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Abstract 

Agans, Richard Thomas. M.S., Microbiology and Immunology M.S. Program,Wright State 

University, 2011.  Utilization of a Custom-Designed Microbiota Array to Determine the Distal 

Gut Microbiota of Healthy Human Adults 

 

The human microbiota is an essential component of human health and disease.  It is 

involved in metabolism of dietary components and is at the forefront of the intestinal immune 

response.  Classical techniques applied to study intestinal microbiota illustrated higher presences 

of aerobic and facultative-anaerobic bacteria, however; the levels of obligate anaerobes had been 

underrepresented.  Modern technologies based on DNA and RNA analysis have circumvented 

previous challenges allowing researchers to gain more extensive insight into the complex 

intestinal environment.  In this work, a recently developed Microbiota Array was used to assess 

intestinal microbiota of 10 healthy adults (age 22-61, ave. 34.3yrs).  Class level results showed 

dominance of Clostridia in all samples, encompassing approximately 74.0% of total class signal.  

Little variation was seen among samples at the Class level, however, this variation increased at 

the Genus level.  Ruminococcus was the most abundant genus (21.1%), followed by 

Faecalibacterium (8.7%) and Papillibacter (6.8%).  Members of 87 genera were detected in at 

least one sample.  Among these, most were present at low abundance levels (65 genera had 

average abundance less than 1%).  A core microbiome of 113 phylo-species was found in every 

sample.  Among these core phylo-species, Ruminococcus, Roseburia, and Papillibacter were the 

major contributors.  Overall, similar numbers of phylo-species were detected across samples 

(294-385, ave. 330).  The results here show that the Microbiota Array is an efficient and viable 

method for analyzing the intestinal microbiota.  In conclusion, this work solidifies the Microbiota 

Array as a formidable tool in analysis and characterization of intestinal microbiota. 
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1. INTRODUCTION 

Microbiota 

 Microorganisms inhabit a plethora of environmental niches, from soil, water (salt and 

fresh), air, and plant surfaces, to organisms such as insects, mammals, birds, reptiles, etc. [1].  

There has long been much interest in studying this minute world of life, exemplified by the vast 

number of studies conducted on microbiomes inhabiting environments within the human body 

[1].   

 

There have been numerous studies investigating the microbiota of human body niches [2-

7].  Studies examining the skin microbiota of humans have shown variations between different 

body niches.  One such report by Costello et al. (2008) observed differences between the hands, 

head, legs, arms, etc.; it was determined that microbiota inhabiting  right and left sides of the 

body tended to cluster together with the exception of index fingers which were more related to 

each palm.  These authors found differences across niches and attribute those differences to local 

environmental characteristics of each skin area.  These authors go on to discuss how bacterial 

diversity relates to body habitats of the skin, gut, auditory, and oral tissue; and found that 

diversity decreases from upper body skin habitats with gut, oral, lower body skin habitats and 

auditory tissues following in that order.  Human skin is covered with prokaryotic organisms, 

Whitman et. al point out, “the density of prokaryotes is about 10
3
-10

4
 cells/cm

2
, except in the 

groin and axilla where it is 10
6
 cells/cm

2
.  Based on an average adult human’s skin, the total 

number of prokaryotes on the skin of an individual is about 3 X 10
8
 cells” (1998).  The observed 

diversity in such niches could possibly be related to exposure to external environmental 

conditions and stimuli.  The community observed by Costello’s group consisted of the phyla 

Firmicutes, Actinobacteria, Bacteroidetes, and Proteobacteria.  The oral and stomach microbiota 

have been shown to differ in composition compared with skin and gut microbiota, interesting 
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since the mouth has close proximity to the skin epithelium and stomach contents are sent through 

the gut.  One such study aimed at determining bacterial profiles in healthy oral cavities claimed 

that of five sites sampled within the mouth there was a common presence of genera from the 

classes Bacilli and Clostridia [7]. Interestingly, it was determined by culture-independent 

techniques that Helicobacter pylori, a common gastric pathogen, is present in healthy stomachs; 

however, the authors were unable to concretely determine whether this presence was due to 

potential contamination, transient organisms, or cell remnants [6].  While these authors do indeed 

show that H. pylori was present in their samples, the inability of being able to determine the 

extent that potential contamination plays in this observation suggests that broad range polymerase 

chain reaction (PCR) based approach is not advantageous. 

 

The intestinal microbiota is responsible for processes including nutrient digestion of 

dietary components, immune modulation, and pathogen resistance, among others [8].  It has been 

estimated that the human intestine contains upwards of 10
13

 bacterial cells, with a combined 

genome larger than that of the human host [1].  The data collected in these early studies indicate 

the intestinal microbiota is integral part of human health and disease. 

 

The Human “Super-Organism:” Symbiosis in the Intestinal Tract 

 A constant bacterial presence in the intestinal tract has resulted in a relationship between 

the host and bacteria that is beneficial for both parties.  This relationship is evidenced by the 

presence of many bacterial cells at any given time in the intestinal tract without significant 

immunological action or challenge.  Therefore, there must be symbiotic relationships allowing 

these bacteria to be present in such numbers on a constant basis, and this symbiotic relationship is 

found upon understanding the roles that microbiota play in human digestion.   It is well known 

that most of the body’s metabolism and absorption of dietary components takes place in the 
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intestinal tract.   Bacteria are able to break down pectin, hemicelluloses, starches, cellulose and 

other polysaccharides, the byproducts of which, can be used by the human host, along with other 

bacterial species for biochemical processes [9-19].  This ability to break down certain dietary 

products is specific to certain microbiota and is a result of complex evolution and gene transfer, 

allowing for such abilities to be nonobligatory for the human host.   

 

One example of such relationships comes from Xu et al. [20] who looked at two species 

of intestinal Bacteroides and observed multiple instances of similar protein-coding genes being 

inherited by the microbiome, proposing that these genes were laterally transferred due to the 

genes differing composition from that of the bacterial genomes.  The presence of genes found in 

the Bacteroides species were shown to be involved in metabolism of plant polysaccharides and 

proteins, as well as glycans associated with the intestinal epithelium mucous layer.  The group 

went on to suggest that there are two main forces driving the establishment of symbiosis in the 

intestinal environment, a “top-down” selection via the host to produce a homogenous microbiome 

with a “bottom-up” selection between microbes to produce a differentiated genome.  These 

selection processes result in a functional microbiota that has established symbiosis with the  

human host. 

 

Li et al. [21] were investigating relationships between microbiota structure with 

metabolite Nuclear Magnetic Resonance (NMR) data.  They employed denaturing-gradient gel 

electrophoresis (DGGE) to differentiate bacterial groups, and NMR to assess urinary tract 

metabolites.  These authors reported correlations between groups detected through DGGE and the 

NMR results.  They suggested that their results would lay the groundwork for a “Rosetta Stone,” 

to understand the intestinal microbiome and relations to human hosts.  Along with these works 
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there have recently been many others detailing symbiotic, evolutionary and, mutualistic 

relationships between host and bacteria as well as between bacterial species [22-25].  

 

These works begin to illustrate the vast significance of microorganisms in the human 

host.  To fully understand human health and disease, a proper knowledge of microbiota/host 

relationships (cell-cell communication, bacterial numbers, activity, etc.) is needed. 

 

Bacteria in the Intestinal Tract: Relations with Host and Each Other 

Sghir et al. state that there are on average around 10
11

 bacterial cells for every gram of 

fecal content.  This statement is further solidified by Dethlefsen et al. who explain that microbes 

inhabiting the colon outnumber human cells by 10-fold, and contain a combined total of 100-fold 

more genes than that of humans.  When breaking down the microbial community it has been 

shown that the majority of this population is made up of the phyla Firmicutes, Actinobacteria, and 

Bacteroidetes [4, 26].   

 

Bacteria in the intestinal tract are involved in many processes and interactions with each 

other and the human host as well.  As a result of reactions between microorganisms and the host, 

a person’s immune system has to deal with the sheer numbers of foreign and commensal 

microorganisms.  In response to the persistent presence of bacteria, albeit commensal, the human 

immune system has developed mechanisms to keep bacteria in check.  The immune system 

maintains this balance through production of mucus, antimicrobial proteins, activation of immune 

cells, and clearance of bacterial cells [27].  Goblet cells lining the epithelium produce mucus, 

which serves two functions, 1) to act as an external layer to which bacteria bind, keeping them 

from invading the simple epithelium, and 2) an internal layer containing a high concentration of 

antimicrobial peptides, that act against bacteria upon contact [27].  Another mechanism by which 
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the human body recognizes bacteria (commensal/pathogenic) is through the binding of pattern 

recognition receptors to bacterial cell wall components, triggering a downstream response to 

produce antimicrobial proteins or activation of adaptive immune cells i.e. B and T cells.   

 

The body is also proactive in the production of a certain class of antimicrobial peptides 

known as defensins, more specifically the alpha-defensins. These defensins are constitutively 

expressed and released into the lumen of the digestive tract.  Upon recognition of bacteria 

defensins, punch holes in the membranes of microorganisms, further keeping bacterial numbers 

manageable [28-30].  These immune products represent only a small portion of the many 

mechanisms that are involved in the human innate response to bacterial presence. 

 

Along with the body’s response to bacterial stimulus, there also exists cross-talk between 

bacterial cells in the intestinal tract.  One such mechanism of cross-talk, known as quorum 

sensing, allows bacterial cells to regulate expression of certain genes as a function of population 

density [31].  Compounds called autoinducers, which can be produced by bacterial species of the 

same genus or by those from an unrelated genus, are key in keeping communities fit by keeping 

communities from growing beyond their ability to maintain themselves.  This mechanism is 

beneficial for the microorganism in relation to the immune response in that this sensing allows 

the community to grow to a point that it is able to function and thrive without initiating an 

immune response by growing too large [32].  The body is remarkable in the relationships it has 

evolved with the intestinal microbiota, and this is only a small portion of the interaction between 

microorganisms and the human intestinal systems; to go into more detail would be beyond the 

scope of this literature. 
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As Pai and Kang explain, the intestinal microbiota is equipped to metabolize dietary 

components unusable by the host until broken down into smaller constituents.  These bacterial 

species utilize nutrient sources including plant polysaccharides such as cellulose, xylan, and 

pectin.  They are also actively involved in absorption of lipids, recycling of nitrogen, production 

of vitamins, etc. [33].  This is further explained for Bacteroides thetaiotaomicron, describing how 

the bacterium has more than double the glycoside hydrolases as the human host along with eight 

starch utilization genes.  These authors also discuss the production of short chain fatty acids and 

absorption by host cells; in a culminating statement the authors describe an “eating together” 

relationship further illustrating symbiosis in the intestinal tract.   The evidence in these works 

further suggest that the intestinal microbiota is crucial in proper homeostasis. 

 

Major Intestinal Phyla 

Although the intestinal microbiota contains more than 100 different bacterial genera, 

encompassing more than 1000 different species, all these species are members of only a few 

phyla.  There are many publications that discuss the distribution of bacteria in the intestinal tract, 

indicating that the phyla Firmicutes, Actinobacteria, and Bacteroidetes dominate the intestinal 

microbiota [4, 26].  Notable among these phyla is the ratio between the Firmicutes and 

Bacteroidetes, a ratio that has received attention from researchers.  It appears that this ratio 

“evolves” in connection with a person’s life.  This ratio was seen to increase from infancy to 

adulthood and then decrease again [34].  Further investigation into this ratio may potentially lead 

to an alternative diagnostic approach for assessing intestinal disease. 

 

Prominent Bacterial Genera in the Intestinal Tract 

At the genus level, it has been shown that Ruminococcus, Bacteroides, and 

Faecalibacterium are the most prominent.  Of particular interest, is the genus Faecalibacterium; 
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which has been shown to aid in immune remediation of colitis, in addition to its involvement in 

metabolism [19, 35].  Sokol et al. looked at Faecalibacterium prausnitzii in a trinitrobenzene 

sulfonic acid (TNBS) model of colitis and observed that both in vitro and in vivo models resulted 

in a decrease in colitis.  This remediation was attributed to F. prausnitzii’s ability (through 

production of metabolites) to induce IL-10 (anti-inflammatory cytokine) production, and decrease 

production of both IFN-γ  and IL-12 (pro-inflammatory cytokines).  Along with the diminished 

effects of the colitis model, F. prausnitzii was shown to rectify the dysbiosis that was created as a 

result of said colitis [35].  This effect of Faecalibacterium is further solidified by reviewing 

literature addressing the effects of butyrate on immune function which itself produces an anti-

inflammatory effect by increasing IL-10 production, along with this promotion of anti-

inflammatory cytokine stimulation it has been shown that butyrate decreases levels of 

proinflammatory cytokines by inhibiting NFkB [36].  This organism has been shown to be a 

prominent producer of butyrate in the normal diet as well as a major player in utilization of 

acetate [19, 37]. 

 

The involvement of Bacteroides spp. in the intestine has been well documented [10, 11, 

38-40].  The increased presence of Bacteroides in vegetarian diets is indicative of its ability to 

hydrolyze plant polysaccharides, further evidenced by the prediction of 226 glycoside hydrolases 

in Bacteroides thetaiotaomicron compared to 96 known hydrolases in the human genome [41].  

This organism is also known to be efficient in its utilization of starches in the diet, containing 

eight starch utilization genes which allows the organism to break down dietary starches into short 

chain fatty acids such as acetate, butyrate and propionate; which can then be utilized by 

Faecalibacterium, other microorganisms and human colonocytes [33, 37].  Aside from 

Bacteroides spp. being a crucial component in proper nutrient extraction it is also known to be 

important in proper development of the post-natal immune system [42].  It has been reported that 
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germ free mice, which do not contain a developed immune system, can have this lack of proper 

immune function corrected through administration of either harvested microbiota from 

conventional mice or Bacteroides thetaiotaomicron [42].  Their results are important because 

they highlight the importance of microbiota members in maintaining proper intestinal health. 

 

 Another constituent of the intestinal microbiota is the genus Ruminococcus.  

Ruminococcus spp. are part of the Firmicutes phylum , which has been shown to be one of the 

major phyla in the human colon [38, 43, 44]. Ruminococcus species contain cellulolytic 

complexes that enable these organisms to degrade plant cell wall polysaccharides, which is 

essential for further processing of plant components [44].  A benefit of these complexes is the 

allowance for Ruminococcus spp. to attach to the particle-phase of intestinal luminal content, 

creating a close association between organism and nutrients further enabling propagation and 

community formation [9, 44].  It has been documented that the Firmicutes phylum has higher 

presence when characterizing particle-phase luminal content, which further suggests the role of 

Ruminococcus spp. in the human diet in the essence that Ruminococcus spp. make nutrients 

available  for other bacteria which make energy sources for human colonocytes. [9, 38, 44, 45].  

In fact, Abell et al. show that Ruminococcus bromii and related phylotypes were increased in 

patients receiving a diet that was high in resistant starches [46]. 

 

Initial Colonization and Structure of the Intestinal Microbiota 

Bacteria and other organisms do not spontaneously appear in the human gastrointestinal 

tract, they must originate externally.  Tlaskalova-Hogenova et al. state, “[s]tarting from the first 

hours after the delivery from the sterile uterine environment…the interaction of the macro-

organism with micro-organisms begins: the main portal of entry of microbes is skin and mucosal 

surfaces of the gastrointestinal, respiratory and urogenital tracts.” [47]  It is known that infants are 
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exposed to bacteria when contacting birth canal and mothers vagina upon delivery which  results 

in an infant exposure mainly to aerobic species [48].  Palmer et al. performed a study aimed at 

determining a healthy microbial community structure in infants.  This study addressed two 

aspects of microbiota interrogation by assessing not only the microbiota of newborns, but also 

determining the difference in analysis through pyro-sequencing and microarray analyses.  To 

address the latter first, they were able to show that both microarray and pyro-sequencing gave 

extremely similar results.  These authors note that of all their obtained samples, two belonging to 

a pair of twins delivered through caesarian-section, had relatively low bacterial counts compared 

to their natural born counterparts (2007).  These findings are in agreement with previous 

publications showing that differing modes of delivery result in altered bacterial communities [49-

51].  The work done by Palmer’s group focused on a long-term investigation, analyzing fecal 

content up to one-year post delivery.  They showed that anaerobic bacteria start to take over 

colonization up through the first year of life, and that at this point the microbiota is strikingly 

different than earlier months of development, and more similar in structure to the general adult 

microbiota.  As was previously stated these studies have illustrated the difference in infant 

microbiota shortly after birth and later on during infancy.  It appears that the “creation” of this 

adult-like community is associated with an infant’s consumption of solid foods [48].  Lastly, 

while it is documented that delivery method, infant feeding type (breast versus formula), and 

antibiotic use during infancy affect the microbial structure; it is agreed that young children 

possess an intestinal microbiota similar to that of adults consisting mainly of anaerobic groups 

(Clostridia, Eubacterium, Proteobacteria, etc.) [48-52]. 

 

Aging and Microbiota Structure 

 The adult microbiota is another topic of interest among researchers.  In comparison 

studies between elderly (>=60yr) and adult (20-50yr) sample groups, there appears to be differing 
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opinions that Bacteroides/Prevotella species decrease in the elderly population, along with 

similar decreases in Bifidobacteria species as well, while other studies report opposite findings.  

It is possible that these contradictions are due to differing experimental methods (use of 

fluorescent in situ hybridization, sequencing, classical microbiological techniques, etc.), as well 

as variation associated with geography, diet, and subjects themselves. [17, 53-57]  For instance 

Claesson et al., report an increase in Bacteroides, along with an observed increase in 

Faecalibacterium in elderly subjects compared to younger subjects (20-25% and 5-8% compared 

to 5-8% and 4-7% respectively).  In comparison, Enk et al. reported differing results claiming a 

decrease in Bacteroides numbers; however this study was done using classical techniques that 

under represent obligate anaerobes and organisms that remain difficult to extract and cultivate.  

While variation does exist between subjects at a genus level, there is evidence to support the 

notion that at higher taxonomic levels there exist more stability [53, 57].  The majority of 

previous reports stop analysis at higher phylogenies, which might be explained by observed 

variation at lower phyolenetic levels or the inability of the techniques utilized to assess these 

lower levels. 

 

External Factors Influencing Intestinal Microbiota Composition 

While the intestinal microbiota has been shown to be stable long term [58], it is widely 

accepted that this community can be influenced to some degree by host genotype, diet, and 

immediate environment.  These studies document the influence of diet, host genome, and 

surrounding environment on the intestinal microbiota. 

 

   Recently, studies assessing the microbiota related to the human genome have focused on 

possible differences in twins, both with respect to inflammatory bowel disease and obesity [59-

62].  These studies found that monozygotic and dizygotic twin pairs shared a microbiome as well 
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as representative metabolic pathways that were in most cases significantly more similar to each 

other than unrelated individuals [59-61].  Turnbaugh et al. even went so far as to show that these 

twins shared greater similarity in their microbiota to their mother than to unrelated individuals 

(2009).  Although results from inflammatory bowel disease reports do not claim any significant 

effect of the host genotype to susceptibility to intestinal disease, there remains a consensus that 

host genotype relates to microbiota [59-62].  Zoetendal et  al., in 2001, examined the intestinal 

microbiota of  monozygotic twins, marital partners, unrelated individuals, and non-human 

primates using denaturing-gradient gel electrophoresis, and noted a positive correlation between 

shared genetic makeup and microbiota.  The authors observed twins had the highest degree of 

similarity in their microbiota composition, and with the exception of a few high similarity 

observations, marital partners and unrelated individuals showed no significant difference in 

degrees of similarity and were significantly lower than twins [63].  The results of all of these 

studies suggest that host genotype plays an important role in microbiota makeup; however, the 

degree of such affect has yet to be determined. 

 

 Another subject of interest is the relationship between diet and intestinal microbiota.  

This subject is an area that has been widely studied, and although there has been no conclusive 

argument that the intestinal microbiota is an effect of a causative diet, there is ample evidence to 

suggest this [9-12, 14, 16-19, 64].  Most of the available literature examines this relationship by 

analyzing the microbiota its relationship to extraction of nutrients from the host diet.  This 

approach has led to the concept that the microbiota is an environmental factor; contributing to 

increased energy harvest from dietary contents [14, 16].  This is further documented by studies 

assessing the effects of transplanting the intestinal microbiota of obese mice into lean recipients 

and assessing dietary harvest.  Turnbaugh et al. showed that the transplantation of obese 

microbiota into lean recipients resulted in an increase in Firmicutes while transplantation of lean 
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microbiota had no such effect [14].  These observations are in agreement with those of Backhed 

et al. who determined that conventionally raised mice (harboring natural microbiota) had an 

increased body mass when compared to germ free counterparts, despite consuming less chow 

[41].  Backhed et al. illustrated a similar effect of transplantation of the microbiota from 

conventionally raised mice to germ free counterparts.  The germ free mice were colonized for 14 

days with “unfractionated microbiota” leading to an increase in body fat content of fifty-seven 

percent, even with a decrease in chow consumption [41].   

 

The fecal content in the distal colon is not uniform [38], and exists as both liquid and 

particle phases.  Recent evidence has shown that each phase of the fecal matter harbors distinct 

communities [38].  Particle phase fecal matter showed increased Firmicutes with lower 

Bacteroidetes while liquid phase fecal matter was associated with a higher percentage of 

Bacteroidetes and lower Firmicutes with respect to control [38].  This was suggested to be the 

result of a resistancedfx. of certain carbohydrates in the diet, requiring action from multiple 

bacterial species for breakdown and utilization.   

 

 Interestingly, studies performed on subjects consuming vegetarian diets showed increased 

Bacteroides and distinct phylotypes (species) associated with such diet versus an omnivorous diet 

including meat [10, 11].  Hehemann et al. 2010 explained the acquisition of a porphyrinase gene 

common to marine Bacteroidetes, observed in the intestinal Bacteroidetes of Japanese subjects.  

The authors proposed that this gene was acquired by the intestinal microbiota as a result of 

repeated consumption of nori seaweed and the need to metabolize the plant wrap common with 

this type of sushi preparation.  The overall suggestion of this evidence is that the microbiota can 

be altered after prolonged exposure to certain diets [11, 17, 64, 65]. 
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Detection of Bacteria in the Intestinal Tract 

Classical techniques for investigating intestinal microbiota in fecal content involve the 

culturing and counting of isolated organisms.  As a result, the initial assessment of the intestinal 

microbiota suggested dominance by species such as Bacteroides, however; these results are 

incomplete and lack accurate representation of fastidious and strict anaerobes [66, 67].  Tissue 

and mucosal biopsies, and sampling of the lumen through colonic lavage and fecal collection 

allow researchers to gain insight into the intestinal environment [68-72].  Advances in technology 

have allowed researchers to bypass the need for cultivating bacterial cells, which is estimated to 

only encompass thirty percent of the total microbiota population, and have created more robust 

techniques [73]. 

 

One avenue that allows investigators to accurately identify the intestinal microbiota is 

through looking at ribosomes.  All living organisms contain ribosomes, as they are essential for 

protein synthesis, and thus organisms can be related based on sequence similarity of ribosomal 

subunits, specifically the small 16S subunit of prokaryotic ribosomes.  This 1.5kb region of the 

bacterial genome is very useful when it comes to determining diversity of the intestinal 

microbiota as it contains both conserved regions as well as species-specific variable regions.  In 

addition to this, two of the conserved regions on the 16S ribosomal DNA happen to lie near the 

ends of the sequence, therefore researchers are accurately able to amplify the entire 16S sequence 

and then do more specific interrogation into specific variable regions for bacteria of interest [74-

78]. 
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New techniques including denaturant-gradient gel electrophoresis, 16S high-throughput 

sequencing, are able to determine presence of dominant species as well as detect novel species, 

yet lack the quantitative ability of quantitative-PCR, dot-blot hybridization, and fluorescent in-

situ hybridization.  The limitations of these latter technologies include the difficulty of applying 

them to large populations [74].  The outcome of studies using such advanced technology have 

provided a modern image of the intestinal microbiota, showing a predicted greater presence of 

obligate anaerobes, permitting metabolomic studies and investigations into the relationship of 

these newly detected organisms to human health and disease [11, 17, 64, 69, 70, 75, 77, 78]. 

 

 The development of microarray technology has been extremely beneficial in the pursuit 

of establishing a complete picture of the intestinal microbiota.  Microarrays are capable of 

detecting thousands of species and, encompassing large populations; they have also been shown 

to be accurate and reliable [74, 75, 79].  Currently, there are a few different microarray platforms, 

one of the more well known is the Human Intestinal Tract chip (HITchip), which was recently 

applied to young and elderly adults and shown to be more reliable than DGGE fingerprinting, 

further solidifying the microarray as a superior technique [79].  Recently Paliy et al. designed a 

custom Microbiota Array to be used in the analysis of human fecal content.  The Microbiota 

Array was shown to detect accurately fifteen bacterial species tested; both when hybridized 

individually to the array and in mixed communities.  The authors also showed the ability of the 

Microbiota Array to distinguish and accurately detect bacterial species when human DNA was 

mixed with mixed bacterial samples.  They also demonstrate the sensitivity of the Microbiota 

Array by running 16S specific PCR up to thirty-cycles which permitted the detection limit of the 

Microbiota Array to drop from 4ng of bacterial genomic DNA to merely 10pg [75].  The Paliy lab 

also recently published a report addressing the optimization of the microarray process.  One 

aspect of this report was the adjustments for both potential cross-hybridization and 16S gene copy 
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numbers possessed by different bacteria [80].  The outcome of such adjustments resulted in 

decreased abundance of highly abundant bacteria and increased abundance of lower abundant 

bacteria.  This suggests that previous reports may have inadvertently over- or under represented 

certain bacterial groups.  Overall, the development and validation of microarrays has enabled 

researchers to get a significantly better quantitative understanding of microbiota populations. 

 

Thesis Overview 

 The following work describes the use of a Microbiota Array to accurately assess and 

determine the structure of the intestinal microbiota.  Fecal samples were obtained from healthy 

adult volunteers.  Bacterial genomic DNA was extracted and subjected to 16S PCR, followed by 

DNA fragmentation, end labeling with biotin, and hybridization onto the microarray.  

Microarrays were washed and stained according to Affymetrix protocol and scanned to measure 

fluorescence intensity, determining presences/absence calls and signal values.  Presence and 

absence calls, along with probeset signal values were imported into a MICROSOFT EXCEL 

template created by Dr. Oleg Paliy; this template aided in determination of intestinal microbiota 

numbers.  The results of this work provide quantitative information into the makeup of the human 

distal-gut microbiota, are a useful complement to other microarray studies, and can be combined 

with metabolomic, co-morbidity, proteomics, and other such investigations to continue and 

understand the significance of the intestinal microbiota in human health and disease.  
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2. Materials and Methods 

Sample Collection 

Fecal samples were obtained from 10 healthy adult volunteers with ages ranging from 22-

61 yrs.  Volunteers were asked to defecate into sterile sample collection containers; samples were 

frozen immediately after collection at -80°C.  Aliquots of frozen stool material were taken for 

processing and microarray interrogation (samples were kept on dry ice to increase thawing time 

and keep DNA integrity intact).  Table 2.1 indicates age and gender of each volunteer, except 

when information was not given (N/G). 

Table 2.1Volunteer Age and Gender Assignment 

Sample Age Gender 

aHLT01 25 F 

aHLT02 22 F 

aHLT03 35 M 

aHLT04 61 M 

aHLT05 36 M 

aHLT06 44 F 

aHLT07 23 M 

aHLT08 N/G N/G 

aHLT09 N/G N/G 

aHLT10 28 F 

 

DNA Extraction 

Total genomic DNA (gDNA) was extracted with the ZR Fecal DNA Kit (Zymo Research 

Corp), using the supplied directions: 

a) 150 mg of fecal matter was added to a ZR Bashing Bead Lysis Tube followed by 750 μL 

of lysis buffer.   
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b) ZR Bashing Bead Lysis Tube was placed in a Disruptor Genie® and processed for 5 

minutes.   

c) Tube was centrifuged at approx. 10,000 g for 1 minute, followed by a transfer of 400 μL 

of supernatant to a Zymo-Spin IV Spin Filter (inside collection tube) and centrifuged at 

7,000 g for 1 minute.   

d) 1,200 μL of Fecal DNA Binding Buffer was added to the filtrate and 800 μL of this 

mixture was transferred to a Zymo-Spin IIC Column (inside collection tube) and 

centrifuged at 10,000 g for 1 minute.   

e) Flow-through was discarded and the previous step repeated; due to a 800 μL limit in the 

Zymo-Spin IIC Column this process must be repeated multiple times.   

f) 200 μL of Fecal DNA Pre-Wash Buffer was added to the Zymo-Spin IIC Column and 

centrifuged at 10,000 g for 1 minute. 

g) 500 μL of Fecal DNA Wash Buffer was added to the Zymo-Spin IIC Column and 

centrifuged again at 10,000 g for 1 minute.   

h) Total genomic DNA was eluted with 100 μL of water, after transferring the Zymo-Spin 

IIC Column to a clean micro-tube and adding water directly to column matrix; the micro-

tube was then centrifuged at 10,000 g for 30 seconds.   

i) Eluted DNA was passed through the Zymo-Spin IV-HRC Spin Filter, placed in a clean 

micro-tube; and spun down at 8,000 g for 1 minute. 

Once gDNA was eluted, yield and quality (determined by A260/A280 ratio) were assessed by 

Nanodrop 1000.  Extracted gDNA was used as starting material for all replicates of downstream 

processing. 

 

 

 



 

 

18 

 

Bacterial 16S rDNA amplification and purification 

Total gDNA, which contains eukaryotic, prokaryotic, and viral DNA was subjected to 

selective amplification of the 16S rRNA gene through 16S rDNA-specific PCR amplification.  

Amp_27F-(AGRGTTYGATYMTGGCTCAG) and Amp_1492R-(GYTACCTTGTTACGACTT) 

primers, designed to conserved regions of the 16S ribosomal DNA sequence [75], were used to 

specifically amplify the bacterial 16S rRNA gene.  The PCR reaction was carried out in a 50 μL 

volume with 1 μL (10 pmoles) of each primer, 25 μL of Taq 2X Master Mix (New England 

Biolabs) which incorporates 0.2mM of each dNTP (deoxy-nucleotide triphosphate) and 25U/ml 

of the Taq DNA polymerase, 250 ng of total gDNA starting template (percentage 16S-0.0025% 

of genome), and water.  Each sample was subjected to 4 PCR reactions, carried out in the MJ 

Thermocycler.  Each reaction consisted of 25 cycles of amplification; each cycle was run at 95°C 

for 30 s - 55°C for 30 s - 72°C for 90 s.  To decrease PCR bias, all 4 reactions were pooled 

together. 

Table 2.2 PCR Reaction Mix 

PCR 

Reaction Amount 

H2O up to 50  μL 

27F_V4 1  μL 

 1492_R 1  μL 

gDNA 250 ng 

Taq 2X 25  μL 

Total 50  μL 

 

The amplified DNA product was subjected to purification using the Qiaquick PCR 

Purification kit (Qiagen) based on the following protocol: 

a) Five volumes of PB Buffer was added to one volume of the PCR reaction, transferred to a 

PCR purification column and centrifuged at 17,900 g for 1 minute.   

b) The flow-through was discarded and 750 μL of Buffer PE added to the column, placed 

back in the collection tube, and centrifuged for 1 minute at 17,900 g.   
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c) Flow-through was discarded, and the column spun down again to ensure removal of 

buffer. 

d) The spin column was transferred to a new collection tube and 30 μL of RNase free water, 

heated to 50C, was added to the center of the column and let to sit for 2 minutes (the 

supplied protocol instructed using room temperature water and sitting for 1 minute, this 

led to poor yield, therefore the protocol was changed with the addition of warmer water 

and a longer sit time). 

e) The column was centrifuged at 13,000 g for 1 minute to elute PCR amplified DNA. 

The 16S amplification and purification was verified on a 1% agarose gel run at 75 V for 1 

hour.  1 μL of amplified DNA was combined with 2 μL gel loading dye (6X) and 9 μL water, 

then loaded onto the gel.  Positive verification of correct 16S amplification was seen with a single 

band at approximately 1.5kb when compared with a 2-log Ladder (NEB).   

 

16S Fragmentation 

In order to interrogate the 16S rDNA with the microarray, the amplified 16S rDNA was 

fragmented using Dnase I (NEB) and verified on a 10% poly-acrylamide gel.  The fragmentation 

reaction consisted of 1800 ng of 16S rDNA amplified pool, 4 μL Dnase buffer, Dnase I (0.04 

U/μg), and water to a final volume of 40 μL.  The reaction was run in a MJ Thermocycler at 37°C 

for 10 min followed by 98°C for 10 min to deactivate the enzyme.  300 ng of fragmented 16S 

rDNA was removed from each reaction mix and combined with gel loading dye and water to a 

final volume of 6 μL, which was then added to the gel and run at 75 V for 90 minutes.  A 50 bp 

dsDNA ladder was used to determine whether DNA fragments were within the desire 100-300 bp 

size. 
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Figure 2.1 Fragmentation PAGE Gel 

 

 

Microbiota Array 

 The Microbiota Array is a custom designed phylogenetic array, based off the Affymetrix 

GeneChip design.  Microbiota Array contains probes to 775 phylo-species inhabiting the distal 

gut.  Probes contain 25 nucleotides and are grouped in probesets, ranging from 5-11 probes per 

set (84% of probesets contain 11 probes).  Probe sets incorporate Perfect Match and Mismatch 

probes. 

 

DNA Labeling and Hybridization 

Fragmented DNA was end-labeled with biotin and then loaded onto the Microbiota 

Array.  The labeling reaction combined Terminal Deoxynucleotidyl Transferase (TdT), along 

with buffer; Gene Label Reagent, fragmented DNA, and CoCl2.  This reaction mix was incubated 
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in the MJ-Thermocycler at 37°C for 1 hour and then stopped by the addition of 2 μL of 0.5M 

EDTA.  

Table 2.3 Labeling Reaction Mix 

Labeling Reaction Amount 

10x TDT Buffer 5  μL 

CoCl 5  μL 

TDT (Transferase) 2  μL 

Fragmented DNA 1500 ng 

Gene Label Reagent 2  μL 

H2O up to 50  μL 

Total Volume 50  μL 

 

After labeling was completed, the DNA cocktail was ready to be added to the microarray for 

hybridization.  Affymetrix protocol combines fragmented/labeled DNA, hybridization buffer 

(2X), Control oligo B2, DMSO, Herring sperm DNA (10mg/ μL), and BSA (50mg/ μL). 

Table 2.4 Hybridization Reaction Mix 

Hybridization Mix Amount 

Frag.;Labeled cDNA 1500 ng 

2X Hybridisation Buffer up to 65 μL 

Control Oligo B2 2.2  μL 

100% DMSO 10.2  μL 

10 mg/ml Herring Sperm 

DNA 1.3  μL 

50 mg/ml BSA 1.3  μL 

Total Volume 130  μL 

 

  Once the hybridization cocktail components were combined, the mixture was added to the 

microarray and then placed into the hybridization oven for 16 hours at 45°C and 60 rpms. 

 

Washing, Staining, and Scanning of Microarray 

Upon completion of hybridization the microarray was removed from the oven, then 

washed and stained in an Affymetrix Fluidics 450 station.  Stains, along with Non-Stringent 
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Wash Buffer A and Stringent Wash Buffer B were prepared in accordance with Affymetrix 

recipes.  The microarray was removed from the hybridization oven after 16 hours; the 

hybridization mix was removed and frozen at -20°C, replaced with 160 μL of Non-Stringent 

Wash Buffer A, and loaded into the Fluidics 450 along with stains.  Once loaded, the array was 

washed and stained using the “Midi-euk_2v3_450” protocol.  Upon completion of staining, the 

microarray was transferred to the Affymetrix GeneChip Scanner where it was scanned, 

fluorescence measured and recorded. 

Table 2.5 Stains for Microarray 

Streptavidin Vial 1 Amount 

2x Stain Buffer 300  μL 

50 mg/ml BSA 24  μL 

1 mg/ml Streptavidin 6  μL 

H2O 270  μL 

Total Volume 600  μL 

   

Antibody Soln. Vial 2 Amount 

2x MES Stain Buffer 300  μL 

50 mg/ml BSA 24  μL 

10 mg/ml Goat IgG 6  μL 

0.5 mg/ml Anti-strep 6  μL 

H2O 264  μL 

Total Volume 600  μL 

   

SAPE Soln. Vial 3 Amount 

2x MES Stain Buffer 300  μL 

50 mg/ml BSA 24  μL 

1 mg/ml SAPE 6  μL 

H2O 270  μL 

Total Volume 600  μL 

 

Normalization and Analysis of Microarray Data 

Microarray data were normalized using the CARMAweb server 

(https://carmaweb.genome.tugraz.at/carma) [81].  Normalization of the data was carried out using 
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Mas5 algorithm for background correction, VSN for normalization, Mas5 for PM correction, and 

Median Polish for expression. 

 

After the normalization was completed, these values, along with presence and absence 

calls (calculated by GCOS software) were inserted into a MICROSOFT EXCEL template 

provided by Dr. Paliy; this template allowed for calculation of abundances for bacterial groups at 

multiple phylogenetic levels.   Microarray replicates showed good concordance with one another, 

as viewed through correlation of probe signal values between replicates (0.89-0.94, ave. 0.92). 

 

To assess core microbiome, presence and absence calls were converted to binary (1/0) 

form and loaded into Matlab.  It was here that data was subjected to rarefaction, which determines 

how well populations are sampled and can be used to determine how many species are shared 

between samples.  This is accomplished by doing comparisons of all possible sample 

combinations and assessing what is shared among all samples over each comparison. 

 

Phylogenetic Tree Construction 

 Phylogenetic tree was created using BOSQUE [82].    Sequences of the 775 phylo-

species on Microbiota Array were imported into BOSQUE and aligned using MUSCLE 

algorithm.  Following alignment, Phylip method was applied for tree construction.  
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3. RESULTS 

Intestinal Microbiota at the Phylum Level 

 This study was carried out to determine the intestinal composition of the microbiota of 

healthy adult individuals through the use of a custom designed Microbiota Array.  Fecal samples 

were collected from 10 healthy adult volunteers.  Adults ranged in age from 22 to 61 years of age, 

had not taken antibiotics within 3 months prior to donating samples, and were all in general good 

health.  Samples were frozen upon collection to maintain DNA integrity. 

 

Bacterial genomic DNA was extracted from fecal matter and subsequently processed for 

interrogation by a previously designed Microbiota Array.  After washing and staining, the array 

was scanned, the output signals were normalized in CARMAweb and then imported into an 

EXCEL template to aid in analysis of microarray data. 

 

 Adjusted microarray results showed that the intestinal microbiota is dominated 

by the phyla Firmicutes, Actinobacteria, Bacteroidetes, and Proteobacteria at 80%, 7%, 9% and 

3% abundance, respectively (Table 3.1).  Seven out of ten phyla were present to some extent 

(Table 3.2).  As average relative abundance decreased it was observed that variation among 

samples increased.  This observed pattern in the variation of phyla among samples suggests that 

bacteria which are essential for proper gut health are present at similar levels in all people, 

whereas those bacteria which vary significantly can be thought of as disposable.  Overall, certain 

phyla were more different in abundance across samples.  This varying abundance pattern suggests 

that those phyla with higher variation are not as important with respect to intestinal homeostasis.  

An example of this, seen in Table 3.2, is Actinobacteria with abundances ranging from 0.9% to 

15.9%. 
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TABLE 3.1 Overview of Phylum Level Abundances 
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Proteobacteria 2.7% 2.25% 83.8% 

Firmicutes 79.8% 7.38% 9.2% 

Actinobacteria 7.2% 5.41% 75.2% 

Spirochaetes 0.1% 0.08% 108.3% 

Bacteroidetes 8.8% 2.97% 33.7% 

Verrucomicrobia 1.0% 0.83% 84.6% 

Lentisphaerae 0.4% 0.93% 251.2% 

Table 1 shows the average relative abundance of intestinal bacterial phyla among ten healthy 

adult volunteers, along with standard deviation.  There is a pattern of increasing standard 

deviation with respect to the abundance of each phylum.  Coefficient of variation was calculated 

to determine the extent of variation among samples. 

 

 

 

TABLE 3.2  Abundances of Phyla among Individual Samples 
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Proteobacteria 1.9% 4.7% 0.4% 0.5% 5.2% 3.6% 0.4% 6.7% 1.2% 2.2% 

Firmicutes 82.9% 65.6% 90.4% 86.8% 78.5% 72.3% 84.8% 75.7% 77.7% 83.3% 

Actinobacteria 4.3% 14.9% 1.1% 0.9% 1.9% 15.9% 9.8% 5.7% 9.5% 8.1% 

Spirochaetes 0.3% 0.1% 0.0% 0.0% 0.1% 0.0% 0.1% 0.1% 0.1% 0.0% 

Bacteroidetes 7.8% 12.7% 7.3% 10.5% 13.4% 5.8% 4.7% 8.8% 11.0% 6.2% 

Verrucomicrobia 2.8% 1.5% 0.7% 1.2% 1.0% 1.6% 0.3% 0.0% 0.5% 0.2% 

Lentisphaerae 0.0% 0.6% 0.0% 0.0% 0.0% 0.1% 0.0% 3.0% 0.0% 0.0% 

Table 2 illustrates relative abundances of seven phyla of human intestinal microbiota.  Firmicutes 

was most abundant, followed by Bacteroidetes.  Certain phyla showed more variation among 

samples than other, which suggests varied levels of importance among observed phyla.  One case 

is Actinobacteria which had a large range of abundance (min-0.9%, max-15.9%). 

 

 

 

 

 

 
 



 

 

26 

 

Class Level Microbiota Structure 

 Class level results illustrated that Clostridia, a dominant member of the Firmicutes 

phylum, was most abundant at 74.0% with Bacteroidetes following at 8.8% (Table 3.3).  

Actinobacteria and Bacilli were the next most abundant classes at 7.2% and 3.7% respectively; 

however the ratio of standard deviation-to-abundance suggests that the variability among each 

sample is high and thus might point out potential outliers.  Figure 3.1 shows microbiota 

encompassing 10 adult samples.  Species that were present in at least 1 of the samples were 

included in the tree.  The tree was created using the Bosque software [82], employing the Phylip 

(F84) distance method for construction.   While most of the species contained in the tree belong 

to Clostridia, and the distribution of groups within the tree matches the numerical abundance 

data; there were some species that grouped closely together, despite being from different classes 

according to our classification (indicated by asterisk).  The RDP IDs were taken and put into 

RDPs browser function, and came back as “unclassified_Firmicutes” indicating that recent 

updates to the RDP database have altered the classification of these entries. 

Table 3.3 Average Abundance of Classes Comprising the Intestinal Microbiota 
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Alphaproteobacteria Proteobacteria 0.2% 0.8% 316.2% 

Betaproteobacteria Proteobacteria 1.4% 1.4% 102.1% 

Gammaproteobacteria Proteobacteria 0.4% 0.4% 108.0% 

Deltaproteobacteria Proteobacteria 0.7% 0.7% 95.0% 

Epsilonproteobacteria Proteobacteria <0.1% <0.1% 255.4% 

Clostridia Firmicutes 74.0% 5.6% 7.6% 

Mollicutes Firmicutes 2.0% 2.4% 118.8% 

Bacilli Firmicutes 3.7% 2.3% 61.4% 

Actinobacteria Actinobacteria 7.2% 5.4% 75.2% 

Spirochaetes Spirochaetes 0.1% 0.1% 108.3% 

Bacteroidetes Bacteroidetes 8.8% 3.0% 33.7% 

Verrucomicrobiae Verrucomicrobia 1.0% 0.8% 84.6% 

Lentisphaerae Lentisphaerae 0.4% 0.9% 251.2% 
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Table 3 depicts class level relative average abundance, standard deviation, and variation.  As seen 

with the phylum level, there exists an increase in standard deviation related to decreased 

abundance.  Clostridia was dominant at more than eight-times the abundance of any other class.  

Variation again, increases as abundance decreases, this highlights classes which are present in 

only a few samples overall; leading to such higher variation. 

 

Figure 3.1 Class Makeup 

  
Figure 3.1 is a Cladogram illustrating class-level makeup of intestinal microbiota.    Polygon size 

is relative to the number of phylo-species present, exceptions to this are classes where the number 

of present phylo-species was less than the smallest default polygon size.  Species that are not part 

of a polygon are either the only representative of their class, or have recently been reclassified as 

“unclassified_Firmicutes” (asterisk) or Eubacterium (yellow triangle). 

 

Beyond the four most abundant classes, the standard deviation was seen to be almost as high as 

the average observed abundance, if not higher.  This pattern in the standard deviation, coupled 

with the variation, suggested that specific samples harbored large abundances of bacteria 
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compared to the same group in other samples.  Upon looking at each individual sample, specific 

differences accounted for the variation (Table 3.4, Figure 3.2), however Alphaproteobacteria and 

Epsilonproteobacteria were represented in only one sample each (aHLT08 and aHLT09 

respectively).  This unique presence of these two classes is not enough to treat the samples as 

uniquely different but may potentially suggest a sort of microbial “fingerprint” when combined 

with other differences in the observed population structure.  For instance, the presence of   

Alphaproteobacteria in aHLT08 at 2.4% compared to an absence in all other samples could be 

indicative of diet or even age (note: age for this individual not given). 

Table 3.4 Abundances of Classes of the Intestinal Microbiota across Healthy Adults 
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Alphaproteobacteria 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 2.4% 0.0% 0.0% 

Betaproteobacteria 0.1% 2.7% 0.0% 0.5% 2.9% 2.7% 0.3% 3.5% 0.8% 0.2% 

Gammaproteobacteria 0.0% 1.0% 0.3% 0.0% 1.0% 0.1% 0.1% 0.1% 0.4% 0.4% 

Deltaproteobacteria 1.8% 0.9% 0.1% 0.0% 1.3% 0.8% 0.0% 0.8% 0.0% 1.6% 

Epsilonproteobacteria 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 

Clostridia 76.8% 62.7% 80.0% 79.2% 68.3% 70.0% 79.7% 72.7% 75.1% 75.8% 

Mollicutes 1.7% 0.8% 6.0% 6.9% 2.3% 0.6% 0.4% 0.6% 0.4% 0.7% 

Bacilli 4.4% 2.1% 4.4% 0.8% 7.9% 1.8% 4.7% 2.4% 2.2% 6.8% 

Actinobacteria 4.3% 14.9% 1.1% 0.9% 1.9% 15.9% 9.8% 5.7% 9.5% 8.1% 

Spirochaetes 0.3% 0.1% 0.0% 0.0% 0.1% 0.0% 0.1% 0.1% 0.1% 0.0% 

Bacteroidetes 7.8% 12.7% 7.3% 10.5% 13.4% 5.8% 4.7% 8.8% 11.0% 6.2% 

Verrucomicrobiae 2.8% 1.5% 0.7% 1.2% 1.0% 1.6% 0.3% <0.1% 0.5% 0.2% 

Lentisphaerae 0.0% 0.6% 0.0% 0.0% 0.0% 0.1% 0.0% 3.0% 0.0% 0.0% 

Table 3.4 represents individual abundances of Classes interrogated by the Microbiota Array.  Of 

particular note was Actinobacteria with a range of 15% across all samples, (lowest-0.9%, highest-

15.9%), interesting given the average for this class was approximately half the largest value. 
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Figure 3.2 Distribution of Classes of Intestinal Microbiota in Healthy Adults 

 

 
Figure 3.2 illustrates distribution of Classes across adult samples.  Values were plotted on a log 

base 10 scale and represent Class abundances over 10 healthy adults.  Black bars indicate average 

relative abundance for each class as shown in Table 3.    

 

Overall, class level microbial structure is dominated by three classes, Clostridia, Bacteroidetes, 

and Actinobacteria, which account for 90% of the intestinal microbiota.  Abundance is based 

upon presence of phylo-species; therefore, we assessed phylo-species detection for each class, 

with the purpose of determining any relationship between abundance of classes and those phylo-

species that were detected for each class.  Table 3.5 shows the average counts of detected phylo-

species in decreasing order of present phylo-species. 
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Table 3.5 Phylo-species Numbers of Classes of the Intestinal Microbiota 

Class 
Corresponding 

Phylum 
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Alphaproteobacteria Proteobacteria 0.1 0.3 316.2% 

Betaproteobacteria Proteobacteria 2.3 1.3 58.2% 

Gammaproteobacteria Proteobacteria 2.9 1.0 34.3% 

Deltaproteobacteria Proteobacteria 1.0 0.9 94.3% 

Epsilonproteobacteria Proteobacteria 0.2 0.4 210.8% 

Clostridia Firmicutes 266.3 20.0 7.5% 

Mollicutes Firmicutes 4.8 1.7 35.1% 

Bacilli Firmicutes 9.7 2.5 25.3% 

Actinobacteria Actinobacteria 10.9 4.5 41.4% 

Spirochaetes Spirochaetes 0.7 0.5 69.0% 

Bacteroidetes Bacteroidetes 29.6 10.6 35.8% 

Verrucomicrobiae Verrucomicrobia 0.9 0.3 35.1% 

Lentisphaerae Lentisphaerae 0.4 0.5 129.1% 

Table 3.5 indicates average number of probesets detected.  This is relative to the number of 

phylo-species for each class. 

 

The difference in pattern of detected phylo-species within each class compared to the 

decreasing abundance as seen in Table 3.3 suggests a potential for alternate assessment of 

microbiota as it relates to diet.  In contrast with class level abundance the decreasing order of the 

number of detected phylo-species differed, mainly among proteobacteria members (Table 3.2 

versus Table 3.3).  The difference between detected phylo-species and abundance level among 

each class may suggest differences in the importance of certain phylogenetic groups.  In other 

words, different people may harbor similar groups of bacteria, but subtle life differences could 

lead to different sizes of each bacterial group.  This may also be explained by determining the 

present-phylo species per sample, as is shown in Figure 3.3  Variation among detected probesets 

was, at most, in agreement with variation in abundance values, in many cases the variation 

between probesets was much less (Table 3.2 versus Table 3.3).  
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Figure 3.3 Numbers of Phylo-species within Classes 

 

Figure 3.3 shows detected probesets for each Class across individuals.  Values are plotted on a 

log base 2 scale.   

 

Families of the Intestinal Microbiota 

 While previous studies have dealt with class level microbiota structure, this does not give 

sufficient evidence of specificity in the intestinal microbial community.  The Microbiota Array 

allowed us to take a look into family groups.  Results showed that out of forty-seven possible 

familial groups interrogated, twenty-seven were detected in at least one sample, with the 

remaining twenty not being detected at all (Table 3.6).  Of those families that were found present, 

Lachnospiraceae, Clostridiaceae, and Acidaminococcaceae made up roughly 69% of total signal 

(36%, 24%, and 8% respectively); of note since these three families all belong to the class 

Clostridia.  Durban et al. ([83]) report similar results with Ruminococcaceae as most abundant in 

fecal samples, followed by Lachnospiraceae and Bacteroidaceae. 
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Table 3.6 Average Relative Abundances of Family Groups  

Family Corresponding Class 
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Rhodobacteraceae Alphaproteobacteria - - - 

Sphingomonadaceae Alphaproteobacteria - - - 

Phyllobacteriaceae Alphaproteobacteria - - - 

Bradyrhizobiaceae Alphaproteobacteria - - - 

Methylobacteriaceae Alphaproteobacteria - - - 

Methylocystaceae Alphaproteobacteria - - - 

Rhodobiaceae Alphaproteobacteria 0.2% 0.8% 315.4% 

Burkholderiaceae Betaproteobacteria 0.2% 0.2% 109.2% 

Oxalobacteraceae Betaproteobacteria - 0.1% 301.0% 

Alcaligenaceae Betaproteobacteria 1.1% 1.4% 125.6% 

Neisseriaceae Betaproteobacteria - - - 

Xanthomonadaceae Gammaproteobacteria - - - 

Moraxellaceae Gammaproteobacteria - - - 

Succinivibrionaceae Gammaproteobacteria - - - 

Enterobacteriaceae Gammaproteobacteria 0.1% 0.2% 163.9% 

Pasteurellaceae Gammaproteobacteria 0.2% 0.3% 142.1% 

Desulfovibrionaceae Deltaproteobacteria 0.7% 0.7% 95.3% 

Campylobacteraceae Epsilonproteobacteria - 0.0% 220.2% 

Helicobacteraceae Epsilonproteobacteria - - - 

Clostridiaceae Clostridia 24.2% 2.3% 9.4% 

Lachnospiraceae Clostridia 36.1% 4.3% 11.8% 

Peptostreptococcaceae Clostridia - - - 

Eubacteriaceae Clostridia 4.9% 1.0% 20.2% 

Peptococcaceae Clostridia 0.6% 0.8% 130.8% 

Acidaminococcaceae Clostridia 8.2% 1.9% 22.9% 

Thermoanaerobacteriaceae Clostridia 0.1% 0.1% 136.7% 

Erysipelotrichaceae Mollicutes 2.0% 2.4% 118.8% 

Staphylococcaceae Bacilli - - - 

Turicibacteraceae Bacilli 0.2% 0.2% 113.7% 

Lactobacillaceae Bacilli 0.1% 0.2% 268.6% 

Enterococcaceae Bacilli 0.1% 0.2% 213.4% 

Streptococcaceae Bacilli 2.8% 1.8% 66.4% 

Firmicutes - IS9 Bacilli 0.6% 0.7% 111.2% 

Coriobacteriaceae Actinobacteria 1.6% 0.7% 43.9% 

Actinomycetaceae Actinobacteria - 0.0% 91.7% 
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Micrococcaceae Actinobacteria - - - 

Dermabacteraceae Actinobacteria - - - 

Corynebacteriaceae Actinobacteria - - - 

Bifidobacteriaceae Actinobacteria 5.5% 4.8% 87.0% 

Serpulinaceae Spirochaetes 0.1% 0.1% 106.7% 

Leptospiraceae Spirochaetes - - - 

Bacteroidaceae Bacteroidetes 5.9% 1.9% 32.0% 

Rikenellaceae Bacteroidetes 1.5% 0.9% 59.7% 

Porphyromonadaceae Bacteroidetes 0.4% 0.7% 168.0% 

Prevotellaceae Bacteroidetes 1.1% 2.0% 184.0% 

Verrucomicrobiaceae Verrucomicrobiae 1.0% 0.8% 84.1% 

Victivallaceae Lentisphaerae 0.4% 0.9% 250.6% 

Table 6 depicts families interrogated by the Microbiota Array.  Groups not detected are 

represented with “-“. 

 

     The difference between Durban et al.’s findings and those here could be due to differing 

techniques (they applied cloning and sequencing), classification version (results here are based 

off of RDP version 4, although RDP database is updated frequently) or study design, as Durban’s 

group did not appear to exclude subjects recently on antibiotics or who had a BMI that would 

indicate the subject was overweight.   Of those families present it is interesting to note that 

multiple members of the class Clostridia are present at higher abundances, while only one 

member of Bacteroidetes and Actinobacteria are present.   This pattern of abundance suggests 

that while some larger taxa may represent greater proportions, they may not be an essential factor 

in maintaining homeostasis in the intestinal tract.  This shows that analysis of lower taxonomical 

levels will reveal more detail and allow for a better understanding of the intestinal microbiota.  

 

Microbiota Constituents - Genus Contribution 

 The Microbiota Array interrogates for 115 bacterial genera, 22 of which had abundances 

equal or greater to 1%.  The major contributors were Ruminococcus at 21%, followed by 

Faecalibacterium at 9% (Table 3.7).  This large difference between Ruminococcus and the other 
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present genera is of particular note as it gives evidence of this particular genus’ role in 

metabolism, as a primary degrader. 

Table 3.7 Average Relative Abundance of Intestinal Genera 

Genus 
Corresponding 

Class 
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Sutterella Betaproteobacteria 1.1% 1.4% 125.5% 

Clostridium Clostridia 1.9% 0.9% 47.0% 

Acetivibrio Clostridia 2.7% 1.2% 44.9% 

Anaerotruncus Clostridia 3.2% 1.5% 47.3% 

Dorea Clostridia 2.2% 0.8% 35.7% 

Faecalibacterium Clostridia 8.7% 2.3% 26.6% 

Subdoligranulum Clostridia 2.5% 0.8% 33.6% 

Lachnospira Clostridia 4.2% 1.2% 29.5% 

Anaerostipes Clostridia 2.1% 0.4% 18.6% 

Coprococcus Clostridia 1.8% 1.2% 68.0% 

Roseburia Clostridia 6.1% 1.5% 24.2% 

Ruminococcus Clostridia 21.1% 2.8% 13.3% 

Eubacterium Clostridia 4.2% 0.9% 22.6% 

Papillibacter Clostridia 6.8% 1.8% 26.5% 

Holdemania Mollicutes 1.8% 2.3% 130.8% 

Streptococcus Bacilli 2.3% 1.4% 62.2% 

Collinsella Actinobacteria 1.1% 0.7% 65.8% 

Bifidobacterium Actinobacteria 5.5% 4.8% 86.9% 

Bacteroides Bacteroidetes 5.5% 1.6% 29.7% 

Alistipes Bacteroidetes 1.4% 0.9% 62.5% 

Prevotella Bacteroidetes 1.1% 2.0% 184.1% 

Verrucomicrobium Verrucomicrobiae 1.0% 0.8% 84.6% 

Table 3.7 shows genera present at 1.0% or more.  Standard Deviation and Coefficient of 

Variation were calculated to illustrate commonality of each genus among samples, as well as 

highlight potential differences which may give weight to the presence of specific genera. 

 

   The order of presence is of note for another reason, being that while there has been work 

done with Ruminococcus, Faecalibacterium, Bifidobacterium, and Roseburia with respect to 

nutrient requirements, there still remains some gaps in the knowledge surrounding the intricacies 

of Papillibacter.  While work has been performed on lower-level taxonomical groups, much of 
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these studies have been focused on higher groups, possibly due to the stability seen with higher 

taxonomies.  The fact that Papillibacter is among the more abundant members in the intestinal 

environment, suggests that its role in aiding and coordinating metabolic function in the intestine 

warrants future study.  

Figure 3.4 Variation of Intestinal Genera Among Healthy Adults 

 
Figure 3.4 shows relative abundances and of genera for each sample along with average relative 

abundance of each genus. 

 

Because microorganisms are essential for proper intestinal health, it becomes a curious 

issue to address individual uniqueness at these lower taxonomical levels.  Faecalibacterium, 

Papillibacter, and Roseburia all had similar variation as calculated through coefficient of 

variation (26%, 26%, and 24% respectively), and abundances between samples show that there 

are few outliers (defined by samples with abundance values two or more standard deviations from 

the mean) (Table 3.8).  This illustrates that these genera belong to a functionally important group 

with respect to intestinal homeostasis.  Figure 3.4 shows how extensive the variation was for each 
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of the top 22 genera.  From this image it can be inferred that some genera, carrying less variation 

across samples, possess necessary (and potentially unknown) functions.  The variation observed 

in Faecalibacterium may be an indicator of patient diet as this organism is known to be 

associated with dietary fiber and particle-phase fecal content [38]. 

 

Table 3.8 Relative Abundance of Intestinal Genera Across Adult Samples 
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Sutterella 0.0% 2.7% 0.0% 0.3% 2.4% 2.4% 3.4% 0.0% 0.0% 0.0% 

Clostridium 1.1% 3.0% 3.4% 1.3% 0.9% 2.3% 1.2% 1.9% 2.4% 1.2% 

Acetivibrio 1.7% 1.6% 2.5% 5.2% 1.6% 2.6% 4.3% 2.6% 2.6% 1.9% 

Anaerotruncus 4.8% 2.5% 2.7% 6.7% 3.5% 2.3% 3.6% 1.9% 2.8% 1.6% 

Dorea 2.0% 2.4% 2.6% 0.6% 1.8% 1.6% 1.8% 2.7% 3.3% 3.0% 

Faecalibacterium 9.0% 8.9% 6.2% 3.8% 8.1% 9.6% 9.0% 9.9% 12.0% 10.6% 

Subdoligranulum 1.7% 0.7% 2.3% 3.4% 2.4% 2.8% 2.1% 3.1% 3.1% 3.1% 

Lachnospira 4.3% 2.8% 7.4% 3.3% 4.2% 4.4% 4.0% 4.0% 3.3% 4.3% 

Anaerostipes 1.6% 1.9% 2.8% 2.5% 1.9% 2.2% 1.8% 2.5% 1.9% 1.8% 

Coprococcus 1.2% 0.0% 2.3% 0.4% 1.4% 2.4% 4.4% 1.5% 2.6% 2.0% 

Roseburia 7.7% 3.6% 7.4% 4.7% 8.1% 5.0% 6.6% 6.7% 5.8% 5.1% 

Ruminococcus 22.8% 18.8% 23.2% 22.1% 20.4% 15.8% 17.9% 22.1% 24.0% 24.2% 

Eubacterium 4.1% 4.6% 4.6% 4.4% 3.6% 2.2% 3.4% 4.9% 5.6% 4.3% 

Papillibacter 7.2% 5.3% 4.9% 10.2% 5.7% 9.3% 6.7% 7.3% 5.0% 6.1% 

Holdemania 1.5% 0.5% 5.7% 6.4% 2.1% 0.3% 0.4% 0.2% 0.2% 0.6% 

Streptococcus 3.9% 1.7% 1.0% 0.7% 4.2% 0.9% 1.3% 2.1% 2.6% 4.4% 

Collinsella 0.0% 2.1% 0.7% 0.0% 1.1% 1.7% 1.1% 1.3% 1.9% 1.0% 

Bifidobacterium 3.4% 12.3% 0.2% 0.0% 0.3% 13.0% 3.9% 7.9% 7.6% 6.7% 

Bacteroides 5.7% 4.0% 5.6% 6.8% 7.1% 4.0% 4.9% 8.6% 3.5% 4.5% 

Alistipes 2.2% 0.9% 0.8% 3.7% 1.1% 1.5% 1.2% 0.5% 1.1% 1.3% 

Prevotella 0.0% 5.9% 0.0% 0.0% 2.0% 0.0% 2.6% 0.1% 0.0% 0.0% 

Verrucomicrobium 2.8% 1.5% 0.7% 1.2% 1.0% 1.6% 0.0% 0.5% 0.3% 0.2% 

Table 3.8 indicates individual abundances for genera across 10 samples.  Of note is the 

abundance range for Bifidobacterium (0%-13%).  None of the samples that were lacking 

particular groups appeared to have this made up with higher numbers of another, potentially 

related, group. 

 

 The variation seen among the ten samples suggested that some bacterial genera may be 

affected by age.  Table 3.9 highlights calculated Spearman Rank correlation values.  We observed 

a negative relationship between Bifidobacterium and subject age; and while there are no elderly 

individuals in this group and there have not been reports indicating any sort of change in bacterial 
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group abundances among young and middle aged adults, studies in elderly individuals indicate 

that bacterial groups do differ between younger children and elderly individuals [84].   

Interestingly enough, aHLT06 had the highest abundance of Bifidobacterium at 13% and age of 

44; aHLT02 being a close partner with 12% abundance however 22 years of age. 

Table 3.9 Correlations of Bacterial Genera Abundances and Volunteer Age 

Genus 
Spearman Rank 

Correlation 

Ruminococcus 0.02 

Faecalibacterium -0.31 

Papillibacter 0.48 

Roseburia 0.02 

Bifidobacterium -0.40 

Bacteroides 0.48 

Lachnospira 0.29 

Eubacterium -0.24 

Anaerotruncus 0.14 

Acetivibrio 0.50 

Subdoligranulum 0.83 

Streptococcus -0.48 

Dorea -0.62 

Anaerostipes 0.52 

Clostridium 0.02 

Coprococcus 0.07 

Holdemania 0.43 

Alistipes 0.43 

Sutterella -0.33 

Collinsella -0.31 

Prevotella -0.45 

Verrucomicrobium 0.14 

Table 3.9 shows Spearman Rank Correlation between age and abundance for each genus 

(aHLT09 and aHLT10 were omitted from correlation calculation as no age could be obtained for 

these two samples).  There were no significant values among the correlation (p<0.05). 

 

   While it cannot be said that the correlations of these genera are statistically significant, 

this may be explained by the fact that volunteers within this group already harbor a well 

developed microbiota, some of the older volunteers could be supplementing their diets with 

probiotics, and the large gaps between ages of such a small population mask what might 

otherwise be a significant observation.  Further characterization of these organisms (along with 

larger sample size) will aid in an understanding, not only of their role in digestion, but whether 
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the trend between abundance and age is real.  This trend presents a notable possibility that certain 

components of any of these individuals’ diets could contribute to higher numbers of organisms, 

for example, the case Bifidobacterium, as there exist many consumer products that are marketed 

as probiotic and contain multiple bacterial organisms, Bifidobacterium among them.  To more 

accurately determine the extent that a decreasing/increasing pattern of bacterial organisms within 

a young-middle aged adult group would require a larger sample group with decreased jumps in 

age. 

 

Detection of Known Phylo-species Inhabiting the Intestinal Tract 

 An advantage of using microarrays is the ability to accurately probe at the phylo-species 

level.  The Microbiota Array interrogates for 775 possible phylo-species, 66 of which have been 

characterized and have actual binary names.  Out of the 66 characterized phylo-species, 41 were 

detected to some degree.  All 8 known Bacteroides spp. were found to be present (average range 

0.01%-1.02%), along with all of Bifidobacterium (3 species, range 1.02%-1.73%), and 

Faecalibacterium (1 species, 1.53%).  Known Bifidobacterium species B. catenulatum, and  B. 

longum displayed the highest variation with respect to abundance, with at least 2-3 samples 

containing these genera in amounts of 2.3%-4.3% (data not shown), however as stated above this 

is potentially related to consumption of this genus in commercial probiotic products.   

It was observed that each individual harbored a unique set of phylo-species, as evidenced 

by the occurrence of probesets in each lone sample.  This observation led to the idea that there 

exists a “core” microbiota, or those phylo-species that are shared among all samples; a 

“disposable” microbiota in which phylo-species occur in more than one sample but not all; and 

finally a “unique” microbiota that exists in each particular sample.  With this sample group it was 

seen that out of 775 possible phylo-species, 589 were detected in at least one sample.  Of the 589 

detected phylo-species, 384 were considered disposable and shared in more than one but not all 
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samples; there were 113 phylo-species present in all samples and labeled as the core microbiota, 

leaving 89 total phylo-species unique to one of the samples (Figure 3.5).  The core microbiota 

was made up of 26 genera, mainly Ruminococcus species (37 species, 37% of core), with 

Roseburia (19 species, 17% of core), Papillibacter (10 species, 9% of core), and 

Faecalibacterium (9 species, 8% of core) making up the rest of the majority.  Beyond this there 

were 9 genera with 2-4 species among the core (including Bacteroides with 2) and 13 with only 1 

species in the core microbiota. 

 

To test how well we sampled the population and whether the core we observed was a 

good representation of what might occur in vivo, sample presence and absence data were loaded 

into Matlab, and a rarefaction script was applied to determine average core phylo-species across 

all ten samples.  Rarefaction compares the species richness of multiple samples, especially of 

differing sizes.  The output of the rarefaction analysis indicates the number of species with 

respect to the number of individuals sampled.  The curves that are created as a result indicate total 

species richness at the point of plateau.  The Matlab script accomplishes this by using converted 

presence and absence values (P/A into 1/0).  The binary data is imported into Matlab in matrix 

format (775x10), each row representing a phylo-species and column representing samples.  The 

script then compares each sample combination out of the total sample population and averages 

the number of phylo-species that are present in the total population; then the sample population is 

increased by 1 and the script repeats the comparisons.  In other words, the first loop of the script 

counts how many phylo-species are in each particular sample, then records the average of the 

sum.  The next loop looks at all pair wise comparisons and again records the average of the sum.  

This process repeats, until the population size reaches the actual sample population, in this case 

10.  
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Results showed that as sample size decreases, the average number of phylo-species that 

are shared among samples increases as would be expected (Figure 3.6).  While the fit line in 

Figure 6 does not truly plateau at 113 phylo-species, this lack of leveling out indicates that there 

may be more phylo-species that make up the true human distal gut core. 

Figure 3.5 Core, Shared, and Unique Microbiomes of the Adult Distal Colon 

 

Figure 3.5 depicts phylo-species that are shared among all samples (Core), among more 

than one but not all (Shared), and those that are specific to each sample (Unique).  Each 

individual triangle represents a singular sample, the middle donut is indicative of a “meshing” of 

phylo-species that appear to be present in more than one occurrence, and the inner circle contains 

those phylo-species that are significant enough to populate all samples. 

 

Figure 3.6 Rarefaction of Healthy Adult Volunteers 

 



 

 

41 

 

Figure 3.6 illustrates the rarefaction curve of healthy adult samples.  As sample group size 

increases, Core Species decrease and begin to show signs of plateau.  Values are average number 

of core species, error bars indicate Standard Error. The line represents a polynomial equation fit. 

 

   The distribution of unique, shared, and core phylo-species among this sample group may 

suggest that subtle differences between people are enough to separate individuals with respect to 

the microbiota; however, this cannot be determined nor concretely stated given the size of the 

sample group.  
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4. DISCUSSION 

 The development of the microarray and other such culture-independent techniques have 

allowed researchers to gain invaluable knowledge into the human intestinal microbiota.  Here we 

used a custom designed Microbiota Array to assess the intestinal microbiota of 10 healthy adult 

volunteers.  The benefits of using this technology include the ability to assess quantitatively the 

intestinal microbiota, whereas high-throughput sequencing and DGGE lack such ability.  Another 

advantage of the microarray based approach is the relative ease with which this technology can be 

applied to larger populations.  The construction and development of the Microbiota Array 

allowed us to quantify accurately the intestinal microbiota of healthy adult volunteers. 

 

 The initial analysis showed that Firmicutes was the dominant phylum in all samples, 

followed by Actinobacteria, and Bacteroidetes.  This observation is in agreement with previous 

observations [26] [4], and shows that the higher taxonomical levels are stable and relatively free 

from change, further evidenced by looking at the degree of variation among the interrogated 

samples.  The ratio of Firmicutes and Bacteroidetes shows that the former is approximately 8-9 

times more abundant than the latter.  This ratio agrees with results seen by Mariat et al., who 

observed that healthy adults had 11 times more Firmicutes than Bacteroidetes [34].  The results 

seen here are in good concordance with others.  Future works would do well to include dietary 

intake information to assess further the extent to which diet contributes to the 

Firmicutes/Bacteroidetes ratio.  Phylum level analysis is an initial point for examining the 

intestinal environment; however, it does not illustrate potential differences among populations.  

 At the class level we observed that Clostridia was dominant and represented the major 

constituent of the Firmicutes phylum.  The second most abundant class was Bacteroides and was 

the only representative of the Bacteroidetes phylum.  Since none of the volunteers had been on 

any antibiotics up to 3 months prior to the study, and none had reported any intestinal maladies, it 
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can be inferred that the presence of Clostridia is a product of nonpathogenic enteric flora, and not 

due to establishment of pathogenic Clostridium species, such as Clostridium difficile which is a 

known intestinal pathogen.  Members of the class Clostridia aid the human host in fermentation 

and degradation of fiber sources in the diet.  Bacteroidetes was the second most abundant class in 

all ten samples, which is consistent with referenced works and is justified, as this class of bacteria 

is beneficial in degrading polysaccharides [11].  It was noted that Actinobacteria was quite 

variable across the obtained samples, an interesting result as this class was represented mainly by 

the genus Bifidobacterium which is a component of many over-the-counter probiotic products, as 

is discussed below.  Interestingly, there were cases where the number of detected phylo-species 

for a particular class was low even though the overall abundance of the class was high.  The 

results from the class level are in good concordance with previous studies using fluorescent in-

situ hybridization [85-87], and  indicated to us that the class level gives enough information to 

allow insight into the intestinal microbiota, and represents an accurate account of major groups 

inhabiting the intestinal tract.  The Microbiota Array is able to quantify large communities, which 

allowed us to determine the microbiota structure at the genus level as well as enabled us to assess 

the presence of known phylo-species.  Halting analysis at the class level also hides trends and 

differences that potentially hold vital information for proper understanding of intestinal 

microbiota relationships. 

 

 At the genus level Ruminococcus, a member of Clostridia, was most abundant. In fact, 

the top four genera, in accordance with abundance, belonged to Clostridia.  Of these four, 

Ruminococcus is known to have a substantial number of cellulolytic complexes which are utilized 

by species of this genus to attach to plant-derived dietary components and degrade cellulose, a 

key component of the plant cell wall structure [44].  This genus of bacteria is also known to be 

associated with solid-phase fecal matter.  The dominant presence, along with the ability of this 
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genus to degrade plant polysaccharides and attach to solid-state fecal content, illustrates that this 

genus is a primary degrader in bacterial catabolism of ingested nutrients, supplying byproducts to 

other bacterial genera to be used as primary nutrient sources.  Faecalibacterium, also a member 

of Clostridia, was next abundant.  This genus’ ability to utilize acetate and produce butyrate, 

suggests that species of this group coordinate the catabolism and utilization of byproducts from 

primary degraders to bacteria and colonocytes that use short chain fatty acids (mainly butyrate) as 

primary nutrient sources.  A species of this genus has also been shown to increase production of 

interleukin-10, a potent anti-inflammatory cytokine, further solidifying the necessity of 

Faecalibacterium [35].   

 

 Bifidobacterium was the major representative of Actinobacteria, however; showed a 

tremendous amount of variation between samples.  Potential reasons for such variation include a 

pattern of decreasing presence with age and consumption of probiotic products such as yogurt or 

supplements.  A negative correlation was seen between volunteer age and abundance of 

Bifidobacterium and therefore it can be inferred that the degree of variation observed may 

indicate a decreasing abundance of this genus with age.  A much more detailed analysis into the 

roles these genera play in intestinal homeostasis related to metabolism would shed much more 

light onto this area of research; unfortunately because of the harsh conditions imposed on these 

organisms in trying to cultivate them, many of them remain uncharacterized and thus our focus 

remains on those we are able to study.  Lastly, it has been shown here that analysis of intestinal 

microbiota can be taken down to the genus and species levels.  While it is acknowledged here that 

analysis at lower taxonomies shows more variations and less consistencies, however; it is 

important to include these observations.  Furthermore, stopping analysis at the Phylum and Class 

levels results in incomplete findings, essentially camouflaging patterns and relationships that are 

potentially important. 
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 The ability of the Microbiota Array to assess accurately large populations 

validates it as a valuable tool for studying intestinal microbiota.  We observed that species 

contribution among all ten samples fit into three microbiome groups; a “core” microbiome in 

which species are present in all samples, a “shared” or interchangeable microbiome which can be 

defined as species that are present in more than 1 sample yet are not shared among all, and finally 

each sample was seen to harbor a “unique” set of phylo-species; a set of phylo-species that were 

only seen in each particular sample.  To test the accuracy of the core microbiome observed, a 

rarefaction script was applied to the samples.  The results of the rarefaction agreed with the 

observation and also showed that as the sample size increased, the difference between the 

calculated core at each population size decreased.  From this result it can be inferred that our 

observed core microbiome is very close to what might be present in vivo.  The core microbiome 

was comprised mainly of Ruminococcus (37 species) species, followed by Roseburia (19 species) 

and Papillibacter (10 species).  This indicates that these genera provide important function to 

proper health of the intestinal tract, given that Roseburia and Ruminococcus both contain genes 

for catabolizing components of the human diet that would otherwise be indigestible [88] [89] 

[90].   What is interesting here is the presence of Papillibacter because there is such a lack of 

evidence illustrating this genus’ purpose and function with respect to intestinal health. 

 

 The work described here illustrates the ability of the Microbiota Array to quantify 

accurately the intestinal microbiota of healthy adult volunteers.  We analyzed and compared 

different taxonomical levels to better understand how variability and community structure differ 

at these lower levels.  Previous studies have focused on higher phylogenetic groups, possibly 

because of such variability at the genus and phylo-species levels, and while it is not always 

advantageous to report such variability, it is important to accurately show true community 
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makeup in individuals.  The advantage of the Microbiota Array over phylogenetic microarrays 

was the use of gDNA as starting material.  Previous approaches utilized cDNA synthesized from 

RNA, however RNA is more unstable than DNA; therefore it stands to reason that using DNA as 

starting material yields results more consistent with actual microbial numbers.  Admittedly there 

are limitations in this study, mainly the small groups size; and while it would be beneficial to 

have much larger sample groups there remains difficulties in acquiring samples from healthy 

volunteers.  Our ability to assess such low taxonomies is superior to other molecular approaches 

because we can combine the results of the Microbiota Aray with other techniques such as NMR 

and 16S rRNA arrays.  The abilities of the Microbiota Array, along with combination of differing 

groups and techniques, will allow us to accurately detect minute changes in intestinal homeostasis 

and open venues to better understanding of intestinal relationships.  Once we understand the role 

of intestinal microbiota in human health and disease, we will be able to detect changes in health 

much sooner, resulting in shorter and more productive treatment strategies. 
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Appendix A 
 

Wash Buffer A: Non-Stringent Wash Buffer 

For 1L: 

Reagent Amount (mL) 

SSPE (20X) 300 

Tween-20 (10%) 1 

Water 699 
Filter through 0.2µm filter. 

 

Wash Buffer B: Stringent Wash Buffer 

For 1L: 

Reagent Amount (mL) 

MES Buffer (12X) 83.3 

NaCl (5M) 5.2 

Tween-20 (10%) 1 

Water 910.5 
Filter through 0.2µm filter.
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