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ABSTRACT 

 

Eziolisa, Ositadimma Nnanna. M.S.Egr., Department of Biomedical, Industrial and Human 

Factors Engineering, Wright State University, 2014.  Investigation Of Capabilities Of Observers 

In A Watch Window Study. 

 

   

 

Due to an abundance of data and dynamic nature of tasks, challenges with information retrieval in 

surveillance and target identification tasks have risen in today's Intelligence, Surveillance, and 

Reconnaissance (ISR) community.  In this study, two variables, Area of Coverage and Amount of 

Activity (AOC/ACT), are manipulated to study their effects on the number of Watch Windows an 

observer can monitor. This research describes the analyst's task model, and explains how the level 

of AOC/ACT and number of Watch Windows affects the analyst's cognitive load.  Results 

showed a significant difference in performance and physiological indicators of workload between 

high AOC/ACT conditions and low AOC/ACT conditions.  Confidence levels were higher with 

low AOC/ACT conditions, while NASA-TLX ratings decreased.  A linear correlation was 

exhibited between the number of Watch Windows and the number of fixations.  The results show 

that these variables can be manipulated in tasking to maintain appropriate levels of cognitive 

workload. 

 

  



iv 
 

 

TABLE OF CONTENTS 

 Page  

INTRODUCTION ..............................................................................................................1 

Research objective............................................................................................................................. 1 

LITERATURE REVIEW ...................................................................................................2 

Intelligence Surveillance and Reconnaissance (ISR) ............................................................ 2 

Imagery Collection ............................................................................................................................. 3 

Motion Imagery .................................................................................................................................. 5 

Watch Window .................................................................................................................................... 6 

Workload Measurement ................................................................................................................ 13 

NASA-Task Load Index (NASA-TLX) .......................................................................................... 15 

Visual Search ..................................................................................................................................... 16 

Eye tracking ....................................................................................................................................... 22 

RESEARCH COMPONENTS.......................................................................................... 27 

Research Questions ......................................................................................................................... 27 

Task Models ....................................................................................................................................... 28 

METHODS ....................................................................................................................... 30 

Participants ........................................................................................................................................ 30 

Apparatus and Stumuli .................................................................................................................. 30 

Experiment Design .......................................................................................................................... 31 

Independent Variables ................................................................................................................... 33 

Dependent Variables ...................................................................................................................... 33 

Stimulus I ............................................................................................................................................ 35 

Stimulus II ........................................................................................................................................... 36 

Stimuli Design ................................................................................................................................... 37 

Procedure ........................................................................................................................................... 39 

Data collection .................................................................................................................................. 40 

RESULTS ......................................................................................................................... 43 

Number of Watch Windows and Area of Coverage and Amount of Activity on 

Performance ...................................................................................................................................... 43 

Number of Watch Windows and Area of Coverage and Amount of Activity on 

Perceived Difficulty ......................................................................................................................... 45 

Fixation ................................................................................................................................................ 48 

Sample Size ......................................................................................................................................... 49 



v 
 

GENERAL DISCUSSION ............................................................................................... 50 

RELEVANCE TO THE INTELLIGENCE SURVEILLANCE AND 

RECONNAISSANCE DOMAIN ..................................................................................... 55 

FUTURE WORK .............................................................................................................. 56 

Appendix A:  Tables of task Results................................................................................. 57 

Appendix B:  Performance................................................................................................ 59 

B-1: Effects of Number of Watch Window on Performance .............................................. 60 

B-2:  Effects of level of AOC and ACT on performance ......................................................... 61 

Appendix C: Confidence Ratings ..................................................................................... 65 

C-1:  Effects of number of watch windows on confidence rating .................................... 66 

C-2: Effect of level of AOC/ACT on confidence ratings ........................................................ 67 

C-3:  Effects of Cross of both Number of Watch Windows and Level of AOC/ACT on 

Confidence Rating ............................................................................................................................ 67 

Appendix D: Comparison of All Dependent Variables- Performance Versus Confidence 

and NASA-TLX ................................................................................................................ 71 

References ......................................................................................................................... 72 

 

 

 

 

 

 

 

 

 

 

 

 



vi 
 

TABLE OF FIGURES 

Figure 1: The ISR team and role of the intelligence Analyst. Double sided arrows represent 

communication pathways; dashed line represents flow of information. ....................................... 3 

Figure 2:  The intelligence analyst and methods for obtaining workload data ..................................... 5 

Figure 3:  Decisions Made by an Observer Performing a Visual Search Task ......................................... 7 

Figure 4: Parallel vs. Serial Search Methodologies (based on Bruce & Tsotsos, 2009) ..................... 10 

Figure 5:  Yerkes-Dodson graph showing curves of high medium and low stimulations ................. 25 

Figure 6: Multiple Reflections used to Calculate Gaze Direction ............................................................. 26 

Figure 7: Central Task Model of an Intelligence Analyst ............................................................................. 28 

Figure 8: Six-screen Display and Labeling ........................................................................................................ 31 

Figure 9: Fishbone diagram showing the independent variables with respect to each dependent 

variable .............................................................................................................................................................. 35 

Figure 10: Stimulus I- easy tasks (low AOC/ACT); one to six watch windows or screen displays .. 36 

Figure 11: Stimulus II- hard tasks (high AOC/ACT) one to six watch windows or screen displays 37 

Figure 12:  Confidence Questionnaire .............................................................................................................. 41 

Figure 13: General Behavior of Performance Versus Number of Watch Windows ........................... 44 

Figure 14: Mean Score versus number of Watch Windows and Amount of AOC/ACT ..................... 44 

Figure 15:  Graph of Confidence versus Number of Watch Windows .................................................... 46 

Figure 16:  Graph of Confidence Ratings versus Amount of AOC/ACT (High/Low).  Each error bar 

is constructed using a 95% confidence interval of the mean. ......................................................... 47 

Figure 17: Graph of NASA-TLX versus Amount of AOC/ACT (High/Low).  Each error bar is 

constructed using a 95% confidence interval of the mean. ............................................................. 48 

Figure 18: Graph of mean fixation versus number of watch windows .................................................. 49 

Figure 19: Graph of Performance Versus Confidence and NASA-TLX ..................................................... 71 



vii 
 

 

 ACKNOWLEDGMENTS 

 

 

 

 

 

I would like to express my most sincere gratitude to my advisor Dr. Mary Fendley, whose 

relentless encouragement, patience, enthusiasm, and great knowledge guided me throughout this 

journey.  

 

Besides my advisor, I would like to recognize my colleagues at Wright State’s Cognitive 

Systems Laboratory for their support and guidance throughout this project.  Finally I would like 

to recognize my family; especially Victoria Petit who stood beside me every step of the way.   

 

 

 

 



1 
 

 

INTRODUCTION 

The ability to use aerial and satellite imagery to acquire visual data has increased human 

visual tasking load in surveillance and target identification.   Therefore, in the Intelligence, 

Surveillance, and Reconnaissance (ISR) domain, the human bears the responsibility of signal 

recognition and initiation of best course of action (CoA).  Due to the abundance of data and the 

nature of tasks in today’s surveillance and reconnaissance, the human is often tasked with 

monitoring multiple displays of visual data simultaneously.  Subject matter experts (SMEs) 

suggest that when an observer is tasked to monitor activities in a multiple-window display, two 

main elements- area of coverage and the amount of activity- affect difficulty perceived by the 

observer.  These elements subsequently affect the number of windows the observers can 

successively monitor.   SMEs are interested in the observer’s performance in up to six watch 

windows.  Studying these variables in an experiment that mimics a surveillance environment will 

be used to evaluate this. 

 

Research objective 

 

The objective of this study is to investigate the impact that the variables Area of 

Coverage and Amount of Activity have on the performance of an observer who is watching up to 

six watch windows.  Also, the study hopes to discover strategies that would contribute to 

effectiveness of observers monitoring events in multiple displays. 
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LITERATURE REVIEW 

In order to understand this study it is important to understand some of the related topics 

discussed in this section. 

 

Intelligence Surveillance and Reconnaissance (ISR) 

 

Intelligence Surveillance and Reconnaissance (ISR) is a critical community to the U.S 

Department of Defense (DoD) that account for about $40 billion annually; and its functions 

involve various methods of information acquisition for national security decision makers (Best 

Jr., 2005).  The ISR team consists of the Mission Operations Chief (or Commander) (MOC), 

pilot, sensor operator, and imagery/mission supervisor.  The MOC coordinates execution of the 

mission and communicates with other members of the team.  An imagery supervisor works as a 

mediator between the Intelligence Analyst (IA) and the MOC.  Figure 1 shows the components of 

the ISR team and the communication pathways.   This study will examine tasks that are issued to 

IAs.  Because information processing currently involves observers watching multiple windows, 

the ISR community faces several challenges in the area of visual surveillance.   These challenges 

involve information overload, information fusion, fleeting targets that appear within a short 

period of time, thus demanding a quick response, and relocateable targets (Barber, 2002; Duncan 

& Ayache, 2000; Jones, Shapiro & Roshon, 2007; Pham et al., 2008).   The most common device 

for information acquisition for real time analysis in the ISR community is the Unmanned Aerial 

Vehicle (UAV).  
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Figure 1: The ISR team and role of the intelligence Analyst. Double sided arrows represent communication pathways; 
dashed line represents flow of information. 

 

Imagery Collection 

 

The most common method of imagery collection in the ISR community are using UAVs, 

which range from hand-held devices to orbiting satellites; therefore, many studies involving 

visual tasks have used UAVs for aerial data acquisition (Trinh & Kuchar, 1999; Dixon et al., 

2005; Freed et al., 2004; Srinivasan et al., 2004; Ruff et al., 2004; Wickens et al., 2003; Hickman 

et al., 2008; O’Kelly et al., 2005, ).  
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Capabilities of UAVs increase with advances in wireless communication and computing 

power.  The UAV’s ability to transfer information is utilized by the military, Research and 

Development (R&D), and other companies.  UAVs are unique for their ability to acquire 

simultaneous coverage of large areas and to perform mapping, subsequently relaying the 

information back to the operator.  Current uses of UAVs range from surveillance and mapping of 

hostile territory to border patrol (Ryan et al., 2004).  There are two methods by which data 

collected from UAVs are handled.  One is by live streaming of data from the UAV to the control 

station where data is processed by the ISR team.  In this approach, streaming data is of high 

importance.  For instance in a battleground, the Troops-in-Contact (TIC) would communicate 

with personnel at the control station who obtain information from the UAVs.  In the other 

method, the individual captures the videos collected by the UAV and relays them to the ISR team 

to be exploited by IAs.  In this approach, data is not processed live, therefore, it is used when 

mission objective can afford to wait for some time.  Data acquired from UAV’s in a mission that 

involves transfer of information are relayed to and processed by Intelligence Analysts. 

An Intelligence Analyst or Image Analyst (IA) is the person who specializes in 

performing tasks such as detection and recognition of various targets or objects.   Their tasks can 

be performed using either still imagery or motion imagery.  IAs can perform static or dynamic 

recognition activities.  Static refers to detection and recognition of objects while dynamic refers 

to detection and recognition of activities (Irvine et al., 2006).  
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Figure 2:  The intelligence analyst and methods for obtaining workload data 

 

 

Motion Imagery 

 

According to Ling et al., (2012), there are challenges with frame-rate limitations and fast 

camera action due to the camera being attached to a flying object.  Wide Area Motion Imagery 

(WAMI) and Full Motion Video (FMV) are the two most commonly used forms of imagery in 

experiments that are of interest to IAs because they are the formats used for the majority of their 

work.  Factors that may affect an IAs interpretation of motion imagery include (Irvine et al., 

2006): 

Intelligence 
Analyst Visual 

Search task

AOC/ACT
Number of Watch 

Windows
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 Target motion 

 Camera motion 

 Ground Sampled Distance or resolution 

 Scene complexity 

 Color 

 Frame rate 

 Image exploitation task category 

WAMI is a rapidly developing sensing modality characterized by the collection of Electro-

Optical or Infra-Red (EO/IR) images with very large spatial extents.   WAMI’s frame rates are 

one to two frames per second.  FMVs are 24-30 frames per second (United States Air Force, 

2012; Paul & Fendley, 2013).   One can see that WAMI’s frame rate is significantly lower than 

that of FMV.  Higher frame rate of the FMV translates to enhanced resolution, visibility, and 

color compared to WAMI and those factors will play a role in the selection of stimuli for this 

study.   

 

Watch Window 

 

The term Watch window refer to a geographic area on a computer screen that an observer 

(usually an IA in the ISR community) is tasked to observe.  Observers are often tasked to search 

for events such as suspicious activities, perform surveillance, and provide information that will be 

useful for troops on the ground or TIC in that area.   As one might predict, signal detection plays 

a role in a watch window performance.  In the case of a TIC task, one can see that the well-being 

of troops on the ground or TIC is dependent upon IAs making the right observations and relaying 

appropriate information to the MOC and the MOC taking appropriate CoA.  Currently, IAs may 

watch up to four windows at a given time. 

 

Accuracy of decision-making that involves signal detection is based on odds that favor 

certain possibilities of outcomes (McNicol, 2005; Abbot & Sherrat, 2013; Wixted, 2007; Hautus 
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et al., 2008; Pleskac & Busemeyer, 2010; O’Mahony & Hautus 2008; Verghese, 1994, 2001; 

Palmer et al., 1993; Eckstein, 2000; Ramos-Alvarez, 2012).  Signal detection involves identifying 

an item in the midst of distractors and distraction.  In signal detection there are two primary 

parties, the target and the observer.  In a mission, a target is either present or not; and from the 

observer’s perspective he/she either detects a target or not.  Errors are associated with the 

observer’s perspective.  That is, the observer can make errors in detecting the target or not.  Thus, 

there can be four possible outcomes:  

1. A hit- observer rightfully detects the target,  

2. A false alarm- the observer claims he/she detected a target while target is actually absent, 

3. A miss- the observer fails to detect a (present) target  

4. And, a correct no-call- the observer rightfully claims there is no target present or provides 

no response.    

 

 

Figure 3:  Decisions Made by an Observer Performing a Visual Search Task 
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Heeger (2007) suggested that two factors which influence accuracy of decision making 

are information acquisition and criterion.  First, the more information present, the better chance of 

the observer making a correct decision (hit or correct rejection).  The second factor, criterion, 

pertains to the fact that depending on the nature of the task, not all errors are weighted the same.  

That is, some errors are more serious than others.   The higher the priority of the task, the more 

likely it is to generate an accurate output.  Abbott and Sherratt (2013) found that assigning 

cognitive resources to one task reduces resources available to another task, thereby reducing 

accuracy and/or speed of the additional task.  Greater accuracy in a given task may correspond to 

slower performance. 

Factors that may hinder a decision maker in making a correct decision (a hit or correct 

rejection) are called uncertainties or noise.  Wichchukit & O’Mahony (2010) described noise as 

“random unpredicted signals produced by natural processes, both internal and external to the 

system.”  External noise is noise associated with experiment environment that may hinder the 

operator’s performance, such as keyboard malfunctions, computer freezes or a slow running 

system, temperature of environment, and experiment instructions.  Neural noise (internal noise) 

also affects decision variables and is associated with inhibition of the operator’s thought process 

due to factors such as sleep deprivation, meal deprivation, cognitive stress, and inadequate 

training (Stanislaw and Todorov, 1999; Heeger, 2007).  Of course it is ideal for experimenters to 

minimize external noise as much as possible.  However, there is usually some form of noise in the 

system and this must be accounted for.   Signal detection theory does not address questions on 

how an operator might filter noise, or how one might combine two noisy signals to cancel the 

noise out (Pleskac & Busemeyer, 2010).  However, Heeger (2007) suggested that the experiment 

designer can minimize noise by increasing signal strength and/or making targets easier to detect 

in which case the ROC curves are narrower, which is ideal.  Thus, as Wichchukit & O’Mahony 

(2010) mentioned, signal to noise ratio is an important measure to take into consideration when 
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conducting experiments involving SDT.  According to Heeger (2007), providing more 

information is a technique to improve signal strength and this is more applicable to a visual 

search task.  Wichchukit & O’Mahony (2010) illustrated the effects of information in signal 

strength and discriminability (d’), which serves as an index of sensitivity for signal/noise 

differentiation (Johnson et. al, 2006).  For instance, in a blind-folded soup tasting experiment, a 

judge might be tasked to tell the difference between soup Y and soup Z.  In this initial test, the 

judge might find the two soups very similar in taste and decide to go with a slightly spicy 

sensation as the differentiating factor between the two soups.  Assuming that he believes soup Z 

to be the one with spicy sensation, giving soup samples that are spicy in a follow up test would 

cause the judge to declare more soups “soup Zs,” causing him to have both more hits and more 

false alarms.  Similarly, giving him soup samples that are not spicy would cause him to be less 

willing to declare that the soup is “Z”; resulting in fewer hits and false alarms.  However, making 

the flavor of the spicy soups more pronounced in the initial test (where soups Y and Z were 

differentiated) would make the judge more confident that the spicy soup he is tasting is actually 

soup Z.  Similarly increasing d’ increases the probability of hits while also reducing probability of 

false alarms in a signal detection task.  Consequently, it is ideal to maximize d’ in a detection 

task.  It is important to note that some external noise is necessary for a complete signal detection 

experiment therefore experimenters usually implement them as distractors.  Implementation of 

distractors is common in visual search tasks because they exist in real IA’s tasks. 

Cameron et. al (2003) defined visual attention as the process by which one grants priority 

among visual information.   Bruce and Tsotsos (2009) performed a study in which the aim was to 

improve visual attention by directing the eyes into areas of the screen that contained relevant 

information to the search task.   In the study of visual attention, set size refers to the amount of 

distractors per relevant material.  Serial vs. parallel search concepts imply that some targets are 

found with minimal effort when a parallel search methodology is used while others (usually more 
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difficult tasks) require a serial search methodology.  Search time in serial search tasks typically 

increases when the number of distracting elements is increased.  On the other hand, addition of 

elements of distraction usually has no significant effects on the speed of parallel search tasks.  

Figure 4 was inspired by Bruce and Tsotsos’(2009) work, and it will be used to illustrate parallel 

and serial search methods.  The box on the left is an example of a parallel search task while the 

one in the middle and on the right are examples of serial search tasks.  Detecting the oddly shaped 

rectangles is easier and more natural with a parallel search whereas detecting a target using a 

parallel search; as in the two boxes to the right, is more challenging due to the increased variance 

in the sample.  Therefore, a serial search in those scenarios is ideal.  The ultimate goal of a search 

method is to discriminate between targets and distractors.   The tasks in this study are serial 

search tasks.  

 

 

Figure 4: Parallel vs. Serial Search Methodologies (based on Bruce & Tsotsos, 2009) 

 

In visual search tasks, SDT is the study of discriminability (d’) between targets and 

distractors.  Verghese (2001) argued that both the mean separation between target and distractors 

and the variability between their presentations are determinants of discriminability.  For example, 

in the middle and right boxes in Figure 4, if experimenters were to have the items closer together, 

an observer’s ability to discriminate between targets and distractors decreases; a similar result 

will be seen if color variability between objects was increased.  Set size (how big an area the 

search task is and/or how much content is in the search task) is found to be inversely related to d’.  
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The larger the set size, the lower the d’ and vice versa.  According to Verghese, several past 

studies such as Eckstein et al. (2000), Verghese and Nakayama (1994) and Palmer et al. (1993) 

have effectively illustrated relationship between set size and d’.  Therefore, in visual search tasks 

SDT may be used to make a prediction of the observer’s accuracy as a function of d’.   

Furthermore Palmer & McLean (1995) determined the existence of a relationship 

between response time and d’.  They found that response time increases exponentially with 

decreasing d’.  Verghese (2001) also stated that object attention might depend on degree of 

separation between the target object and other parts of the screen, as well as the observer’s level 

of familiarity with the target object.   

In order for an object to be correctly identified in a visual search task, the object that is 

being searched for must have a separate identity with characteristics that are distinguishable from 

the surroundings.   In other words, perceptual grouping is essential.  Perceptual grouping is a 

natural process involving texture segregation (Treisman 1982) that is mediated by differentiation 

of basic separable features in the area of the search.  It is believed that perceptual grouping affects 

all successive stages of a visual search such as grouping, separation, identification, and recall.  

Treisman (1982) highlighted the significance of grouping by showing that objects differing either 

in color (such as yellow As and Bs versus green As and Bs) or shape (such as yellow and green 

As vs. yellow and green Bs) are easily grouped into perceptual groups while objects that differ in 

both color and shape (such as yellow As combined with green Bs in a location versus yellow As 

combined with green Bs in another location) are not easily separated by the human observer.  

Gale & Buynak’s (1977) findings suggested that focused attention is necessary for object 

grouping.   

Another event that is often witnessed in visual search tasks is when more than one target 

appears within the same time interval, and the observer is expected to detect all targets.  Previous 
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studies have shown that in this case the probability of detecting the first target is much higher 

than the probability of detecting a second target in a different location at the same time.  It is 

believed that once the first target is detected, it becomes a high level distractor, which hinders the 

observer’s ability to detect the second target.  Cain and Mitroff (2012) found that subtracting 

targets from the display as they are found increases likelihood of finding subsequent targets; thus 

increasing search accuracy.  However adding distractors do not improve search accuracy.   

Furthermore, highlighting found targets helped reduce visual salience of the target as well as the 

and mental load on the observers.  However, replacing found targets with other objects reduced 

the target’s visual salience but did not alleviate mental load.   In conclusion, Cain and Mitroff 

(2012) found that, when a target is found, working memory load has a larger effect on the 

effectiveness of finding subsequent targets than the observer’s perceived salience.  

  Dickinson and Zelinsky (2013) suggested that humans tend to use less frequent eye 

movements in dynamic viewing conditions than in static viewing conditions.  A static visual 

search task is to a visual task, in which items retained their positions throughout the entirety of 

the task, whereas a dynamic visual search task is a task where items change locations randomly 

throughout the display.   Dickinson and Zelinsky’s (2013) article suggested that observers employ 

a sit-and-wait strategy, in which their gaze is focused on a constrained region throughout viewing 

task waiting for the target to appear in their gaze range.  The authors found that this strategy 

resulted in an increased in miss rate.  An active search is the alternative to the sit-and-wait 

strategy. In this method the observer actively searches for the target by observing specific items 

or item groups using either a systematic or random method. 
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Workload Measurement 

 

Workload is a measurement of the effort put in by the human operator to complete a 

given task.  Vicera (2013) found a strong relationship between those elements that influence 

attention and those that effect perceived load.  This relationship was deduced because the authors 

found that when the observer attempts to process information that is not relevant to the search 

task efficiency is negatively affected.  Evidently, processing of task-irrelevant information adds to 

the amount of workload perceived by the observer and hence is taken into account in measuring 

perceived load.  Therefore a measure of the degree of attention applied by the observer 

throughout a visual search task can play a role in determining perceived load. 

Lavie’s (1995) work is also important when discussing perceptual workload.  Her 

research suggests that when perceptual load is low in a task, mental processing resources tend to 

“spill over” to events that are not relevant.   On the other hand, when workload perceived by the 

observer is high, all mental resources are allocated to task relevant material.  While Lavie’s study 

illustrated the effects of high and low perceptual load tasks, Vicera defined the key differences 

between these task types that actually cause the observed effects on search efficiency.  In a low 

load task, the targets are expected to “pop-out” whereas in a high load task, the targets are not 

expected to “pop out” at the observer; as a result, that the observer has to put more effort into 

identifying the target.  In other words target and distractor features exhibit more of a camouflage 

in a high load task.  Lavie (1995) added to this concept, identifying a low load task as one in 

which the target is visually different from homogenous distractors and a high load task as one in 

which the target looks much like heterogeneous distractors.   

Hart and Steveland (1988) emphasized that workload is human centered and not task 

centered because it emerges from the interaction between the requirements of the task, the task 

environment, and the capabilities of the operator.  Hart and Steveland’s multi-year research study 
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included evaluation of ten workload-related factors obtained from 16 experiments.   Experimental 

tasks included simple cognitive, manual control, complex laboratory, supervisory control, and 

aircraft simulation tasks.  In their article they developed in detail a framework, which illustrates 

factors that influence performance and workload.  According to the NASA Human Performance 

Research Group (1987), specific sources of load such as mental capacity and environmental 

factors imposed by different tasks are the most important determinants of workload experiences.   

A factor that makes workload measurement so difficult is that there is no real standard, 

such as a task’s “actual workload,” with which the operator’s results can be compared (Hart and 

Steveland, 1988).  Therefore, workload measurement is relative and subjective.  The overall goal 

of Hart and Steveland’s study was to develop a sensitive workload rating scale that could both 

account for variation between and within tasks, as well as eliminate the influence of human 

perceptions and bias in judgment.  To that end, the authors began their research by asking the 

following questions:  what factors contribute to workload? What are the ranges, anchor points, 

and interval values? What subset of these factors contributes to the workload imposed by specific 

tasks? And what do individual operators take into account when experiencing and rating 

workload? Hart and Steveland (1988) also found in their research that task related sources of 

variability (such as task difficulty and amount of time available) between the operators were 

better predictors of workload experiences than biases.    

 The next step in developing a workload scale was to ask several groups of operators to 

evaluate their experiences during the experiments.  Various concepts of workload were 

discovered by finding out which ratings were most consistent across all operators in all 

experiments.  The paragraphs below will discuss the rating factors in Hart and Steveland’s 

research and summarize those rating factors in a table.  The factors form the framework from 

which the current NASA- Task Load Index (NASA-TLX) originated. 
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NASA-Task Load Index (NASA-TLX) 

 

Since humans cannot be programmed to give one hundred percent accurate workload 

readings of a task that they completed, there is need of a creative means to acquire accurate 

unbiased workload information.  A NASA-TLX is a multidimensional rating procedure used to 

obtain a weighted overall workload score (NASA Human Performance Research Group, 1987).  

According to the NASA Human Performance Research Group (1987), the earlier version 

of NASA-TLX scale had nine subscales.  Researchers later eliminated three subscales on the 

basis of redundancy and irrelevancy.  

Table 1: Current Version of NASA-TLX 

Title Description 

Mental 

demand 

Amount of mental activity assigned to the tasks such as calculating, 

recall, and research 

Physical 

demand 

Amount of physical activity assigned to task such as dragging, clicking, 

and pushing 

Temporal 

Demand 

Extent of pressure felt due to time while performing task.  Was the task 

rushed, slow, or comfortable pace? 

Performance Self-perception of success in task 

Effort Amount of physical and mental work designated to the task  

Frustration Extent of Irritation, aggravation or feelings of similar nature felt during 

task 

 

 

  Reid and Nygren (1988) narrowed the workload subscales further, defining three factors- 

performance, effort, and temporal demand and leaving out time load, mental effort load, and 

psychological stress load.  The rational behind the change was that the authors felt that their term 

mental effort could simultaneously describe both mental demand and effort in the NASA-TLX, 

and that their factors of time load and physiological stress load replaced NASA-TLX’s 

psychological demand and frustration respectively.  
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The NASA-TLX offers a combined score based on subscale ratings that are weighted 

according to their importance to the operator with regards to a specific task.  There are multiple 

factors that contribute to workload such as physical and mental load and load from time pressure.  

NASA-TLX is sensitive because offers a more precise way to acquire not only information on 

workload, but the exact types of load present (physical, mental, and temporal) and in what parts 

of the experiment the different types of load were experienced. 

The NASA-TLX is composed of six-subscale ratings, and aims to collect information on 

mental demand, physical demand, temporal demand, own performance, effort, frustration; and the 

operator perception of his/her own performance.  Three of the measurements-mental, physical, 

and temporal demands-relate to demands imposed on the operator whereas the other three effort, 

frustration, and own performance describe the operator’s interaction with the task (NASA Human 

Performance Research Group, 1987).   

It is ideal to administer the NASA-TLX to operators upon completing each task in an 

experiment (as opposed to issuing it at the end of the entire experiment) to avoid recency bias.  

Recency bias is an order effect bias whereby information presented later has a greater influence 

on the subject’s rating (Aquinis, Culpepper & Pierce 2010; Peggy & Richard, 1997; Fabrigar & 

Wegener, 1994; Tversky & Kahneman, 1973).   

 

Visual Search 

 

Previous studies indicate that there are limitations to how many windows a human can 

effectively monitor at a time.   The following discussion will focus on previous research that has 

been done on human capabilities in simultaneous multiple-window monitoring.    
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 Sumlman and Sanocki’s (2008) article investigated the relationship between number of 

displays watched by the observer and the accuracy of target detection.  According to the paper, 

there is a trade-off when the number of displays that an observer is monitoring is greater than 

four.  The researchers found that when required to monitor nine displays, observers failed to 

detect when targets entered a forbidden region 60% of the time.  In addition, when targets were 

identified, the probability of identifying another target within the same time frame was decreased.  

On the other hand, when monitoring only four displays, miss rates were reduced to 20%; 

significantly lower than observers responsible for nine displays.  Given the significant difference 

in target detection efficiency, Sulman and Sanocki’s (2008) results are relevant to the work of IAs 

and to the ISR community as a whole. 

Sulman and Sanoki’s (2008) conclusions imply that although adding cameras and 

monitors to improve security seems logical, such additions may actually defeat the purpose by 

deleteriously affecting the likelihood of detecting security concerns effectively.  Some points to 

consider when deciding monitor-to-operator ratio in CCTV viewing tasks are:  is the observer 

looking for behaviors that are easy or difficult to detect?  How complex are the scenes and 

backgrounds? How easy is it to tell between normal and incident (suspicious) behavior? How 

many incidents can (or usually do) occur in a given time? Do incidents take place in the 

foreground, middleground, or background?  What is the quality and brightness of video and 

resolution of camera?  What is the chance of an event occurring in more than one monitor 

simultaneously?  In addition to the aforementioned questions, previous studies have also 

suggested that monitor-to-operator ratio at a given facility also depends on risk factor of the area 

being monitored. 

Swanson et. al (2013) conducted a study on 26 participants test their ability to detect the 

presence of assigned Targets of Interest.  During the study observers monitored four Remotely 

Piloted Aircraft videos.  The results showed that dwell time (time spent in waiting for an event to 
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occur), viewing angle, and inter-event time have a significant effect on the ability of an observer 

to detect targets simultaneously in four displays.  Longer inter-event times seemed to help 

observers by allowing them the time to put more cognitive effort into watching the other displays.  

Response time was generally longer when viewing videos with short inter-event times.  

Furthermore, when multiple events are cued within a short time, observers must process each 

event individually thereby increasing response time. 

Shafiullah, Gyasi-Agyei, & Wolfs (2007) addressed the impact of an increased number of 

CCTV feeds on train drivers.  During the experiment, subjects were asked to determine whether a 

target item was present and if it is safe for the train to move.   Results in the study agreed with 

results in previously discussed literature.  That is, the time required by the train operator to 

reliably scan the images increased with number of images displayed.  Furthermore, busier images 

tended to result in an increase in false alarm.  Train drivers required more time to make more 

accurate scans in those occasions.  Results in this train study showed no significant difference 

between day versus night videos.  

During a visual search, the human registers a wide field of view with the eye’s retina and 

various areas of the retina have various image resolutions (Najemnik & Geisler, 2005).  The 

human eye uses quick movements to direct the fovea -the region of the eye with the greatest 

image resolution- to areas most likely to contain the target.  Eye saccade patterns are assumed to 

be in the general direction of the target being sought; on the other hand, Araujo et al., (2001), 

suggested that that the human observer often finds this difficult.  To test this hypothesis, they 

developed a saccadic plan to be used their visual task experiment.  Most of their subjects failed to 

follow the plan and therefore did not optimize performance in the tasks.  Many observers would 

often begin the task according to the saccadic plan, but eventually deviated to a more natural 

search method.  The authors suggested that following a planned saccade is too difficult because it 

requires extra processing resources from both the eyes and brain.   Factors that affected 
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effectiveness of following saccadic patterns include behavior of stimulus and spatial distance 

between one saccade to the next.   

The most sensitive visual information is acquired at the fovea, which represents the 

center of a focused gaze, and the human observer usually keeps gaze proximities close to this 

location (Araujo et al., 2001, Najemnik & Geisler, 2005).  In order to identify valuable pieces of 

information, it is imperative for the human observer to create an image of the world during a 

search task.  Researchers are currently performing studies that can help observers perform 

accurate visual searches and identify targets with minimal number of eye fixations.   

Morvan & Maloney (2012) conducted a study that encouraged the observers to perform visual 

search tasks with least minimum fixations by instructing observers to move their eyes according 

to a preset fixation pattern.   They found that most observers failed to perform the tasks as 

instructed and therefore did not accomplish the tasks using minimal fixation.   This suggests that 

such minimal fixation patterns are uncomfortable and unnatural to most people.   

In the case of a map, a human searcher who has a certain target in mind will usually scan 

the map and identify the closest attribute that resembles the target.  Najemnik and Geisler’s 

(2008) visual search study found that observers tend to fixate their gaze in a donut shaped 

formation around the center of the display.   This pattern was also one of four found in the work 

of Fendley (2009).  Najemnik and Geisler’s (2008) also found that the observers had higher gaze 

duration on top and bottom of the donut shaped perimeter.   In their search task, they compared 

human observers to ideal observers in an attempt to discover areas for improving the human 

performance.   The ideal observer was described by Najemnik and Geisler (2008) as an arbitrary 

character whose search performance is comparable to that of a computer system.  According to 

the article, the ideal observer focuses gaze on areas that are most relevant to the information 

being sought for, and is aware of and takes into account visual fields that are less sensitive.  This 
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means an ideal observer allocates less effort to items that are in regions of less visual sensitivity 

and more effort in locations of higher visual sensitivity.  Najemnik and Geisler (2008) also 

formulated a framework that outlines the search strategy of a human observer.   The observer 

begins with some initial beliefs about the target, which are represented as probabilities.   These 

probabilities are mixed with assumptions and biases.  In the first glace at search area, the observer 

obtains visual data from every likely target location.  The observer then uses the data to update 

previous beliefs.   If the observer’s maximum belief exceeds the criterion, the search is stopped 

and the closest signal to the target is picked; otherwise, the mission is restarted with new belief 

(by obtaining more information) about the target or location.   A high precision eye tracker was 

used to obtain gaze data in the study.   Najemnik and Geisler (2008) found that the observers’s 

visual acuity is highest at the center of the fovea and falls smoothly within the retina.  The 

subject’s visibility tended to decline fastest from top to bottom as opposed to from side to side; 

therefore visibility was poorest in the upper and lower regions of the search area.    The authors 

found that humans implement search strategies that are similar to the ideal observer.  That is, a 

search method that involves forming a donut-shaped area around the center of the display and 

allocating more gaze towards the shape’s top and bottom.   However, the human observer’s 

susceptibility to bias is the main difference between them and the ideal.  Biases in visual search 

tasks include contrast bias, Anchoring and Adjustment bias, order effects bias, availability bias, 

confirmation bias, representative bias, attentional bias, belief bias, conservatism bias, and 

empathy gap (Morgeson & Campion, 2010; Peggy Wegner & Fabrigar, 1997; Haugtvedt & 

Wegener, 1994; Tversky & Kahneman, 1973).   

Recent studies have also discovered that the size of functional visual field decreases with 

increasing task difficulty, and an increase in fixation is an indication of high workload (Young & 

Hulleman, 2013; Dodonov & Dodonova, 2012; Levin, Angelone & Beck, 2011; Lieberman, 

Coffey, & Kobrick, 1998).  The functional visual field addresses the amount of information an 
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eye’s retina can obtain in a single fixation and depends on task difficulty (Young & Hulleman, 

2012). Fixation is keeping the eye-gaze in one location and it is the point between two saccades.   

When an observer attempts to fixate on multiple items, the number of fixations needed to 

accomplish this will surpass memory capacity resulting in the observer being forced to revise 

previously fixated areas (Young & Hulleman, 2013).   Obviously, revisiting previously fixated 

areas adds to the fixation count and increases the time-on-task.  

The act of selecting particular areas to which attention is allocated is pertinent to an 

individual’s interaction with the environment.   However, this process can be infiltrated by biases.  

The converse of focused attention is distributed attention where the observer allocates attention to 

several different items in the search task.  Enns & Girgus (1985) discovered in their study that in 

the foveal realm, differences in effectiveness between focused and distributed attention are 

minimal.   In the peripheries, on the other hand, focused attention corresponds to more effective 

target detection (Ambler & Finklea, 1976).  The feature-integration theory described in 

Treisman’s (1982) article suggests that attention serves as a selective tool that selects both the 

features that are to be grouped together and a visual search task.  The range of attention can vary 

in intensity or in dimensions.  Current eye tracking equipment has been helpful in uncovering the 

degree of attention given to an area in a given time during a visual task.  Treisman (1982) 

suggests that the observer achieves object grouping by focusing on one area at a time.    Objects 

are obtained through features that occur within an observer’s single fixation, and when these 

fixations are interrupted, false images may occur.  Palmer (1992) showed in his study that 

proximity and movement of isolated elements are solid determinants of perceptual grouping.  

Proximity and movement of items assist the observer to group items with similar features and 

separate items with dissimilar features.   A feature-integration theory mentioned in Treisman’s 

(1982) article suggested that without prior knowledge of the target an observer scans items 

individually, whereas when the observer has some previous knowledge of the target, he/she 
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identifies target groups.  In other words, the observer groups objects according to their 

resemblance to the target.    

Vecera (2013) investigated the elements that affect the workload perceived by the 

observer by studying target-distractor similarity and distractor-distractor similarity.  The author’s 

goal was to examine whether elements that affect attention also affect perceptual load.  His results 

were consistent with previous research, concluding that target identification was most effective 

when target-distractor similarity was at a minimum and less efficient when target-distractor 

similarity increased.  On the contrary, target identification was least effective when target and 

distractor features were more similar and more effective when distractor-distractor features are 

more similar.   Similarity, distractor-distractor features allows for grouping of distractors and 

increased salience of the target. 

Vecera’s (2013) study also found a relationship between effectiveness of completing the 

visual search task and workload perceived by the observer.   The study’s results also suggested 

that the difficulty of the task had no contribution to perceptual load and thus the two cannot be 

directly correlated.    

 

Eye tracking 

 

An eye tracker is ideal in order to carry out an experiment that evaluates an observer 

monitoring multiple visual displays.   As shown in Figure 2, eye tracking methods can be used to 

acquire measurements of an IA’s workload during in a given task.  Eye tracking is a technique 

used to observe a person’s eye movements on a display.  In other words, eye tracking is used to 

visualize areas where someone allocates visual attention.  The eye gaze provides a very efficient 

way of pointing just as we do with our hands during interaction.  Eye tracking technology allows 

people to use this interaction method with computers and even other machines, because it is fast 
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and natural.  Eye tracking has been used to study several different fields including psychology, 

cognitive science, disability rehabilitation research, medicine, and human- computer-interactions 

(HCI) (Cheng &Veregaal, 2004).  Useful information can be gained from eye tracking in order to 

both understand human behavior and improve human computer interactions.  Most eye trackers 

use principles of corneal reflection tracking.  Corneal reflection cameras compare a video input of 

the user’s pupil with highlighted reflections off the cornea usually from light sources that are 

invisible to humans.  The center of the pupils are tracked in real time which provides information 

about the user’s Point of Gaze (POG) (Morgante, Zolfaghari, & Johnson, 2012).  Atkins, Moise, 

and Rohling (2006) suggested that a visual search is composed of two processes: search and 

comparison, and detection and verification.  Search and comparison includes preliminary 

scanning of the topographic area; the process is usually quicker and it is used to initially detect 

suspicious occurrences, such as unusual movement of people and vehicles.  The detection and 

verification process involves revisiting areas of suspicious occurrences and scanning the areas in 

more detail for verification.   Clearly this verification phase is expected to be of higher cognitive 

load than the first detection phase.  The areas on the map that require detection and verification 

are expected to consume more of the test subject’s attention, resulting in increased fixation of 

gaze, gaze vector, and gaze duration is expected to be seen in those areas.  ”Indeed a fixation at a 

given location is strong evidence that attention has been there” (McCarley & Kramer, 2008).  

Renninger et. al. (2010) conducted a study that showed relationship between pupil dilation and 

detection and verification of the target in a visual search task.  Also, one may suspect there would 

be a noticeable change in behavior measured with physio measures such as the EEG and the 

galvanized skin response- perhaps a higher heart rate and pulse due to high cognitive load during 

those times (detection and verification).  Furthermore, targets can be missed even though the test 

subject has his eyes fixated on it for some time.  Vachon et. al. (2012) suggest that this is due to a 

failure of “attentional processes.” That is, failure to implement enough conscious cognitive 
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thought processes to successfully detect the target.  Eye trackers are useful in detecting such 

occurrences, as they are significant factors of consideration in a visual search task.  

Limitations of eye tracking tools are generally centered on accuracy and usability.  

Accuracy includes temporal and spatial accuracy.  Temporal accuracy is the timing of the user’s 

POG with the visual stimulus/stimulus events as a function of the computer’s processing capacity, 

while spatial accuracy pertains to accuracy of the user’s POG compared to where the user is 

actually looking (Morgante et al., 2012).  The term usability describe the ease of calibration and 

flexibility during experiments (Morgante et al., 2012).  Callibration of POG is accomplished by 

moving a stimulus across specific locations on x and y axis of the screen and instructing the user 

to visually follow the stimulus.  Then the eye tracker computer records the user’s corneal 

reflection on the screen coordinates.  Cheng and Vertegaal’s (2004) study hypothesized that 

workload and accuracy follow the Yerkes-Dodson framework, which states that depending on the 

nature of task a low, medium, or high arousal/stimulus is required for optimum performance.  

That said, the wrong amount of stimulus will be either too low to stimulate adequate cognitive 

performance or so high that it overwhelms the test subject; either case inevitably leads to poor 

performance. 

The Yerkes-Dodson model (developed in 1908) states that there is a strong relationship 

between the severity of arousal and the level of performance in humans.  When a subject is given 

a task to complete, the amount of stimulation can be affected by environmental factors such as 

noise, temperature, and visibility as well as cognitive factors such as time pressure, 

presence/absence of audience, presence/absence of a supervisor, hints, instructions, etc.  The 

model suggests that arousal may improve performance, but this improvement ends at a certain 

level, and the intensity of stimulation is dependent on nature of the task.   
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Figure 5:  Yerkes-Dodson graph showing curves of high medium and low stimulations 

 

  Furthermore, the performance apex is also dependent on the task.  For example, an 

extremely high stimulation, such as being chased by a grizzly bear, might be effective if a track 

coach wants to obtain the best performance from his athletes.  Therefore, a high stimulation is 

required to accomplish optimal performance for this variety of task and the peak curve shifts to 

the right of graph, shown below.    

Though high stimulation tends to improve performance, the stimulus that causes the 

performance boost may differ from task to task.  For example, a soccer player’s performance may 

become improved when there is a crowd cheering him/her on, whereas a crowd may hinder the 

performance of the chess player.  Conversely, a soothing music may improve focus and 

performance of a chess player whereas the stimulation would be too low to help the soccer player.  

In other words, a soccer player’s optimal performance is achieved at medium stimulation- so the 

peak curve is at medium; whereas a chess player’s optimal performance is achieved by low to no 

stimulation resulting in a left shift of the peak curve (Duggan, 2012). 
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Figure 6: Multiple Reflections used to Calculate Gaze Direction 
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RESEARCH COMPONENTS 

The research components- research questions and experimental outline-will assist in 

narrowing down the focus of this study. 

 

Research Questions 

 

As stated in the introduction, this study was interested in learning the impact that variables 

Area of Coverage and Amount of Activity have on the performance of an observer who watched 

up to six watch windows.  The approach taken in this study was to assign number of watch 

windows and level of AOC/ACT as variables that would contribute to performance and perceived 

difficulty.  According to stated objectives of the study, the following research questions were to 

be addressed: 

1) Is there a difference in performance as an observer watches one to six watch windows, 

given high or low levels of area of coverage and amount of activity?  

2) Is there a difference in perceived difficulty between an observer watching windows with 

a high level of area of coverage and activity and an observer watching windows with a 

low level of area of coverage and activity?   

Given the above questions, the following hypotheses were generated: 

H01: There is no difference in the number of watch windows an observer can effectively monitor 

between high and low levels of area of coverage and amount of activity. 

H11: There is a difference in the number of watch windows an observer can effectively monitor 

between high and low levels of area of coverage and amount of activity. 

H02:  There is no difference in perceived difficulty between observers watching windows with 

high and low levels of area of coverage and amount of activity. 
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H12:  There is a difference in perceived difficulty between observers watching windows with high 

and low levels of area of coverage and amount of activity. 

 

Task Models 

 

Because information obtained from this study is intended for use in the ISR domain, it is 

important to study the task model of IAs.   Figure 7 illustrates the central task that an IA undertakes 

in a mission.   The tasks proceeds as follows: 1) acquire information about target, 2) initiate target 

search, 3) detect target signal, 4) no target signal detected, 5) identify Target, 6) verify target, 7) 

initiate callout, 8) Mission End.  These central tasks are simulated in the experiment 

 

 

Figure 7: Central Task Model of an Intelligence Analyst 

 

  Figure 2 outlines factors that effect the IA’s workload and methods for obtaining 

workload data.  The ultimate goal of IAs and mission planners in a given visual search task is to 

answer questions that pertain to Essential Elements of Information (EEIs), which makes up a  

condensed version of the information required by the client (Paul, 2013).  

Intelligence analysis carries challenges of effective individual and team perception 

(Trent, Patterson & Woods, 2007).   Previous research has been done to investigate the challenges 

associated with the intelligence analyst’s work.  Paul (2013) discovered that the intelligence 

Acquire Target 
Information

Initiate Search Detect Target Identify Target Verify Target Initiate Calloout End Mission

No Target Detected
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analyst faces many challenges during a mission and identified various techniques to measure 

these challenges.   They discovered difficulties associated with the cognitive demands required of 

analysts during a mission, cognitive heuristics that involve biases in decision making, and 

decision points that lead to errors.   The findings from this study along with interviews with 

analysts have identified two specific demands that impact performance.  These two demands are 

Area of Coverage (AOC) and Amount of Activity (ACT).  This study is going to leverage their 

findings by manipulating AOC/ACT and measuring the difference in both performance and 

perceived difficulty. 
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METHODS 

Participants  

 

The Participants recruited for this study included 25 adults (12 males and 13 females) 

between the ages of 22 to 45 who had normal or corrected vision.  Participants were recruited 

from the Wright State community and all had experience using a computer. 

Apparatus and Stumuli 

 

The participants used the Tobii T120 equipment, which that consisted of a 17inch LCD 

monitor with an integrated eye tracking system.  Gaze directions were computed by capturing 

multiple reflections of the light source on the eye as the shown in Figure 6.  The vector between the 

pupil center and corneal reflection were mapped out on the screen during calibration procedures 

(Weigle & Banks, 2008).  Cameras and light sources were affixed to the monitor.  The Tobii 

system performs binocular tracking at sixty hertz.  Generally, head movements were allowed 

within a 40-by-22-by-30 centimeter area with the user’s head centered at about 70 centimeters 

from the camera (Weigle & Banks, 2008).  Tobii uses “near-infrared, image-based corneal-

reflection” technologies (Weigle & Banks, 2008).  It is camera based so it is non-intrusive; that is, 

the cameras were not attached to the user’s head.  Subjects were instructed to keep their head 

movements to a minimum and attempt to and maintain a head position relative to that of the 

center of the screen.  

The Tobii screen displayed the video footage that was used as the stimuli in the 

experiment.  Participants used a mouse as an input device.  The screen numbers were labeled on 

the corners of each monitor, placing them out of the observer’s line of sight when viewing the 

tasks, but immediately available for reference when initiating a callout.  A Logitech USB desktop 
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microphone was used to capture the subjects’ callouts.  The auditory data was synced with the 

gaze tracking data from the Tobii.     

Limitations to the study, such as the area of the Tobii monitor (17 inches in diagonal 

measurement) and the nature of available imagery, allowed for the use of a maximum of six 

simultaneous displays.  A keyboard was not available because it was not needed.  A mouse was 

available to the subjects.   The experiment setup is illustrated on the figure below.     

 

Figure 8: Six-screen Display and Labeling 

 

Experiment Design 

 

An informal pilot study was conducted using three observers in order to specify criterion used to 

define and assign tasks of high or low levels of AOC/ACT.  The observers viewed a series of 

videos, a summary of which can be seen in and Table 2 andTable 3.  For this study, AOC and ACT 

were not separated for two reasons.  First, during the cognitive task analysis using real footages, 
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the IA never distinguished which one was more important.  The second reason is that available 

data for this study did not allow for differentiation between AOC and ACT within an image 

sequence.  

Table 2:  Description of High and low levels of AOC and ACT 

 AOC ACT 

Definition 
Amount of area covered by 

UAV 

Amount of activity witnessed in viewing 

area 

Low 

Instructions: subject views 

entities ≤ 2 on the display  eg) 

one road, one builiding and a 

road…This one entity could be 

across multiple screens 

Instructions: ≤ 8 occurrences of signal 

High 

Instructions: subjects view 

entities > 2  on the display  eg) 

on the entire display… 

Instructions: ≥ 18 occurrences of signal 

 

 

Table 3:  Nature of Tasks for Low AOC/ACT and high AOC/ACT 

Task 

Low AOC/ACT High AOC/ACT 

Reading task  

Counting task ≤ 8 Counting task ≥ 

18 

Identification task  

Task that requests a screen number  
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The experiment was a 2 X 6 within-subject method.  All subjects were exposed to all 

levels of independent variables.  Each subject was treated with more than one level of each factor.  

A within-subject method was ideal because since all subjects were assumed to have equal level of 

expertise, it allowed the investigators to detect other effects on performance that could have 

potentially gone unnoticed in a between-subject design (Tabachnick & Fidell, 2001).  Also, the 

within-subject method has a smaller error variance compared to the between-subject method 

(Tabachnick & Fidell, 2001).    

 

Independent Variables 

 

The main independent variables in the experiment were a) the level of area of coverage 

and amount of activity (AOC/ACT) which were high or low, and b) number of watch windows as 

shown in the diagrams in Figure 9.   

 

Dependent Variables  

 

The foremost dependent variables collected in the study were a) experiment score and 

average score, b) confidence rating, and c) NASA-TLX rating.  Each fish-bone diagram in Figure 9 

corresponds to one of the dependent variables.  Scores comprise of how many of the targets the 

participant was able to identify and were graded on a scale of 0 to 1 (1 = 100% of targets 

identified).  Confidence ratings that were obtained after each task and were graded on a scale of 1 

to 7 (7 = very confident), and NASA-TLX ratings that were obtained after each stimulus were 

scored from 0-100 (100 = high workload).    
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Figure 9: Fishbone diagram showing the independent variables with respect to each dependent variable 

 

Stimulus I 

 

The objective of stimulus I was to help the research team to understand the subjects’ 

baseline capacity.  It comprised of all easy tasks (low AOC and low ACT).   
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Stimulus II 

 

In contrast to stimulus I, stimulus II was designed to obtain a top curve performance data 

from the subjects.   In other words, stimulus II was expected to provide investigators with data 

that represents the subjects’ maximum performance within the experiment constraints.  
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Figure 10: Stimulus I- easy tasks (low AOC/ACT); one to six watch windows or screen displays  
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Figure 11: Stimulus II- hard tasks (high AOC/ACT) one to six watch windows or screen displays 

 

Stimuli Design 

 

Each of the stimuli was presented to all participants in a randomized complete block 

design.   Both independent variables, number of watch window and level of AOC/ACT, were 

randomized.   The order of stimuli presented to each subject was developed in JMP.   Stimuli 

were divided into sets of high or low difficulty.  The primary determinants of task difficulty are 

AOC and ACT.  The secondary determinants of difficulty are instructions given to the subject and 

amounts of essential elements of information (EEIs) or signals in each task.  
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For this experiment, an easy task was a video that has a small area of coverage and a 

small number of activity occurrences and a hard task was a video that has a large area of coverage 

and activity level.  When the subject was instructed to monitor a small area within a larger scale 

of coverage, the task difficulty was defined as easy, whereas when the subject was instructed to 

monitor a large area the task difficulty was hard.  A small area was defined as two or less areas.  

A large area was defined as areas greater than two.  In an easy task for example, the subject 

would be instructed to count the number of moving vehicles in roads X and Y only instead of 

looking at the entire display.  In this task, the subject focuses attention on those two areas and 

ignores other signals elsewhere in the display.  On the other hand, in a hard task the subject could 

be instructed to count the number of moving vehicles throughout the entire display.  Obviously, 

this type of task would be more challenging because the subject will have to pay attention to more 

areas.   

The next secondary variable that determines difficulty is the number of signals that the 

subject has to detect.  In an easy task, the subject would be required to detect ten or less signals 

throughout a display.  In a hard task, the subject would be required to detect signals numbering 

eighteen or greater.   

There are two reasons for this two-way designation of difficulty (easy and hard).  The 

first is because of the nature of the imagery, which is explained in detail in the difficulty level 

section of the paper, the second is to be able to highlight the effects of AOC and ACT.  Assigning 

easy/hard difficulty to the watch windows experiment and avoiding an intermediate or medium 

difficulty criterion highlights effects of the variables in the results.  For example, if task difficulty 

affects cognitive workload, which may affect error rates, then results would be expected to 

highlight a clear margin in observers’ performance between high and low difficulty tasks.  One 

may predict that error rates would be higher for observers viewing difficult displays, especially as 

number of displays is increased.   
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 Due to nature of data acquired for stimuli, the variables AOC and ACT jointly represent 

an easy or a hard task.  In other words, the variables AOC and ACT are not isolated; rather, they 

are used as a pair to represent an easy or a hard task.    

 Due to camera altitude in the video data available for the study, when the camera view is 

restricted to a smaller location out of the entirety of footage, the coverage area is small.  The 

majority of footage is of a landscape or a cityscape.  The camera’s altitude allows for an aerial 

view of the specific part of the city in which traffic patterns range from moderate to low; 

however, due to availability of multiple venues to be viewed by the observer in the city, a task 

that uses city footage is designated a difficult task.  On the other hand, when the camera is 

zoomed in to acquire a lower area of coverage the resulting view is that of a building, a field, a 

parking, etc. with little to no activity.  Thus the use of AOC and ACT jointly to determine 

difficulty is due to design limitations. 

 Easy task: An easy task is task that consists of a low AOC and low ACT 

o Subject is instructed to view two or less areas on the display 

 Hard task: A hard task is a task that consists a high AOC and high ACT 

o Subject is instructed to view more than two areas on the display 

 

Procedure 

 

The experimental area was designed to mimic that of an intelligence analyst’s workplace.  

The lighting was set to dim or dark (no lighting) depending on the comfort of the test subjects.  

The participants followed the following procedures during the experiment: 

1. Subject was briefed on background and purpose of the study  
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2. Document of consent was presented and summarized orally, then time was given to 

the subject to read, ask any questions, and sign the document  

3. Subject was be given a background pre-test questionnaire to fill out 

4. The subject was seated in front of the workstation, which includes the Tobii monitor, 

the keyboard and the mouse  

5. Instructions were given 

6. Subject proceeded with the tasks (subject did not have the ability to pause, rewind, and 

fast-forward the videos in the stimuli) 

a. There were two stimuli 

i. Subject answered a a confidence questionnaire after each task (12 total) 

ii. Subject filled out a NASA-TLX after each stimulus (two total). 

7. Post-test questionnaires were given to the subject  

8. In an interview format the subject discussed the experiment with the experimenter  

9. Subject was thanked for his/her contribution and dismissed 

 

Data collection  

 

Data was collected through NASA-TLX, interviews, pre- and post-test questionnaires and 

confidence rating.  The pre-test questionnaire issued in this study acquired demographic data such 

as age and gender, as well as deficiencies such as color blindness or visual impairments.  

Although the subject population was not separated on basis of expertise, the pre-test questionnaire 

attempted to obtain information about the subject’s familiarity with the tasks.  For example, if a 

subject is an IA who is exposed to rigorous visual search tasks on a daily basis, he/she might 

perform exceptionally well compared to the other subjects.   The confidence questionnaire that 

was presented after each task asked the subject how confident they felt about the completed task.  
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On the Tobii monitor, a scale of one (not confident) to seven (very confident) was presented and 

the subject responded with a mouse click 

 

Figure 12:  Confidence Questionnaire 

 

The post-test interview was given to the subject at the end of the experiment.  It was 

formatted in a seven-point Liker scale that allowed the subject to select a range from one- 

“strongly disagree” to seven- “strongly agree” to every question.   Then, there was a space below 

each scale labeled “comment” for the subject to elaborate on his/her selection.  The questionnaire 

contained 14 questions which covered areas such as easiness to learn, easiness to recover errors, 

mental workload, satisfaction etc. 

The purpose of the interview was to allow the subject to orally provide input on overall 

experiment.  Throughout the experiment some tasks would be more difficult than others.   The 

subject was given the opportunity to comment on what made a task more difficult and what make 

same tasks easy, and what actions might be taken by the researchers to help make tasks more 

doable.   The experimenter documented the subject’s inputs and suggestions.  

A microphone was used to obtain auditory response.   Synchronizing the microphone 

with the Tobii allowed the investigators to capture what the subject saw on the screen along with 

auditory responses.  Also, using an auditory response mechanism captures the nature of the IA’s 

work environment; Subject Matter Experts (SMEs) suggest that callouts are the most common 

method of communication. 
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In addition to auditory responses, the subjects were instructed to write their answers 

down on a piece of paper that was provided for them.  The written responses were provided after 

viewing each task so that they did not take their eyes off the monitor and potentially miss events.  

Because the experiment was focused on the observer’s ability to monitor several screens, given 

that the eyes are fixed on the display, it minimized events where the subject gazed away from the 

screen.  
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RESULTS 

Number of Watch Windows and Area of Coverage and Amount of Activity on Performance 

 

In this experiment, The JMP 10 statistical analysis software: Analysis of Variance 

(ANOVA) was used to analyze data.  Analysis tools that were utilized in JMP included Rsquare, 

Least Square Means (LSM), fit Y by X plots, LSMeans Tukey’s HSD (honestly significant 

difference), and graph builder plots.  Performing an Analysis of Variance (ANOVA)- fit model 

test, it was discovered that the number of watch windows (p < 0.001), level of AOC and ACT (p < 

0.001), and a cross of both variables (p < 0.001) all have significant effect on performance (score) 

in a scale where a p-value of less than 0.05 is considered significant. 

The next step was to examine the effects of each number of watch windows.   The general trend 

occurred as expected.  Overall, there was a decrease in performance as subjects went from one to 

six watch windows.   However there were a few deviations from expected behavior.  According 

to the Least Square Means (LSM) table, four screen-displays earned the highest score (LSM = 

0.75) and performance in two-screen displays (LSM = 0.74) was slightly higher than performance 

in one-screen displays (LSM = 0.73).   Further analysis was done using an LSMeans Tukey HSD 

(honestly significant difference): a connecting letters report in Table 10 in the appendix.   It was 

discovered that score did not differ significantly from one to four screen displays, because all of 

the scores were categorized with the same letter.  
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Figure 13: General Behavior of Performance Versus Number of Watch Windows 

 

 

Figure 14: Mean Score versus number of Watch Windows and Amount of AOC/ACT 

 

To identify the effects of level of AOC/ACT, an LSM table was generated.  The data 

revealed that subjects earned higher scores on tasks of low AOC/ACT (LSM = 0.81) than on 

tasks of high AOC/ACT (LSM = 0.50).   
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An LSM table was also generated to observe the effects of the combined variables 

number of watch windows and level of AOC/ACT.   Almost all number of watch windows (from 

two to six-screen displays) showed significantly higher scores in tasks of low AOC/ACT than 

tasks of higher AOC/ACT, with the exception of the one-screen display.  One-watch window 

showed scores that were similar in LSM (high AOC/ACT = 0.74, low AOC/ACT = 0.71).  

Therefore, on average, the obtained results were consistent with predicted behavior.  

   

Number of Watch Windows and Area of Coverage and Amount of Activity on Perceived 

Difficulty 

 

A fit model test was performed comparing number of watch windows and level of 

AOC/ACT versus confidence ratings individually.   The effects test revealed that number of watch 

windows had a significant effect on perceived difficulty (p < 0.001) while level of AOC/ACT (p = 

0.280) and a cross of both variables (p = 0.128) did not have any significant effect. 
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Figure 15:  Graph of Confidence versus Number of Watch Windows 

 

Observing the effects details revealed expected results: confidence ratings generally 

decreased continuously from one (LSM = 5.76) display to six (LSM = 4.02) displays.   An 

LSMeans Tukey HSD: connecting letters report was performed to further study the effects of 

number of watch windows, with the results located in Table 19 of the appendix.  The results showed 

that the confidence rating associated with the one-window tasks (classified under the letter A) 

was significantly higher than that of the rest (classified under Bs) and a significantly lower 

confidence rating was associated with two-, five- and six-window tasks (classified under Cs).  

Confidence ratings were appropriate for five- and six- window tasks but unexpectedly low on 

two-window displays. 

Although the effects of level of AOC/ACT were found to be insignificant to confidence 

ratings (p = 0.285), an LSM table identified that subjects reported to be more confident in tasks of 

low AOC/ACT (LSM = 4.74) than tasks of high AOC/ACT (LSM = 4.56).  The findings are 

consistent with predicted behavior.  The other measurement of perceived difficulty is the NASA-

TLX ratings that were obtained after each stimulus.   
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Figure 16:  Graph of Confidence Ratings versus Amount of AOC/ACT (High/Low).  Each error bar is constructed using a 
95% confidence interval of the mean. 

 

The effect of level of AOC/ACT was also found to be insignificant to NASA-TLX at a p-

value of less than 0.05.   Further observation of effects details revealed that subjects assigned 

lower TLX scores to tasks of low AOC/ACT (LSM = 60.27) than they did to tasks of high 

AOC/ACT (LSM = 63.07).  The findings were consistent with predicted behavior. 
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Figure 17: Graph of NASA-TLX versus Amount of AOC/ACT (High/Low).  Each error bar is constructed using a 95% 
confidence interval of the mean. 

 

 

Fixation  

 

Analysis of Fixation data revealed that number of watch windows (p < 0.001) and amount 

of AOC/ACT (p < 0.001) had a significant effect on fixation.  There was a linear relationship 

between number of watch windows and fixation: as the number of watch windows increased, so 

did the fixation count.  This illustrates that fixations increase with cognitive load.  These finding 

are consistent with previous research as discussed in the literature review section of this paper. 
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Figure 18: Graph of mean fixation versus number of watch windows 

 

Sample Size 

K-sample means (as opposed to one or two sample means) in JMP was used to calculate 

the power range or power-of-test (0-1) because the study was comparing difference in mean 

values across multiple (k) samples (greater than two).  Power tests yielded adequate values for all 

of the following significant variables: effect of number of watch windows on score (Power = 

0.70), level of AOC/ACT on score (Power = 0.99), and number of watch windows on confidence 

rating (Power = 0.7).  Level of AOC/ACT yielded the strongest power value, which implies that 

level of area of coverage and amount of activity was the strongest determinant of performance.  

However, the fact that power values for all significant variables were suitable (≥ 0.7) justifies the 

sample size (n = 25). 
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GENERAL DISCUSSION 

The results obtained from the experiment support the hypothesis that the level of AOC 

and ACT do have significant effect on the number of watch windows an observer can monitor in a 

visual search task.  Results also support that there is a difference in perceived difficulty between 

observers watching displays of high AOC/ACT and those watching displays of low AOC/ACT.   

However, in the visual search task, it is noticeable that performance does not vary 

significantly from one to four watch-windows in the mean score versus number of watch window 

graph (Figure 13).   This pattern deviates from the expected behavior that performance should 

decrease as the number of watch windows increases.   This observation suggests that the 

observer’s performance from one to four watch windows can be less predictable than 

performance on watch-windows greater than four.   For an observer who is watching one to four 

watch windows, internal noise factors such as tiredness, sleep deprivation and fatigue, or external 

noise such as distracting images or sounds in the experiment room may cause a decline in 

performance, whereas an observer who is not affected by the noise factors may perform better; 

these variables contribute to unpredictability in an observer’s performance between one to four 

watch windows.   On the other hand, performance drops when the observer is tasked to monitor 

more than four watch windows independent of the presence or absence of noise. 

 Similarly, in the mean (score) versus number of watch windows and amount of 

AOC/ACT graph (Figure 14), performance was significantly higher when the observer completed 

tasks of low AOC/ACT throughout one to six watch windows, with the exception of one watch 

window.  This suggests that differences in difficulty level presented by high level of AOC/ACT 

and low levels of AOC/ACT are minimal for a one watch window display, while difference in 

difficulty becomes more pronounced when the tasks are presented in more than two watch 

windows.   
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P-values reported for the variables number of watch windows, level of AOC/ACT, and a 

combination of both were strong evidence that they were all significant factors that affected the 

participant’s performance.   Since analysis suggested that level of AOC/ACT and number of watch 

windows by themselves affected performance, workload can be defined as a counter balance of 

both variables.  That is, an observer who is given visual tasks of low levels of AOC/ACT is 

expected to effectively monitor more watch windows than one who is given tasks of high levels of 

AOC/ACT.  Conversely, an observer who is given visual task of a fewer number of watch 

windows is expected to effectively monitor higher levels of AOC/ACT than one who is given a 

larger number of watch windows.   The other result that supports this counter-balance idea is the 

result obtained from performing a cross of number of watch windows and level of AOC/ACT.  The 

pattern observed in comparison of means suggest that the observer is more likely to successfully 

complete visual search tasks with higher numbers of windows when tasks are of low AOC/ACT 

and vice-versa.    

In addition, comparison of least square means revealed that performance was 

significantly higher at windows of low level of AOC/ACT, with number of watch windows of 4, 5, 

and 6 and significantly lower at high level of AOC/ACT with number of watch windows 1, 2, and 

3. 

In addition, findings on analysis of fixations provide evidence that fixation is an 

indication of workload.  The within-subject test implies that fixation is subjective because each 

participant worked at different speeds and fixation counts reflected that.  Therefore, in a visual 

search task, fixation is not a direct measure of workload; rather, it is an indication of the level of 

workload.   There was no significant correlation between fixation counts and NASA-TLX ratings 

at α = 0.05.   However, the general pattern observed indicated that fixation increased as NASA-

TLX ratings increased, which followed the expected trend.  After data analysis, it was observed 

that as tasks went from low to high level of AOC/ACT, the frustration rating in TLX increases. 
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Though there was no noticeable change in frustration rating between one and four watch 

windows, an increase in frustration ratings was observed when the number of watch window 

exceeded four.    Also, there was a correlation between gender and performance.   A close to even 

distribution of male and female subjects for this study allowed experimenters to observe a clear 

difference in behavior between the two genders.  Female subjects seemed to perform better, but 

reported less confidence in their performance than their male counterparts throughout the tasks.  

Another significant finding was that performance seemed to peak at four window 

displays.  This result supports the findings of Sulman and Sanocki (2008) that the human 

performance in visual search tasks increases up to four displays and drops with any additional 

displays.  Furthermore, the finding that there was no significant change in performance between 

one- to four- screen displays supports Nillie Lavie’s (1995) statement that low load may cause 

under-load and the observer’s cognitive capacities may spill over.  A certain load (in this case 

four windows) provides enough of a challenge for the observer to implement their full cognitive 

capacity and therefore perform better, and when this load is surpassed (in this case five and six 

window displays) the observer is overloaded and performance drops, as Sulman and Sanocki 

(2008) suggested.  Therefore, this study further validates both Sulman and Sanocki (2008) and 

Lavie’s (1995) findings.  

When observing performance on tasks containing a low level of AOC/ACT there is rise 

from one to three watch windows, followed by a gradual drop in performance from three to six 

watch windows.  In tasks with a high level of AOC/ACT, there is continuous drop in performance 

from one to three watch windows, a spike at four watch windows, then a decline from four to six 

watch windows.   Furthermore, tasks with high AOC/ACT, Figure 14 exhibited a close fit to the 

Yerkes-Dodson model from three to six watch windows.  Performance increased from three to 

four watch windows and then dropped from four to six watch windows.  This pattern suggests that 

the task presented in four watch window and high level of AOC/ACT allowed the observer to be 
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more engaged compared to the three watch windows, that did not provide enough stimulus, and 

five and six watch windows, that provided too much stimulus, resulting in a drop in performance.   

The performance disparity between high and low level of AOC/ACT seen in three watch windows 

in Figure 14 suggests that out of all number of watch windows the three watch windows had the 

most significant effect on the difficulty of task. 

Although ANOVA did not show a significant difference in confidence ratings between 

observers watching windows of low AOC/ACT and those watching high AOC/ACT windows, it 

did show a significant difference among observers watching different numbers of watch windows.  

The general pattern obtained from the LSM analysis suggests that as the participant’s number of 

watch windows increased, their confidence level decreased.  Therefore, behavior is as predicted.  

Studying the effects details of level of AOC/ACT, it was discovered that the participants reported 

higher confidence with tasks of low AOC/ACT than tasks of high AOC/ACT.  NASA-TLX 

findings also suggest a higher perceived difficulty in tasks of high AOC/ACT than tasks of low 

AOC/ACT.  Therefore, all findings support the conclusion that there are differences in perceived 

difficulty between observers watching different numbers of watch windows, and between 

observers watching windows of high and low levels of AOC/ACT.  

Video quality varied throughout the experiment.  At the same difficulty levels, 

participants tended to perform better on videos with better quality.  The participants also 

struggled with mapping tasks.  Mapping tasks are ones in which participants were instructed to 

count events that were portrayed in multiple screens, as opposed to one screen.  Therefore, in 

addition to levels of AOC/ACT, a combination of mapping issues along with poor image quality 

contributed to poorer performance in the visual search tasks. 

Investigation into the use of active and passive search strategies showed the predominant 

use of an active search strategy by observers.  A serial search task has a higher workload than a 
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parallel search task because it involves active search.  (Bruce and Tsotsos, 2009).  The stimuli in 

this study were designed to be serial search tasks; therefore, most (23) of the participants reported 

that they employed an active search strategy as opposed to a sit-and-wait strategy.  Two 

participants reported a combination of sit-and-wait and active search methods.  They claimed that 

active search was used on tasks that seemed doable: usually in tasks of one to four number of 

watch windows, whereas the sit-and-wait strategy was method was employed in tasks with greater 

than four watch windows.   
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RELEVANCE TO THE INTELLIGENCE SURVEILLANCE AND RECONNAISSANCE 

DOMAIN 

Findings in this study are of great relevance to understanding the IA’s performance on 

visual search tasks in the ISR domain.   These results provide enhanced knowledge of the effect 

of both AOC and ACT on the number of watch window an observer can effectively monitor.  

Quantitative analysis supports qualitative data gathered from SMEs.  This provides workload 

recommendation for tasking IAs.  The study also showed that demographics have an impact on 

performance.  

The overall population showed a direct correlation between perceived difficulty and 

performance.  Visual search tasks of low AOC and ACT minimized perceived difficulty, hence it 

can be reasoned that effectiveness in a visual search is fairly dependent on the observer’s 

perceived workload.   In other words, the observer is more likely to perform better when he/she is 

more confident in his/her ability to complete the task.  This indicates that it is worthwhile to 

allocate resources to proper training. 

The discovery that performance peaked on four-window displays which was supported 

by Sulman and Sanocki (2008), Lavie (1995) and the Yerkes Dodson framework is also useful 

information to the ISR domain.  The performance results suggest that it is ideal to keep the 

amount of watch windows at four.  The findings provide a solid platform for conducting 

experiments using IAs and assigning missions to analysts.  
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FUTURE WORK 

The current study discovered that observers found challenges in tasks involving multi-

tasking within multiple windows.  For future studies, R2 values that yield more correlation 

between dependent and independent variables can be obtained by taking other factors that may 

influence the observer’s performance, such as amount of sleep obtained, computer literacy, state 

of mind, and time of the day, into account during analysis.  Also, future studies may focus 

specifically on the area of multi-tasking in order to shed some light on the scopes and limitations 

of human performance in a visual search.  Cognitive load measurements acquired during this 

study may be different if the tasks involved mapping.  Studies that explore the field of visual 

mapping in multiple screen displays may be a useful extension of this study, and information 

obtained from such a study may also be useful to the ISR community.    
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Appendix A:  Tables of task Results  

Table 4: Table of performance for Stimulus I 

  
stimulus I 

  

Participant 
Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 

Average 

Score 

1 1 1 1 1 1 0.83 0.971666667 

2 1 1 1 1 1 1 1 

3 1 1 1 1 0.85 0.5 0.891666667 

4 1 1 1 1 0 0.66 0.776666667 

5 1 1 1 1 0.85 0.83 0.946666667 

6 0 0 1 1 1 0.66 0.61 

7 1 1 1 0.5 0 0 0.583333333 

8 1 1 1 1 0.5 0.66 0.86 

9 0.6 1 1 0.5 0.3 1 0.733333333 

10 1 1 1 0 1 1 0.833333333 

11 0 1 1 1 1 0.5 0.75 

12 0 1 1 0.5 0.85 1 0.725 

13 1 1 1 1 1 0.66 0.943333333 

14 1 1 1 1 1 0.83 0.971666667 

15 0.3 1 1 1 1 0.66 0.826666667 

16 1 1 1 1 1 0.83 0.971666667 

17 0.3 1 1 1 0.71 1 0.835 

18 1 1 1 1 0.14 0.66 0.8 

19 1 1 1 0 1 0.83 0.805 

20 0 1 1 1 0.71 0.66 0.728333333 

21 1 1 1 0.5 0.71 0.33 0.756666667 

22 0 1 1 1 1 0.66 0.776666667 

23 1 0 1 1 1 0.66 0.776666667 

24 0.6 1 1 1 0.14 0 0.623333333 

25 1 1 1 1 1 0.33 0.888333333 

                

Average 0.712 0.92 1 0.84 0.7504 0.67   
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Table 5: Table of performance for stimulus II 

  Stimulus II   

Participant 
Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 

Average 

Score 

1 1 0.79 0 1 0.6 0 0.565 

2 0 0.93 1 0.77 0 0 0.45 

3 1 0 0 1 0.9 0.6 0.583333 

4 0 0 0 0 0 0 0 

5 0 1 0 0.6 0 0 0.266667 

6 1 0.86 0.86 1 0.3 0 0.67 

7 0 0 0 0 0 0 0 

8 1 1 1 1 0.2 0.7 0.816667 

9 0.7 0 0 0 0.2 0 0.15 

10 0.8 0 0 0 0 0 0.133333 

11 1 1 1 1 0.5 0.6 0.85 

12 1 1 0 1 0.7 0 0.616667 

13 1 1 1 0.92 0 0 0.653333 

14 0.7 0 0 1 0.4 0 0.35 

15 1 1 0.73 1 0.3 0 0.671667 

16 0.5 0 1 0 0.9 0 0.4 

17 0.8 0 0 0.74 0 0.6 0.356667 

18 1 1 1 0.96 1 0 0.826667 

19 0.8 0 0.8 0.81 0.9 0 0.551667 

20 0.8 0.5 0 0.81 0.3 0 0.401667 

21 1 1 0 0 0.9 0.5 0.566667 

22 0.7 0.71 0.66 0.96 0.2 0 0.538333 

23 0.9 1 1 0.81 0.5 0.5 0.785 

24 1 1 0.73 0.92 0.6 0 0.708333 

25 1 1 0.73 0.6 0 0 0.555 

      

Average 0.748 0.5916 0.4604 0.676 0.376 0.14   
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Appendix B:  Performance 

The table below shows the analysis of variance performed on the two main variables, 

number of watch windows and level of AOC and ACT, with respect to the dependent variable 

performance.  R2 represents the percentage of variance in the dependent variable that is predicted 

from the independent variables, or the degree to which the independent variables correlate to the 

dependent variables.  The R2 = 0.23 in the summary indicates that 23% of the variance is 

explained by the model.  The other 77% of the variance can be explained by the response mean.  

F < 0.0001 indicates that the experiment model is a fit one. 

Table 6: Summary of fit for variables number of watch windows and level of AOC and ACT. 

 

 

Table 7: ANOVA on the variables number of watch windows and level of AOC and ACT. 

 

 

The table below represents a cross between the two independent variables and their effect 

on performance.  At a 95% confidence level, it was determined that all three variables had a 

significant effect on the subjects’ performance.  
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Table 8: Cross of variables number of watch windows and level of AOC and ACT. 

 

 

 

The LSM table below indicates a general pattern of a drop in performance from one to six 

watch windows, although it is not a completely linear drop.   

 

B-1: Effects of Number of Watch Window on Performance 

 

Table 9: LSM of score for each number of watch windows (out of 1.00) 

 

 

The table below represents the LSM of performance in tasks with high and low level of 

AOC/ACT.   Scores were higher on tasks with low AOC/ACT than with high AOC/ACT. 
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Table 10:  LSMeans Tukey HSD table showing the effects of number of watch windows on score 

 

 

B-2:  Effects of level of AOC and ACT on performance 

 

Table 11: LSM score for each level of AOC and ACT (out of 1.00) 

 

 

 

The LSM table below shows the score gradient of a cross of the two the variables number 

of watch windows and level of AOC/ACT.  The general pattern shows higher scores in low tasks 

and tasks with fewer watch windows though there were some random variations. 
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B-3:  Effects of Cross of both Number of Watch Windows and Level of AOC/ACT on 

Performance   

 

Table 12: Score for each number of watch window and level of AOC and ACT (out of 1.00) 

 

 

Below is the LSM Differences Tukey HSD table and corresponding connecting letters 

report.  Each cell contains four values: the difference in means, the standard errors of the 

difference and the lower and upper confidence limits (JMP®, Version <10.0.2>. SAS Institute 

Inc., Cary, NC, 1989-2007).  A Connecting Letters Report appears by default below the LSM 

Differences Tukey HSD table.  If levels are connected by the same letter, it implies that these 

levels do not differ statistically at a significance level of 0.05 (α = 0.05).  On the other hand, the 

levels that are not connected by the same letter are statistically different (JMP®, 

Version <10.0.2>. SAS Institute Inc., Cary, NC, 1989-2007.)  . 
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Table 13:  LSMeans Differences Tukey HSD table for the dependent variable score, and the independent variables 
number of watch window and level of AOC/ACT 
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Table 14:  LSM Differences Tukey HSD: Connecting Letters Report for dependent variable score and independent 
variables number of watch window and level of AOC/ACT 
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Appendix C: Confidence Ratings 

 

In the summary of fit table below, the R2 = 0. 11 indicate that there is an 11% correlation between 

the independent variables and the dependent variables, and that 89% of the variance correlates to 

the response mean..  The effects test indicates that # of watch windows  (F < 0.0001) had a 

significant effect on the subjects’ confidence ratings, while amount of AOC/ACT (0.2880) did not.  

Table 15: Summary of fit of effect for variables number of watch windows and level of AOC and ACT on confidence 
rating 

 

 

 

Table 16:  Effects test for variables number of watch windows and level of AOC and ACT on confidence rating 

 

 

The cross of the independent variables and their effect on confidence shows that the 

variable number of watch window (F < 0.000) had a significant effect on performance while 

neither amount of AOC/ACT (F = 0.2851) nor a cross of both variables (0.1284) had such an 

effect. 
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Table 17: Cross of variables number of watch windows and level of AOC/ACT on confidence 

 

 

 

C-1:  Effects of number of watch windows on confidence rating 

 

The LSM table below shows a nonlinear drop in observer confidence from one watch 

window to six watch windows.   

Table 18: LSM table for confidence ratings of one to six watch windows (out of 7.0) 

 

 

Table 19:  LSMeans Tukey HSD table that shows effects of number of watch windows on confidence ratings 
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C-2: Effect of level of AOC/ACT on confidence ratings 

 

Although it was determined that level of AOC/ACT did not have significant effect on 

confidence ratings, the LSM table below shows that confidence ratings were slightly higher in the 

tasks with low AOC/ACT (4.740) than tasks with high AOC/ACT (4.546) 

 

Table 20:  LSM table that shows effect of level of AOC/ACT on confidence ratings 

 

 

C-3:  Effects of Cross of both Number of Watch Windows and Level of AOC/ACT on 

Confidence Rating   

 

The LSM table below shows the confidence rating for a combination of the two the 

variables number of watch windows and level of AOC/ACT.  The pattern shows a close to even 

distribution in confidence ratings between tasks with high and low level of AOC/ACT.  Tasks 1, 2, 

and 4 had higher confidence ratings on tasks with low level of AOC/ACT while tasks 3, 5 and 6 

had higher confidence ratings on tasks with higher level of AOC/ACT. 
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Table 21: LSM table show confidence rating for each number of watch window and level of AOC and ACT (out of 7.0) 

 

 

Below is the LSM difference student’s t test.  Levels that are not connected with the same 

letter are significantly different. 
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Table 22:  LSMeans Differences Tukey HSD table for dependent variable confidence and independent variables 
number of watch window and level of AOC/ACT  
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Table 23:  LSM Differences Tukey HSD: Connecting Letters Report for dependent variable confidence and independent 
variables number of watch window and level of AOC/ACT 
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Appendix D: Comparison of All Dependent Variables- Performance Versus Confidence and 

NASA-TLX 

 

Graphing the independent variables score versus confidence yielded a graph whose 

behavior shows a direct relationship between performance and confidence.  Therefore, in general 

the more confident the subjects were, the better they performed.  A plot of performance (score) 

versus NASA-TLX also yielded a direct relationship, which was predicted.  The lower the 

NASA-TLX rating, the better the subjects performed.   The graph produced from the analysis 

shows a drop in performance as NASA-TLX values increased (which signifies the subject 

experienced higher workload in the task). 

 

Figure 19: Graph of Performance Versus Confidence and NASA-TLX 
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