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ABSTRACT 

Meyer, Amanda Lynn. M.S. Department of Earth and Environmental Sciences, Wright 

State University, 2014. Biogeochemistry of Sulfur Isotopes in Crystal Lake, Clark 

County, West-central Ohio. 
 
 
 

 Crystal Lake showed distinct biogeochemical patterns, which were governed by 

thermal stratification, photosynthesis, and sulfur redox processes. Field parameter 

measurements and water and Planktothrix rubescens samples were collected in May, 

August, and October, 2013 at the deepest point in the lake, to better understand these 

processes. At the metalimnion–hypolimnion boundary, P. rubescens produced 

chlorophyll and turbidity maxima. Photosynthesis produced oxygen-rich and nutrient-

poor surface waters. The decay of organic matter produced anoxic, nutrient-rich water in 

the hypolimnion. Sulfate concentrations were high in the epilimnion and metalimnion, 

with a maximum at the layer of P. rubescens, and decreased with depth in the 

hypolimnion. Sulfide was absent in the epilimnion and metalimnion and increased with 

depth in the hypolimnion. Sulfur isotopic composition changed with depth in the 

hypolimnion due to Rayleigh Fractionation. It can be concluded that P. rubescens play a 

major role in the sulfur cycle and sulfur isotopic composition changes.   
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I. INTRODUCTION AND PURPOSE 

EUTROPHICATION 

Eutrophication is the result of nutrient enrichment in natural waters, which affects 

the production of aquatic organisms (Yang et al., 2008). There are different levels of 

eutrophication that depend on the amount of nutrient concentration. Nitrogen (N) and 

phosphorus (P) are the two main nutrients leading to eutrophication that are utilized 

during photosynthesis reactions such as that described by the Redfield equation (Eq. 1).  

106CO2 + 16NO3 + HPO4
2- + 122H2O + 18H+ + Energy & Micronutrients      

 →C106H263O110N16P (algal biomass) + 138O2    (Eq. 1) 

Consequences of eutrophication are the amount of primary production, a loss of lake 

clarity, and hypoxia. Dissolved oxygen (DO) is consumed when algal biomass is respired 

by photosynthetic organisms. The decomposition of dead organisms in the hypolimnion 

also removes DO from the water column (Smith et al., 1999). 

 Nutrient cycles are altered due to the increase of human activities. Use of 

fertilizer, burning of fossil fuels, and waste pollution has increased the amount of nutrient 

input into terrestrial and aquatic ecosystems. Nutrient runoff from terrestrial regimes 

often results from either fertilizer use, inadequate wastewater treatment, or use of soaps 

and detergents. Nutrient-laden runoff flows into rivers and then into lakes and oceans 

(Smith et al., 1999, EPA.gov, 2014). The burning of fossil fuels adds nutrients to lake 

systems due to oxidation of the sulfur and nitrous oxides in the atmosphere as they react 
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with water and are then wet deposited. Due to this increase of nutrients in lake 

systems, algal growth has flourished in many lakes.  

Many Ohio lakes are experiencing hyper-eutrophication. Grand Lake St. 

Mary's (GLSM), in West-Central Ohio, is one such lake. GLSM has undergone 

extreme eutrophication not only due the nutrient runoff, but also due to the high 

surface-area to depth ratio of the lake. The morphometry of the basin allows for 

nutrients to be readily recycled between the benthos and photic zone where they can 

be used to drive primary production. Accordingly, GLSM has the highest microcystin 

concentration in Ohio due to eutrophication. Some cyanobacteria produce 

microcystin to prevent grazing, making them more competitive among other 

phytoplankton. Eutrophication causes an excess of P in the surface waters, but there 

may not be an ample amount of N input, causing N limitation for cyanobacteria. 

Another possible use of microcystin in cyanobacteria is N replacement in this 

circumstance (Figueiredo, 2004).  

Lake Erie also has been eutrophied since the mid 1990’s (Scavia et al., 2014). 

High levels of cyanobacteria mass are indicative of eutrophication, along with 

hypoxia developing in deep waters of the central basin of the lake. Cyanobacteria 

blooms and hypoxia are symptoms of eutrophication caused by a dramatic increase 

in dissolved reactive phosphorus concentrations in Lake Erie tributaries (Scavia et 

al., 2014). A recent increase of microcystin in Buckeye Lake has been a major 

concern due to blooms of blue-green algae (Arenschield, 2014). Buckeye Lake is 

another example of eutrophication occurring in Ohio’s natural freshwater systems. 

Eutrophication in Ohio freshwater lakes does not only affect the state, but 

downstream regions as well. Water from many of Ohio’s lakes drains to either Lake 
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Erie or the Ohio River, which flows into the Mississippi River and eventually the 

Gulf of Mexico. During the summer, an area of hypoxic water, termed the “Dead 

Zone”, is observed in the northern Gulf of Mexico. This zone of hypoxia is a result of 

nutrient-rich water entering the Gulf from the Mississippi and Atchafalaya Rivers 

(Rabalais et al., 2002).  

  

SULFUR 

The biogeochemical cycling of sulfur can be exacerbated by eutrophication 

creating extreme oxidation-reduction gradients. Common forms of sulfur in freshwater 

aquatic environments are sulfate (SO4
2-) and sulfide (S2-) (Dahl et al., 2008). The relative 

concentrations of sulfate and sulfide are dependent on the oxidation-reduction conditions 

of the water column (Cheng, 2014). 

Sulfur can originate from natural and anthropogenic sources and can occur in the 

atmosphere, biosphere, hydrosphere and lithosphere in solid, liquid and gaseous forms. 

Natural sources and reservoirs of sulfur include: weathering of geologic materials, fossil 

fuel combustion, peat and soil, plants, humans and animals. Many man-made facilities 

emit gaseous sulfur dioxide (SO2) into the atmosphere by fossil fuel combustion. Sulfur 

dioxide reacts with hydrogen peroxide in the atmosphere to form sulfuric acid (O’Brien 

and Birkner, 1977).  This acid can be deposited as wet deposition, such as rain, snow, or 

fog, or as dry deposition on fine particles. Approximately two-thirds of all atmospheric 

SO2 in the United States originates from the burning of fossil fuels. These emissions have 

dramatically decreased during the past two decades, from about 1.4 million tons in 1998 

to around 350,000 tons in 2012, due to the enactment of the Clean Air Act of 1970 and 
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the Clean Air Act amendments of 1990. The decline in SO2 emissions is a result of 

scrubbers that eliminate pollutants from power plant exhaust gases (Stewart, 2008). 

Sources of sulfur to lakes are most often attributed to groundwater, wet and dry 

atmospheric deposition, runoff, and mobilization from bottom sediments (Hicks, 2007).  

Sulfate is an abundant and significant sulfur compound in freshwater lakes and an 

important source of sulfur for aquatic biota. In oxic environments, reduced sulfur 

compounds can readily be oxidized to sulfate (Dahl et al., 2008). Acid rain deposition to 

freshwater lakes may result in accumulation of SO4
2- throughout the water column due to 

Eq. 2 (Jedrysek, 2005).  

H2SO4 + H2O → H3O
+ + HSO4

-       K1 = 2.4 x 106     (Eq. 2) 

HSO4
- + H20 → H30

+ + SO4
2-                K2 = 1.0 x 10-2

 

 

Sulfate accumulation has decreased in freshwater lakes by approximately 50% between 

1989 and 2009 due to the Clean Air Act (epa.gov, 2009). This may result in sulfur 

becoming a limiting factor for phytoplankton growth in some freshwater systems (Dahl et 

al., 2008). One such example is an oligotrophic lake in northern England, where, prior to 

1970, sulfate and phosphorus input into the system allowed phytoplankton to replenish 

(Hell, 2008). The decline in SO2 emissions could eventually result in sulfur becoming the 

limiting factor of these phytoplankton directly or by decreasing the influence of the 

mineralization of iron sulfides on the availability of phosphorus (Hell, 2008). 

 

Lakes that are relatively deep compared to the total surface area often have an 

anoxic hypolimnion where sulfide can accumulate to high concentrations. Sulfide sources 
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in the hypolimnion include dissolution of minerals in the sediments and microbial sulfate 

reduction. Sulfur is highly reactive in its reduced forms, such as S2- (Dahl et al., 2008).  

 

SULFER CYCLING MICROORGANISMS 

Microorganisms strongly influence sulfur biogeochemistry (Hell, 2008). 

Previously, vertical profiles of Crystal Lake, West-Central Ohio, have shown maximum 

concentrations of chlorophyll and turbidity at the boundary between the meta- and 

hypolimnions. These maxima were due to a concentrated layer of purple sulfur bacteria 

(PSB) that have been identified microscopically (Sadurski, 2012). PSB are anoxygenic 

photosynthesizers that utilize sulfide as the electron donor for cellular growth to create 

globules of elemental sulfur (S0) inside the cell (Eq. 3).  

6CO2 + 12H2S + Sunlight → C6H12O6 (carbon chains) + 6H2O + 12S0  (Eq. 3) 

18CO2 + 12S0 + 30H20 → 3 C6H12O6 + 12H2SO4 

24CO2 + 12H2S + 24H2O → 4C6H12O6 + 12H2SO4 

The PSB then oxidize the elemental sulfur to sulfate as it is released from the cell 

(Gemerden, 1995; Eq. 3). During this initial study, Planktothrix rubescens was identified 

at this boundary, between the metalimnion and hypolimnion, instead of PSB.  

In my initial investigations of Crystal Lake, Planktothrix rubescens, which is not 

a PSB, was identified at the boundary between the metalimnion and hypolimnion. P. 

rubescens is a reddish cyanobacteria that is planktonic in and common in freshwater 

lakes of central, northern, and northeastern Europe as well as the northeastern U.S. 

(Komárek & Komárková, 2004). P. rubescens require little light for photosynthesis and 
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can tolerate a greater range of temperatures than most other cyanobacteria, allowing them 

to survive at greater depths (Halstvedt et al., 2007). There is less competition for nutrients 

and other resources at the metalimnion-hypolimnion boundary than in surface waters 

where most phytoplankton and other microorganisms thrive. Colonies of P. rubescens 

commonly form in the beginning and final stages of eutrophication in lakes (Lampert and 

Sommers, 1997). One lake in particular, Lake Zurich, showed a disappearance of these 

blooms as eutrophication increased due to an increase in algal biomass in the epilimnion 

and a resulting decrease in transparency (Legnani et al., 2005). P. rubescens began 

reappearing once lake water quality improved as a result of improved wastewater 

treatment, decreasing the density of algal mass and phosphorus concentrations in the 

epilimnion (Lampert and Sommers, 1997; Legnani et al., 2005).  

P. rubescens were previously classified under the Oscillitoria genus. Many 

oscillitorioids are known to photosynthesize anaerobically in sulfide-rich environments, 

easily using H2S as an electron donor instead of H2O due to the high reactivity of sulfide 

(Chaudhary et al., 2009). This reaction produces S0 (Eq. 3). Some oscillitorioids can 

readily switch back and forth between aerobic and anaerobic photosynthesis (Garlick et 

al., 1977).  

P. rubescens also can produce microcystins, which are cyanotoxins that are 

harmful to plants and animals (Christiansen, 2008). Microcystins bioaccumulate in fish 

and other organisms and are harmful to animals and humans by either direct ingestion of 

the cyanobacteria or indirectly by ingestion of fish and other organisms that have been 

contaminated (Christiansen, 2008). P. rubescens are gaining attention due to their 

presence in freshwater lakes that are used for recreational purposes and for having the 
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most cyanotoxin per biomass compared to other toxic cyanobacteria (Halstvedt et al., 

2007). Zooplankton typically avoid grazing on P. rubescens as a result of the 

microcystin, facilitating the growth and competitive nature of P. Rubescens (Figueiredo, 

2004).  

P. rubescens, and other oscillitoroids, contain gas vesicles that allow for 

buoyancy regulation (Figure 1). Buoyancy regulation is necessary to offset molecules 

within the cell that are denser than water and for the phytoplankton to stratify in the water 

column under ideal light and nutrient conditions (Konopka et al., 2003; Legnani et al., 

2005). P. rubescens generally thrive in regions of freshwater lakes where reactive PO4
3—

P concentrations range 0--10 µg P l-1 (Legnani et al., 2005). The ability of P. rubescens to 

1) survive in low light and temperatures, 2) produce microcystins, and 3) regulate 

buoyancy makes it more competitive among many other phytoplankton. Bacterial 

attachment is rarely observed with these P. rubescens, suggesting that colonization is 

resisted (Van den Wyngaert et al., 2011). 

 
Figure (1). a. Representative image at 1000x magnification of filamentous P. rubescens found at 5.9 m depth. The 
filaments range in size from approximately 825 to 2500 micrometers in length and are all about 5 micrometers wide. 
Filaments were entwined as a mass. b. Arrows point to gas vacuoles that alter the buoyancy of the cyanobacteria 
(Konopka, 2013). 

 

Another group of microorganisms present within Crystal Lake is sulfate-reducing 

bacteria. These bacteria reduce sulfate to sulfide under anoxic conditions. Sulfate-
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reducing bacteria are the most likely cause of the strongly reducing conditions produced 

in the hypolimnion due to respiration processes consuming O2. 

 

SULFUR ISOTOPES 

Biogeochemical reactions and transformations of sulfur, and other constituents 

affected by microbial mediation, cannot be recognized solely through chemical 

concentration analyses: stable isotopic measurements must also be made (Jedrysek, 

2005). Large relative differences in mass between each isotope of a light element lead to 

differences in reaction rates. This affects the isotopic composition, as fractionation occurs 

during various physiochemical and biological processes (Clark and Fritz, 1997). Lighter 

isotopes react more quickly than heavier isotopes due to the stronger molecular bonds of 

the heavy nuclei. Far more energy is required to break stronger bonds, or detach them 

from the “comfort zone”, which is essential for reaction to occur. The higher energy 

requirement needed to break the stronger bonds of the heavy isotopes generally produces 

a heavier isotopic condensed phase, such as the aqueous phase in a vapor-liquid reaction.  

Sulfur has four stable isotopes, with the most abundant being 34S and 32S.  

 32S: 95.02 % 

 33S: 0.75 % 

 34S: 4.21 % 

 36S: 0.02 % (Hoefs, 1987) 

 

The abundance ratio of [34S/32S] of a sample is measured relative to the standard 

reference material, CDT troilite from the Canyon Diablo meteorite, which has an 

abundance ratio of 0.0450 (de Groot, 2004). This relationship is expressed as follows: 
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𝛿34𝑆(‰) = {
[

34𝑆

32𝑆
]𝑠𝑎𝑚𝑝𝑙𝑒

[
34𝑆

32𝑆
] 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑

− 1} 𝑥 1000 ‰    (Eq. 4) 

[34S/32S] is defined as the ratio of 34S atoms to 32S atoms in the sample and standard 

materials. Precise determinations of this ratio in the samples can be attained in a variety 

of ways, depending on the research objective (de Groot, 2004). Determination of the 

abundance ratio can be useful in determining the source of sulfur. For example, sulfate 

which is derived from sulfide, will typically be isotopically lighter than if it had come 

from another source. 

PURPOSE OF STUDY 

The purpose of this study was to identify the vertical distribution and seasonal 

variation of the isotopic composition of SO4
2-   and S2- in Crystal Lake. Currently there 

are no sulfur isotopic composition transformation measurements by either PSB or P. 

rubescens in the literature and no systematic studies of the impact of fractionation 

between sulfate and sulfide with either PSB or P. rubescens as a mediator. Previously, 

the goal was to identify the sulfur isotope composition of the PSB at the 

metalimion/hypolimnion boundary, because it could reveal the potential role of PSB in 

affecting the sulfur biogeochemistry in the lake. It was hypothesized that PSB would 

increase sulfate concentrations and decrease the δ34Ssulfate ratio at this layer. However, P. 

rubescens was identified instead of PSB. Therefore the hypothesis was revised to include 

P. rubescens instead of PSB as the cause of a sulfate concentration increase and decrease 

in δ34Ssulfate ratio.  
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II. MATERIALS AND METHODS 

STUDY SITE 

Crystal Lakes are a sequence of four interconnected lakes located in southwest 

Clark County in west-central Ohio. Main Lake, a.k.a. Crystal Lake, is the largest and 

deepest among the lakes, with a surface area of about 52000 m2, a maximum depth of 

11.9 m , and mean depth of 3.8 m (Woodruff, 1999; Figure 2).  Crystal Lake has a 

volume of approximately 200,000m3. 

Crystal Lake is the southernmost glacial lake in southwest Ohio (Woodruff 1999). 

The bedrock beneath Crystal Lake is composed of Ordovician dolomitic limestone inter-

bedded with calcareous shale (Woodruff 1999). The base of Crystal Lake is composed of 

a sand and gravel buried valley of outwash produced by the Wisconsin glaciation (Norris, 

1952). Crystal Lakes were formed 15,000-12,000 years ago when a Wisconsinan glacier 

retreated. The Miami buried valley and outwash plain were formed by the Teays drainage 

system (Goldthwait 1952). Based on the linear distribution of the lakes of Crystal Lakes, 

they are most likely Moulin-induced glacial lakes (Cheng 2014). 

Recently, the lake has been classified as mesotrophic based on secchi disk and 

phosphorus concentration measurements, a shift from the eutrophic classification it had 

maintained since 1975 (Talsna and Lazorchak, 1975). Thermal stratification, 
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photosynthesis, and decomposition of organic material in the bottom sediments control 

the biogeochemistry of the lake. Dissolved oxygen and nutrients are mixed throughout 

the lake twice a year. Thermal stratification develops after spring turnover around May 

with similar mixing patterns in each year. The lakes are stream-fed from the north and 

flow into the Mad River to the south (Wisebaker, 2008). The watershed is composed of 

agricultural and residential land and the lake is used for recreation (Talsna and 

Lazorchak, 1975). Houses near the lake are connected to a sewage system (Collins, 

1999). 

In many natural freshwater lakes, pelagic and attached algae are dominant 

photosynthesizers. Planktothrix rubescens cyanobacteria were found at Crystal Lake 

during my initial study, but other photosynthesizers, such as green algae and diatoms, are 

either likely or known to be present. A systematic study of the different algal species has 

not been conducted in Crystal Lake, but it is common to find these species in natural 

waters in the area.  
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Figure 2.  a.) Image of Crystal Lake b.) A map of the region.  

 

 

FIELD PARAMETERS 

Water quality parameters were  vertically profiled (every 0.5 m) at the deepest 

point in Crystal Lake. Parameters included DO, pH, temperature, specific conductivity, 

turbidity, chlorophyll, and Eh, measured with either a YSI Sonde 6600 V2 or a YSI 

Sonde 600 XL. Water was sampled from the same location at 1 m depth intervals through 

the entire water column in May, August, and October 2013. Nalgene wide-mouth bottles 

were cleaned with 10% HCl and rinsed with high-quality deionized water before 

sampling. Samples were filtered through 0.22 µm membranes using a vacuum pump prior 

to analysis of major anions, alkalinity, phosphorus, sulfide, ammonia, silica, and sulfur 

isotopes. Sulfide and ammonia were measured colorimetrically immediately upon 

sampling in the field. 
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Water samples (250 mL) were transported to Wright State University and kept at 

1.6–4.4 ºC until analysis of phosphorus, silica, alkalinity, and major anions. Phosphorus 

was measured promptly as PO4
3- and converted mathematically to phosphorus (PO4

3--P).  

Reactive and total phosphate were analyzed with a phosphorus (total and acid 

hydrolyzable) TNT reagent set and a Hach DR/4000.  Standard phosphorus solutions 

were prepared at 100, 300, 500, 800, and 1000 ng/l as P. Absorbance was read using 

Method 3036 at 890 nm. A calibration curve was established using concentration of 

standards on the Y axis vs. absorbance on the X axis. This curve was then used to 

determine the concentration of P in each sample. A blank was prepared and its 

absorbance was subtracted from those of the samples of highly colored waters (Vaccari, 

2012). 

Silica was determined within two days of sampling with a Hach DR/4000. 2, 4, 6, 

8, 10, and 12 mg/L working standard solutions were produced. Calibration curves were 

established by plotting the concentrations of the working standards on the Y axis vs. the 

absorbance on the X axis. Sample concentrations were calculated using the R2 of the 

calibration curve. 0.5 ml HCl and 1.0 ml AM were added rapidly to 25 ml of sample and 

mixed. The samples were allowed to react for 5-10 min, then 1.0 ml OA was added and 

mixed. The absorbance of each sample was then read within 2-15 min at 410 nm. The 

ratio of H+:Mo (3.85:1) is important in this procedure for better sensitivity (Vaccari, 

2012).  

Alkalinity was quantified with a modified Sarazin’s Method (Sarazin et al., 1999). 

Alkalinity standards were produced using a 0.1 M stock. Working standard solutions, 

from 2-8 mM of alkalinity, were prepared with the stock and suitable dilutions. 4 ml of 
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formic acid-color indicator solution is added to 2 ml of standard or sample and shaken to 

outgas CO2 for analysis. Absorbance is measured at 590 nm with a Hach DR4000. A 

calibration curve is established using the working standards alkalinity concentration on 

the Y axis vs. absorbance on the X axis. The best-fit polynomial function is calculated 

and can then be used to calculate the alkalinity of the samples. A higher concentration of 

formic acid must be used for samples with higher alkalinity. 

Samples were warmed to room temperature and poured into Dionex vials for 

anion analysis, which was performed using a Dionex ICS-1500.   Samples and standards 

must be filtered with a 0.22 µm membrane prior to analysis. After starting the instrument, 

the IC must be primed to remove any air bubbles in the tubing. Calibration curves were 

established by plotting the peak areas on the X axis vs. the concentration of standards on 

the Y axis. The R2 value calculated from this curve was used to determine the 

concentration of specific anions in the samples (Vaccari, 2012).  

 

SULFIDE 

Sulfide for isotopic analysis was extracted from lake water by precipitation as 

insoluble silver sulfide (Ag2S) based on a method suggested in the USGS report 97–234 

(Carmody et al., 1998).  Three-liter water samples were collected and samples with 

greater than 1 mg/L sulfide were treated in the field with an appropriate volume of 10% 

(wt:vol)  silver nitrate (AgNO3), depending on the exact sulfide concentration (Table 1), 

to precipitate Ag2S (Carmody et al., 1998).  The samples were then transported to Wright 

State University for filtration of the precipitated mixture of Ag2S and other silver 
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compounds. Co-precipitation of silver chloride (AgCl) is likely to occur, therefore, 

treatment with 3 weight percent ammonium hydroxide (NH4OH) was required to 

eliminate other silver compounds and resuspend Cl- into solution. The Ag2S precipitate 

was then filtered again with a 0.22 μm membrane, rinsed, and air-dried for isotopic sulfur 

analysis. 

 

 

 

 

 

 

S2- concentration of 

sample (mg/L). 

mL 10 % AgNO3 solution 

to add per liter of sample. 

Mg Ag2S produced per 

liter of sample. 

Liters of sample to 

process to make 39 mg 

Ag2S 

3.0 0.88 23.2 1.7 

2.5 0.73 19.3 2.0 

2.0 0.58 15.5 2.5 

1.5 0.44 11.6 3.4 

1.0 0.29 7.7 5.0 

0.5 0.15 3.9 10.1 

Table 1. Table 9 of the U.S. Geological Survey Open-File Report 97-234 for direct precipitation of sulfide. 

Calculations of the amount of AgNO3 to be added to a water sample dependent on concentrations of H2S.  

 

 

 

SULFATE 

Sulfate for isotopic analysis was extracted from lake water by precipitation as 

barium sulfate (BaSO4) based on a method described in the USGS report 97-234 

(Carmody et al., 1998).  One-liter water samples taken from the hypolimnion, 

approximately 6 m and deeper were purged with nitrogen (N2) in the field immediately 

following collection to evade H2S. Samples were then transported to the laboratory and 

filtered with a 0.22 μm membrane. The samples were then acidified to pH 3-4 with dilute, 

sulfate-free HCl to convert dissolved inorganic carbon (DIC) to carbonic acid (H2CO3) to 

eliminate carbonate (CO3
2-). Barium chloride (BaCl) was then added to precipitate SO4

2− 
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as barium sulfate (BaSO4) for isotopic analysis. The HCl was added to prevent co-

precipitation of barium carbonate (BaCO3) following addition of BaCl. After the BaSO4 

had settled overnight, the water samples were again filtered with a 0.22 μm membrane. 

The precipitate was rinsed with deionized water and centrifuged. The precipitates were 

then decanted and dried in a desiccator that was sent to the University of Arizona, along 

with the Ag2S from the sulfide samples, for sulfur isotopic analysis.  

 

P. RUBESCENS 

P. rubescens was sampled from the boundary between the meta- and 

hypolimnions into 1- and 3-L bottles. P. rubescens was filtered from the water onto 0.54 

µm membranes pores in the field to concentrate the samples. In the lab, the cyanobacteria 

were analyzed microscopically to determine the planktonic species, and then dried and 

powdered for isotopic analysis.  

 

ISOTOPIC ANALYSIS 

Isotopic analysis on sulfide, sulfate, and P. rubescens samples was performed at 

the University of Arizona and Northern Arizona University by measurement of δ34S. The 

University of Arizona measured δ34S of sulfide and sulfate with SO2 gas using a 

ThermoQuest Finnigan Delta PlusXL continuous-flow gas-ratio mass spectrometer (Fry, 

2002). A Costech elemental analyzer attached to the mass spectrometer combusted the 

samples at 1030 °C with a combination of O2 and V2O5. International standards OGS-1 

and NBS123 were the basis of standardization of the samples, along with comparison 
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between sulfide and sulfate materials from other laboratories. Linear calibration occurs 

between -10 to +30 per mil. Precision of analysis was estimated to be ± 0.15 per mil or 

better. 

It is beneficial to do sulfur isotopic analysis on a variety of sulfur compounds 

within one system to determine which processes affect the biogeochemistry, therefore the 

δ34S of both sulfate and sulfide were studied. Difficulties in sulfur compound extraction 

commonly reported are: Contamination of one compound with another, isotopic 

fractionation during aeration, conversion of one compound to another, and insufficient 

formation of precipitate for isotope ratio mass spectrometry. H2S, found in reducing 

environments, can oxidize to sulfate as it is exposed to oxygen during extraction. 

Therefore, H2S was precipitated in the field to minimize potential outgassing and 

oxidation.  Dissolved sulfide typically has a δ34S value over 30 ‰ lower than dissolved 

sulfate values in the same samples. H2S was stripped from samples extracted for sulfate 

analysis to prevent changes in the isotopic composition (de Groot, 2004). S2- from SO4
2- 

reduction in the hypolimnion should generate isotopically lighter S2- and heavier residual 

SO4
2-. 
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III. RESULTS AND DISCUSSION 

FIELD PARAMETERS 

TEMPERATURE 

The biogeochemistry of Crystal Lake is governed by several factors, primarily 

temperature. The lake was thermally stratified throughout the May–October sampling 

period (Figure 3a). The epilimnion had similar temperatures between May and August 

that were warmer than in October, and temperatures in the hypolimnion were relatively 

constant from the metalimnion-hypolimnion boundary to the bottom during all sampling 

periods. The thermocline migrated deeper from May to October, and epilimnion-

metalimnion and metalimnion-hypolimnion boundaries are indicated by lines colored for 

each month. 
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Figure 3. Field parameters collected in May, August and October at Crystal Lake. a. Temperature profiles in ºC. b. pH 
trends. c. Dissolved oxygen concentrations (mg/L). d. Eh trends in mV. The series of blue, red, and green lines indicate 
monthly thermal stratification boundaries. The colors correspond to the month the line represents. The upper series 
of lines on the temperature plot indicate the boundary between the epilimnion and metalimnion, and the lower 
series indicate the boundary between the metalimnion and they hypolimnion. The other plots merely show the 
metalimnion-hypolimnion boundary. 
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pH 

Crystal Lake had circumneutral pH throughout the water column with more 

alkaline values in the mixed layer (pH ~8.3 at the surface; Figure 3b). A pH transition 

zone was observed in the lower metalimnion to lower, more neutral values in the 

hypolimnion, where a steep decline was observed. A pH maximum was observed in the 

metalimnion. The maximum was deeper in the water column in August than in May and 

the October maximum is obscure. The vertical pH distribution followed those of 

temperature very closely.  

Alkalinity buffering in the epilimnion was responsible for the high, constant pH 

values, as acids are neutralized during this process. If Bicarbonate and carbonate are in 

the system, they will remove H+ ions from the water, adding to this increase in pH or 

stopping a pH decline (Shaw et al., 2004; Eq. 5). 

CO3
2+ + H+ 

 HCO3
- + H+  H2CO3  H2O + CO2   (Eq. 5) 

 The pH is correlated to both photosynthesis and decay of organic matter as it is linked to 

the carbon cycle (Eq. 1, Eq. 5, and Eq. 6). The pH maximum in the metalimnion was due 

to photosynthesis as the algae consume carbon dioxide (CO2) (Eq. 1). The decrease in pH 

in the hypolimnion was a result of respiration and decay of organic matter. As organic 

matter was decomposed, CO2 was fluxed back into the hypolimnion and strong acid was 

released (Eq. 6). 

C106H263O110N16P (algal biomass) + 138O2 →      (Eq. 6) 

 106CO2 + 16NH4
+ + HPO4

2- + 122H2O + 2H+ + Energy & Micronutrients      
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DISSOLVED OXYGEN and Eh 

Dissovled oxygen was consistently about 9 mg/L in the upper epilimnion (Figure 

3c). Subsurface maxima of DO were present within the metalimnion in May and August, 

with a more obscure maximum in October.  The hypolimnion was anoxic in August and 

October, and DO concentrations were low in May.  

The distribution of DO is influenced by temperature, photosynthesis and 

respiration (Smith et al., 1999). The DO concentrations were relatively homogeneous in 

the epilimnion where the water was in equilibrium with the atmosphere and wind-driven 

mixing could occur, causing similar temperatures, and therefore similar DO solubility, 

throughout this layer. The DO concentrations are slightly lower in this region in May due 

to higher surface temperatures during this time. As temperature increases, DO solubility 

decreases (Senese, 1997).  

 The increase in DO concentration in the metalimnion was due to thermal 

stratification and photosynthesis. This layer was no longer in equilibrium with the 

atmosphere as the water got cooler with depth. Photosynthesis within the metalimnion 

added oxygen to the water (Eq. 1). This increase in DO was accompanied by precipitation 

of calcium carbonate (CaCO3) as algae consumed CO2 and pH increased. Due to non-

equilibrium conditions, the DO accumulated in the metalimnion as photosynthetic 

reactions took place. As respiration occurred, oxygen was taken out of the system and 

carbon dioxide was added, decreasing the pH. During fall and spring turnover, as 

temperature was fairly homogenous, DO was free to mix throughout the water column. 

The Eh values were relatively constant with depth in the epilimnion and 

metalimnion in May and October, but were more varied in August (Figure 3d). There was 



22 
 

 
 

an Eh decline in the hypolimnion in May and October, with values near the sediment-

water interface in May being slightly negative and October being close to 0. In August, 

there was an overall decline from the surface to the bottom sediments, and negative 

values in the hypolimnion.  

Positive Eh values were found in the epilimnion and metalimnion where DO was 

more abundant, and negative values were observed in the hypolimnion where DO was 

consumed, particularly under anoxic conditions. The extreme negative values were only 

found in August due to reduced thermal stratification in May and October. 

The temperature profiles in April and May were very different from one another. 

Thermal stratification was more pronounced in the May profile than the April profile. 

Temperatures in April ranged between 5 and 14 degrees Celsius, whereas temperatures in 

May ranged from 5 to 21 degrees Celsius. Dissolved oxygen was present throughout the 

water column in April, but was only present in May from the surface down to 

approximately 9 meters producing anoxia in the lower hypolimnion.  

Spring turnover occurred in April, disrupting stratification. This turnover mixed 

DO throughout the water column. Bottom sediments produce sulfide in anaerobic 

environments, but due to the presence of DO in the hypolimnion during times of mixing, 

the sulfide would immediately be oxidized to sulfate. DO was absent in May as it was 

consumed during this process, along with other possible processes (Figure 4).  
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Figure 4. Diagrams showing the difference in thermal stratification and DO concentration between April and May.  

 

 

CHLOROPHYLL AND TURBIDITY 

Chlorophyll concentrations and turbidity in the epilimnion and metalimnion were 

low, with the exception of a peak at the metalimnion-hypolimnion boundaries and at the 

water-sediment boundary (Figure 5). Chlorophyll and turbidity maxima of 7 μg/L and 5.9 

Nephelometric Turbidity Units (NTUs), respectively, were observed at 5.5 m depth in 

May. Chlorophyll peaked at 36 μg/L and turbidity peaked at 47.8 NTUs at 6.2 m depth in 

August. There was a drastic increase in chlorophyll peaking at 219 μg/L around 7.3 m in 

October. At this same depth  turbidity peaked at 31.7 NTUs. Chlorophyll and turbidity 

concentrations were at maxima at progressively deeper depths each month.  
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Variations in turbidity and chlorophyll are caused by temperature, light, and 

nutrient availability. There was an obvious correlation between chlorophyll and turbidity 

due to the presence of P. rubescens at the metalimnion-hypolimnion boundary. The 

phytoplankton was the main cause of turbidity in the boundary layer in Crystal Lake, 

along with smaller peaks in turbidity near the bottom of the lake due to resuspension of 

sediments. Chlorophyll within the cyanobacteria was the cause of the maxima at the 

metalimnion-hypolimnion boundary. Variation of depth of the maxima and can be 

attributed to changes in light and nutrient availability, and changes in Eh, due to the 

requirements for P. rubescens survival (Halstvedt et al., 2007). The sulfur species, S2-, is 

an additional factor potentially responsible for the location of chlorophyll and turbidity 

peaks, as oscillitoroids, such as P. Rubescens, need a source of sulfide for anaerobic 

photosynthesis (Chaudhary et al., 2009). This will be discussed in detail in the III-4. 

Sulfate and Sulfide section. 

 
Figure 5. Turbidity and chlorophyll throughout the water column. The metalimnion sinks over time as the surface 

waters cool, and fall turnover draws near. 
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CORRELATIONS AMONG FIELD PARAMETERS 

There was a strong negative correlation among depth and temperature, pH, and 

Eh in May (Table 2). Strong correlations were determined as Pearson correlation 

coefficients +/- 0.7 and above in Table 2. Values between +/- 0.5--0.7 were also 

significant, to a lesser extent. As depth increased, temperature, pH, and Eh decreased at a 

similar rate. In May, DO was positively correlated with pH and Eh, and turbidity, 

chlorophyll, Eh, and pH were also positively correlated with each other. Depth was 

negatively correlated with temperature and Eh, and positively correlated with turbidity 

and chlorophyll in August. Temperature was also negatively correlated with turbidity and 

chlorophyll and positively with Eh.  The DO was only positively correlated with pH. 

Chlorophyll also had a negative correlation with pH and positive correlation with Eh, 

along with a strong positive correlation with turbidity. The strongest correlations were 

observed in October. Depth was negatively correlated with temperature, DO and pH, and 

positively correlated with turbidity and chlorophyll in October. The only parameters that 

were not strongly correlated during this month were depth and Eh.  

As previously described, as depth increased, temperature, pH, and Eh decreased 

at similar rates. Temperature and Eh decreased with depth as the water column was no 

longer in equilibrium with the atmosphere during times of thermal stratification. The pH 

becomes lower with depth, as respiration added more carbon dioxide to the bottom of the 

water column and increased acidity. DO increased in the metalimnion and decreased in 

the hypolimnion due to photosynthesis and respiration reactions (Smith et al., 1999). 
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These reactions were also responsible for changes in pH and Eh which was the reason for 

the positive correlation between these parameters and DO. The strong correlations among 

turbidity and chlorophyll were caused by the layer of P. rubescens, which were the main 

contributors of these parameters. 

 

 

 
Table 2. Correlations by depth between field parameters and δ34Ssulfate values in May, August, and October 2013. 
Values highlighted in green are strongly correlated and those in yellow are significant to a lesser extent. 

 

PLANKTOTHRIX RUBESCENS 

During seasons of thermal stratification at Crystal Lake, a layer of concentrated P. 

rubescens stratified at the metalimnion-hypolimnion boundary. P. rubescens 

cyanobacteria were collected in August and October at the depths of maximum turbidity 

CORRELATION Depth Temperature DO pH Turbidity Chlorophyll Eh δ34S (sulfate)

Depth 1.00 -0.89 -0.54 -0.81 0.27 -0.03 -0.84 0.53

Temperature -0.89 1.00 0.29 0.65 -0.39 -0.27 0.53 -0.21

DO -0.54 0.29 1.00 0.87 0.34 0.60 0.71 -0.40

pH -0.81 0.65 0.87 1.00 0.04 0.35 0.79 -0.53

Turbidity 0.27 -0.39 0.34 0.04 1.00 0.74 0.02 -0.07

Chlorophyll -0.03 -0.27 0.60 0.35 0.74 1.00 0.37 -0.49

Eh -0.84 0.53 0.71 0.79 0.02 0.37 1.00 -0.68

34S (sulfate) 0.53 -0.21 -0.40 -0.53 -0.07 -0.49 -0.68 1.00

24-May-13

CORRELATION Depth Temperature DO pH Turbidity Chlorophyll Eh δ34S (sulfate)

Depth 1.00 -0.96 0.22 -0.48 0.71 0.80 -0.91 0.03

Temperature -0.96 1.00 -0.18 0.51 -0.75 -0.86 0.97 -0.06

DO 0.22 -0.18 1.00 0.75 0.07 -0.17 -0.06 -0.79

pH -0.48 0.51 0.75 1.00 -0.48 -0.74 0.59 -0.70

Turbidity 0.71 -0.75 0.07 -0.48 1.00 0.92 -0.66 -0.27

Chlorophyll 0.80 -0.86 -0.17 -0.74 0.92 1.00 -0.84 0.11

Eh -0.91 0.97 -0.06 0.59 -0.66 -0.84 1.00 -0.24

34S (sulfate) 0.03 -0.06 -0.79 -0.70 -0.27 0.11 -0.24 1.00

7-Aug-13

CORRELATION Depth Temperature DO pH Turbidity Chlorophyll Eh δ34S (sulfate)

Depth (m) 1.00 -0.93 -0.73 -0.72 0.80 0.73 -0.64 0.63

Temp -0.93 1.00 0.83 0.91 -0.93 -0.86 0.92 -0.81

DO -0.73 0.83 1.00 0.96 -0.95 -0.91 0.77 -0.67

pH -0.72 0.91 0.96 1.00 -0.98 -0.94 0.99 -0.86

Turbidity 0.80 -0.93 -0.95 -0.98 1.00 0.98 -0.99 0.92

Chlorophyll 0.73 -0.86 -0.91 -0.94 0.98 1.00 -0.94 0.98

Redox -0.64 0.92 0.77 0.99 -0.99 -0.94 1.00 -0.86

34S (sulfate) 0.63 -0.81 -0.67 -0.86 0.92 0.98 -0.86 1.00

2-Oct-13
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and chlorophyll. The P. rubescens collected was filamentous, contained gas vacuoles for 

buoyancy regulation, was reddish in color and found as an entwined mass that resulted in 

a layer of pink water. The cyanobacteria caused the chlorophyll and turbidity maxima at 

the boundary between the metalimnion and hypolimnion, where Eh was at a maximum 

and DO suddenly declined as other photosynthesizers respired. P. rubescens require 

minimal light, nutrient availability, and an abundance of S2- from the hypolimnion for 

anaerobic photosynthesis (Halstvedt et al., 2007; Eq. 3). Anaerobic photosynthesis 

drastically affected sulfur cycling within the water column. The oscillitoroid 

cyanobacteria removed sulfide from the hypolimnion and added sulfate to the 

metalimnion as described by Chaudhary (Chaudhary et al., 2009). 

The shift in trophic state observed at Crystal Lake from eutrophic to mesotrophic 

may have altered conditions in favor of P. rubescens emergence. As stated by Lampert 

and Sommers (1997), P. rubescens tend to thrive during the beginning and final stages of 

eutrophication. Crystal Lake was eutrophic prior to 1997 and purple sulfur bacteria (PSB) 

were the only microorganism present around 6 m depth until recently, where I currently 

observe only P. rubescens. Macrophytes, which were previously removed from Crystal 

Lake each summer, have been allowed to grow for the past few years and have likely 

increased lake clarity. A sewage system has been installed in the town surrounding 

Crystal Lake, also improving lake clarity (Collins, 1999). As in Lake Zurich, P. 

rubescens appearance in Crystal Lake seems to have followed an increase in lake 

transparency (Legnani et al., 2005).  

Other possible reasons for the emergence of P. rubescens at Crystal Lake could be 

1) they can survive in low light and temperatures, 2) they produce microcystins that 
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prevent grazing, and 3) they regulate buoyancy making them more competitive among 

other phytoplankton (Van den Wyngaert et al., 2011; Figueiredo, 2004).  

These cyanobacteria impact the concentrations and isotopic fractionation of 

several sulfur compounds within Crystal Lake. 

SILICA AND PHOSPHORUS 

General concentration ranges for phosphorus were 0.02–1.23 mg/L PO4
3--P, 

0.0037–1.21 mg/L PO4
3--P, and 0.47–1.42 mg/L PO4

3--P in May, August, and October 

2013 respectively (Figure 6). Silica (SiO2) concentrations ranges during these months 

were 0.077–0.55 mg/L, 0.4–3 mg/L, and 1.1–5.3 mg/L respectively. There were maxima 

in silica and phosphorus concentrations in the hypolimnion.  

Weathering was the most likely cause of the increase in silica and phosphorus 

flux into the surface waters in October. Phytoplankton in the epilimnion and metalimnion 

used silica and phosphorus during photosynthesis. Minima in silica and phosphorus 

concentrations occurred in these layers of the water column. Phosphorus concentrations 

were lowest in August during the algae growing season. Diatom blooms occurred during 

times of mixing, as they were susceptible to sinking due to the weight of their frustules. 

This explains the low concentrations of silica in the epilimnion in the spring and fall, and 

the increase in concentrations in August. They could counteract this weight imbalance 

during these times by adding an influx of light-weight ions into their vacuoles to help 

slow the sinking process (Miklasz and Denny, 2010). During times of stratification they 

were also subjected to predation by zooplankton (Sorvari, 2001). Both phosphorus and 

silica concentrations increased in the metalimnion, despite the substantial P. rubescens in 

August and October. The decay of phytoplankton in the hypolimnion released nutrients, 
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such as silica and phosphorus, into the water column. These concentrations increased 

over the summer months due to increased remineralization. 

 

 

 
Figure 6. a. Phosphorus concentrations in May, August, and October. b. Silica concentrations in May, August, and 

October. 

 

 

SULFATE AND SULFIDE 

The biogeochemistry of Crystal Lake is controlled by thermal stratification, 

photosynthesis and the decomposition of organic matter. Sulfur geochemistry is an 

important component of these processes (Figure 7 a and b). Silica and phosphorus 

concentrations increased in the hypolimnion as sulfate concentrations declined during the 

summer stratification period (Figure 6). Sulfide concentrations increased from a 

minimum of 0.02 mg/L in May to a maximum of approximately 13 mg/L in October. In 

May, the shallowest depth that sulfide was detected was 10.4 m and below, while in 
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August it was measurable at 6.4 m and below and October below 7 m, with the detection 

range being 0.01–11.25 mg/l. The concentration of 13 mg/l in October was calculated 

based on the trend of sulfide in the hypolimnion. In May sulfate concentrations were high 

throughout the water column, and little to no sulfide was present. However, in August 

and October, sulfate concentrations remained relatively constant from the surface down 

to their respective metalimnion-hypolimnion boundaries, where a sulfate maximum 

existed. Sulfate concentrations decreased from the metalimnion-hypolimnion boundary to 

the benthos.  
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Figure 7. (a). Diagram showing observed concentrations of sulfate and sulfide in mg/L by depth on May 24, August 7, 

and October 2, 2013.  (b). Diagram showing observed concentrations of sulfate and sulfide in µmol/L. 

 

 

Presence of DO throughout the water column in May, due to the recent spring 

turnover,  likely was the reason for the absence of sulfide and vertically constant sulfate 

concentrations at the beginning of the summer stratification period (Figure 4). An inverse 



32 
 

 
 

relationship between sulfate and sulfide in the hypolimnion suggested that, as sulfide 

increased with depth, sulfate decreased (Figure 8). The reason for the mirror image 

tendency, shown in Figure 7, is that sulfate was reduced to sulfide in this region of the 

lake by sulfate-reducing organisms under anoxic conditions. The redox profile and lack 

of DO support this conclusion.  

 
Figure 8. Sulfide vs sulfate concentrations in mmol/l in the hypolimnion. In August and October, as Sulfate decreases, 

sulfide increases. 

 

If the sulfate was being reduced to sulfide, and it was the only source of the 

sulfide present, the sulfide + sulfate concentration in mmol/L should have remained 

constant throughout the water column. Sulfide + sulfate values were relatively constant 

with depth in May because of the recent spring turnover, allowing for sulfate to mix 

throughout the column, with an absence of sulfide in the hypolimnion. From May to 

October, the concentration of sulfide + sulfate increased in the hypolimnion and 

decreased in the epilimnion and metalimnion (Figure 9).  Sulfate uptake by 

phytoplankton in the epilimnion and metalimnion was partly responsible for the decrease 
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in sulfide + sulfate concentration over time. As dead organisms sink to the hypolimnion, 

they decay and release sulfide into the anoxic water column. Sulfide could also be 

produced in the hypolimnion by the bottom sediments.   

 
Figure 9. Sulfide + sulfate concentrations throughout the water column in May, August, and October. 

 

 

 

  Sulfate concentrations in Crystal Lake decreased dramatically from 1998-2013 

(Figure 10). This may have been due, in part, to the Clean Air Act of 1970 and 

amendments in 1990. Power plants have installed scrubbers, and emitted approximately 

50% less SO2 into the atmosphere (epa.gov, 2009). Less SO4
2- has been deposited in the 

epilimnion as acid rain into freshwater lakes (Jedrysek, 2005). Higher secchi disk depth 

measurements, and lower sulfate concentrations at Crystal Lake indicate increasing water 

clarity over time.  
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Figure 10. Changes in secchi disk depth measurements of water clarity at Crystal Lake collected in 1998, 2010, and 

2013 and differences in epilimnion sulfate concentrations in the months of May-June, August-September, and October-

November. (Woodruff, 1999; Sadurski, 2012). 

 

SULFUR ISOTOPES 

SULFATE AND SULFIDE                                        

Stable isotope analysis of sulfur compounds, along with concentration 

measurements, allow for examination of transformations of sulfur (Jedrysek, 2005). 

Sulfate concentration and δ34Ssulfate values were relatively constant in the epilimnion and 

metalimnion in August and October (Figure 11). May samples were collected right after 

spring turnover, therefore mixing and temperature fluctuations could have created a less-

pronounced sulfate concentration profile. Sulfate concentrations decreased over time 

while δ34Ssulfate values increased in the epilimnion from an average of 1.67 ‰ to 2.16 ‰. 

Small sulfate concentration maxima were observed at the boundary between the 

metalimnion and hypolimnion during each month measured. The maximum value 



35 
 

 
 

observed in August was also coupled with a δ34Ssulfate minimum. This minimum was 

followed by a large increase in δ34Ssulfate values below the boundary. An increase in 

δ34Ssulfate in the hypolimnion also occurred in October. May δ34Ssulfate values were 

relatively constant except in the lower hypolimnion. The sulfate maximum was at the 

layer of P. rubescens in August and October (Figure 11).  

The sulfate that was produced by anaerobic photosynthesis came from H2S (Eq. 

3). When H2S is oxidized to SO4
2-, the isotopically lighter 32S would be preferentially 

oxidized leading to a δ34Ssulfate minimum (Garlick et al., 1977). This was observed in 

August only. The distribution of sulfate concentrations in May were not fully developed 

due to the recent spring turnover. Another potential reason for a lack of development in 

sulfate concentrations in the lower metalimnion in May is that the P. rubescens layer had 

not fully formed at this time. There may have been insufficient sampling around the P. 

rubescens layer in October that obscured observation of a δ34Ssulfate minimum. A large 

increase in δ34Ssulfate was observed in the hypolimnion in May, August and October due to 

the preferential reduction of isotopically heavier sulfate to sulfide and hence enriched 34S 

in the residual sulfate. Sufficient quantity of sulfate for isotopic analysis was not 

available in August and October below 7 m, which accounts for the lack of data.  
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Figure 11. δ34S(sulfate) values and sulfate concentration by depth in May, August and October.  δ34S(sulfate) values show a 

minimum at the P. rubescens layer (marked with a line) in August at the metalimnion-hypolimnion boundary due to 

oxidation of sulfide to sulfate by microbial mediation. As sulfate concentration begins to decline in the hypolimnion 

due to reduction to sulfide, δ34S(sulfate) increases. 

 

As sulfide concentrations increased with depth in the hypolimnion, δ34Ssulfide 

values also increased (Figure 12). δ34Ssulfide values increased with depth and over time. 

Samples could be taken at higher depths over time due to an increase in sulfide 

concentrations. This pattern is due to Rayleigh fractionation and will be described next. 
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Figure 12. Sulfide concentration and δ34S(sulfide) composition in May, August, and October showing that as sulfide 
concentration increases, isotopic concentrations also increases due to Rayleigh fractionation. 

 
 
 
 

Figure 13 shows the correlation between 34S of sulfate and sulfide; as sulfate was 

reduced to sulfide, the isotopic composition of the residual sulfate in the water became 

heavier.  As the sulfate isotopic composition became heavier, so did the sulfide isotopic 

composition. This is due to Rayleigh fractionation (Eq. 7). 

𝛿+1000

𝛿0+1000
= 𝑓∝−1         (Eq. 7) 

Where: 

 = Final 34Ssulfate.   

0 = Initial 34Ssulfate. 

f = Fraction of remaining sulfate concentration. 

And  

α = Fractionation factor = 
𝑅

𝑆2−

𝑅
𝑆𝑂4

2−
 



38 
 

 
 

The fraction of remaining sulfate concentration was calculated with equation 8.  

(𝑆𝑂4
2−)

(𝑆𝑂4
2−)0

= 𝑓𝑎/𝑏          (Eq. 8) 

Where: 

f = Fraction of remaining sulfate. 

 
Figure 13. Diagram showing the correlation between 34S of sulfate and sulfide throughout the season due to Rayleigh 
fractionation and P. rubescens sulfur isotopic concentrations.  
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Figure 14 (a and b) shows the isotopic fractionation that occurred in August 2013, 

offset by α which was estimated to be approximately 1.024. Thode (1991) found that 

reduction of sulfate to sulfide produces α values around 1.024, which corresponded to the 

findings of the present study. The α values were estimated by starting with the 1.024 

Thode found to be true, then trying other values above and below 1.024, to determine 

which curve more closely resembled the 34Ssulfate curve. The f values presented in figure 

15 were calculated with equation 8 using sulfate concentration in they hypolimnion, and 

34Ssulfide values were calculated with equation 9, using the estimated α values.  

α12 = 
𝛿1+1000

𝛿2+1000
          (Eq. 9) 

Where: 

α12 = Fractionation factor. 

1 = 34Ssulfate. 

And 

2 = 34Ssulfide. 
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Figure 14 (a). Diagram showing the calculated amount of isotopic fractionation that occurred in August from sulfate to 

sulfide using α value of 1.024. Measured sulfide isotopic ratios are marked at 8.23 m depth and 10.06 m depth. 

 

 

Sulfate concentration depleted as it was reduced to sulfide in the hypolimnion, 

increasing the heavier isotope of sulfate. As this occurred, isotopically heavier sulfide 

occurred due to equation 9 (Figure 15). We see this increase in measured sulfide isotope 

values, but the values were lower than expected at 10.06 m depth. Calculations, using 

equation 9 and estimated α values, show that sulfide isotope values were approximately 

20 ‰ lower in August than they would be if this was the only process affecting the 

values (Table 3). Measurements from 8.23 m depth were fairly consistent, within 0.5 ‰, 

with calculated values, but measurements at 10 m depth varied significantly from the 

calculated values.  
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Figure 15. Sulfate and sulfide concentrations vs. isotopic compositions within Crystal Lake in May, August, and 

October.  

  

 

 

 

 

 

Table 3. Calculated and measured δ34Ssulfide compositions in August, 2013. 

 

This offset can most likely be attributed to the addition of hydrogen sulfide into 

the hypolimnion due to the decay of dead organisms that have sunk to the bottom of the 

hypolimnion by sulfate reducing bacteria and microbial putrefaction of proteinaceous 

material in bottom sediments (Dunnette, 1985). Sulfate isotopic composition could not be 

measured in the hypolimnion in August and October due to lack of sulfate for analysis, 

therefore calculations were performed based on the trend of analyzed concentrations. 

This could be another source of the offset in sulfide isotopic composition calculations and 

August 2013 δ34S(sulfide) 

Calculated Measured 

Depth (m) 

Isotopic Value 

(‰) Depth (m) 

Isotopic Value 

(‰) 

6.4 -20.7   

7.31 -18.7   

8.23 -17.9 8.23 -17.4 

9.14 -8.0    

10.06 20.1 10.06  -1.7 
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measured values, especially at 10.06 m. May fractionation trends could not be observed 

due to little sulfide and high sulfate content within the water column 

 

 
 

 

P. RUBESCENS 

P. rubescens were analyzed for sulfur 34S/32S ratio as well. August and October 

were the only months that sufficient quantity of sample could be attained for isotopic 

analysis. Sulfur isotopic compositions were fairly similar each month, but varied between 

-0.15 and 0.48 ‰. These values are marked at the depth of P. rubescens in Figure 13. No 

published results of P. rubescens composition could be found to compare to. However, α 

values based on those two samples are 0.983 for August and 0.979 for October (Eq. 10).  

α12 = 
𝛿1+1000

𝛿2+1000
         (Eq. 10) 

Where: 

α12 = Fractionation factor. 

1 = 34Ssulfide. 

And 

2 = 34SP. rubescens. 

Judging by the minimum in 34Ssulfate and maximum in sulfate concentrations shown in 

August in figure 11, sulfide oxidation to elemental sulfur, then to sulfate occured due to 

microbial mediation by P. rubescens at the metalimnion-hypolimnion boundary. Because 

of this determination, it is reasonable to assume that the 34S analyzed in the P. rubescens 

came from S2- as opposed to SO4
2-. The α calculations were performed between the P. 

rubescens and S2- due to this observation. Complications exist due to the oxidation of S0 
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in P. rubescens to SO4
2- not being included in the calculations. Also, the Pearson-

Plummer-Wigley equation could handle this one-in-one-out situation, but the Rayleigh 

fractionation equation can only deal with a one-out situation (Wigley, Plummer and 

Pearson, 1978).  The α could affect 34S in the water column due to in situ fractionation 

occurring in the hypolimnion. It could also affect 34S due to dead P. rubescens sinking to 

the bottom of the hypolimnion. As the dead phytoplankton decay, they release sulfide and 

other nutrients into the water column. Bacterial sulfate reduction has been shown to 

produce αSO4-H2S around 1.077 (Rudnicki, 2001). Other types of cyanobacteria α values 

could not be acquired. This discrepancy could be due to P. rubescens sulfide oxidation as 

opposed to sulfate reduction. The δ34S of P. rubescens are slightly lower than that of the 

SO4
2-, and due to the fact that the sulfate isotopic values are at a minimum at this depth, 

the original hypothesis, that the P. rubescens values are lower due to the S0 within the 

cells originating from H2S, seems very likely. As H2S is isotopically lighter that SO4
2-, 

this seems to be a valid hypothesis.   

 Mass balance was performed to determine if the addition of sulfate concentrations 

due to sulfide oxidation by P. rubescens, with the lighter 34S composition of the 

cyanobacteria, could have resulted in the final 34S value of the aqueous sulfate at the 

metalimnion-hypolimnion boundary (Eq. 11). 

(𝑐1 ∗ 𝑚1) + (𝑐2 ∗ 𝑚2) = (c3 ∗ m3)      (Eq. 11) 

Where: 

c1 = Amount of sulfate concentration contributed from P. rubescens. 

m1 = Unknown: 34SP.rubescens 

c2 = Average concentration of sulfate in the epilimnion-metalimnion. 
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m2 = 34Ssulfate just above the P. rubescens layer. 

c3 = Sulfate concentration at the metalimnion-hypolimnion boundary. 

m3 = 34Ssulfate at the metalimnion-hypolimnion boundary. 

The amount of sulfate contributed from P. rubescens was calculated by subtracting the 

average concentration in the epilimnion-metalimnion from the maximum concentration at 

the P. rubescens layer. The resulting calculation of 34SP.rubescens was -2.74 ‰ in August 

whereas the analytical results were -0.15 ‰. There are several possibilities for the 

difference in calculated and analytical values observed. One such reason could be that the 

P. rubescens analyzed were not an instant product, but a cumulative mass. Another 

possibility is that the sulfur inside the P. rubescens has a different 34S than that of sulfate 

coming from the oxidation of elemental sulfur, i.e. isotopic fractionation occurring during 

the oxidation of S0 of P. rubescens to sulfate in the water column. It is possible that there 

is a preferential oxidation of the lighter 32S over 34S in this situation. Utilizing equation 

10, an α value could be calculated using the calculated 34SP.rubescens value of -2.74. The 

resulting α value was 0.985, merely 0.002 away from the α calculated from the analytical 

34SP.rubescens.  

 

CORRELATIONS BETWEEN FIELD PARAMETERS AND 34Ssulfate 

The 34Ssulfate was weakly positively correlated with depth and negatively correlated 

with pH and redox in May (Table 2). The 34Ssulfate was negatively correlated with both 

DO and pH during August. The 34Ssulfate was found to be strongly correlated with 

temperature, pH, turbidity, chlorophyll, and redox in October. There was a negative 

sulfate isotope correlation with temp, DO, pH and redox during this period. As they 
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decrease, isotope concentration increases. Turbidity, chlorophyll, and depth increase at 

similar rates as isotopic concentration increases.  

The 34Ssulfate found a positive correlation with depth as concentrations increase 

with depth due to the reduction of sulfate to sulfide in the hypolimnion. The pH and 

redox decrease in the hypolimnion due to respiration of P. rubescens while 34Ssulfate 

concentrations increase. As redox becomes negative in the hypolimnion due to absence of 

DO, sulfate is reduced to sulfide. This is part of the reason for the negative correlation 

between DO and 34Ssulfate concentration. The negative correlations with sulfate isotopic 

composition is also partially attributed to the preferential uptake of the lighter 32S over 

34S, increasing the 34S/32S ratio. High turbidity measurements occur as more primary 

production takes place. Primary production is also the reason for the higher 

concentrations of DO, high pH values, and high chlorophyll concentrations.
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IV. CONCLUSION 

It was observed that temperature, photosynthesis, the decay of organic matter, and 

sulfur processes all played a role in governing the biogeochemistry of the lake. Results of 

field parameters measured were as expected for a dimictic lake during this period. 

Thermal stratification occurred during the warmer months due to the high depth to 

surface area ratio, affecting many other processes observed. The pH and DO maxima in 

the metalimnion were caused by photosynthesis reactions consuming CO2 and releasing 

DO, and low DO values in the hypolimnion were due to the decay of organic matter. 

Thermal stratification and the decay of organic matter in the hypolimnion caused the 

negative Eh values in May and August. Chlorophyll and turbidity maxima at the 

metalimnion-hypolimnion boundary were also caused by algae and photosynthesis. Silica 

and phosphorus concentrations were at a minimum in the epilimnion and metalimnion 

due to uptake by algae during photosynthesis, and increased in the hypolimnion due to 

the decay of organic matter. 

Spring turnover in April resulted in reduced thermal stratification and a mixing of 

DO and other nutrients throughout the water column. Sulfide produced by bottom 

sediments was immediately oxidized to sulfate during spring turnover when oxygen was 

still present. August and October sulfate maxima occurred at the metalimnion-

hypolimnion boundary due to anaerobic photosynthesis by P. rubescens oxidizing sulfide 

to sulfate. In 
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the anaerobic hypolimnion, sulfate values decline due to reduction to sulfide, which 

increased with depth in the hypolimnion as sulfate was reduced and respiration occured. 

Sulfate concentrations have decreased over time, from 1998 to present, and even month 

to month, due to the Clean Air Act of 1970 and the amendments of 1990. 

Identifying a layer of P. rubescens at the metalimnion-hypolimnion boundary was 

extremely helpful in predicting what processes could be taking place within the water 

column as the algae are possible anaerobic photosynthesizers. Purple sulfur bacteria 

(PSB) were found at the metalimnion-hypolimnion boundary in the 2012 study by 

Stephen Sadurski. The transition from PSB to P. rubescens was due to an increase in lake 

clarity.  

Analysis of different sulfur species was mandatory to determine the fractionation 

between the different sulfur elements in the water column. The process of reduction of 

sulfate to sulfide also made the residual SO4
2- isotopically heavier. A minimum in 

δ34Ssulfate composition at the P. rubescens layer occurred due to oxidation of sulfide to 

sulfate through microbial mediation. Production of sulfate during this process derives 

from sulfide, which is isotopically lighter than SO4
2-. Sulfate isotopic composition 

increased in the hypolimnion where reduction occured and sulfate concentration 

decreased. Isotopic measurements of sulfide were found to also increase in the 

hypolimnion as sulfate isotopic composition increased due to Rayleigh fractionation. The 

sulfur isotopic composition of P. rubescens were slightly lower than sulfate isotopic 

composition measured from the same depth. This is most likely resulting from the source 

of sulfur within the cells. Oxidation of H2S to S0 would produce an isotopically lighter 

abundance ratio within the cell as 32S is preferentially oxidized during this process.  
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Future studies are needed to determine if P. rubescens can switch between aerobic 

and anaerobic photosynthesis. This would help in determining whether the sulfur 

compounds and isotopic fractionation are being effected by the algae, or if some other 

process is dominant. Future studies should also incorporate sulfate concentration 

measurements and isotopic analysis of sulfate in rainwater. This would give researchers 

an idea of how much the industrial facilities in the region contribute to the source of 

sulfate in Crystal Lake. Another possible laboratory study that could be performed based 

on this research would be to determine what exactly causes the difference between 34SP. 

rubescens values analyzed and calculated.  
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APPENDIX A  

STATISTICAL ANALYSIS 
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CORRELATION MATRICES.  

 Correlations with values that have an absolute value ≥ 0.7 are shown in 

parenthesis. 

 Correlations with values between 0.5 and 0.7 are displayed with a (*). 

 Strongly significant values are marked with a (*) and placed in parenthesis. 

 Correlations show that as depth increases, temperature, dissolved oxygen, pH and 

redox decrease. 

 As depth increases, turbidity, chlorophyll and δ34Ssulfate also increase. 

 

 

 

 

 

CORRELATION Depth Temperature DO pH Turbidity Chlorophyll Eh δ
34

S (sulfate)

Depth 1.00 (-0.89) *-0.54 (-0.81) 0.27 -0.03 (-0.84) *0.53

Temperature (-0.89) 1.00 0.29 *0.65 -0.39 -0.27 *0.53 -0.21

DO *-0.54 0.29 1.00 (-0.87) 0.34 *0.60 (-0.71) -0.40

pH (-0.81) *0.65 (-0.87) 1.00 0.04 0.35 (-0.79) *-0.53

Turbidity 0.27 -0.39 0.34 0.04 1.00 (-0.74) 0.02 -0.07

Chlorophyll -0.03 -0.27 *0.60 0.35 (-0.74) 1.00 0.37 -0.49

Eh (-0.84) *0.53 (-0.71) (-0.79) 0.02 0.37 1.00 *-0.68

δ
34S (sulfate) *0.53 -0.21 -0.40 *-0.53 -0.07 -0.49 *-0.68 1.00

24-May-13

CORRELATION Depth Temperature DO pH Turbidity Chlorophyll Eh δ
34

S (sulfate)

Depth 1.00 *(-0.96) 0.22 -0.48 (-0.71) (-0.80) *(-0.91) 0.03

Temperature *(-0.96) 1.00 -0.18 *0.51 (-0.75) (-0.86) *(0.97) -0.06

DO 0.22 -0.18 1.00 (-0.75) 0.07 -0.17 -0.06 (-0.79)

pH -0.48 *0.51 (-0.75) 1.00 -0.48 (-0.74) *0.59 (-0.70)

Turbidity (-0.71) (-0.75) 0.07 -0.48 1.00 *(0.92) *-0.66 -0.27

Chlorophyll (-0.80) (-0.86) -0.17 (-0.74) *(0.92) 1.00 (-0.84) 0.11

Eh *(-0.91) *(0.97) -0.06 *0.59 *-0.66 (-0.84) 1.00 -0.24

δ
34S (sulfate) 0.03 -0.06 (-0.79) (-0.70) -0.27 0.11 -0.24 1.00

7-Aug-13

CORRELATION Depth Temperature DO pH Turbidity Chlorophyll Eh δ
34

S (sulfate)

Depth 1.00 *(-0.93) (-0.73) (-0.72) (-0.80) (-0.73) *-0.64 *0.63

Temperature *(-0.93) 1.00 (-0.83) *(0.91) *(-0.93) (-0.86) *(0.92) (-0.81)

DO (-0.73) (-0.83) 1.00 *(0.96) *(-0.95) *(-0.91) (-0.77) *-0.67

pH (-0.72) *(0.91) *(0.96) 1.00 *(-0.98) *(-0.94) *(0.99) (-0.86)

Turbidity (-0.80) *(-0.93) *(-0.95) *(-0.98) 1.00 *(0.98) *(-0.99) *(0.92)

Chlorophyll (-0.73) (-0.86) *(-0.91) *(-0.94) *(0.98) 1.00 *(-0.94) *(0.98)

Eh *-0.64 *(0.92) (-0.77) *(0.99) *(-0.99) *(-0.94) 1.00 (-0.86)

δ
34

S (sulfate) *0.63 (-0.81) *-0.67 (-0.86) *(0.92) *(0.98) (-0.86) 1.00

2-Oct-13
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APPENDIX B 

DETAILED ANALYTICAL METHODS 

 

 

 

 

 

 

 

 

 

 

 

 

 



55 
 

 
 

 



56 
 

 
 

ANALYSIS OF MAJOR ANIONS USING ION CHROMATOGRAPHY 

 

Field samples were acquired and filtered in the lab with 0.2 µm filter membranes 

and a vacuum pump prior to analysis. Anion samples were kept at 1.6–4.4 ºC until 

analysis. Directly before analysis, samples were warmed to room temperature and poured 

into Dionex vials for analysis with a Dionex ICS-1500. Calculations were performed to 

determine the anion concentrations within the samples using known standard 

concentrations. 

   

ANALYSIS OF PHOSPHORUS USING SPECTROPHOTOMETRY 

 

 Samples were analyzed using a Hach Spectrophotometer (DR 4000), programmed 

with the number 3036 setting and using a wavelength of 890 nm. 5 mL of the samples 

were poured into “Total and Acid Hydrolyzable Test Vials” and one potassium persulfate 

powder pillow for phosphonate was added to each vial. The vials were capped and 

shaken to mix all contents. Each vial was heated in a COD reactor for 30 minutes, then 

cooled to room temperature. 2 mL of 1.54 N sodium hydroxide standard solution was 

mixed into each vial. Fingerprints were removed from the outside of the vials with a 

damp, and then a dry towel. The vials were sequentially placed in the Hach DR 4000 and 

zeroed with a blank sample. The contents of one PhosVer 3 Powder Pillow were added to 

each vial, which was then capped and shaken to mix for 10-15 seconds. Reaction was 

allowed to ensue for 2 minutes. The vials were again placed in the Hach, the light shield 

closed, and PO4
3- mg/L results were displayed. 
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ANALYSIS OF ALKALINITY USING SPECTROPHOTOMETRY 

 

 A modified Sarazin’s Method was performed to determine the alkalinity of each 

sample. A 0.1 M NaHCO3 stock solution was diluted to make standard solutions ranging 

from 1 mM to 8 mM. A color reagent was prepared from 25 mL of 0.15 M formic acid 

and 25 mL of 500 mg/L Bromophenol-Blue. This solution was diluted with distilled 

water in a 250 mL Erlenmeyer flask.5 mL of this reagent was added to 5 mL of sample 

water or standard solution, and mixed thoroughly to outgas carbon dioxide. Absorbance 

was measured for each sample and standard at a wavelength of 590 nm using a Hach 

Spectrophotometer. The Hach was blanked with distilled water when measuring the 

absorbance of standards, and with filtered sample water when measuring water samples. 

Standard absorbance measurements were fit with a 2nd order polynomial to find the 

standard curve. Concentrations of the water samples could then be calculated using the 

equation from the curve. 

  

ANALYSIS OF SULFIDE USING THE HACH FIELD KIT 

 

Sulfide samples were taken from the hypolimnion and tested within one hour 

of collection. Samples were pumped directly from the hypolimnion to 3 L sample 

bottles which were overflowed to prevent oxygen bubbles from getting trapped in the 

bottle between collection and analysis. Samples were not filtered prior to analysis. 

25 mL of sample was poured into two glass tubes, in which Reagent 1 was then 

added. The solution was mixed for 30 seconds, then Reagent 2 was added. Mixture 
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again occurred for 30 seconds, then the color of the solution was compared to the 

concentration colorimeter of the Hach Field Kit. 

 

ANALYSIS OF AMMONIA WITH THE HACH FIELD KIT 

 

 Samples were taken from the hypolimnion to measure ammonia concentrations, 

and were not filtered prior to analysis. Two glass tubes were filled with 5 mL of sample 

water to be tested. Three drops of Nessler Reagent were added to one of the tubes, which 

was then swirled to mix. Color development took 1-5 minutes. If a yellow color 

developed, ammonia was present in the sample. The color of this solution was compared 

to the untreated sample in the comparator of the Hach Field Kit. 

 

 

ANALYSIS OF SILICA USING SPECTROPHOTOMETRY 

 

 Silica measurements were performed within two days of collection. 0.5 mL of 

HCl and 1.0 mL of AM were mixed into 25 mL of sample water and allowed to react for 

five minutes. 1.0 mL OA was then added and mixed. The solution was then analyzed 

with a Hach DR 4000 at a wavelength of 410 nm. Standards of known concentrations 

were analyzed prior to the water samples and evaluated to find a standard curve, 

obtaining an R2 value close to 0.999. 
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WATER SAMPLE PROCESSING FOR SULFUR ISOTOPIC COMPOSITION 

  

 Water samples designated for sulfate isotope analysis were collected in 1 L plastic 

bottles and refrigerated to maintain 35-40 ºC. Samples taken from the hypolimnion, 

where sulfide was present, were pumped directly from the desired depth to the bottle, and 

overflowed, to eliminate exposure to oxygen. The samples were immediately bubbled in 

the field with nitrogen (N2) gas for 15-30 minutes to outgas H2S(g). All samples were then 

taken to the lab to be filtered with a 0.22 µm filter membrane and vacuum pump. They 

were then acidified to pH 3-4 with dilute sulfate-free hydrochloric acid (HCl). This 

converted dissolved inorganic carbon (DIC) to carbonic acid (H2CO3) in order to 

eliminate carbonate (CO3
2-). This was a crucial step in the process as to prevent BaCO3(s) 

co-precipitation when BaCl2(aq) was added. The samples were then heated for 10-15 

minutes. 4-5 mL of 10% BaCl2(aq) was added, while stirring, and the samples were 

allowed to react while heating for 30 minutes. The samples were then covered and 

allowed to cool overnight. The samples could then be filtered to collect the BaSO4(s) 

precipitate, which was then rinsed with DI water into centrifuge tubes. The water samples 

were then treated again with BaCl2 and heated to precipitate any remaining sulfate from 

the samples. The treated water was allowed to cool overnight and filtered the following 

day to remove any precipitate. This precipitate was then added to the designated 

centrifuge tube and each tube was centrifuged for approximately 10 minutes. The DI 

water was decanted and the BaSO4 precipitate was dried in a desiccator.  

 Samples designated for sulfide isotopic analysis were collected in 3 L bottles. 

Samples were pumped directly from the desired depth to the bottles and overflowed to 

eliminate contact with oxygen. Samples with greater than 1 mg/L sulfide were treated in 
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the field with a calculated amount of 10 weight percent silver nitrate (AgNO3) to 

precipitate silver sulfide (Ag2S(s)). The precipitated mixture of Ag2S(s) and other 

compounds was filtered from the water samples in the lab. 3 weight percent ammonium 

hydroxide (NH4OH) was added to the precipitate to eliminate the other silver compounds 

and to re-suspend Co- into solution The Ag2S(s) was filtered a second time with a 0.22 

μm membrane, rinsed, and dried in a desiccator. All isotope samples were sent to the 

University of Arizona for analysis using a mass spectrometer. 
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APPENDIX C 

BIOGEOCHEMICAL AND ANALYTICAL DATA 
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CYRSTAL LAKE FIELD DATA 

April 25, 2013. 12:00 P.M. 

     
 

 

 

 

 

 

 

 

 

Depth (m) Temperature (ºC) D.O. (mg/l) Conductivity Chlorophyll Turbidity pH

0.2134 14.06 14.25 557 2.6 -1.5 8.64

0.701 14.03 14.62 557 2.73 -1.5 8.48

1.615 14.18 15.02 557 4.6 -1.5 8.29

2.957 10.95 16.09 567 3.1 -1.4 8.23

3.048 9.48 18.3 567 5.7 -1.2 8.23

4.877 6.1 18.71 566 14.1 -0.6 8.37

5.365 5.6 15.35 567 41 2 7.93

5.369 5.61 13.92 567 41.6 1.6 8.04

5.7 42.1

5.944 5.41 12.6 569 36.6 1.4 7.89

6.096 5.44 15.38 571 32 1.1 8.2

6.706 5.16 11.34 572 17.3 -0.7 7.97

7.132 5.14 13.77 573 11.1 -1 8.11

8.077 5.1 14.08 576 9.2 -1 7.9

9.601 5.06 8.87 582 6.4 -0.3 7.81

10.577 5.06 3.72 582 5.4 -0.3 7.78

11.524 5.12 0.32 594 15.2 6.2 7.64
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May 1, 2013. 1:00 P.M. 

 

Depth (m) Temperature (ºC) Conductivity D.O. (mg/l) pH Turbidity Chlorophyll Redox

0 20.21 561 9.94 8.14 -2.1 1.8 101

0.341376 20.18 561 10.18 8.19 -2.1 1.2 99.7

0.70104 20.06 562 10.21 8.21 -2.1 1.7 97.8

0.978408 17.96 563 10.79 8.24 -1.9 2.7 99.7

1.210056 16.8 561 11.15 8.25 -1.9 3 100.5

1.56972 16.24 560 11.08 8.24 -1.8 2.4 100.9

1.88976 15.09 561 11.14 8.24 -1.8 2.4 102.1

2.1336 13.96 561 11.14 8.21 -1.7 3 103

2.56032 13.3 563 10.93 8.25 -1.6 3 104.4

2.846832 12.85 564 10.95 8.26 -1.6 3.5 105.5

3.090977 11.5 567 11.67 8.3 -1.3 4.2 106.6

3.39852 10.45 568 12.65 8.3 -1.3 4.3 108.5

3.767328 8.3 571 14.19 8.26 -1.3 4.3 112.4

4.087368 7.44 567 14.1 8.2 -1.3 4.4 114.3

4.23672 7.2 567 13.42 8.03 -1.2 4.9 115.6

4.517136 6.83 567 13.29 8.01 -1.1 5.1 116.4

4.876495 6.46 567 13.08 7.98 -0.9 6.7 116.8

5.162093 6.32 566 13.05 7.97 -0.8 8.6 117

5.538216 6.13 566 13.2 7.97 -0.5 11 117

5.800344 5.98 566 13.15 8.94 -0.1 12 117

6.167933 5.72 569 11.92 7.83 1.3 22.6 117.7

6.512357 5.33 570 10.61 7.74 1.8 30.5 118

6.73669 5.42 570 9.85 7.71 1.9 30.8 118.4

7.035089 5.39 571 9.57 7.69 0.9 26.7 118.8

7.363663 5.27 572 8.93 7.64 0.2 21.2 118.9

7.647127 5.19 573 7.82 7.7 -0.3 17.4 119.1

7.998257 5.17 576 6.6 7.73 -0.7 11.8 119.1

8.272882 5.16 577 5.06 7.55 -0.8 8 118.6

8.634984 5.13 579 4.03 7.52 -0.8 6.6 118.5

8.819998 5.13 580 2.66 7.53 -0.3 6.4 118.7

9.187586 5.12 581 1.37 7.46 0.6 6 117.9

9.205874 5.11 582 3.94 7.49 -0.3 5.3 4.95

9.458554 5.12 581 0.53 7.43 0.3 6 115.4

9.487814 5.11 581 0.23 7.3 -0.2 5.7 7.3

9.7536 5.1 580 0.26 7.31 -0.2 5.2 8.9

9.764268 5.12 581 0.32 7.36 2.5 6.9 111.3

10.12942 5.1 582 0.18 7.31 0.1 7.4 -0.9

10.42599 5.1 583 0.15 7.3 0.8 8.2 -51.2

10.65703 5.12 587 0.12 7.27 0.9 6.7 -138.7

11.05449 5.13 588 0.12 7.26 0.8 6.9 -159.7
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May 2, 2013. 12:00 P.M. 

 

 

 

 

 

 

 

 

 

 

 

Depth (m) Temperature (ºC) Conductivity DO (mg/l) pH Redox

0.011582 20.85 564 9.34 8.28 186.8

0.916838 18.08 560 10.69 8.34 176.4

1.837944 14.45 561 10.97 8.26 171.1

2.769108 11.94 566 11.56 8.22 168.8

3.667354 8.18 566 13.7 8.22 165

4.575353 6.3 569 14.07 8.14 164.4

5.501335 5.69 567 14.07 8.18 162.9

6.413906 5.2 573 12.8 7.86 165.7

7.331964 5.06 575 10.49 7.72 166

8.246974 4.97 579 8.06 7.59 166.1

9.156192 4.91 582 5.86 7.5 165.6

10.08461 4.91 582 4.12 7.45 147.2

10.37082 4.92 584 3.23 7.42 -166.8

11.04047 4.97 605 2.42 7.21 -241.8
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May 24, 2013. 11:55 A.M. 

 

 

 

 

 

 

 

 

 

 

 

Depth (m) Temperature (ºC) Conductivity DO (mg/l) pH Turbidity Chlorophyll Redox

0.0073152 21.29 547 10.08 8.27 0.9 3 41

1.0207752 21.31 548 9.75 8.37 0.8 3.1 16

1.941576 21.29 549 9.66 8.38 1.1 3.8 12.2

2.855976 16.04 557 13.07 8.39 0.9 5.1 12.5

3.7252656 11.51 556 16.88 8.4 6 8.9 14.5

4.6491144 8.34 565 15.81 8.12 1.9 8.9 20.8

5.4571392 6.67 566 13.4 7.85 2.4 6 23.6

6.1469016 5.89 570 10.94 7.66 5.9 7 24.9

6.4300608 5.8 572 9.18 7.59 4 5.4 25

6.8192904 5.59 576 4.43 7.49 3 6.2 23.1

7.0930008 5.53 577 3.19 7.46 3.3 5.8 21.2

7.6818744 5.47 577 1.71 7.46 4.3 5 19.1

8.6038944 5.37 580 0.88 7.4 4 7 -214.7

9.4942152 5.33 584 0.49 7.38 5 6.3 -236

10.442143 5.33 593 0.42 7.29 3.8 6.5 -239.5

10.923118 5.39 630 0.22 6.95 0.2 -0.3 -262.9
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June 7, 2013. 2:32 P.M. 

 

 

 

 

 

 

 

 

 

 

depth Depth (m) Temperature (ºC) Conductivity DO (mg/L) pH Turbidity Chlorophyll

0.058 0.017678 23.99 534 7.64 8.47 2.2 4.5

3.037 0.925678 23.09 534 7.95 8.48 2.4 6.1

6.086 1.855013 22.3 534 8.19 8.47 2.4 7.1

9.09 2.770632 19.42 541 10.4 8.51 3.3 9.4

12.042 3.670402 13.8 544 14.93 8.46 7.8 20

15.158 4.620158 9.37 555 14.16 8.33 9.7 16.1

18.031 5.495849 7.82 562 12.88 8.15 8.4 10.4

20.163 6.145682 6.6 564 10.48 7.93 4.2 6.4

23.089 7.037527 5.83 571 4.61 7.65 2.3 5.4

26.074 7.947355 5.58 574 1.6 7.54 8 12.6

29.063 8.858402 5.39 575 0.6 7.38 3.4 7

32.122 9.790786 5.33 580 0.43 7.37 4.2 6.9

35.188 10.7253 5.41 600 0.31 7.21 8.8 6.4

25.083 7.645298 5.66 573 0.21 7.49 14.3 20.4

24.527 7.47583 5.7 573 0.17 7.51 12.4 18.4

24.579 7.491679 5.72 572 0.22 7.45 13.9 20.6

24.664 7.517587 5.71 572 0.22 7.41 16.9 25

13.659 4.163263 11.36 544 10.63 8.48 14.1 27.1
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June 24, 2013. 11:00 A.M. 

 

 

 

 

 

 

 

 

 

 

Depth (m) Temperature (ºC) Conductivity DO (mg/l) pH Turbidity Chlorophyll Redox

0 28.33 539 8.93 8.19 0.6 2.9 53.5

0.9144 27.62 538 7.96 8.3 0.7 3.3 54.7

1.8288 26.53 537 8.6 8.35 0.9 4.8 55.8

2.7432 22.08 539 14.05 8.54 1.6 5 60.4

3.6576 15.82 535 20.72 8.69 5.7 4.9 58.8

4.572 10.94 523 26.92 8.89 10.5 13.8 64.4

4.93776 9.07 545 13.58 8.3 15.2 21.2

5.12064 8.32 557 7.04 8.14 34.8 41.2

5.27304 7.85 564 4.82 7.7 33.9 35.1

5.42544 7.57 566 2.85 7.58 21.9 23.5

5.4864 7.78 569 20.68 8.2 24.4 19.6 74.1

5.7912 6.54 572 0.62 7.44 10.9 13.3

6.096 6.67 573 6.97 7.8 6.8 7 78.6

7.0104 6.18 577 5.87 7.64 5.6 9.1 -18.1

7.9248 5.79 550 3.08 7.57 3.5 6.8 -139.2

8.8392 5.58 583 1.86 7.52 3.6 6.3 -154.7

9.7536 5.49 590 1.3 7.47 6 6.6 -170.4

10.668 5.55 631 0.94 7.28 18.3 4.4 -200.9
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July 22, 2013. 11:00 A.M. 

 

 

 

 

 

 

 

 

 

 

Depth (m) Temperature (ºC) DO (mg/l) pH Turbidity Chlorophyll Redox Conductivity

0 28.61 7.17 8.07 0.3 3.1 34.7 531

0.9144 28.62 7.01 8.07 0.3 3.5 33.4 531

1.8288 28.54 6.92 8.03 0.4 3.7 32.7 532

2.7432 27.01 9.26 8.22 1 4.3 29.6 531

3.6576 20.36 17.73 8.41 1 3.9 29.2 541

4.572 14.58 22.99 8.52 2 7.5 31 531

5.4864 11.12 24.2 8.4 7.8 11.4 59.4 551

6.4008 7.6 5.41 7.55 18.3 18.8 -313.9 578

7.3152 6.36 1.14 7.29 4.4 8.1 -360 583

8.2296 5.94 0.96 7.25 3.9 6.7 -380.5 584

9.144 5.75 0.79 7.15 4.5 6.4 -373.5 589

10.0584 5.66 0.78 7.04 9.8 6.8 -372.6 613

5.9436 8.12 0.65 7.16 38.3 27.1 571

6.096 7.82 1.18 7.19 38.3 32.1 576

6.2484 7.49 0.7 7.17 17.8 17.9 574

5.7912 8.05 0.82 7.2 42.3 25 572
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July 24, 2013. 10:00 A.M. 

 

 

 

 

 

 

 

 

 

 

 

Depth (m) Temperature (ºC) Conductivity DO (mg/l) pH Turbidity Chlorophyll Redox

0 27.18 528 8.21 8.12 0.5 3.3 12.4

0.9144 27.18 527 8.07 8.12 0.5 3 14.8

1.8288 27.12 527 8.03 8.13 0.5 3.1 15.9

2.7432 25.41 530 12.84 8.36 1.4 4.5 17.2

3.6576 19.37 535 20.05 8.42 1.2 3.7 27.2

4.572 14.18 537 23.17 8.44 4.8 7.4 30.8

5.4864 10.38 560 19.51 8.21 20.5 15.6 43.6

5.7912 8.74 568 2.29 7.4 32.2 19.1

5.9436 8.41 568 2.14 7.33 38.3 35

6.096 7.78 571 1.4 7.3 23.2 20.4 -150.5

7.0104 6.49 578 1.05 7.28 5.8 9.3 -228.8

7.9248 5.97 581 0.95 7.26 3.9 6.6 -238.4

8.8392 5.71 586 0.85 7.11 4.6 7.1 -251

9.7536 5.69 605 0.83 7.06 7 6.6 -260.3

10.668 5.73 633 0.83 6.85 21.3 9.4 -265.6
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August 7, 2013. 11:00 A.M. 

 

 

 

 

 

 

 

 

 

 

 

 

Depth (m) Temperature (ºC) Conductivity DO (mg/l) pH Turbidity Chlorophyll Redox Eh

0 26.03 519 9.11 8.27 0.5 3.4 72.8 272.8

0.9144 25.72 519 9.28 8.19 0.5 2.9 75.1 275.1

1.8288 25.5 518 9.16 8.18 0.6 2.6 102.9 302.9

2.7432 24.87 520 9.24 8.15 0.7 3.1 43.3 243.3

3.6576 21.64 529 14.76 8.28 0.9 3.4 42.4 242.4

4.572 15.64 530 21.95 8.43 1.1 3.4 41.1 241.1

5.4864 10.59 553 22.69 8.42 8 9.3 -65 135

5.7912 9.63 563 17.6 8.13 22.9 15.2 -52.8 147.2

6.096 9.02 569 14.95 7.93 47.4 27.2 -58.4 141.6

6.15696 8.3 567 5.65 7.56 47.8 36 200

6.4008 7.64 572 1.31 7.31 20.8 24.6 -119.9 80.1

7.3152 6.42 579 0.72 7.28 4.7 9.7 -168.5 31.5

8.2296 6.1 580 0.64 7.27 3.9 7 -216.4 -16.4

9.144 5.81 590 0.59 7.2 5.3 7 -234.3 -34.3

10.0584 5.76 617 0.6 7.08 8.8 7.5 -247.5 -47.5

10.9728 5.82 688 0.6 6.9 24.9 10.3 -257.5 -57.5
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August 13, 2013. 2:00 P.M. 

 

 

 

 

 

 

 

 

 

 

Depth (m) Temperature (ºC) Conductivity DO (mg/l) pH Turbidity Chlorophyll Redox

0 27.76 528 9.66 8.17 0.6 2.7 72.2

0.9144 27.69 528 9.51 8.2 0.5 2.6 73.7

1.8288 26.91 529 9.53 8.19 0.6 3 76.7

2.7432 24.83 534 11.2 8.26 0.7 2.8 82.1

3.6576 21.24 541 18.11 8.33 1.2 4.2 90.8

4.572 15.51 545 23.9 8.51 1.1 3.5 112.8

5.4864 11.45 557 24.33 8.58 4.8 7.1 111.8

5.7912 10.16 571 21.64 8.36 14.1 10.5 89.4

6.096 9.18 581 16.39 7.99 47.8 25.9 -12.1

6.2484 8.82 582 3.68 7.56 54.9 40

6.4008 7.83 585 0.73 7.34 46.1 42.6 -191.4

6.5532 7.64 586 0.78 7.34 11.9 26.7

7.3152 6.83 592 0.85 7.31 6 14.5 -210.6

8.2296 6.12 597 0.75 7.3 4.2 8.3 -221.3

9.144 5.82 604 0.69 7.26 5.2 6.8 -233.6

10.0584 5.82 642 0.69 7.1 10.7 7.9 -250.6

10.9728 5.87 696 0.69 6.93 19.2 10 -264.7



73 
 

 
 

October 2, 2013. 1:00 P.M. 

 

 

 

 

 

 

 

 

 

 

 

 

Depth (m) Temperature (ºC) Conductivity DO (mg/l) pH Turbidity Chlorophyll Redox

0 20.66 521 8.92 8.16 -0.4 2.7 81.3

0.9144 20.13 520 8.94 8.27 -0.3 2.7 80.9

1.8288 20.02 520 8.82 8.3 -0.3 2.7 83

2.7432 19.92 520 8.74 8.32 -0.2 3 83.6

3.6576 19.7 521 8.71 8.33 -0.2 2.5 83.4

4.572 18.11 540 10.04 8.29 0 3.2 84.72

5.4864 14.32 567 11.02 8.24 1.8 4.5 85.3

6.4008 10.25 576 2.02 7.81 12.9 11.8 88

6.7056 0.44 66.3

6.97992 8.77 583 0.3 7.61 22.8 107 -141.3

7.28472 8.09 585 0.21 7.5 31.7 219 -162.6

8.2296 6.82 595 0.15 7.45 7.7 21.8 -183.1

9.144 6.31 613 0.17 7.38 5.8 13.3 -185.9

10.0584 6.14 659 0.14 7.24 8.2 11.9 -189.1
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CRYSTAL LAKE ANALYTICAL DATA 

PHOSPHORUS 

May 24, 2013. 

 

 

 

 

 

 

 

 

 

Depth (m) absorbance concentration (mg/L PO4
3-)

0 0.05 0.053335

0.9144 0.24 0.241948

1.8288 0.34 0.341218

2.7432 0.25 0.251875

3.6576 0.26 0.261802

4.572 0.48 0.480196

4.8768 0.02 0.023554

5.1816 0.03 0.033481

5.4864 0.03 0.033481

5.7912 0.03 0.033481

6.7056 0.06 0.063262

7.62 0.53 0.529831

8.5344 1.24 1.234648

9.4488 0.25 0.251875

10.3632 0.31 0.311437
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August 7, 2013. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Depth (m) absorbance concentration (mg/L PO4
3-)

0 0.28 0.281656

1.8288 0.21 0.212167

3.6576 0.11 0.112897

5.4864 0.25 0.251875

5.7912 0.16 0.162532

6.096 0.02 0.023554

6.4008 0 0.0037

8.2296 0.14 0.142678

10.0584 1.22 1.214794
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October 2, 2013. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Depth (m) absorbance concentration (mg/L PO4
3-)

0 1.18 1.175086

1.8288 0.57 0.569539

3.6576 0.47 0.470269

5.4864 0.72 0.718444

6.7056 0.74 0.738298

7.0104 0.89 0.887203

7.3152 0.76 0.758152

8.2296 1.07 1.065889

10.0584 1.43 1.423261



77 
 

 
 

SILICA 

May 24, 2013. 

 

 

 

 

 

 

 

 

 

 

Depth (m) concentration (mg/L)

0 0.174

0.9144 0.195

1.8288 0.185

2.7432 0.166

3.6576 0.083

4.572 0.082

4.8768 0.077

5.1816 0.09

5.4864 0.11

5.7912 0.128

6.7056 0.196

7.62 0.322

8.5344 0.298

9.4488 0.4

10.3632 0.548
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August 7, 2013. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Depth (m) concentration (mg/L)

0 0.4

1.8288 1.8

3.6576 1.9

5.4864 1.2

5.7912 0.7

6.096 0.8

6.4008 0.7

8.2296 1.9

10.0584 3
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October 2, 2013. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Depth (m) concentration (mg/L)

0 2.2

1.8288 1.1

3.6576 1.5

5.4864 1.8

6.7056 1.4

7.0104 2.7

7.3152 2.2

8.2296 2.7

10.0584 5.3
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SULFATE 

May 24, 2013. 

 

 

 

 

 

 

 

 

 

Depth (m) Concentration (mg/L)

0 7.2344374

0.9144 7.3080808

1.8288 7.1400112

2.7432 7.0053748

3.6576 7.6315696

4.572 7.6830748

5.4864 7.4418136

6.096 7.6365394

6.4008 7.6234372

6.7056 7.5308182

7.0104 7.477054

7.62 7.3094362

8.5344 7.4991922

9.4488 7.635184

10.3632 6.8178778

11.2776 7.2909124
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August 7, 2013. 

 

 

 

 

 

 

 

 

 

 

 

 

Depth (m) Concentration (mg/L)

0 5.708257

1.8288 6.069697

3.6576 6.187165

5.4864 6.1749664

5.7912 6.5630626

5.9436 6.4776724

6.4008 6.2901754

7.3152 5.7819004

8.2296 5.5745242

9.144 3.6308806

10.0584 1.1062222
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October 2, 2013. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Depth (m) Concentration (mg/L)

0 5.3499796

1.8288 5.3075104

3.6576 5.3233234

5.4864 5.218054

6.7056 5.6490712

7.0104 5.3179018

7.3152 4.906312

8.2296 4.8877882

10.0584 0.006541
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SULFIDE 

May 24, 2013. 

 

 

 

 

 

 

 

 

 

Depth (m) Concentration (mg/L)

0 0

0.9144 0

1.8288 0

2.7432 0

3.6576 0

4.572 0

5.4864 0

6.096 0

6.4008 0

6.7056 0

7.0104 0

7.62 0

8.5344 0.02

9.4488 0.03

10.3632 0.04

11.2776 0.06
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August 7, 2013. 

 

 

 

 

 

 

 

 

 

 

 

 

Depth (m) Concentration (mg/L)

0 0

1.8288 0

3.6576 0

5.4864 0

5.7912 0

5.9436 0

6.4008 0.25

7.3152 1.375

8.2296 2.5

9.144 5.875

10.0584 9.25
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October 2, 2013. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Depth (m) Concentration (mg/L)

0 0

1.8288 0

3.6576 0

5.4864 0

6.7056 0

7.0104 0.5

7.3152 1.875

8.2296 8.125

10.0584 13
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SULFATE ISOTOPIC ANALYSIS 

May 24, 2013. 

 

 

 

 

 

 

 

 

 

Depth (m) Composition (‰)

0 1.8

0.9144 1.6

1.8288 1.9

2.7432 1.8

3.6576 1.7

4.572 1.7

5.4864 1.4

6.096 1.6

6.4008 1.5

6.7056 1.6

7.0104 1.6

7.62 1.7

8.5344 1.5

9.4488 2.0

10.3632 3.4

11.2776 5.6
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August 7, 2013. 

 

 

 

 

 

 

 

 

 

 

 

 

Depth (m) Composition (‰)

0 2.1

1.8288 2.1

3.6576 2.0

5.4864 1.9

5.7912 1.8

5.9436 1.6

6.4008 2.8

7.32 5.344855967

8.23 7.841426612

9.14 10.33799726

10.06 12.86200274
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October 2, 2013. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Depth (m) Composition (‰)

0 2.0

1.8288 2.2

3.6576 2.1

5.4864 2.2

6.7056 2.3

7.0104 2.6

7.3152 3.7

8.23 7.001082642

10.06 13.60519668
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SULFIDE ISOTOPIC ANALYSIS 

May 24, 2013. 

 

August 7, 2013. 

 

October 2, 2013. 

 

 

 

 

 

 

 

 

 

Depth (m) Composition (‰)

9.4488 -14.7

10.3632 -13.6

Depth (m) Composition (‰)

8.2296 -17.4

10.0584 -1.7

Depth (m) Composition (‰)

7.3152 -20.9

8.2296 -17.7

10.0584 0.3
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PLANKTOTHRIX RUBESCENS ISOTOPIC ANALYSIS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sample Date Depth (m) d34S (‰)

8/7/2013 6.1 -0.15

10/2/2013 7.2 0.48
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