Winter 2010

CEG 725: Computer Vision II

Arthur A. Goshtasby

Wright State University - Main Campus, arthur.goshtasby@wright.edu

Follow this and additional works at: https://corescholar.libraries.wright.edu/cecs_syllabi

Part of the Computer Engineering Commons, and the Computer Sciences Commons

Repository Citation

https://corescholar.libraries.wright.edu/cecs_syllabi/1307

This Syllabus is brought to you for free and open access by the College of Engineering & Computer Science at CORE Scholar. It has been accepted for inclusion in Computer Science & Engineering Syllabi by an authorized administrator of CORE Scholar. For more information, please contact corescholar@www.libraries.wright.edu, library-corescholar@wright.edu.
CEG-725 Computer Vision II

Instructor: A. Goshtasby Office: 495 Joshi Phone: 937-775-5170
Email: agoshtas@wright.edu Office Hours: 2:00 - 4:00PM, M, W, or by appointment.

No. Units: 4

Prerequisites: CEG-724

Textbook:

Multi View Geometry in Computer Vision, Second Edition
Hartley & Zisserman
Cambridge University Press, 2003

Additional Reading: To be handed out in class.

Purpose of Course:

This course is a continuation of CEG-724 Computer Vision I. The primary focus will be on vision processes for 3-D scene recovery.

Contents:

1. Introduction (ch1)
2. Projective geometry and 2-D transformations (ch2)
3. Estimating 2-D transformation parameters (ch4)
4. Camera models (ch6)
5. Camera calibration (ch7)
6. Epipolar geometry and and stereo vision (ch9)
7. 3-D reconstruction from two views (ch10)
8. Stereo camera calibration (ch11)
9. Shape from shading (handout)
10. Shape from texture (handout)
11. Shape from line drawing (handout)

Learning Goals:

In this course we will learn computer algorithms that interpret images. Some of the algorithms will be practiced through computer implementation.

Projects and Exams:

www.cs.wright.edu/.../ceg725.html
There will be three projects, three quizzes and a presentation. A typical programming assignment will require about 20 hours of study and programming. Each student will be assigned a paper to read and present to the class.

Grading Policy:

Projects will worth 45%, quizzes will worth 45%, and presentation will worth 10% of the overall grade. Grades will be assigned as follows. A: [91..100], B: [81..90], C: [71..80], D: [61..70], F: [0..60].

Calendar:

<table>
<thead>
<tr>
<th>Project 1</th>
<th>Handing out: 1/18 Due: 2/1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project 2</td>
<td>Handing out: 2/3 Due: 2/17</td>
</tr>
<tr>
<td>Project 3</td>
<td>Handing out: 2/22 Due: 3/8</td>
</tr>
<tr>
<td>Quizzes</td>
<td>On: 1/20, 2/8, 3/3</td>
</tr>
<tr>
<td>Presentations</td>
<td>During last week of classes</td>
</tr>
</tbody>
</table>