on our waveguide. The waveguide consisted of two 1 mm diameter 

tungsten wires, arranged perpendicularly to one another as shown in Figure 6, with a 

separation distance of approximately 2mm. In addition our initial experiments were 

carried out with copper wire of various diameters to establish that the radial modes were 

being excited; we found, however, that although we were able to achieve greater signal 

strength (approximately three times as much) due to the copper‟s larger conductivity 

(copper has a conductivity three times as large as tungsten) the fact that the copper wire 

Figu

re 8: Intial results of waveguide experiment using copper wire, image of outgoing wave and corresponding line profile. 

Although the general shape is somewhat visible, the symmetry and distribution of the pattern the irregular due to the uneven 

surface of the copper wire. 

suface was easily bent and thus made non-cylindrical greatly affected the symmetry of 

the outgoing wave, resulting in images as depicted in Figure 8. Thus tungsten was chosen 

due to its high tensile strength which allowed the wires to maintain their cylindrical 

geometry even after being moved and adjusted.  
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By focusing the linearly polarized radiation (horizontal with respect to the wire in 

this case) at the gap between the two wires a scattering effect at the intersection structure 

was created that helped to excite a propagating radially polarized SPP mode
20

. Although 

it is possible to excite SPP modes without a coupling wire, the coupling efficiencies of 

such an arrangement are extremely low (around 0.01%), by utilizing a second wire we 

were able to couple more of our incident radiaiton to the desired mode leading to a 

stronger detectable signal, with coupling efficiency on the order of 1%. This excitation 

then propagated in both directions away from the intersection down the wire with 

minimal attenuation due to the transmission efficency inherent for these modes, and when 

the radiation reached the end of the wire it diffracted into free space in a conical pattern.
21

 

This radiation pattern was then imaged by the same direct detector used in the previous 

experiment, only this time the detector was mounted on a series of three linear stages 

allowing for full 3D motion. The detector was aligned to only detect radiation of vertical 

polarization to minimze noise from back-scattered radiation off the various metal 

surfaces present in the lab, since the source was polarized in the perpendicular 

orientation. Also, since the radial field extends several millimeters off of the surface of 

the wire, we had to be very careful in positioning and mounting to ensure that as little 

contact as possible was made with the wire surface. To accomplish this wire stands were 

constructed using high-denisty polyethylene (a substance largely transparent in the sub-

mm wave band) with small drilled holes the same diameter of the wire to hold the wire 

and keep it straight, as illustrated in Figure 7. In addition, a micrometer stage was built to 

hold the vertical coupling wire with polyethylene and allow for small adjustments in the 

coupling wire‟s position to be obtained with ease since we found that the positioning of 
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the coupling wire was crucial in obtaining a strong outgoing signal. Both the distance of 

the coupling wire from the transmission wire and its orientation had to be minutely 

controlled, and we found experimentally that a distance of approximately 2mm and 

perpendicular orientation resulted in the strongest, symmetric signal.      

 By performing 3D raster-scans the outgoing radiation could be imaged in a 

similar fashion to the NDE images, although in this case since our data was 3D a 

different software program was necessary to produce graphs. Due to the radial nature of 

the propagating modes and the fact that our detector was linearly polarized we were 

unable to image the entire pattern with this set-up. However the majority of the pattern 

was still imageable since any radiation with polarization not exactly orthogonal with our 

detector still has some component which is detectable. Once the data was collected it was 

arranged into 3D matrices and plotted using Igor Pro software which allowed for the easy 

creation and manipulation of graphs.  

Once we were confident that we were in fact imaging the outgoing radial wave 

several adjustments were made to the setup to see the effects of various parameters. 

Previous groups have established using numerical simulations and experiments with 

time-domain systems that the outgoing wave pattern of the wire waveguide widens with 

decreasing frequency due to near-field diffraction effects at the wire/air interface
22

. To 

test these simulations the output frequency of the source was adjusted starting with our 

intial frequency of 610 GHz and ranging from 580 to 655 GHz and the outgoing wave 

was imaged at the same distance from the wire in all three cases (5 millimeters). Though 

the change in frequency was small it was still large enough to notice the diffraction 

effect, and 3D polts of the data were generated this time with the third dimension being 
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frequency instead of distance from the wire. In addition to investigating the effects of 

changing frequency on the outgoing radiation pattern, we placed a third tungsten wire 

near the far (non-imaged) end of the tranmission wire to see what effects this would have 

on the pattern on the opposite side. The lack of both experimental and theoretical 

information on the interaction of the two outgoing waves propagating along the 

waveguide was one motivation for this experiment. It was also our hope that some sort of 

noticeable effect would be created by back-scattering radiation off the free standing wire 

with potential application in a sub-mm wave microscopy device. By placing a free 

standing wire 5 millimeters above and below the far end of the transmission wire we we 

able to see the effects of a conductive surface placed within the outgoing field of the 

emitted radiation pattern on the opposite side and evaluate the potential of such an 

arrangement as a near-field imaging device.          
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2.6 Software Control 

 

 Figure 9: Front panel of LabView software for imaging programs. Panel allows the control of all lock-in parameters as well 

as image size and stage velocity. Data from the lock-in is collected and displayed in the tables on the right 

 One of the most crucial components in the design of our experimental systems 

was the utilization of software to control the motorized stages the samples/detector were 

placed on and synchronize this motion with our data collection. To achieve high 

resolution our images often consisted of 22,000 data points or more, and each of these 

data points had to be correctly timed with the movement of the stages in order to 

composite an accurate image. To achieve this, National Instruments‟ LabView software 

was utilized due to LabView‟s well documented capability for device control
23

. We 
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found that although LabView did make instrument control and data synchronization easy, 

its image processing functions left a lot to be desired, thus LabView was used stictly for 

control and data collection while image processing was achieved using Igor Pro. 

 To accurately control our systems, the raster-scan logic loops sent to our motion 

control stages were sychronized with our data collection off of the DAQ board. To 

minimize the effects of noise and other pertubances on the intensity measurements, data 

from the lock-in was averaged over 100 measurements made at a rate of 1 kHz for each 

pixel to increase the effective time constant. Once the data was collected, commands 

would be sent to the stages to move them over to the next data point. To ensure that the 

data collected for the next pixel would not be effected by the previous measurement, the 

system would then wait several lock-in time constants (with τ = 100 milliseconds) before 

making the subsequent measurement to ensure that the amplifier had enough time to 

adjust to the new position. Although these measures did lengthen our data collection time 

by several minutes, we found through trial and error that they were neccesary in order to 

create high quality, reproduceable images. Once the scan was completed the data was 

arranged into a matrix by LabView, with the rows and columns of the matrix 

corresponding to the spatial coordinates of the imaged pixel. These matrices were then 

saved as an external text file, which could then be copied into an Excel spreadsheet for 

use in our image processing software.   
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2.7 Image Processing  

 Once raw data was obtained by the collection software image processing tools 

were utilized to create our final results. The matrices corresponding to the images were 

loaded into Igor Pro, and an initial image was generated via the software in order to 

produce an image more pleasing to the eye. Many of our initial images suffered from the 

problem of shift register, caused by inconsistancies in the synchronization of the data 

collection from the lock-in and the raster motion of the stages. Although this problem 

was eventually corrected for by improving the LabView synchronization programing, 

shift registering had an important effect on a number of the images in our library.  This 

caused the rows in the data matrix to be shifted, resulting in  

 

Figure 10: Example of image processing on polyamide sample. Figure (a) depicts the raw data, the effects of the register shift 

can be seen clearly on the edges of objects. Figure (b) depicts object after register correction. Figure (c) depicts the final image 

after interpolation, with smooths the appearance of the image noticably.  
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Figure 11: Graphs illustrating the effect of bilinear interpolation on a checkerboard pattern. The image to the left is the raw 

data, and the figure on the right depicts the interpolated image. Interpolation creates a grey-scale between the dark and white 

squares in all directions due to the averaging nature of bilienar interpolation. 

 

images as shown in Figure 10 (a). To solve this problem we used Igor to manually move 

the columns around until a satisfactorily lined up imaged was produced, as shown in 

Figure 10(b). 

 The final step of our image processing involved a technique known as 

interpolation. Interpolation is the mathematical method of constructing new data points 

within the range of discrete set of known data points, and is a commonly used technique 

in image processing
24

. Through interpolation new pixels are constructed by linearly 

averaging the pixels in the surronding area, then inserting a new pixel with a value equal 

to this average. This method is known as bilinear interpolation, and its effects are 

illustrated in Figure 11.  The net effect is an overall smoothing of the image appearance; 
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although averaging does slightly decrease our effective resolution the increased clarity 

makes the identification of small defects easier to the human eye. We utilized 

interpolation for two reasons; one, it allowed us to increase the step size of our linear 

stages during imaging greatly reducing data collection time and second, it allowed sub-

resolution interference effects to be smoothed making defects and other items of interest 

easier to see with the naked eye. Once the data was interpolated and we were satisfied 

with the appearance of the image the files were converted into JPEGs and exported. 

Through the use of image processing we were able to convert our less than ideal raw data 

into images of picture quality, allowing for easier evaluation of the structures we sought 

to find.  
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III. NDE Imaging Results 

3.1   Evaluation of Metallic Samples 

  

Figure 12: Visual and sub-mm wave images of corrosion sample A1R-004. Blistering underneath the paint is slightly visible in 

the photo but shows up clearly in the 610GHz image due to scattering. The interference patterns in the sub-mm image are due 

to multiple reflections within the system and not an error caused by image processing.  

 

The first set of samples we imaged were aluminum sheets 3” ×  6” in size with 

either half or all of the sample covered with a paint layer approximately 0.1mm thick to 

serve as an obscurant. Each sample had a large „x‟ shaped score mark and was subjected 

to a series of chemical treatments to help initiate the growth of corrosion resulting in 

blistering, pitting, and cracking of the metal and paint surfaces. These surface defects 
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show up very clearly in the sub-mm images due to scattering, as illustrated in Figure 12, 

but are typically barely visible in the photos. The interference bands seen in the sub-mm 

wave image are due to the highly coherent nature of our source, near field effects, and 

multiple reflections within the system, creating an arrangement not unlike a Michelson 

interferometer resulting in interference fringers. Although these fringes result in less than 

ideal images, they can also aid in locating defects and other areas where the refractive 

index changes as the fringe patterns warp around these areas. There are several methods 

that could be implemented in future efforts to eliminate these effects, for example 

frequency modulation
25

 

 

Figure 13: Visual and sub-mm wave image of corrosion sample C1R-001. (a) and (b) are the full visual and 610GHz images, 

respectively. (c) shows a closeup of the right side of the sample, illustrating defects seen in the sub-mm image but not in the 

visual and vise-versa. 

    One good illustration of this effect is in our image of metallic sample C1R-001. 

Here a definite change of the interference bands can be seen between the metal and paint 

areas, and the bands shift around the delamination on the right side as well as some of the 
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vein like growths along the central score mark. This image also shows the kind of defects 

that show up clearly in the sub-mm image and vise-versa. While the vein-like corrosion 

structures show up clearly along the „x‟ shaped score mark, they are not as apparent on 

the edges of the sample in the 610 GHz image. This is likely due to the structures‟ small 

thickness (0.1mm or less) and the high intensity of the signal reflected off the surface of 

the bare metal washing out the small change in signal. On the other hand growths and 

delaminations underneath the paint layer, as shown in the close-up in Figure 13(c), are 

clearly visible in the sub-mm wave images but virtually undetectable in the visible photo. 

Thus, it appears that the sub-mm wave imaging system is better at finding defects 

underneath the paint layer than it is on the bare-metal surface. However, since the defects 

on the metal surface are clearly visible this is not a significant disadvantage, since any 

routine NDE inspection would include a visual overview as well as imaging.  

 

Figure 14: Line profiles of visible and sub-mm wave images of sample C1R-001 (taken along red line shown in 

images on right. To offset the effects of the interference fringes, the intensity pattern’s normalized and derivative 

values are plotted. 
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To get a more quantitative evaluation of these images, we utilized line profiles. 

Because the interference patterns in the sub-mm wave images direct intensity 

comparisons are not very useful, we plot in Figure 14 the normalized intensity 

distribution as well as its derivative for the visual and sub-mm wave images. From the 

line profiles, several features of the images can be determined, first in both the sub-mm 

and visible images the regions of high contrast show a 10-15% variation in intensity 

while areas of low contast (such as the paint layer in the visual image) show virtually no 

variation. Second, while the paint layer barely registers in the visible image stark contrast 

can be seen in the sub-mm wave profile, illustrating the penetrative capablities of this 

wavelength. Third, variations in the surface such as the score mark and vein-like growths 

cause a greater change in intensity in the sub-mm wave image than in the visible, most 

likely due to the fact that the 610GHz wavelength is closer to the size of the defects and 

is thus affected by Mie-Debye scattering more than optical frequencies. Finally, the 

proflies illustrate how in the metal region many of the features are lost in the sub-mm 

wave image but are still distinct in the visible, showing that the 610GHz system is better 

suited for finding defects underneath paint than on a bare surface, but this will be 

determined by the defect size and the geometry of the target. 
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3.2 Evaluation of Composite Samples 

 

Figure 15: Visible (a) and 610GHz (b) image of composite sample KT-3. Sample was burned for 4 minutes at 830 degrees F, as 

labeled. The burn spot shows up clearly in the sub-mm wave images, while being indistinguishable in the visible. 

 The second set of samples we evaluated were fiberglass/polyamide areospace 

composites approximately 2‟‟x 6‟‟ in size and 5 millimeters thick. These samples had a 

variety of different defects including burn damage, stress damage, and hidden 

delaminations purposefully manufactured to test our instruments. Figure 15 shows a 

sample that had an area (outlined in white in the photo) subjected to 440 
o
C for a 4 minute 

duration resulting in structural damage and delamination of the component composite 

material. Although the damaged area does not appear significantly altered in the visible 

photograph the burn spot can be clearly seen in the 610GHz image, and indeed this kind 
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of structural damage could lead to component failure if experienced in the field. Once 

again we see the interference patterns due to near field effects as well as multiple 

reflections in our system. In addition we are able to make out the honeycomb weave 

structure of the material which is not visible to the naked eye. 

Figure 16: Imgaes of composite sample KT-4, visual (a) front (b) and back(c). Sample was bent at a rate of 60Hz for five 

minutes, the effects of the stress damage can clearly been seen as fold-like structures in the image and are not visible in the 

photo. 

 Figure 16 depicts another of our composite samples and this one has several 

interesting features compared to the previous one. First the center of the sample has had 

varying thicknesses carved out (approximately 0.5-2 millimeters in depth) in order to test 

the effect of different declinations on our images, in addition this sample was subjected to 

stress damage instead of being burned and the effects are unnoticeable in the visible. In 
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the 610 GHz images, however, the effects of the stess damage are clear in the lower 

corner of the image, the fractured layers can clearly been seen on the back side of the 

composite and somewhat on the front side through the thinnest layer. This type of stress 

damage could result in component failure if unmonitored and again illustrates the 

capablities of our system for NDE. 

 

 

Figure 17: Image of hidden defects in composite sample NKT-4. (a) X-ray image26   (b) and (c) sub-mm wave images of the 

front and back of the sample, respectively. The circular and horizontal line defects are clearly visible but the vertical line 

defects barely register in the 610GHz pictures. 

 The most interesting of our composite samples is shown in Figure 17. On the 

surface, this sample appears plain and unmarred but in fact has had hidden delaminations 
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purposefully introduced within the weave structure. As the X-ray image in Figure 17 (a) 

shows, there are circular as well as vertical and horizontal line defects present within the 

sample. The cicular and horizontal line defects show up clearly on the front of the sample 

in the 610 GHz images, and less clearly on the back, the vertical line defects are 

unfourtunately not as clear. These line defects are much less than 1 millimeter in width, 

and they are pushing the resolution limit of our system. However, one appears to be 

noticeable in the right red circled region in Figure 17 (b). What is even more interesting 

is a direct comparison between our images and the X-ray one. We seem to get about the 

same spatial resolution even though the X-rays have wavelengths orders of magnitude 

smaller (and are of course ionizing and therefore has limited field capabilities). As 

composite materials become more and more popular in aviation, their effective evaluation 

becomes more and more crucial, and these images demonstrate that sub-mm waves are 

not only capable of evaluating surface damage in metals but the interior of composite 

materials as well.   
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IV. Sommerfeld-Zenneck Waveguide Results 

4.1 Initial Measurements and Efficency of Coupling Wire 

 Our first goal after constructing our wire waveguide was to confirm that we were 

indeed exciting the SPP modes of the conductor and that the output radiation we were 

measuring was the conical wave pattern we sought to image. To accomplish this we 

manually moved the stages around the wire to get an idea of where the intensity peaks 

were located with respect to the end of the wire, and that these positions correlated with 

what would be expected from a SPP mode. Once a region of maximum intensity was 

located we would move the detector to the opposite orientation with respsect to the 

transmission wire to make sure that the intensity distrubution was symmetric. What we 

found was that the symmetry of intensities was greatly dependent on the position of the 

coupling wire; if the coupling wire was not perfectly perpendicular to the transmission 

wire an asymmetry would result. In addition the signal strength would change as the 

distance between the coupling and transmission wires was adjusted, increasing at first as 

the wire was moved back and then steadily decreasing as the wire was moved further and 

further away. We found that a seperation distance of approximately 2mm was optimum 

for maximum signal strength and symmetry. 

 In addition to confirming the presence of an outgoing SPP mode we calculated 

coupling efficency of the wire waveguide to confirm that we were not seeing stray 

reflections and to confirm that our efficencies corresponded to those found by previous 

groups
27

. Our maximum output was approximately 1.3 µV as read by our lock in, which 
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corresponded to a detected power of approximately .001µW. If we assume this power 

corresponds to an area of .01 mm
2
 (the area of the pixel for a .1mm step size) and use the 

fact that the average radius of our radiation pattern immediately exiting the end of the 

waveguide was approximately 2.5mm, we can estimate the coupling efficency. A radius 

of 2.5mm results in a total surface area of approximately 20mm
2
, assuming the total 

power distribution is uniform (which it should be according to theory) this means that the 

total power of the radiation pattern was approximately 2 µW. Given that the output power 

of our source is 0.8 mW at 610 GHz (see Figure 2) this gives us a coupling efficency of 

approximately 0.25%, which corresponds to the efficencies seen by other groups 

researching these waveguides, taking into account losses due to attenuation and other 

effects. Although the coupling efficency for this waveguide is extrenely small there is 

very little attenuation over the length of the wire. Approximately the same signal strength 

was seen with wire lengths of 70 cm as was seen in lengths of 35 cm. In addition, due to 

the sensitivity of our detectors even such a small amount of radiation is still sufficient to 

use for imaging applications. Once these initial measurements were complete our next 

task was to quantify the parameters of the outgoing wave on the far end of the 

waveguide.       
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4.2 Evaluation of Outgoing Wave as a Function of Distance 

 

Figure 18: 2D image of outgoing wave at 610 GHz and corresponding line profile (taken between blue lines),  the detector was 

placed 13 mm from the tip of the transmission wire, and each unit in the graph is equal to 0.1 mm. Notice the strong intensity 

in the immediate vicinity of the wire (red circle) and the less intense outgoing wave pattern surrounding it. Also note that there 

is no intensity to immediate the left or right of the wire, since our detector is polarized in the vertical direction. 

 

By performing our 3D raster-scans, in effect a form of terahertz tomography
28

, we 

were able to evaluate the outgoing wave pattern as a function of distance from the wire 

and compare our results with those predicted by theory. Figure 18 depicts a 2D section of 

our 3D data along with a corresponding line profile. Notice that we get an almost circular 

pattern, as we would expect as a section of our conical outgoing wave, but that there is no 

intensity to the immediate left or right of the wire. This is due to the nature of the SPP 

mode‟s radial polarization, since our detector is linearly polarized in the vertical direction 

it is unable to detect the outgoing radiation with polarization perpendicular to this axis. 

Also, the intensity pattern is symmetric about the wire, although the intensity peaks 
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slightly higher above the wire than below. This is most likely due to a slight peturbation 

of the position of coupling wire, which as noted before can lead to asymmetries in the 

ougoing wave pattern.  

 

Figure 19: 3D image plot of outgoing intensity versus distance. Imaging began at 5mm and tomographs were taken every 8mm 

back as far as 45mm. Notice the conical shapes of both halves of the radiation pattern and the noise level intensity for positions 

perpendicular to the polarization of the detector.    

Figure 19 depicts the 3D graph of the outgoing radiation pattern as a function of 

distance from the wire. Immediately apparent is its conical shape, which correlates well 

with theory. Once again the asymmetry of the pattern is evident as well, although the 

differences between the two halves become less pronounced with distance. This brings us 

to the next point, which is that both halves of the wave pattern diverge from the center at 
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approximately the same rate, as would be expected of a diffraction pattern in the far-field 

limit. Figure 20 shows a plot of the peak-to-peak distance of the two halves of the 

intensity pattern as a function of distance from the tip of the transmission wire, as well as 

the intensity distributions for six different distances (essentially 2D tomograms of our 3D 

plot). This linear behavior is indicative of the diffraction effects at the wire/air interface, 

and is further evidence that the pattern we are viewing is indeed the conical outgoing 

wave expected fron an excited SPP mode on a cylindrical wire waveguide. These results 

verify that our method of Sommerfeld-Zenneck wave excitation is valid, and that the 

behavior of the wave correlates well with theory, with the exception of the slight 

asymmetry between the two halves of the wave pattern.  

 

Figure 20: Plot of peak-to-peak distance of outgoing wavefronts as a function of distance from the wire, with deviation shown 

above. The left plot maps the intensity distribution of the outgoing pattern for 6 different distances, and the right plot shows 

the relationship between the peak-to-peak distance and distance from the wire. Distances show a linear relationship with 

position from the wire, as would be expected due to diffraction in the far-field limit.    
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4.3 Evaluation of Outgoing Wave as a Function of Frequency 

 

Figure 21: 3D Plot of outgoing wave pattern as a function of frequency. Although the pattern does widen slightly as predicted 

by frequency-dependent scattering, the high level of noise in our measurements as well as the limited range of frequencies of 

our source limits conclusiveness of this data. 

Our next set of data sought to verify the frequency dependent behavior of the 

outgoing pattern. Figure 21 shows our 3D plot of the wave pattern as a function of 

frequency. Although the distance between the peaks did widen slightly (approximately 

3mm difference between the 580 and 655 GHz peaks), the results are not thoroughly 

conclusive. The high level of noise in our 580 GHz measurement, as well as the limited 

frequency range of our radiation source were both limitations on this aspect of the 

experiment. Although the small variation in the peak-to-peak distance does correlate with 

the difference predicted by the simulations performed by previous groups, the fact that 

we lacked a source/detection scheme broadband enough to make the necessary number of 

measurements hampered our results considerably.    
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4.4 Effects of the Presence of Conductors on the Outgoing Wave  

 

Figure 22: 2D image of outgoing wave at 610 GHz when a second wire is placed (a) 5mm above and (b) 5mm below the far 

(non imaged) end of the transmission wire (images taken at a distance of 21mm). Note how the symmetry of the pattern is lost 

and how it is no longer centered on the face of the wire (red dot). Also notice how the two images are almost reversed images of 

one another. 

 Our final set of measurements investigated the effects of the presense of a second 

cylindrical conductor on the outgoing wave. Our resulting images are displayed in Figure 

22; notice how the symmetry of our previous images if broken. The outgoing wave 

appears to be effected by reflections from the far end of the wire  resulting in the 

asymmetric radiation pattern. In addition, the images of the outgoing wave when the wire 

is place above and below the wire appear to be mirror images of eachother, which again 

supports the theory that this aymmetry is due to reflections off the far end of the wire 

(with left-right reversal). While no more detailed analysis of these effects was made, 
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further investigations of these effects may reveal the potential of such a waveguide to be 

used for near-field imaging and microscopy, fields where the sub-mm wave band has not 

been extensively utilized. It also presents evidence that the two outgoing waves generated 

by our SPP generation scheme do interact with one another; a fact that to this author‟s 

knowledge has never been investigated before. Although these measurements are very 

preliminary, they suggest a new line of inquiry that may further realize the potential of a 

Sommerfeld-Zenneck waveguide not only as a means of sub-mm wave transmission but 

as a method of near-field imaging.   
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V. Conclusions 

 As the technology for the generation and detection of sub-mm waves becomes 

more and more advanced it becomes increasingly important to investigate the potential 

applications and methodology of utilizing this wave band. By constructing our NDE 

system and creating our library of images we have successfully demonstrated the 

advantages a sub-mm wavelength device could yield to the maintenance community, and 

specifically the potential such a system in evaluating aerospace metallic and composite 

materials. While the results of our NDE experiments are promising, the problem of sub-

mm wave transmission still needs to be addressed before a field-capable system can be 

developed. Our waveguide experiments have shown a potential solution to this issue by 

demonstrating SPP generation in cylindrical waveguides for the first time using a CW 

system. While a great deal of research still needs to be carried out before an effective 

Sommerfeld-Zenneck transmission wire can be realized, our research is a promising step 

in this direction. Since it has been demonstrated that such a waveguide is capable of 

transmitting CW sub-mm wave radiation over considerable distances with little 

attenuation, future research should center on investigating methods for increasing the 

coupling efficiency of such a device, as proposed by several groups in the research 

community
29,30

. Increasing the efficiency of such a waveguide maximizes it potential for 

practical field use. Such a method of sub-mm wave transmission would not only have 

potential impact in the field of NDE, but nearly every other application of the band as 

well.          
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