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ABSTRACT 

 

Vishnu Battini, M.S., Department of Biological Sciences, Wright State University, 2013 

Accurate Splicing of HDAC6 Requires Son. 

  

Pre-mRNA splicing requires proper splice site selection mediated by many factors including 

snRNPs and serine-arginine rich (SR) splicing factors. Son is the largest known SR splicing factor, 

and it has several putative functional domains including an RS domain, a glycine rich patch (G-

patch) and double stranded RNA binding domain (DSRBD). One-third of Son’s amino acid 

sequence consists of novel repetitive sequence motifs of unknown function (Sharma et al., 2010). 

Son is essential for organization of pre-mRNA processing factors in nuclear speckles and for cell 

cycle progression (Sharma et al., 2010; Sharma et al., 2011; Ahn et al 2011). Exon array analysis 

of Son-depleted HeLa cells revealed changes in 1061 transcripts showing exon inclusion or 

exclusion, and a total of 2067 splicing events that are potentially regulated by Son. We validated 

that Son is required for appropriate splice site choice in transcripts for several chromatin-

modifying enzymes, including HDAC6, ADA and SETD8 (Sharma et al., 2011). However, the 

mechanism by which Son maintains accurate splicing is unknown. We are systematically 

generating model minigene cassettes for molecular and in situ analysis of Son-dependent splicing 

regulation. We have constructed a HDAC6 minigene reporter that contains the genomic sequence 

spanning exons 26 through 29. Following Son depletion in HeLa cells transiently transfected with 

the HDAC6 minigene reporter construct, we observed skipping of exons 27 and 28 on both the 

reporter and endogenous HDAC6 transcripts. Stable cell lines constructed using HDAC6 minigene 

reporter construct showed exclusion of exons 27 and 28 upon Son depletion. In order to study Son-

dependent splicing on HDAC6 in situ, we aimed to localize splicing factor recruitment to the 
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HDAC6 reporter minigene transcription site; however, RNA-FISH performed using probes 

designed to bind to HDAC6 minigene transcripts did not show reproducible labeling of the 

transcription locus. Finally, HEK293 cells stably expressing four different siRNA-refractory Son 

deletion mutants were used to show rescue splicing of HDAC6 minigene transcripts.   
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CHAPTER 1: INTRODUCTION 

 

Expression of protein coding genes in mammalian cells is a multistep process that begins with 

transcription of genes into pre-messenger RNAs (pre-mRNAs). Pre-mRNA processing is 

coordinated with transcription as well as within overall nuclear structure to improve the 

efficiency of gene expression. Pre-mRNA processing factors modify nascent pre-mRNA to 

produce a mature messenger RNA (mRNA) that is recognized by the nuclear export machinery 

and transported to the cytoplasm for translation into protein. Three major steps of pre-mRNA 

processing include 5’ capping, pre-mRNA splicing and polyadenylation at 3’ end of mRNA. My 

project aims to understand how pre-mRNA splicing of a subset of transcripts is regulated by a 

splicing factor called Son. 

Pre-mRNA splicing is the removal of introns from nascent pre-mRNA by a multicomponent-

complex called the spliceosome (Reed, 2000; Görnemann et al., 2005). Spliceosomes are 

comprised of proteins and small nuclear RNAs that are involved recognition of cis-acting 

elements in pre-mRNAs for intron excision (Wahl et al., 2009). The three important sites within 

introns that are recognized by components of the spliceosome include the 5’ splice site (also 

called a donor site with consensus ‘GU’ residues), the 3’ splice site (also called an acceptor site 

with consensus ‘AG’ residues) and the polypyrimidine tract containing a branch point adenosine 

sequence. Pre-mRNA splicing begins with recognition of 5’ and 3’ splice sites in the nascent 

mRNA by sRNPs, aided by serine-arginine-rich proteins (SR proteins) that help in recruitment of 

snRNPs to nearby splice sites. The first spliceosome complex formed is the E complex (also 

called the “commitment complex”) containing U1 snRNP that binds to the 5’ splice site. 
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Subsequently, BBP (branch point binding protein), Prp40 and U2AF recognize the branch point 

sequence, polypyramidine tract and 3’ splice site, respectively. This in turn recruits U2 snRNP, 

which binds to the branch point sequence forming complex A. Subsequently, recruitment of 

U4/U6 and U5 snRNPs to complex A forms complex B. Eventually the 5’ and 3’ splice sites are 

brought together, followed by the replacement of U1 snRNP by U6 snRNP and the release of U4 

snRNP from the complex after which it is called as complex C. Complex C performs the two 

catalytic reactions of splicing.  In the first step, the 5’ splice site is cleaved through a trans-

esterification reaction and is ligated to an adenosine residue in the branch point sequence to form 

an intron lariat. In the second step, the 3’ splice site is cleaved by another trans-esterification 

reaction in which the 3’ end of the upstream exon is ligated to the 5’ end of the downstream 

exon. The intron lariat is released and degraded via the nonsense mediated RNA decay (NMD) 

pathway (Reed 2000; Jurica and Moore, 2003; Black 2003).   

Alternative splicing is a natural phenomenon in eukaryotes that results in biodiversity of proteins 

by selective inclusion or exclusion of particular exons or introns during pre-mRNA splicing. 

Variation in 5’ and 3’ splice site selection in eukaryotic pre-mRNAs regulates gene expression 

by altering the coding sequence of mRNA (as reviewed in Black, 2003).  The resulting proteins 

translated from alternatively spliced mRNAs have differential amino acid sequence and often 

have diverse biological functions. While alternative splicing is influenced by cell type, 

developmental stage and gender, the machinery used for alternative splicing is not different from 

the basal splicing machinery. SR proteins and splicing repressors (heterogenous nuclear 

ribonucleoproteins, or hnRNPs) determine which 5’ and 3’ splice sites will be targeted by the 

splicing machinery during alternative splicing. The splice sites in nascent pre-mRNAs are 

surrounded by several cis-acting elements called Exon/Intron Splicing Enhancers (ESEs/ISEs) 
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and Exon/Intron Splicing Silencers (ESSs/ISSs). These six-nucleotide sequences are binding 

sites for splicing factors/repressors that regulate alternative splicing of pre-mRNAs. The 

presence of these regulatory elements marks the boundaries of exons (Cartegni et al., 2002). 

ESEs/ISEs act as binding sites for splicing factors such as SR proteins SRSF1 and SC35 while 

ESSs/ISSs act as binding sites for splicing repressors such as DAPAZ1 and hnRNPA1. 

Disruption of one or more cis-acting elements, or modulation of one or more proteins that bind to 

them, results in either exon skipping or exon inclusion. Exon skipping is the phenomenon in 

which alternative splicing of pre-mRNA results in exclusion of one or more exons from mature 

mRNA. Alternative splicing is beneficial when multiple proteins are correctly produced from the 

same pre-mRNA transcript. However, abnormal alternative splicing is implicated in diseases 

such as cystic fibrosis and spinal muscular atrophy (reviewed in Faustino and Cooper, 2003; 

Black, 2000).  

Pre-mRNA processing factors localize in nuclear speckles, which are dynamic structures located 

in the interchromatin regions of mammalian nuclei (reviewed in Spector and Lamond, 2010). 

Proteomic analysis of nuclear speckles revealed the presence of at least 180 known proteins, of 

which many are involved in pre-mRNA processing (Mintz et al., 1999; Saitoh et al., 2004). 

Nuclear speckles do not contain DNA but are located in close proximity with active transcription 

sites and form euchromatic neighborhoods (Haung and Spector, 1991; Thiry, 1995; Spector and 

Lamond, 2010). The size and shape of nuclear speckles largely depends on various metabolic 

and environmental factors including levels of gene expression. Live cell microscopy showed 

formation of rounded and enlarged speckles when gene expression is inhibited suggesting that 

nuclear speckles act as storage/assembly/modification sites for splicing factors (Spector and 

Lamond 2010). Active genes are present at the periphery of nuclear speckles and polyA+ RNA 
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(but not DNA) localizes to nuclear speckles (Carter et al. 1991; Huang et al. 1994; Visa et al. 

1993; reviewed in Thiry 1995). This suggests that some polyadenylated RNAs are enriched in 

nuclear speckles after they are transcribed. Some of these RNAs are noncoding RNAs.   

MALAT1 is one example of a long nuclear retained noncoding RNA that is enriched at nuclear 

speckles and helps in recruitment of splicing factors to transcription sites and in alternative 

splicing by regulating SF2/ASF phosphorylation (Hutchinson et al. 2007; Bernard et al. 2010; 

Tripathi et al. 2010).  

Splicing of pre-mRNA transcripts occurs co-transcriptionally. The largest subunit of RNA 

polymerase II has a unique C terminal domain that acts as a docking site for splicing factors as 

well as other RNA processing factors, and hence promotes co-transcriptional loading of pre-

mRNA processing factors onto nascent transcripts (Bentley, 2005; Reed, 2002; Misteli et al., 

1997; Misteli and Spector 1998). Live cell imaging of cells transfected with GFP-SF2/ASF in 

BTK-IB cells show recruitment of GFP-SF2/ASF to the transcription site of BK virus early 

genes. A trail of splicing factors was observed from adjacent nuclear speckles to the transcription 

sites after 15-20 min of transcription activation (Misteli et al., 1997).  Moreover, Misteli et al 

(1997) showed that the transcriptionally active genes and their pre-mRNA are located at the 

periphery of nuclear speckles (Misteli et al., 1997). The same was shown by another group that 

BrUTP labeling (which marks transcription sites) is not associated with nuclear speckles during 

short incubations. However, longer incubations with BrUTP marked the localization of 

interchromatin granule-associated zones (Cmarko et al., 1999).  Taken together, all of this data 

supports the model that nuclear speckles supply splicing factors and other RNA processing 

proteins to active transcription sites. 
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Son regulates splicing and promotes cell cycle progression 

Son is among 33 novel proteins identified in the proteomic analysis of nuclear speckles (Saitoh 

et al., 2004). Son is the largest known SR protein, and it has several putative functional domains 

including an RS domain, a glycine rich patch (G-patch) and double stranded RNA binding 

domain (DSRBD). RS domain contains alternative arginine and serine amino acid residues and 

RS domains of different proteins interact with each other to provide protein-protein interactions 

between different splicing factors. Phosphorylation of RS domains is essential for their function 

and hence splicing activity is regulated through differential phosphorylation of RS domains 

(Boucher et al., 2001; Blencowe, 2000; Graveley, 2000; Smith & Valcarcel, 2000). When 

expressed in HeLa cells, YFP-Son co-localizes with SF2/ASF in nuclear speckles (Sharma et al., 

2010; Huen et al., 2010). Son also binds to the NHR4 domain of the leukemogenic protein 

AML1-ETO and is important for cell growth (Ahn et al., 2008).  One-third of Son’s amino acid 

sequence consists of novel repetitive sequence motifs of unknown function that are unique to 

Son as shown in Figure 1 (Saitoh et al., 2004). Depletion of Son in HeLa cells alters nuclear 

speckle organization of splicing factors SF2/ASF, SC35 and U1-70K that reorganized to 

doughnut-shape structures in the absence of Son (Sharma et al., 2010). The unique repeats in Son 

were necessary to rescue the nuclear speckle organization (Sharma et al., 2010). Just as the 

repeated heptad sequence in the C-terminal domain of the largest subunit of RNA polymerase II 

serves as a platform for dynamic recruitment of proteins involved in co-transcriptional 

processing of nascent transcripts, we speculate that the unique repeats in Son act as docking sites 

for other proteins (Sharma et al, 2010; Sharma et al., 2011).  
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Since Son co-localizes to nuclear speckles with splicing factors such as SF2/ASF, SC35 and 

small nuclear RNAs (snRNAs), Son is most likely a pre-mRNA splicing factor. Three separate 

studies confirmed the role of Son in accurate splicing of human mRNAs and suggest that Son 

plays an important role in regulating the expression of genes involved in maintaining genome 

stability and cell cycle progression and pluripotency (Ahn et al., 2011; Sharma et al., 2011; Lu et 

al 2013).   
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Figure 1: Motif structure of Son.  

The amino terminus of Son contains six tandem repeat motifs between amino acids 334 and 

1493. The carboxy-terminus of Son contains multiple domains such as a RS domain, a G-patch 

and a DS RNA binding domain (Source: Sharma et al., 2011). 
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In the first study (Ahn et al., 2011), microarray analysis in Son depleted HeLa cells altered the 

expression of 659 transcripts by more than 1.45-fold. Many of the affected transcripts fall into 

pathways and functional categories such as apoptosis, cell cycle, cancer, DNA 

replication/recombination/repair and amino acid metabolism. Most of the downregulated 

transcripts are involved in cell cycle and DNA replication/recombination/repair and upregulated 

transcripts belonged to the categories of cell signaling, cell death/survival and molecular 

transport (Ahn et al., 2011). Validation of the microarray data performed by UV crosslinking and 

immunoprecipitation followed by RT-PCR showed that Son is associated with mRNAs of 

downregulated genes such as TUBG1, KATNB1, TUBGCP2, PCNT, AKT1 and AURKB (Ahn 

et al., 2011). 

In the second study (Sharma et al., 2011), exon array analysis of Son depleted HeLa cells 

showed a 2-fold decrease in expression of 568 genes and a 2-fold increase in expression of 359 

genes. The affected genes fall into several biochemical pathways such as apoptosis, cell cycle, 

integrin mediated cell adhesion, smooth muscle contraction and G protein signaling (Sharma et 

al., 2011). Validation of exon array data performed by quantitative RT-PCR using primer sets 

within a single exon, for upregulated genes (due to Son depletion) namely GEMIN5, JL1A, 

TNFRSF21, CCN61 and CYP1B1 showed 2-2.5 fold up regulation. Similarly, validation of 

down regulated genes (due to Son depletion) such as CDK5 and TNCC1 showed nearly 50% and 

60% reduction in transcript levels respectively (Sharma et al., 2011).  

Exon array data performed by Sharma et al., (2011) additionally showed altered splicing (either 

exon inclusion or exclusion) in 1061 genes and changes in 2067 splicing events. These results 

suggest that Son plays a role in splice site selection during splicing of many transcripts (Sharma 

et al., 2011). The down regulated genes due to Son depletion such as TUBG1, KATNB1, 
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TUBGCP2, AURKB, PCNT, AKT1, RAD23A and FANCG were tested for splicing defects with 

RT-PCR using primers targeting two adjacent exons. Interestingly, intron retention was 

observed, indicating Son is required for accurate intron removal in a subset of transcripts (Ahn et 

al., 2011). Further studies on splice site selection accuracy in TUBG1 showed that Son depletion 

results in improper removal of multiple introns indicating that Son acts as a coactivator in 

constitutive splicing to avoid intron retention. Additionally, Son-dependent genes were predicted 

(using ESEfinder) to contain weak 5’ and 3’ splice sites. Moreover, some splice sites were 

predicted as ‘dual-specificity splice sites’ that can act as both 5’ and 3’ splice sites and thereby 

baffle the splicing factors involved in splice site selection. When the weak splice sites were 

mutated to become strengthened, they did not depend on Son for accurate splicing, suggesting 

that Son is required only when transcripts have weak splice sites (Ahn et al., 2011). To determine 

if Son is required in accurate splicing of all genes consisting of weak splice sites, Ahn et al. 

(2011) have mutated the splice site of TUBA1B minigene, which is a Son-independent gene, to 

weaken it. This mutated TUBA1B minigene did not show Son dependency for proper splicing 

indicating that Son is essential for proper splicing of only a subset of genes (Ahn et al., 2011). 

Furthermore, UV crosslinking and immunoprecipitation (CLIP) studies revealed that Son is 

physically associated with the mRNAs that were down regulated following Son depletion, 

suggesting a direct role for Son in splicing. Minigene assays (using the minigene reporter 

constructs to study intron retention in vivo) for TUBG1 pre-mRNA containing exon7-intron7-

exon8 cassette or exon8-intron8-exon9 cassette showed that intron removal is directly dependent 

on absence or presence of Son (Ahn et al., 2011). When functional domains of Son such as the 

G-patch, the RS domain, or the DSRM were either deleted or cloned into expression vectors in 

various combinations, it was observed that the RS domain and G-patch were important for 
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proper splicing of TUBG1 pre-mRNA, and the C-terminal region containing an RS domain, G-

patch and DSRM rescued splicing to a significant extent (Ahn et al., 2011).  

Validation of the exon array data from Sharma et al. (2011) by RT-PCR showed altered splicing 

in Son-depleted cells for mRNAs coding for chromatin modifying enzymes HDAC6, ADA and 

SetD8. Exons 27 and 28 were skipped in HDAC6 mRNA, exon 2 was skipped in SetD8 mRNA 

and exon 9 was skipped in ADA mRNA, indicating that Son maintains proper splice site 

selection for all three transcripts (Sharma et al., 2011). Interestingly, Sharma et al., (2011) also 

showed that Son depletion resulted in skipping of exon 6 in stably integrated rat beta-

tropomyosin (BTM) minigene reporter transcripts in HeLa cells. This suggested that Son is 

involved in regulating alternative splicing of BTM, and that minigene constructs can be useful 

tools for investigating splicing mechanisms in situ. Given that Son impacts all different types of 

alternative splicing mechanisms, it is important to know if the mechanisms for such regulation 

have any common RNA elements or if they involve common co-factors. Ahn et al., has already 

investigated the importance of Son for proper intron removal in a subset of transcripts. Here I 

propose to construct an HDAC6 reporter minigene to further investigate Son-dependent 

regulation of exon skipping in situ. 

In the third study (Lu et al., 2013), Son’s role in maintaining pluripotency was described. Son 

depletion in human Embryonic Stem Cells (hESCs) results in loss of pluripotency and cell death. 

Genome-wide RNA profiling in Son depleted hESCs identified a set of 1,994 introns from 1,127 

genes that had splicing defects following Son depletion. OCT4, PRDM14, E4F1 and MED24 are 

some of the genes associated with pluripotency that showed splicing defects due to Son depletion 

(Lu et al., 2013). 
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Histone deacetylase 6: 

Histone deacetylases (HDACs) deacetylate the nucleosomal histone tails at conserved lysine 

residues. Transcription is regulated by the acetylation and deacetylation status of chromatin 

making HDACs important in gene regulation. HDACs are also capable of deacetylating lysine 

residues of transcription factors and thereby regulate their DNA binding ability. Eighteen 

mammalian HDACs were identified and classified into three classes I, II (A and B) and III. 

HDAC6 belongs to class IIB deacetylases and is a cytoplasmic protein (reviewed in Verdin et al., 

2003). 

The gene encoding HDAC6 is 29,894 basepairs in length and is comprised of 29 exons. It lies on 

X chromosome at position p11.23. The mature HDAC6 transcript is 4089 nucleotides and 

encodes a protein of 1215 amino acids. A naturally occurring splice variant, hHDAC6p114, was 

recently observed in A549 cells; this variant lacks the first 152 amino acids in its N-terminus 

(Zhuang et al., 2010). Among all HDACs, HDAC6 is the only HDAC that contains two 

functional histone deacetylase catalytic (CAT) domains and a C-terminal BUZ (binding-of-

ubiquitin zinc finger) domain (Figure 2; Hook et al., 2002). The two catalytic histone deacetylase 

domains function in deacetylating α-tubulin present in microtubules, which play a key role in cell 

motility (Hubbert et al., 2002). The HDAC6 BUZ-domain (amino acids 1134-1192) is encoded 

by, 174 nucleotides present in exons 27 and 28 of HDAC6 mRNA. When Son is depleted in  
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Figure 2: Motif structure of HDAC6.  

HDAC6 consists of a nuclear exclusion signal domain, two catalytic deacetylase domains, a 

cytoplasmic anchoring signal domain and a C-terminal BUZ-domain. (Source: Boyault et al., 

2007). 
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HeLa cells, exons 27 and 28 of HDAC6 pre-mRNA are skipped (Sharma et al, 2011), 

presumably deleting the BUZ domain under these conditions. 

The BUZ-domain of HDAC6 associates with polyubiquitin and thus with ubiquitinated 

misfolded proteins (Kawaguchi et al., 2003). Under normal conditions, misfolded proteins are 

degraded by proteasomes. Under stress, formation of misfolded proteins increases and becomes 

toxic to the cell (Ward et al., 1995). In several human disorders, the accumulation of misfolded 

proteins leads to cell death. One mechanism to degrade the misfolded proteins is formation of 

aggresomes (Kawaguchi et al., 2003). A model suggests that HDAC6 interacts with dynein 

motor proteins as well as ubiquitinated misfolded proteins and directs them to the microtubule-

organizing center (MTOC) via microtubules, where aggresomes are formed (Kawaguchi et al., 

2003). Once aggresomes are formed, the misfolded proteins are degraded by the local proteases 

and autophagy proteins. Mutant HDAC6 lacking either catalytic deacetylase domains or BUZ-

domain could not rescue aggresome formation, suggesting the importance of deacetylase 

domains and BUZ-domains in aggresome formation (Kawaguchi et al., 2003).  

Minigene assays 

Several genes express more than one type of mRNAs through alternative splicing. Exon 

recognition plays an important role in alternative splicing. Several factors influence the 

recognition of exon such as strength of splice sites, sizes of alternatively spliced exons or the 

introns on either side, and the presence of secondary structure (Cooper, 2005).  Reporter 

minigene assays involve construction of a reporter plasmid containing a small portion of 

genomic DNA including the alternatively spliced exon(s), flanking introns and exons. These 

reporter plasmids are then used in in vivo analysis of cis-regulatory elements (such as cryptic 
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splice sites, ESEs and ESSs) and trans-acting factors such as splicing factors and splicing 

repressors (Cooper, 2005). Since endogenous transcripts cannot be visualized easily in situ and 

the large size of the endogenous genes and transcripts makes it difficult to analyze the binding 

partners and protein-RNA interactions, minigene assays are important tools to analyze the 

proteins recruited to the transcription/splicing sites of the minigene. Moreover, inducing silent 

mutations in the minigene can help us determine ESEs/ESSs that are essential for proper splicing 

of the transcripts and can also determine the binding regions for several splicing factors and 

splicing repressors (Cooper, 2005, Ahn et al., 2011).  
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CHAPTER 2: HYPOTHESES AND SPECIFIC AIMS 

 

HYPOTHESES 

Hypothesis 1: To construct an HDAC6 minigene reporter 

Sharma et al (2011) showed that Son depletion causes alternative splicing of endogenous 

HDAC6 and exogenous BTM minigene. Ahn et al. (2011) showed that Son is required for 

constitutive splicing of both endogenous and exogenous TUBG1. Based on the above studies on 

requirement of Son in splicing, I hypothesized that inclusion of exons 27 and 28 in HDAC6 

minigene reporter transcripts requires Son. 

Hypothesis 2: To analyze splicing of HDAC6 minigene reporter transcripts in Son-depleted 

cells Based on the work performed by Sharma et al. (2011) and Ahn et al. (2011), as well as on 

rescue experiments employing Son and its deletion mutants, I hypothesized that the full length 

Son and its deletion mutant containing the C-terminal RS domain can rescue the exon skipping 

in HDAC6 transcripts. Millevoi et al (2010) showed that hnRNPA1 and hnRNP H/F are involved 

in the alternative splicing of BRCA1 transcripts. They found that single base-pair substitution 

occurred in the gene and resulted in creation of binding sites for the two splicing regulators. 

Sharma et al (2011) performed in situ studies to show that splicing factors such as SF2/ASF and 

U1-70K are present at the BTM minigene transcription site both before and after Son depletion. 

Recruitment of splicing factors to the co-transcriptional splicing sites results in accurate splice 

site selection followed by spliceosome assembly, whereas recruitment of hnRNPs results in 

formation of nonproductive spliceosomes or arrests the spliceosome assembly (Erkelenz et al., 
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2013). Based on the experimental results from the above studies and previous work in our lab on 

alternative splicing of HDAC6 in the absence of Son, I hypothesized that Son has a role in 

blocking hnRNPs from binding to nascent pre-mRNAs and thereby regulates alternative splicing. 

 

SPECIFIC AIMS 

Aim 1: To construct an HDAC6 minigene reporter 

I designed a minigene reporter system to investigate the mechanism by which Son regulates 

inclusion of exons 27 and 28 in HDAC6 mRNA.  

Aim 1a: I generated a HDAC6 minigene cassette as a model minigene reporter system to study 

the mechanism of splicing regulation by Son. The HDAC6 minigene cassette, consisting of 

genomic DNA encoding E26-I26-E27-I27-E28-I28-E29 (where E represents exon and I 

represents intron), was cloned into pcDNA3.1. This reporter plasmid was transfected into HeLa 

cells to test whether the exons 27 and 28 are skipped following Son depletion. RNA was 

extracted from transfected cells, and RT-PCR was performed using primers specific to 

exogenous minigene transcripts. Endogenous HDAC6 transcripts served as a positive control for 

exon skipping after Son depletion. 

Aim 1b: After confirming that the transiently transfected HDAC6 minigene reporter shows 

skipping of exon 27 and 28, I stably transfected HeLa cells with the HDAC6 minigene reporter 

plasmid and screened clones that are resistant to the drug G418 which is an analog to neomycin. 

The selected clones were expanded for primary and secondary screening. Screening was 

performed by extracting RNA from each separate clone for RT-PCR analysis to detect 
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exogenous HDAC6 transcripts using an upstream primer targeting T7 sequences encoded by the 

plasmid and a downstream primer targeting exon 29. The stable cell lines expressing exogenous 

HDAC6 minigene reporter transcripts were then characterized to verify that skipping of exons 27 

and 28 occurs after Son depletion. 

Aim 1c: RNA-FISH using the fluorescent tagged-oligos designed either at T7 promoter region of 

exogenous HDAC6 minigene or in exon 26 was be performed in HeLa HDAC6 clones, HeLa 

HDAC6 stable populations and HeLa cells transiently transfected with HDAC6 plasmid to 

identify the HeLa HDAC6 clones containing a reporter locus (ideally it is expected to be 

detected as a single dot in each nucleus as shown for BTM cell line in Fig. 3). 
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Figure 3: SRSF1 and Son are recruited to the exogenous BTM minigene transcription site. 

 A. RNA-FISH using a fluorescently conjugated probe targeting exon 5 of rat beta-tropomyosin 

labeled the BTM reporter transcription site. B, C. Immunofluorescence localization of SRSF1 

and Son in BTM HeLa cells. Arrows indicate the transcription site of the BTM reporter minigene 

(Source: Sharma et al., 2011). 
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Aim 2: To analyze splicing of HDAC6 minigene reporter transcripts in Son-depleted cells 

The first series of experiments determined which regions of Son are necessary for maintaining 

correct splicing of HDAC6 transcripts. To achieve this, I transfected HEK 293 cells with siRNA-

refractory (siR) constructs including full length YFP-SiR-Son and three deletion mutants of Son 

(YFP-SiR-Son-1-2008, YFP-SiR-Son-1-1493 and YFPSiR-Son-1-332) and selected stable clones 

expressing the constructs using G418. The stable cell lines were transfected with two different 

siRNA duplexes and a non-targeting luciferase gene siRNA (control) against Son followed by 

RT-PCR using primers sets targeting exon 26-29 region of endogenous HDAC6. The 

overexpression of siR-Son constructs and knockdown of endogenous Son were validated by 

qRT-PCR using primer sets specific to exogenous and endogenous Son. These experiments help 

us determine which deletion mutants can rescue exon skipping of HDAC6 and hence can directly 

implicate Son in regulation of splicing.  

The next series of experiments aims to observe alternative splicing of HDAC6 minigene in situ 

and determine the role of Son in recruiting splicing enhancers/repressors to nascent HDAC6 

transcripts. In the attempt to visualize the transcription loci of HDAC6 minigene (as in specific 

aim 1C), the experiments were designed to perform immunofluorescence with antibodies against 

Son and SF2/ASF along with RNA-FISH with T7 or E26 probes.  
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CHAPTER 3: MATERIALS AND METHODS 

 

HDAC6 subcloning 

Human HDAC6 genomic DNA containing exons 26, 27, 28, 29 and the intervening introns was 

selected for minigene reporter system construction as Son depletion causes exclusion of exons 27 

and 28 in HDAC6 transcripts. BAC clone RP11-416B14 containing HDAC6 gene was purchased 

from Children's Hospital Oakland Research Institute (CHORI; Oakland, CA). The BAC clone 

library was initially constructed by isolating genomic DNA from male human blood cells. 

HDAC6 minigene was then amplified using 5’ CAAGAATCGGGCTTCTCTGA 3’present 

in intron 25 region and 5’ TCTCCACCTGCTCAAAGTCA 3’present in intron 29 region 

as forward and reverse primers respectively. The amplified PCR product of size 1,387 bp was 

cloned into PCR2.1 vector (TA cloning kit, Invitrogen).  The positive clone from TA cloning 

was used as a template to amplify HDAC6 minigene. Primers were designed to amplify the 

region containing exon 26 through 29 to avoid unnecessary confusion about splice site selection. 

The forward primer 5’-GGGGGATCCGGGGCCTCAGAATCTCAG-3’contains a flanking 

BamH1 restriction site (underlined) and the reverse primer 5’-

GGGGCTCGAGAACAGCTTGTACTTTATT-3’ contains a flanking Xho1 restriction site 

(underlined). For PCR, input DNA (100 ng), forward and reverse primers (100 ng each), 

magnesium chloride (50 mM, Finnzymes, PA), pfu Ultra Hotstart DNA Polymerase (Aligent 

Technologies, CA), 10X pfu Ultra Hotstart DNA polymerase buffer, dNTPs (10mM, Aligent 

Technologies, CA) and Molecular Biology Grade water (5 Prime, MD) were used. pcDNA3.1 

was used as the vector to subclone HDAC6 minigene as it contains antibiotic resistant genes for 
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both ampicillin and neomycin which allows its selection in both bacterial and mammalian cells. 

Empty pcDNA3.1-V5-His-A (Invitrogen, CA) and HDAC6 minigene amplified from TA-

HDAC6 clone were separately digested with BamH1 and Xho1. Gel extraction (Cat. No. 20021; 

Qiagen, MD) was performed for both insert (HDAC6 minigene) and double digested pcDNA3.1.  

Ligation was performed using T4 DNA ligase (Invitrogen, CA). The ligation reaction was 

transformed to DH5α cells (Invitrogen, CA) following the manufacturer’s protocol. Bacterial 

colonies were screened for the presence of the vector containing HDAC6 minigene (insert). 

Plasmid DNA was isolated and digested with different enzymes to make sure the DNA bands of 

expected size were obtained.  Plasmid DNA isolated from the three positive bacterial clones was 

sequenced to ensure no mutations were present.  

Cell culture 

HeLa cells obtained from Dr. David Spector (CSHL, NY) and HEK 293 cells (ATCC, VA) were 

grown and maintained in 100 mm X 20 mm culture dishes in Dulbecco's Modified Eagle 

Medium (DMEM; Hyclone, Thermoscientific, Utah) with 10% fetal bovine serum (FBS; 

Hyclone, Thermoscientific, Utah) and 1% penicillin/streptomycin (Invitrogen, CA). All cells 

were maintained in a humidified incubator (37oC) in the presence of 5% carbon dioxide. The 

cells were passaged after reaching 80% confluency. To passage cells, the cells were briefly 

washed 3 times with 1X phosphate buffered saline (PBS; 137 mM NaCl; 2.7 mM KCl; 4.3 mM 

Na2HPO4; 1.47 mM KH2PO4, pH 7.4) and were treated with 2ml 0.25% trypsin/EDTA (Hyclone, 

Thermoscientific, Utah) for 2 min at 37ºC. 5 ml DMEM containing 10% FBS was added to 

inactivate trypsin and the cells were collected in to 15 ml conical tubes, spun for 2 min at 1500 

rpm. Supernatant was aspirated and the pellet of cells was resuspended in fresh DMEM 
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supplemented with FBS and antibiotics, either plated in 100 X 20mm dishes for passage or 

counted and plated in 6 well dishes. 

Counting and plating cells 

To plate cells for Son depletion and for RNA-FISH experiments, the cells were collected from 

100 X 20mm plates, centrifuged and resuspended as described in the cell culture section above. 

10µl of cell suspension was loaded onto each side of the Bright-Line Hemocytometer and the 

cells were counted and averaged to find the number of cells per 1 ml. Cells were diluted with 

DMEM + 10% FBS (for Son depletion) or with DMEM + 10% FBS and 1% 

penicillin/streptomycin (for RNA-FISH) accordingly to get a final concentration of 1 X 105 (for 

Son depletion) or 1.5 X 105 (for RNA-FISH).  

Freezing and thawing cells 

To freeze the cells, the cells were expanded to reach 80% confluency in 100 mm dishes and 

washed with 1X PBS. After washing, the cells were trypsinized, collected in to 15 ml conical 

tubes and centrifuge at 1500 rpm for 2 minutes. The supernatant was aspirated and 1 ml of ice-

cold freezing medium (95% FBS and 5% DMSO (Cat. No. D2650, Sigma, MO)) was added, 

mixed and 0.5 ml was added to each cryovial. The cryovials were then placed in Styrofoam racks 

(to slowdown the freezing process) and transferred to -80oC freezer.  

To thaw, the vial was placed in 37oC water bath briefly, 5 ml DMEM +10% FBS +1% pen/strep 

was added and transferred to a 15 ml conical tube. The tube was centrifuged for 2 min at 1500 

rpm and the supernatant was aspirated. To the pellet, 10 ml fresh medium was added and plated 

in 100 mm dish and placed in 37oC humidified incubator supplemented with 5% CO2. Thawing 
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process was carried out as fast as possible as DMSO present in the freezing medium is harmful 

to cells at higher temperatures. 

 

Transfections 

HeLa cells were cultured (~80% confluency), trypsinized and collected as described previously. 

The cells were resuspended in 1 ml of medium. Salmon sperm DNA was used along with 

HDAC6 reporter plasmid to ensure equal distribution of the plasmid to cells. 2µl of salmon 

sperm DNA (20µg/µl), 2µg of HDAC6 reporter plasmid and 250µl cell suspension were added 

to a 4 mm gap cuvette.  Electroporation was performed by using GenePulser X Cell (250V, 

950μF and 4Ω; BioRad, CA). Transient transfections were optimized in HeLa cells to determine 

the optimal amount of DNA as well as the post-transfection time required to detect expression of 

reporter transcripts. For stable transfections, G418 (1mg/ml) was added to the medium for 

selection.  

 

Son depletion 

Son depletion was achieved by RNAi using Son siRNA duplexes (si1 catalog # J-012983-05 or 

si4 J-012983-08; Dharmacon RNA Technologies). A non-targeting siRNA duplex for luciferase 

(catalog no. D-001210-02; Dharmacon RNA Technologies) was used as a control to ensure that 

the changes observed are not simply due to activation of RNAi machinery. Son depletion was 

validated by immunofluorescence with antibodies against Son and qRT-PCR using primer sets 

targeting Son mRNA, standardized to GAPDH. The quantitative results (ct values) of GAPDH 
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qRT-PCR was subtracted from Son qRT-PCR results to determine Δct. ΔΔct was calculated by 

subtracting the effect of control siRNA. Fold change was then determined by calculating 2-ΔΔct. A 

graph is then plotted between the fold change and samples such as control, siRNA 1 and siRNA 

4. 

Son depletion in HEK293 cells stably expressing siRNA-refractory YFP-Son constructs was 

achieved by using siRNA duplex 4, as the deletion mutants contain silent mutations in the region 

of Son mRNA that is targeted by siRNA duplex 4. siRNA duplex 1 was also used to deplete both 

exogenous and endogenous Son in control rescue experiments. A luciferase-targeting control 

siRNA duplex was used as control to ensure that the changes observed are not simply due to the 

activation of RNAi machinery. Overexpression of siRNA refractory YFP-Son constructs and 

endogenous Son depletion was confirmed by qRT-PCR using primer sets targeting exogenous, 

endogenous Son and GAPDH. 

RNA-FISH 

RNA-FISH was performed using the T7 probe that is specific to exogenous HDAC6 minigene 

transcripts and/or E26 probe which binds to exon 26 region of both exogenous and endogenous 

HDAC6 mRNA. All the positive HeLa HDAC6 clones were screened to identify those 

containing a single reporter locus. The cells were fixed using 2% formaldehyde, washed three 

times 5 min each with 1XPBS and permeabilized using Triton X-100 in the presence of 250mM 

vanadyl–ribonucleoside complex (VRC) for 8 min to prevent RNase activity. Further, the cells 

were washed with 1X PBS two times 5 min each and blocked using RNase free 0.5% BSA in 1X 

PBS for 15 min. The cells were then washed in 1X SSC for 5 min. The hybridization mixture 

was prepared by adding RNA-FISH probe(s), 2X SSC, 1mg/ml of tRNA, 10% dextran sulfate, 
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and 25% formamide. Hybridization was performed by adding 20μl hybridization mixture to 

clean glass slides and inverting the coverslips (cells facing down) and then the coverslips were 

sealed with rubber cement on all four sides. Glass slides were incubated at 37oC for three hours, 

in a humidified chamber. The cells were washed in 2X SSC and 25% formamide for 30 min at 

37oC followed by a 30 min wash in 2X SSC at room temperature. The cells were then briefly 

washed in 2X SSC and then processed for immunofluorescence. Microscopy was performed on a 

Deltavision RT microscope, and images were collected and processed using SoftWorx software. 

Stable cell line construction 

To construct HeLa HDAC6 stable cell line, HeLa cells were transfected with HDAC6 subclone 

as described below. The next day, cells were split to 10 plates (100 X 100 mm) to make sure the 

cells are separated enough to form individual colonies. Third day, Geneticin or G418 (1 mg/ml) 

is added to the cells. G418 is an analog to neomycin sulfate and it blocks protein synthesis by 

interfering with the function of 80S ribosomes. Neor gene present in HDAC6 plasmid produces 

aminoglycoside 3'-phosphotransferase, APT 3' II which is resistant to G418. The cells were then 

allowed to grow for 2-3 weeks within which the cells that integrate the plasmid into their genome 

and make APT 3' II do survive and develop their own colonies while untransfected cells and 

cells in which plasmid does not integrate into the genome die. The colonies were picked later 

into 24 well dishes and allowed to grow until the wells were confluent. For primary screening of 

clones stably expressing HDAC reporter transcripts, RNA was extracted from the 96 clones 

followed by DNase treatment and RT-PCR using T7 forward primer and E29 reverse primer . 

Positive clones from primary screening were expanded and screened a second time to confirm 

the expression of minigene transcripts. The positives from secondary screening were expanded 

and frozen down.  
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Immunofluorescence  

Coverslips were washed thoroughly in one part nitric acid and two parts hydrochloric acid for 

two hours, rinsed in distilled water continuously until the pH returns to 7.0. The coverslips were 

then stored in 70% ethanol and flamed before using to remove ethanol. Cells grown on 

coverslips were washed once with 1X PBS and fixed with 2% paraformaldehyde (in 1X PBS) for 

15 min followed by three washes with 1X PBS 5 min each. The cells were then permeablized for 

5 min with 0.2% TritonX-100 and washed three times with 0.5% normal goat serum (NGS, 

Gibco) in 1X PBS. Washes with normal goat serum help in blocking the proteins. The coverslips 

were then placed with the cell side up in a humidified chamber prepared by putting a wet filter 

paper in a 15 cm plate. 40µl of primary antibodies diluted in 0.5% NGS-1X PBS were added to 

the cells and incubated for one hour at room temperature. Rabbit polyclonal antibodies were 

developed (Covance; Denver, PA) against the C-terminal peptide sequence 

SPNKKHAKATAATV of Son (Wu13; 1:100), and against the N- terminal peptide sequence 

CEESESKTKSH of Son (Wu14; 1:1000) and monoclonal anti-SF2/ASF AK103 (1:2500; 

provided by A. Krainer, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY). Coverslips 

were placed back into the appropriate dishes and washed three times with 0.5% NGS in 1X PBS. 

40µl of secondary antibodies diluted in 0.5% NGS -1X PBS were added to cells placed in 

humidified chamber cell side up. Fluorescently- conjugated secondary antibodies donkey anti-

mouse (Cy5) and donkey anti-rabbit (FITC or TxRed) proteins (1:500; Jackson ImmunoResearch 

Laboratories, West Grove, PA) were used. After one hour incubation with secondary antibodies, 

the coverslips were placed back into the appropriate dishes and washed two times with 0.5% 

NGS in 1X PBS for 5 min each. The cells were then washed for 5 min in 4', 6-diamidino-2- 

phenylindole (DAPI; 10 μg/ml diluted 1:1000 in 1X PBS) to stain DNA and washed once with 
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1X PBS. To mount the coverslips, either anti-fade mounting medium (p-phenylenediamine, 

glycerol, pH. 8.0 - 9.0) or N-propyl-gallate mounting medium (for CY5-conjugated antibodies) 

was used and the coverslips were placed cell side down on clean microscope glass slides with 8-

10 µl mounting medium. Excess mounting medium was removed by using a filter paper and the 

edges of coverslips were painted with clear nail polish. The slides were then stored in -80oC or 

imaged using DeltaVision RT microscope (Applied Precision). 

RNA Extraction 

RNA extraction was performed by using Qiagen RNAeasy mini prep kit according to 

manufacturer instructions (Qiagen, CA). Briefly, cells cultured in 6 well dishes were trypsinized 

and collected by centrifuging for 5 min at 1500 rpm. The supernatant was completely aspirated 

and the cell pellet was resuspended in 350 µl buffer RLT. The cell suspension was homogenized 

by vortexing for 30 sec and 350 µl 70% ethanol was added. 700 µl of the above solution was 

loaded into RNAeasy spin column placed in a 2 ml collection tube, centrifuged for 15 sec at full 

speed (13,200 rpm) and the flow through was discarded. 700 µl of buffer RW1 was added to the 

spin column, centrifuged for 15 sec at full speed and the flow through was discarded. The spin 

column was then washed 2 times with 500 µl of buffer RPE and centrifuged (first time for 15 sec 

and second time for 2 min) at full speed. To elute RNA, the spin column was placed in 1.7 ml 

collection tube, 30 µl RNase-free water was added and the tube was centrifuged for 1 min at 

14,000 rpm in an Eppendorf microcentrifuge. An optional elution step was performed by adding 

30 µl of RNase-free water and collecting RNA in a fresh tube. Eluted RNA was stored at -80oC.  
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DNase treatment 

The concentration of RNA extracted as described above, was measured using a Nanodrop 

spectrophotometer (Thermo Scientific). Buffer, Turbo DNase activation buffer (10%), 5 µg of 

RNA, Turbo DNase (1µl) were mixed and brought to 50 µl final volume with RNase free water. 

The samples were incubated at 37oC for 30 min followed by the addition of DNase inactivation 

reagent (10%) and incubated for 2 min at room temperature with occasional mixing. The samples 

were centrifuged for 1.5 min at 10,000 X g and the supernatant containing DNA-free RNA was 

transferred to new 1.5 ml tubes and stored at -80oC. 

 

RT-PCR and quantitative RT-PCR 

RT-PCR was performed by using qScript-One step RT-PCR system and qScript-two step RT-

PCR system (Quanta Biosciences, MD Cat. No. 95047, 95073). For one-step RT-PCR, 100 ng of 

DNase treated RNA was used as template, 3 µM forward and reverse primers, 2X Sybrgreen 

buffer, 1 µl reverse transcriptase and RNase-free water were used to make 10 µl reactions. 

Master mix was prepared by adding appropriate amounts of SybrGreen buffer, reverse 

transcriptase, forward and reverse primers and water, mixed and centrifuged briefly and added to 

each of the Cepheid tubes. 100 ng of RNA was added to each of the tubes and centrifuged 

briefly. The tubes were then loaded in Cephed one StepRT-PCR machine (Chepheid, CA). 

Amplification was performed for 40 cycles As exon skipping occurs in HDAC6 transcripts up on 

Son depletion, reverse transcription-PCR results in amplification results show more than one 

PCR product when certain primer pairs were used. In these cases, the RT-PCR products were 

applied to either 2% agarose gels or 10% native polyacrylamide gels (30% Polyacrylamide, 10μl 

TEMED, 10% APS, 5X TBE)  at 80V for 90 min in 1X TBE. The gels were stained on shaking 
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platform by adding 2 μl of 10 mg/ml ethidium bromide to 300 ml of buffer 1X TBE for 5 min 

before exposing to ultraviolet light.    

For two-step RT-PCR, cDNA was prepared by mixing 4 µl cDNA fast mix, 100 ng DNase-

treated RNA, 1 µl reverse transcriptase and RNase-free water to make up the reactions to 20 µl. 

The samples were incubated in DNA engine DYAD thermo cycler (MJ Researchers, MA) with 

cycle conditions: 5 min at 22oC; 30 min at 42oC and 5 min at 85oC.  cDNA was either stored at -

20oC or diluted 3 fold and used as template for qPCR. qPCR was performed in 96 well plates in a  

qPCR machine(App  lied Biosciences). For qPCR, master mixes were prepared separately for 

each primer set. 5 µl of PerfecTa fast mix, 3 µM forward primer, 3 µM reverse primer and 

RNase-free water were mixed per reaction to make mastermix and aliquoted to the reaction wells 

followed by addition of 3µl of diluted cDNA template. The quantitative results (ct values) of 

GAPDH qRT-PCR were subtracted from Son qRT-PCR results to determine Δct. ΔΔct was 

calculated by subtracting the effect of control siRNA. Fold change was then determined by 

calculating 2-ΔΔct.  

 

Primer and probe design 

All primers designed were checked for at least 50% GC content and melting temperature (above 

450C), The primers were checked for possibility of forming self-dimers, heterodimers and 

hairpin structures by using http://www.idtdna.com/analyzer/Applications/OligoAnalyzer/. Hairpin 

structures form when the melting temperature of hairpin structures suggested is close to that of 

the primer. Self-dimers or hetero-dimers form when the ΔG value is lower than -10 k. 

Furthermore, the specificity of the primer sequences were tested using 

http://blast.ncbi.nlm.nih.gov/Blast.cgi website. Nucleotide blast, Refseq mRNA, Homo sapiens 

http://www.idtdna.com/analyzer/Applications/OligoAnalyzer/
http://blast.ncbi.nlm.nih.gov/Blast.cgi
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were selected to blast the primer sequence. For non-specific binding to occur both forward and 

reverse primer should bind to the same gene/mRNA or genes that are adjacent.  
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Table 1: List of Primers used for PCR/qRT-PCR: 

 

HDAC6T7For                          CTCACTATAGGGAGACCCAAG 

HDAC6intr27For              GAGGAAGGGGATGGGGCGGA 

HDAC6intr28For              GGTTGAGGGCTGGAGTGGGGG 

HDAC6BGHFor              GGCTGGCAACTAGAAGGCAC 

HDAC6BamHIfor              GGGGGATCCGGGGCCTCAGAATCTCAG 

HDAC6XhoIrev              GGGGCTCGAGAACAGCTTGTACTTTATT 

SonforRT                                 CAGAACTACGATATAAGCC 

SonRevRT                               GATACAACTGACAGTTCTGC 

GAPDHForRT                         ATGGGGAAGGTGAAGGTCGGAG 

GAPDHrevRT                         CATGTAGTTGAGGTCAATGAAGG 

HDAC EJ 26/27 revRT  AAATATGGCCTGATCAGT 

HDAC EJ 26/29 revRT  TAGGAGAGCCTGATCAGT 

HDAC EJ 28/29 revRT  TAGGAGAGCCTGGTGGTG 

ADAej9/10revRT              TCATTTTTGAGCCGAATGACTGCA 

ADAej8/10revRT              TCATTTTTGAGCCTCGAAGTGCAT 

SETD8ej2/3revRT              AAATACGTTCTCCCCGTCGGTGCG 

SETD8ej1/3revRT              AAATACGTTCTCCTCTAGCCATGG 

SETD8ex1forRT              GATCCCAGGCGGTGACAGAGT 

HDAC6 Ex25                          CGAGCTGATCCAAACTCCTCTA 

HDAC6 Ex26 F                       AGGTCAGGACATGGCTGATT 
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 HDAC6 Ex29 Rev                  CCGTATTCTGGGGCTTAGTG 
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Table 2: List of RNA-FISH probes: 

T7 TxRed, (TxRed)AGCTTGGGTCTCCCTATAGTGAGTCGTATT 

HDAC E26 TxRed, (TxRed)CTAGTAGGTTCTCCTCTCCTGGGGCCTGAG 
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Microscopy 

Images were collected in z-stacks using a 60X objective (1.4 numerical aperture; Olympus, 

Tokyo, Japan) on a DeltaVision RT microscope (Applied Precision). The raw data from z-stacks 

were displayed as volume projections.  

 

Sequencing 

The HDAC6 reporter minigene plasmid construct was sequenced to confirm that no mutations 

are present. Midipreps were prepared for three of the positive clones (2, 21 and 36). Since the 

size of the HDAC6 minigene is 1.3Kb, a forward primer was designed at the T7 promoter region, 

two forward primers were designed at a distance of 400bp each and a reverse primer was 

designed at the BGH signal.  1.2μg of plasmid DNA and 100 pmole primer was added and sent 

for sequencing (Retrogen,inc, CA). Results were analyzed using multiple sequence alignment 

tool (http://www.ebi.ac.uk/Tools/msa/clustalw2/).   

 

 

 

 

 

 

 

 

 

http://www.ebi.ac.uk/Tools/msa/clustalw2/
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CHAPTER 4: RESULTS 

 

4.1 Construction of a HDAC6 reporter transgene system  

Son was previously reported to be required for proper splicing of HDAC6 transcripts (Sharma et 

al., 2011). To further understand the mechanism of aberrant splicing caused when Son is 

depleted, I designed reporter minigene assays. HDAC6 subclone containing genomic segment 

encompassing exons 26-29 was constructed in pcDNA 3.1 and the positives from subcloning are 

shown in Figure 4. Genomic sequence for HDAC6 was amplified by PCR and subcloned into 

pcDNA3.1. Plasmid DNA was digested with BamH1 and Xho1, and colonies containing a 1.3 

Kb insert along with a 5.5Kb band were chosen as positive clones (Fig. 4A, 4B and 4C). The 

positive clones 2, 21 and 36 were digested with various restriction enzyme combinations to 

confirm the presence of the HDAC6 minigene. Furthermore, three clones were sequenced to 

confirm that no mutations were introduced during PCR amplification.   

4.2 Son-depleted cells show exon skipping in endogenous HDAC6 mRNA and transiently 

expressed HDAC6 reporter transcripts 

To examine splicing changes in exogenous HDAC6 transcripts upon Son depletion, HeLa cells 

were transiently transfected with HDAC6 reporter minigene plasmid, followed by siRNA 

transfection to deplete Son. Reduction of Son transcripts was confirmed by qRT-PCR with 

primers targeting Son mRNA (Fig. 5A) and immunofluorescence where Son depleted individual 

cells show loss of speckle pattern when compared to mock and control oligo transfected cells 

(Fig. 5B). Son depleted samples showed a clear difference in splicing of reporter transcripts as 

seen by polyacrylamide gel electrophoresis of RT-PCR products.  While cells treated with mock  
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Figure 4: Subcloning of the HDAC6 reporter minigene. 

HDAC6 minigene PCR products were subcloned in to pcDNA3.1. A, B, C: Miniprep DNA 

isolated from amp-resistant bacterial colonies was double digested with Xho1 and BamH1. Gel 

images show positive clones containing two fragments; one corresponding to plasmid backbone 

(5.5 Kb) and the other to the minigene (1.3 Kb). Some of the clones contain an extra band at 6.8 

Kb which is the linearized plasmid. Contols included undigested empty vector (lane 1 of Panels 

A, B and C), linearized empty vector (lane 2 of Panels A, B and C) and empty vector digested 

with each of the enzymes (lanes 13 and 14 of panel C). 
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Figure 5: Skipping of exons 27 and 28 of the HDAC6 reporter minigene in Son-depleted 

cells. 

HeLa cells transiently transfected with HDAC6 reporter plasmid and Son siRNA duplexes were 

either processed for immunofluorescence (A) or harvested to perform qRT-PCR (B) to show Son 

depletion. Cells treated with Son siRNAs and immunostained with anti-Son antibodies in (A) do 

not show Son labeling in nuclear speckles (g and j) when compared to mock and control siRNA-

treated cells (a and d). DNA was stained with DAPI (c, f, I and l). Bar = 5µm. qRT-PCR in (B) 

showed reduction of Son mRNA levels in siRNA-treated samples when compared to that of 

mock and control siRNA treated samples. (C) qRT-PCR performed in triplicate using primers 

that amplify only reporter minigene transcripts show exon skipping in Son siRNA-treated 

samples. Lanes labeled as “–” (2, 4, 6, 8 and 10) represent reactions in which reverse 

transcriptase was omitted. (D) RT-PCR performed with primers that amplify both endogenous 

and reporter minigene transcripts show exon skipping in siRNA-treated samples. Lanes labeled 

“U” represent untreated samples that were transfected with HDAC6 reporter plasmid and 

harvested. Lanes labeled as “–” (2, 4, 6, 8 and 10) represent reactions in which reverse 

transcriptase was omitted.  
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transfection or control oligo showed inclusion of exons 27-28, these exons were skipped in Son 

depleted cells (Fig. 5C).  Splicing changes observed in exogenous HDAC6 minigene transcripts 

are consistent with that of endogenous HDAC6 transcripts (Fig. 5D and Sharma et al., 2011).  

 

4.3 HeLa HDAC6 cell lines stably express HDAC6 minigene 

To further investigate the mechanism of Son-mediated splicing in situ, it is important to 

construct cell lines stably expressing HDAC6 minigene. HeLa cells were hence transfected with 

HDAC6 subclone and G418 (1 mg/ml) was added to medium to select clones stably expressing 

HDAC6 minigene. Primary screening by RT-PCR for RNA extracted from each of the clones 

show unspliced, fully spliced and exon skipped products in clones 6, 19, 57, 65, 69, 79, 80 and 

93 (Fig. 6A, 6B and 6C). Secondary screening was performed in which the positives from 

primary screening were expanded and RNA was extracted. RT-PCR for the clones mentioned 

above showed stable expression of HDAC6 minigene in clones 19, 57, 65, 69, 79 and 80 (Fig. 

7A, 7B and 7C). 

4.4 Son-depleted cells show exon skipping in endogenous HDAC6 mRNA and stably 

expressed HDAC6 reporter transcripts 

Three of the HeLa HDAC6 clones that stably express HDAC6 minigene were transfected with 

Son siRNA to test splicing patterns of HDAC6 minigene. Son depletion in three of the HeLa 

HDAC6 stable cell lines (Clones 69, 57 and 65) resulted in skipping of exons 27 and 28 in both 

exogenous (Fig. 8C, 9C and 10C) and endogenous HDAC6 transcripts (Fig. 8D, 9D and 10D).  
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Figure 6: Primary Screening of Stable cell lines.  

RNA extracted from G-418-resistant colonies was used to perform RT-PCR to amplify HDAC6 

minigene transcripts. The bands migrating at 528 bp correspond to properly spliced reporter 

transcripts and the bands at 259 bp correspond to products in which exons 27 and 28 are skipped 

(A, B and C). RT-PCR was performed on RNA isolated from cells that were transiently 

transfected with the HDAC6 reporter plasmid (panel A: lanes 1 and 2; panel B: lane 1; panel C: 

lanes 1 and 2) as well to indicate the sizes of expected bands for comparison with bands from 

stable clones. Additional bands in some of the clones may be due to the presence of genomic 

DNA in the samples.  
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Figure 7: Secondary Screening of Stable cell lines.  

Positive clones from the primary screening of stable reporter cell lines were expanded. RNA was 

extracted to perform RT-PCR to amplify HDAC6 minigene transcripts. The bands migrating at 

528 bp correspond to properly spliced reporter transcripts and the bands at 259 bp correspond to 

products in which exons 27 and 28 are skipped (A, B and C). RT-PCR was performed on RNA 

isolated from cells that were transiently transfected with the HDAC6 reporter plasmid (panel A, 

B, C: lane 1) as well to indicate the sizes of expected bands for comparison with bands from 

stable clones. Additional bands in some of the clones may be due to the presence of genomic 

DNA in the samples.  
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Figure 8: Son depletion causes exon skipping in HDAC6 reporter cell line 69.  

HeLa HDAC6 clone 69 stably expressing HDAC6 reporter plasmid was transfected with Son 

siRNA duplexes and processed for either immunofluorescence (A) or harvested to perform qRT-

PCR (B) to show Son depletion. Cells treated with Son siRNA and immunostained with anti-Son 

antibodies in (A) do not show Son labeling in nuclear speckles (g and j) when compared to mock 

and control siRNA treated cells (a and d). DNA was stained with DAPI (c, f, I and l). Bar = 5µm. 

qRT-PCR in (B) showed reduction of Son mRNA levels in siRNA-treated samples when 

compared to mock and control siRNA treated samples. (C) qRT-PCR performed in triplicate 

using primers that amplify only reporter minigene transcripts show exon skipping in Son siRNA-

treated samples. (D) RT-PCR performed with primers that amplify both the endogenous as well 

as reporter minigene transcripts show exon skipping in siRNA-treated samples. Lanes labeled 

“U” represent the samples for which RNA was extracted without treating with siRNA reagents. 
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Figure 9: Son depletion causes exon skipping in HDAC6 reporter cell line 65. 

HeLa HDAC6 clone 65 stably expressing HDAC6 reporter plasmid was transfected with Son 

siRNA duplexes and processed for either immunofluorescence (A) or harvested to perform qRT-

PCR (B) to show Son depletion. Cells treated with Son siRNA and immunostained with anti-Son 

antibodies in (A) do not show Son labeling in nuclear speckles (g and j) when compared to mock 

and control siRNA treated cells (a and d). DNA was stained with DAPI (c, f, I and l). Bar = 5µm. 

qRT-PCR in (B) showed reduction of Son mRNA levels in siRNA-treated samples when 

compared to mock and control siRNA treated samples. (C) qRT-PCR performed in triplicate 

using primers that amplify only reporter minigene transcripts show exon skipping in Son siRNA-

treated samples. (D) RT-PCR performed with primers that amplify both the endogenous as well 

as reporter transcripts show exon skipping in siRNA-treated samples. Lanes labeled “U” 

represent the samples for which RNA was extracted without treating with siRNA reagents. 
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Figure 10: Son depletion causes exon skipping in HDAC6 reporter cell line 57 

HeLa HDAC6 clone 57 stably expressing HDAC6 reporter plasmid was transfected with Son 

siRNA duplexes and processed for either immunofluorescence (A) or harvested to perform qRT-

PCR (B) to show Son depletion. Cells treated with Son siRNA and immunostained with anti-Son 

antibodies in (A) do not show Son labeling in nuclear speckles (g and j) when compared to mock 

and control siRNA treated cells (a and d). DNA was stained with DAPI (c, f, I and l). Bar = 5µm. 

qRT-PCR in (B) showed reduction of Son mRNA levels in siRNA-treated samples when 

compared to mock and control siRNA treated samples. (C) qRT-PCR performed in triplicate 

using primers that amplify only reporter minigene transcripts show exon skipping in Son siRNA-

treated samples. (D) RT-PCR performed with primers that amplify both the endogenous as well 

as reporter transcripts show exon skipping in siRNA-treated samples. Lanes labeled “U” 

represent the samples for which RNA was extracted without treating with siRNA reagents. 
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Exon skipping of HDAC6 reporter transcripts in Son depleted cells when expressed transiently 

or stably indicates that the HDAC6 minigene reporter construct contains the necessary elements 

required to study Son-dependent splicing of exons 27 and 28. Since multiple stable cell lines 

expressing the HDAC6 reporter minigene show the same result, there is probably no connection 

between chromatin context and splicing regulation by Son for splicing of exons 27 and 28 of 

HDAC6 transcripts. 

 

4.5 qRT-PCR analysis of HDAC6 exon skipping in Son-depleted cells 

To quantify the relative expression level of properly spliced and exon skipped products in Son 

depleted cells that stably express HDAC6 reporter minigene, exon-junction primers were 

designed that allow the amplification of single products as shown in fig. 11A. Properly spliced 

HDAC6 minigene contains all exons i.e., exons 26, 27, 28 and 29 allowing us to design an exon 

junction primer that includes the last 12 nt of exon 26 and first 12 nt of exon 27. Since exon 27 is 

absent in the exon skipped product, the EJ26/27 primer specifically complements the properly 

spliced HDAC 6 transcripts. Likewise, exons 26 and 29 are joined when exon skipping occurs. 

An exon junction primer (EJ26/29) was designed containing the last 12 nt of exon 26 and the 

first 12 nt of exon 29, it will amplify only the reporter transcripts in which exons 27 and 28 are 

skipped.  Furthermore, to differentiate between endogenous and exogenous HDAC6 transcripts, 

a primer was designed to complement sequences within exon 25 to amplify only endogenous 

HDAC6 transcripts (since HDAC6 minigene does not contain exon 25), and another primer was 

designed to complement sequences just following the T7 promoter region of the HDAC6 

minigene to amplify only exogenous HDAC6 trnascripts (since the T7 sequences are absent in  
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Figure 11: qRT-PCR analysis of HDAC6 exon skipping in Son-depleted cells.   

qRT-PCR performed on HeLa HDAC6 stable cells post-Son depletion. A) Four sets of exon 

junction primers were used to amplify splice variants for exogenous reporter transcripts as well 

as for endogenous HDAC6 transcripts. B) Relative transcript level for properly spliced verses 

exon skipped transcripts is measured in both endogenous and exogenous HDAC6. 
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endogenous HDAC6 transcripts). qRT-PCR was performed in the Son-depleted HeLa 

HDAC6 stable cell line (clone 69) using combination of primers for HDAC6. Son depletion 

was validated by qRT-PCR. For both the endogenous and the exogenous HDAC6 transcripts 

in Son-depleted cells, the level of properly spliced transcripts were low while levels of 

improperly spliced transcripts were high in comparison to respective  transcript levels in cells 

treated with luciferase siRNA (control) (Fig. 11B). This indicates the efficacy of the 

minigene reporter system we generated in mimicking the endogenous HDAC6 splicing 

patterns.  

 

4.6 HeLa HDAC6 stable cell line with single reporter transcription locus 

The stable cell lines constructed using HDAC6 reporter minigene construct were used to 

observe reporter transcription loci inside the cells. To achieve this, RNA fluorescence in situ 

hybridization (RNA-FISH) was initially performed for all six positive clones.  

4.6.1 Screening HeLa HDAC6 stable cell lines to identify reporter transcription locus 

Two RNA-FISH probes were designed one at the T7 promoter region which binds only to 

reporter minigene transcripts and the other probe in exon 26 region of HDAC6 which can 

hybridize to both exogenous and endogenous HDAC6 transcripts. The stable clones were 

grown on coverslips and RNA-FISH combined with immunofluorescence was performed as 

described in the methods section. For immunofluorescence, antibodies against Son and 

SF2/ASF were used to observe co-localization patterns to HDAC6 transcripts. Since BTM 

cell line constructed by Dr. Paula Bubulya consists of the same plasmid backbone and 
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includes the T7 promoter region, RNA-FISH was performed on this cell line as a control. 

The BTM cell line is considered a positive control for HDAC6 reporter since it can be used 

to validate the working conditions of FISH probes and other reagents used. RNA-FISH in 

HeLa cells was performed as a negative control that will not contain T7 sequences and can be 

used to establish background fluorescence levels of RNA-FISH probes. 

Unfortunately, RNA-FISH performed on stable cell HDAC6 reporter lines showed no 

consistent labeling of transcription loci. BTM cell line hybridized with T7 probe showed a 

bright transcription locus (Fig. 12: panel 1) and co-localization with Son (Fig.12 panel 2) and 

SF2/ASF (Fig. 12 panel 3) indicating that the probes and other reagents used were working 

appropriately.  HeLa cells in the absence of probe did not show any transcription loci (Fig. 12 

panels 9, 10  and 11)  and HeLa cells hybridized with E26 probe show random labeling of 

bright dots, some of which co-localized with Son and SF2/ASF (Fig. 12 panels 5, 6 and 7). 

HDAC6 stable cell lines hybridized with E26 probe showed either 2-3 bright dots that 

resembled a nuclear speckle pattern. The speckle pattern observed colocalizes with Son and 

SF2/ASF while some of the bright dots colocalize with Son and SF2/ASF (Fig.12 panels a-

x). 

4.6.2 Screening HeLa HDAC6 stable populations to identify reporter transcription locus 

Since we did not successfully generate a stable clone with single transcription locus, we 

proceeded to make stable populations with HDAC6 reporter minigene construct and visualize 

the transcription loci of HDAC6 minigene in situ. HeLa cells were transfected with HDAC6 

reporter construct and selected using G418 (1 mg/ml). The cells were then trypsinized, 

collected and frozen stocks were made. RNA-FISH with different probe concentrations (10 
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ng, 20 ng and 40 ng), combined with immunofluorescence with antibodies against Son and 

SF2/ASF was performed.  RNA-FISH with HDAC6 probe showed speckle like structures 

(Fig.13 panels a, e and i) that co-localized with Son and SF2.ASF (Fig.13 panels b, c, d, f, g, 

h, j, k and l).   

4.6.3 Hybridization of transiently expressed HDAC6 reporter minigene to identify 

transcription/splicing factories 

RNA-FISH for both stable populations and stable cell lines being unsuccessful, we moved on 

to cells transiently expressing HDAC6 reporter minigene. Transient transfection of 

minigenes such as BTM have previously been used to create large transcription factories 

within nuclei that can be detected by RNA-FISH (Huang and Spector, 1996). HeLa cells 

transfected with 2 μg of HDAC6 reporter plasmid DNA were fixed after 48 hours to perform 

RNA-FISH with different probe concentrations (10 ng, 20 ng and 40 ng) and 

Immunofluorescence with antibodies against Son and SF2/ASF. RNA-FISH with E26 probe 

showed 2-3 bright dots (Fig.14 panels a, e and i) some of them colocalizing with Son and 

SF2/ASF (Fig.14 panels b, c, d, f, g, h, j, k and l). One more condition was tested by varying 

the amount of DNA used for transfection.  HeLa cells were transfected with different 

concentrations of HDAC6 reporter plasmid DNA (1, 2, 5, 7 and 10 μg), and RNA-FISH 

combined with immunofluorescence was performed after two days. Again, transcription 

factories were not observed, but we observed a nuclear speckle pattern for HDAC6 reporter 

transcripts (Fig.15 panels a, e, i, m and q).  
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Figure 12: Screening HeLa HDAC6 stable cell lines to visualize the reporter transcription 

locus by RNA-FISH.  

HeLa HDAC6 stable cell lines were processed for RNA-FISH to label HDAC6 minigene 

transcripts combined with dual label immunofluorescence localization of Son and SF2/ASF. 

Panels 1, 5, a, e, i, m, q and u show RNA-FISH signal in different cell lines as labeled. Panel 9 

shows HeLa cells not labeled with any probe (to determine background fluorescence). Panels 2, 

6, 10, b, f, j, n, r and v show localization of Son in different cell lines. Panels 3, 7, 11, c, g, k, o, s 

and w show localization of SF2/ASF in different cell lines. Bar = 5μm. 
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Figure 13: Screening HeLa HDAC6 stable populations by RNA-FISH to identify reporter 

transcription locus.  

HeLa HDAC6 stable populations were processed for RNA-FISH to label HDAC6 minigene 

transcripts combined with dual label immunofluorescence localization of Son and SF2/ASF. 

Panels a, e and i show HDAC6 minigene transcripts of stable populations when 10, 20 or 40 ng 

of E26 probe was used for RNA-FISH, respectively. Panels b, f and j show localization of Son in 

stable populations. Panels c, g and k show localization of SF2/ASF in stable populations. Bar = 

5μm. 
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Figure 14: RNA-FISH of transiently expressed HDAC6 reporter minigene transcripts to 

visualize transcription/splicing factories.  

HeLa cells were transiently transfected with 2 μg of HDAC6 minigene reporter plasmid. After 48 

hours, the cells were fixed and processed for RNA-FISH to label HDAC6 minigene transcripts 

combined with dual-label immunofluorescence to visualize localization of Son and SF2/ASF.  

Panels a, e and i show transiently expressed HDAC6 minigene transcripts when 10, 20 and 40 ng 

of E26 probe was used for RNA-FISH, respectively. Panels b, f and j show localization of Son. 

Panels c, g and k show localization of SF2/ASF. Bar = 5μm. 
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Figure 15: RNA-FISH of transiently expressed HDAC6 reporter minigene transcripts to 

visualize transcription/splicing factories. 

HeLa cells were transiently transfected with various amounts (1, 2, 5, 7 and 10 μg) of HDAC6 

minigene reporter plasmid. After 48 hours, the cells were fixed and processed for RNA-FISH to 

label HDAC6 minigene transcripts combined with dual label immunofluorescence to visualize 

localization of Son and SF2/ASF. Panels a, e and i show transiently expressed HDAC6 minigene 

RNA when either 1, 2, 5, 7 or 10 μg of HDAC6 minigene reporter plasmid was transfected, 

respectively. Panels b, f and j show localization of Son. Panels c, g and k show localization of 

SF2/ASF. Bar = 5μm. 
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4.7 Stable cell lines constructed in HEK 293 with YFP tagged Son deletion mutant 

constructs express YFP-Son constantly 

HEK 293 cells were transfected with four YFP tagged siR resistant Son deletion mutant 

constructs namely YFP-siR-Son Fl, YFP-siR-Son 1-2008, YFP-siR-Son 1-1493 and YFP-

siR-Son 1-332 (see Figure 16A). Stable clones were selected using G418. Primary and 

secondary screening through fluorescent microscopy showed consistent expression of the 

constructs. Three positive clones were picked for each construct after secondary screening. 

Clones 5, 27 and 64 (YFP-siR-Son Fl), 4, 32 and 69 (YFP-siR-Son 1-2008), 15, 48 and 58 

(YFP-siR-Son 1-1493), 8, 16 and 46 (YFP-siR-Son 1-332) were selected (Figure 16B). 
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Figure 16: siRNA resistant Son Deletion Mutant constructs and their expression in 

Stable HEK 293 Cell lines. 

A. SiRNA resistant Son full-length mutant construct consists of all the domains of Son and 

in tagged to YFP. siRNA resistant Son 1-2008 deletion mutant construct consists of the 

region from 1 to 2008 amino acids and lacks C-terminal G-patch and double stranded 

DNA binding domain. siRNA resistant Son 1-1493 deletion mutant construct consists of 

the region from 1 to 1493 amino acids and lacks C-terminal RS domain, G-patch and 

double stranded DNA binding domain. siRNA resistant Son 1-332 deletion mutant 

construct consists of the region from 1 to 332 amino acids and lacks the repeat motifs and 

C-terminal RS domain, G-patch and double stranded DNA binding domain. 

B. Stable cell lines constructed using the four deletion mutant constructs were screened for 

consistent overexpression. The stable clones 5, 27 and 64 of full length-siR Son show 

speckled pattern confirming the overexpression of Son protein.  The stable clones 4, 32 

and 69 of 1-2008-siR Son show speckled pattern confirming the overexpression of Son 

protein. The stable clones 15, 48 and 58 of 1-1493-siR Son show speckled pattern 

confirming the overexpression of Son protein. The stable clones 8, 16 and 46 of 1-332-

siR Son show expression of protein in both nucleus and cytoplasm confirming the loss of 

speckled pattern of overexpressed Son deletion mutant. 
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CHAPTER 5: DISCUSSION 

Son is the largest SR protein identified in proteomic analysis of nuclear speckles (Saitoh et al., 

2004). Our lab has previously showed that depletion of Son causes reorganization of nuclear 

speckles in to a doughnut shaped phenotype (Sharma et al., 2010). In the process of 

understanding the cellular functions of Son, microarray and exon array analysis performed in 

Son depleted cells showed decrease or increase in transcript levels as well as altered splicing of 

transcripts that encode proteins important for cellular processes such as cell cycle. Our lab has 

previously validated exon skipping in transcripts for three endogenous chromatin-regulating 

genes including HDAC6, ADA and SETD8 that is caused when Son is depleted (Sharma et al., 

2011). Ahn et al (2011) discussed the effect of Son depletion on splicing of cell cycle regulatory 

proteins such as TUBG1, KATNB1, TUBGCP2, PCNT, AKT1 and AURKB.  

Understanding the mechanism by which Son regulates splicing events of several selected genes 

requires a set of experiments to help define cis-acting elements (ESEs/ISEs) in transcripts that 

interact with Son for accurate splicing, as well as the domains of Son that mediate splicing 

activities, I aimed to determine the domains/repeats important for Son dependent splicing in 

HDAC6. Since Son is known to alter splicing of transcripts with weak splice sites (Sharma et al., 

2011 and Ahn et al., 2011), we analyzed the splice sites of HDAC6 between exons 26 and 29 

through ESEfinder. ESEfinder predicted weak splice sites at 5’splice site of exon 27 and 3’ 

splice site of exon 28 that possibly explains why HDAC6 splicing is dependent on presence of 

Son. Further experiments need to be done to validate the presence of weak splice sites in 

HDAC6 and Son dependency for accurate splicing. This can be performed by introducing silent 

mutations in the predicted weak splice sites of HDAC6 and determining Son dependency for 
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accurate splicing. Moreover, Son depletion causes exclusion of exons 27 and 28 in HDAC6 

transcripts that code for the BUZ domain of HDAC6 protein. Since the transcripts without exons 

27 and 28 are still in frame at the junction of exons 26 and 29, we predict that the mRNA is 

translated and the protein produced lacks BUZ domain. There is no evidence of natural 

occurrence of HDAC transcripts lacking exons 27-28 in the literature. However, HDAC6 protein 

lacking the BUZ domain is predicted to be non-functional in binding to ubiquitin, thus 

interfering with the process of recruiting mis-folded proteins to aggresomes. Aggresomes are 

formed as a response to formation of misfolded proteins. Failure to degrade misfolded proteins 

results in neuronal cell death in many neurodegenerative diseases. Polyubiquitinated misfolded 

proteins are transported to aggresomes by dynein motor proteins. HDAC6 binds to dynein motor 

proteins via a dynein-motor binding (DMB) domain present in between the two deacetylase 

domains, and it binds to polyubiquitinated misfolded proteins through its BUZ domain. Thus 

HDAC6 helps recruit misfolded proteins to dynein motor proteins followed by their transport to 

aggresomes (Kawaguchi et al., 2003; Rodriguez-Gonzalez et al., 2008).  

To gain insight into splicing functions for Son, we relied on reporter minigene assays. Our goal 

was to construct a reporter minigene system inside cells that could be used for RNA-FISH 

combined with immunofluorescence with antibodies against Son, several other splicing factors 

and splicing repressors such as hnRNPs in order to determine the effects of Son depletion on co-

recruitment of splicing regulators to transcription sites. To achieve this goal, we constructed a 

minigene reporter system containing the genomic DNA spanning exons 26 through 29 of 

HDAC6. After transiently transfecting HDAC6 minigene reporter plasmid and depleting Son in 

HeLa cells, exons 27 and 28 were excluded in both endogenous and exogenous HDAC6 

transcripts indicating the presence all the elements required to study Son-regulated splicing in the 
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minigene. We further tested exon exclusion in HeLa cells stably expressing our reporter 

construct and found that exons 27 and 28 are excluded in endogenous and exogenous HDAC6 

transcripts. One important conclusion that can be drawn from these observations is that since 

multiple stable cell lines expressing the HDAC6 reporter minigene show the same result, there is 

probably no connection between chromatin context and splicing regulation by Son for splicing of 

exons 27 and 28 of HDAC6 transcripts.   

To achieve the goal of visualizing Son-mediated splicing in situ, we stably transfected the 

HDAC6 minigene reporter in HeLa cells. However, we were unable to show the transcription 

locus of the minigene. Careful analysis of RNA-FISH experiments performed in parental HeLa 

cells show bright dots in individual nuclei that possibly could be considered as the transcription 

locus for endogenous HDAC6. However, the dots do not co-localize with Son and SF2/ASF 

consistently every time we perform RNA-FISH experiment, or in majority of cells on the same 

coverslip. We therefore do not consider the dots we see as transcription loci of HDAC6, but 

rather as an unexplained RNA-FISH signal. The next interesting observation is from RNA-FISH 

results of certain clones and cells transiently expressing HDAC6 reporter minigene. We observed 

a nuclear speckle pattern after performing RNA-FISH with HDAC6 probes. Moreover, speckle 

pattern is observed in parental HeLa cells hybridized with HDAC6 probe (e26-TxRed probe) 

which suggests a functional role of endogenous HDAC6 mRNA in nuclear speckles or post-

transcriptional splicing of HDAC6 mRNA in nuclear speckles. The speckle pattern was also 

observed in cells that were treated for RNA-FISH but not for simultaneous immunofluorescence 

localization of splicing factors (data not shown) which rules out the probability of speckle pattern 

being a cross-talk from other channels. However, since nuclear speckles contain a large number 
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of different proteins and RNAs that might bind non-specifically to FISH probes, the possibility 

non-specific binding of HDAC6 probe to nuclear speckles could not be ruled out.  

I had planned to observe alternative splicing of HDAC6 minigene in situ and determine the role 

of Son in recruiting splicing enhancers/repressors to nascent HDAC6 transcripts. Since we could 

not reliably visualize the transcription locus of HDAC6 reporter minigene inside the cells, these 

experiments could not be performed. Once the transcription locus is developed and visualized, 

the following experimental design can be followed to understand the effect of Son depletion in 

the recruitment of other splicing factors.  Cy5-conjugated exon junction probes, namely EJ26/27 

and EJ26/29, need to be used to visualize constitutively and alternatively spliced regions of 

HDAC6 minigene in situ. Individual probes EJ27/26, EJ29/26, E26, E27 and E29 work as 

controls to optimize the RNA-FISH conditions, to rule out the possibility that the experimental 

probes EJ26/27 and EJ26/29 bind only partially to nascent transcripts. Once hybridization 

conditions are set, exon skipping in control versus Son-depleted cells has to be evaluated. In a 

second set of experiments, performing RNA-FISH combined with immunofluorescence labeling 

antibodies specific to Son, SF2/ASF, SC35 and hnRNP A1 will determine how Son depletion 

alters their localization patterns. SF2/ASF and SC35 are nuclear speckle proteins known to 

promote splicing while hnRNP A1 is a splicing repressor (Sharma et al., 2010 and Millevoi et al., 

2010). Performing this experiment in parallel for multiple factors, and comparing one splicing 

factor/repressor and Son per coverslip in both control and Son depleted cells, will allow 

examination of relative levels of these proteins at the HDAC6 minigene locus in control versus 

Son depleted cells. If SF2/ASF or SC35 decrease at the locus when Son is depleted, we can 

conclude that Son is required for the accumulation of these factors and that this may be important 

for inclusion of HDAC6 exons 27 and 28. We can also conclude that Son is a scaffolding protein 
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that recruits splicing factors to the transcription/splicing sites and hence when Son is absent, 

SF2/ASF or SC35 will not be recruited to the splice sites that influence inclusion of exons 27 and 

28, resulting in exon skipping. Since hnRNPA1 is a splicing repressor, increase in its levels at 

the locus would suggest that presence of Son at nascent transcripts provides a signal that 

prevents hnRNP recruitment to promote correct splicing. 

The goal of this project was to begin building reporter systems to observe Son-dependent 

splicing events, both at the molecular level as well as in situ. Since I successfully constructed and 

characterized the HDAC6 minigene for molecular analysis, more features can be introduced that 

will allow more in-depth analysis. For example, site-directed mutagenesis in ESE or ESS 

sequences can be introduced to learn exactly which nucleotides in the transcripts are needed for 

proper splicing regulation.  In addition, MS2 stem loops could be introduced for purifying 

reporter mRNAs from control and Son-depleted cells, followed by mass spectrometry analysis to 

determine what splicing complexes are lost/gained from reporter transcripts in Son-depleted 

cells. In addition, MS2-binding protein can be introduced by transfection to directly visualize 

reporter mRNAs by microscopy in live cells instead of using RNA-FISH approaches. Finally, 

constructing a cell line similar to U2OS 2-6-3 (Janicki et al., 2004) will be needed to examine the 

dynamics of transcription activation and alternative splicing in situ on the HDAC6 reporter 

minigene locus.  
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