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Abstract 
 

Pedersen, Karen M., M.S. Department of Biological Sciences, Wright State 
University, 2015. Limitations of host plant use in two Andean Altinote 

(Nymphalidae, Heliconiinea, Acreaini) Butterflies, from a Tritrophic perspective.   
 

 

 

Despite the clear advantages of generalist feeding, many insect 

herbivores feed on a relatively small number of available host plants with in 

phylogenetically restricted groups. To better understand patterns of host plant 

use I used the sister species Altinote stratonice and Altinote dicaeus and their 

overlapping but distinct host plant range. I measured physiological effects of 

plants by using development time, pupal mass, and survival. To determine the 

importance of enemies I quantified rates of parasitism and rates of predation. 

Finally I measured host plant frequency, and host plant abundance. I found that 

survival of A. dicaeus and A. stratonice was reduced on low quality host plants. 

Additionally host plant use by A. stratonice was correlated with host plant 

abundance and host plant use by A. dicaeus was correlated host plant size. 

Overall patterns of host plant use appeared to be driven by bottom up forces 

even when enemies present a clear threat.  
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Introduction 
 

All organisms have a restricted set of biotic and abiotic conditions in which 

they can survive. In this sense all organisms are specialists (Price et al. 2011, 

Forister et al. 2012). Nowhere is this more clearly illustrated than in the 

herbivorous insects. The adaptations of insects to plants and plants to insects 

has resulted from millions of years of co-evolution, in which both the plant and 

the insect attempt to maximize their own fitness, often at the cost of the other. A 

temporary upper hand may be gained by the plant or the insect, but it is often 

short lived. As a result, many plants have showy, nutrient rich flowers for 

pollinators and an arsenal of physical and chemical defenses to deter herbivores. 

These modifications have increased both specialization and interdependence 

between plants and insects (Ehrlich and Raven 1964, Schoonhoven et al. 2005, 

Price et al. 2011). 

Species interactions and feeding specializations are important ecologically 

and practically (Futuyma and Agrawal 2009). Understanding species interactions 

in ecosystems informs conservation efforts because it helps us to identify and 

target keystone species (Memmott 1992, Fisher 1998). Conservation efforts also 

benefit from the use of specialists as biological control agents for invasive 

species. Invasive species cost millions of dollars in lost revenue each year.  

Expanding our knowledge of host use will also help us to better control 

agricultural pests. We may be able to control pest herbivores with parasitoids and 

predators and weeds with herbivores (McFadyen 1998, Pimental et al. 2004).  

Furthermore, more than half of the worlds described species are involved in 
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plant-herbivore-parasitoid interactions (Hawkins 1994). In herbivorous insect 

systems, parasitoids are sometimes responsible for more deaths than predators 

and pathogens combined (Hawkins et al. 1997). Host use by herbivorous insects 

and parasitoids is often highly specialized relative to other feeding guilds (Mitter 

et al. 1988, Price et al. 2011). Understanding what drives host specialization in 

these feeding guilds will improve our understanding of the majority of species 

interactions. 

Co-evolutionary physiological adaptations of plants and insects go a long 

way toward explaining the observed narrow host breadth of most insect 

herbivores, but they do not completely explain host plant specialization in insect 

herbivores (Craig and Itami 2008). In recent years, we have seen mounting 

evidence that predators and parasitoids also influence herbivore-plant 

relationships (Singer and Stireman 2003, Murphy and Berenbaum 2004, 

Oppenheim and Gould 2002).  For example, parasitoids can favor the use of 

lower quality host plants that provide refuge from parasitoids that often use host 

plant volatiles to find hosts.  Lower quality host plants might increase rates of 

mortality and development time of herbivores, but they may also provide refuge 

from parasitoids (Murphy and Berenbaum 2004, Rodrigues et al. 2010). Enemies 

can also influence the parts of the plant an herbivore feeds upon. For example, 

parasitoids can select for feeding inside fruits or other protected areas 

(Oppenheim and Gould 2002). Parasitoids can also influence host plant selection 

in some insect species with wide host plant ranges. For example, certain woolly-
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bear caterpillars (Erebidae) change their food-plant preferences in response to 

parasitism (Singer et al. 2003, Singer et al. 2004). 

 Here, I assess the ecological and physiological determinates of host plant 

use in two closely related, co-occurring nymphalid butterfly species, Altinote 

dicaeus and Altinote stratonice, with overlapping yet distinct host plant ranges. 

First I examine the issue of host plant use and specialization in herbivorous 

insects and how it is assessed and briefly review some of the major hypotheses 

that have been put forward to explain host plant use in this group. I then present 

methods and results from my studies designed to elucidate the underlying 

causes of host use in this species pair. including performance assays on 

alternate hosts in the absence of enemies, examination of rates of predation and 

parasitism on alternate host plants, and assessment of host plant use relative to 

plant availability.  Finally I discuss what these results indicate about the forces 

that shape patterns of host plant use in this system and the broader implications 

for other insect herbivores.  

 

All Insects Should Be Generalists 
 

Intuitively one would expect shifts that broaden diet breadth to be 

advantageous. An expanded host range should increase fitness by increasing 

the available resources relative to individuals or populations with a narrower host 

range. A large host plant range may also allow for a larger geographic range and 

reduce dependence on particular host plant species, which should make 

populations less prone to extinction (Yotoko et al. 2005,Biesmeijer et al. 2006, 
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Hardy and Otto 2014). Generalists should experience reduced inter- and 

intraspecific competition because food should be more widely available. Some 

generalists exploit a large number of plants, typically feeding on high quality host 

plants, only switching to toxic plants after being parasitized, thus increasing 

survival after an event of parasitism (Singer et al. 2004). Generalists may have 

greater genetic variability that permits them to exploit a larger number of plants 

and maintain larger population sizes, which should decrease the likelihood of 

extinction by increasing the likelihood of adaptation (Kelley et al. 2000). Despite 

the apparent advantages of broad host ranges, relatively generalist herbivores 

are comparatively rare; most herbivorous insects are relatively specialized 

feeding on only one plant family (Strong et al. 1984, Forister et al. 2015). So, a 

natural question is: Why do most insect herbivores feed on such a limited 

number of plants? 

  To answer this question the terms generalist and specialist must be 

defined. The terms are often defined by convenience. Specialization in insect 

herbivores has been defined in a myriad of ways, including feeding on one plant 

species, feeding on a single plant genus, feeding on only one plant family or 

herbivore taxa feeding on three or fewer plant families. In these cases generalist 

is usually used to refer to everything that is not a specialist (Bernays and Graham 

1988, Yotoko et al. 2005, Hardy and Otto 2014). This means that comparing 

results between studies can be extremely difficult. Generalists and specialists 

exist on a continuum, which at one extreme are, specialists consuming but a 

single food plant species (or even just a particular part of one host plant species) 
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and on the other, food mixers consuming plants from 50+ families (Singer 2008, 

Forister et al. 2015). The term generalist often refers to a generalist relative to 

the other insect herbivores studied, but not relative to all insect herbivores. While 

these comparisons are useful within studies, they make it hard to interpret the 

results of several studies simultaneously. For this reason, the model proposed by 

Jorge et al. (2014) which numerically assigns values to the degree of 

generalization and specialization may allow more useful comparisons among 

studies.   

Insects can also be specialists at multiple levels. First the whole species is 

specialized if the number of host families, genera or species is relatively small. 

Second, some populations may use a smaller number of host families or genera 

relative to other populations of the same species. Third, the individual insect may 

be functionally specialized, only using one host (Singer 2008). Here I will use 

generalist to refer to insects feeding on more than one family of plants and 

specialist to indicate that the host range is less than or equal to one plant family. I 

may refer to an insect as relatively generalized if that insect feeds on more plants 

species or more plant genera than the insect I am comparing it to.  

 

Hypotheses to explain insect host range 
 

Although numerous hypotheses have been proposed to explain the 

general narrow host ranges of phytophagous insects and the patterns of host use 

in particular groups (Mayhew 1997, Awmakc and Leather 2002, Singer 2008), 
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most of these conform to two primary arguments: the physiological efficiency 

hypothesis and enemy avoidance. In addition to these main hypotheses, there 

are a few others including the neurological constraints hypothesis (Bernays 

1998) and the optimal foraging hypothesis (Forister et al. 2009). Another 

hypothesis that has been only rarely addressed in the literature, but which I 

explore here, is that the abundance of a host plant or its size also determines 

patterns of host plant use. 

Physiological Efficiency 

  

The physiological efficiency hypothesis predicts that the narrow host plant 

use observed in most herbivorous insects is driven by digestive adaptations to 

circumvent specific plant toxins (Cornell and Hawkins 2003, Price et al 2011). 

Plant toxins deter generalized herbivory because non-adapted herbivores have 

may be killed by or have trouble digesting chemically defended plants. Feeding 

on toxic or low quality host plants results in decreasing fitness, as measured by 

increased time to development, lower pupal mass, decreased immune function, 

and decreased fecundity (Erickson and Feeney 1974, Levin 1976, Blau et al. 

1978, Cornell and Hawkins 2003). Specializing on a plant species or a group of 

chemically similar plants should allow insects to evolve adaptations that increase 

the efficiency of biomass conversion by mitigating the negative effects of plant 

defensive compounds. To circumvent toxic plant chemicals, insects may avoid 

feeding on extremely toxic parts of their host plant, reduce the permeability of 

their guts to toxic chemicals, develop enzymes to detoxify toxic compounds, or 

sequester toxins for defense against predators (Lill and Marquis 2001, Singer 
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2008, Opitz and Müller 2009). While the Physiological Efficiency Hypothesis may 

explain some of the narrowness in host plant use, it does not provide a full 

explanation, because the preference by a female for a host plant, does not 

always match larval performance on that plant (Craig and Itami 2008, Forister et 

al. 2009, Davis and Cipollini 2014).  

 

Enemy Avoidance 

 

 While there is clearly much support for the physiological efficiency 

hypothesis, it does not explain all patterns of host plant use. Avoiding enemies 

may in some instances provide a better explanation. Sometimes host shifting can 

provide this protection.   Host shifting can occur when an oviposition “mistake” 

provides some fitness advantage. In most documented cases of host shifts, new 

host plant associations are often chemically similar to old host plants (Forister et 

al. 2009), however shifts to chemically different host plants also occur (Brown 

and Francini 1990, Silvia-Brandao et al. 2008). New host plants can be 

advantageous if they provide better nutrition, reduced competition, increased 

fecundity, and/or escape from enemies. A new host plant that provides the same 

level of fitness as the old host plant would also be an advantage because the 

new host plant increases available resources. The result of a host shift is either a 

wider host plant range or a complete shift to the new host. A special kind of host 

shift is one that results in “enemy-free” or “enemy-reduced space”, a niche that 

provides refuge from enemies at some physiological cost (Jeffries and Lawton 

1983). 
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Use of plants that provide refuge from predators (Camara 1997a) and 

parasitoids (Oppenheim and Gould 2002) can explain the use of otherwise 

suboptimal host plants and drive host plant shifts. These shifts may confer what 

is referred to as enemy free space if the following requirements are met: (1) 

Enemies must reduce fitness, (2) the new habitat must provide some protection 

from enemies, and (3) if natural enemies were absent from the old habitat, the 

new habitat would represent a fitness cost (Jeffries and Lawton 1983, Murphy 

and Berenbaum 2004). Mediation of enemy-free space is not limited to the use of 

a new host plant (spatially mediated enemy-free space). Behaviorally mediated 

enemy-free space, e.g. feeding in protected areas like inside fruits (Oppenheim 

and Gould 2002), and chemically mediated enemy-free space, e.g., feeding on a 

plant that is toxic to enemies (Singer et al. 2004), also protects herbivorous 

insects from predators and parasitoids, and can favor host plant specialization. 

Enemy-free space refers to, by definition, a new habitat, but a temporary diet 

expansion does not mean that colonizing enemy-free space cannot lead to later 

specialization in the new habitat.   

 

Resource Availability 

 

  For any insect herbivore, plant abundance and size, may shape patterns 

of host plant use for a variety of reasons. Abundant plants and large plants are 

easier to locate, and using a plant that can be found quickly would limit the 

female’s exposure to predators. Using an abundant plant could limit competition 

for resources or allow an insect to migrate to a neighboring compatible host plant 
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if needed.  An example of this is the fall web worm (Hyphantria cunea) where the 

frequency of host plant use is predicted by plant abundance (Mason et al. 2011). 

Even though females of this species only have a single clutch, they use plant 

relative to abundance and not quality plants they encounter to oviposit on (Mason 

et al. 2011). However, not all systems appear to be sensitive to local host plant 

abundance, and herbivores may be highly sensitive to both plant quality and 

parasitoid pressure (Stiling and Moon 2005). This variation may in part be due to 

different life history characteristics of the studied insects. For example, solitary 

insects may not require as much resources as gregarious insects. 

 

Study System 
 

In this study, I evaluate the aforementioned hypotheses for host specificity 

and assess the bottom-up and top-down ecological factors that determine host 

plant use and specificity in co-occurring and closely related species of Andean 

butterflies that differ in host use: Altinote dicaeus albofasciata (Hewitson, 1869) 

and Altinote stratonice aereta (Jordan, 1913) (Nymphalidae, Heliconiinea, 

Acraeini). These two butterfly species occur commonly from 1,100 m in 

elevations up to 1,800 m in the Andes Mountains of Columbia, and Ecuador. 

Additionally A. dicaeus is found in northern Peru and A. stratonice in Venezuela 

and Costa Rica.  As with many tropical species, occurrence records are at best 

spotty, so ranges are likely a bit larger than reported here. Adults of A. dicaeus 

and A. stratonice are both morphologically distinct from one another and sexually 

dimorphic (fig. 1).  Altinote dicaeus and A. stratonice are gregarious from the time 
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they leave the egg to the fourth instar. The eggs of A. stratonice change from a 

cream color after they are placed to a red color, however while the eggs of A. 

dicaeus never turn red they do change from a bright white to a cream color as 

the larvae near eclosion (fig. 2). After eclosion larvae are about 1 mm in length. 

The two species appear very similar until the second instar when A. stratonice 

begins to develop a lighter coloration, and by the third instar the white patterning 

appears on A. stratonice while A. dicaeus remains solid black (fig. 2). At around 

the third instar larvae appear to migrate in smaller groups to other plants. How far 

they migrate and if they continue to use their natal host plant remains an open 

question. However groups of younger larvae often have older caterpillars as 

companions so it is possible that they join groups of younger caterpillars. By the 

fifth instar most caterpillars have wandered off on their own to pupate. They will 

do this on almost any available structure, including the walls and supports of the 

research station but also commonly on other plants both host and non-host alike. 

As their aposematic coloration suggests, both A. dicaeus and A. stratonice larvae 

and adults are chemically protected with cyanogenic glycosides. Cyanogenic 

glycosides are synthesized de novo and have not been found in the larval host 

plants of A. dicaeus and A. stratonice (Brown and Francini 1990). Even though 

cyanogenic glycosides are not found in the host plants of A. dicaeus and A. 

stratonice that does not mean that the plants are without defenses. Pyrrolizidine 

Alkaloids (PAs) have been found in other plants in the tribe Liabeae (Brown and 

Francini 1990).  
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Figure 1 Dorsal view of Altinote dicaeus and Altinote stratonice males and females. The size and color of 

the wing patches varies significantly within species. A) A. dicaeus males, have distinctive pink to red bands. 
B) Adult male A. stratonice have a small black dot contained within their distinctive yellow patches. C) 
Female A. dicaeus are characterized by their cream colored vertical bands. D) A. stratonice females are 

characterized by a continuous but jagged band of black in the middle of the yellow to orange color patches 
on their forewings.  
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Figure 2 Third instar A. dicaeus (Top) and A. stratonice (Bottom) caterpillars and mature eggs. The exact 

coloration of A. stratonice is extremely variable ranging from faint discontinuous yellow lines to the bold 

cream pattern above.  

 

 I used the plants I encountered A. dicaeus or A. stratonice on most often 

for my experiments. At my study site at the Yanayacu Biological Research 

Station in Ecuador, A. dicaeus larvae were found primarily on Erato polymnioides 
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and less often on Munnozia hastifolia. In contrast A. stratonice was found most 

often on Munnozia pinnatipartita, and less often on M. hastifolia. Thus they 

exhibit distinct, but overlapping patterns of host use. I classify the host plant used 

most often as the primary host plant and the host plant used less often as the 

secondary host plant. It is noteworthy that I personally observed A. dicaeus on 

both M. pinnatipartita and on an unidentified Munnozia species. A. dicaeus was 

observed on two plant genera, Erato, and Munnozia. In contrast, A. stratonice 

was only ever observed on plants in the genus Munnozia. Given this we can say 

that A. dicaeus has a broader range of locally acceptable host plants (fig. 3). It is 

worth noting that there are records of A. dicaeus and A. stratonice on other plant 

taxa. However, it appears that this is often the result of fifth instar wandering to 

locate a pupation site or an individual migrating and not a food plant choice. In 

some cases there do appear to be valid alternate host plant records of A. 

stratonice in other geographic locations for example Liabum spp. in Columbia 

and Venezuela (Brown and Francini 1990).  

 Comparing co-occurring, closely related butterflies with overlapping host 

plant ranges is an ideal system in which to evaluate hypotheses for the 

ecological determinants of host plant use and host specificity because it controls 

to some extent for confounding variables such as phylogenetic history and 

variation in habitat.  I used A. dicaeus and A. stratonice to evaluate the predictive 

power of the physiological efficiency hypothesis, the enemy avoidance 

hypothesis and the food availability hypothesis in explaining patterns of host use 

and host specificity. 
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Figure 3 Major host-plant relationships of A. dicaeus and A. stratonice. A depiction of 

the host plant relationships between caterpillars and host plants. The thickness of the 
lines represents the proportion of caterpillars observed on each host plant species, 
dashed lines represent recorded, but rarely observed host plant associations.  
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Specific Hypotheses  
 

Below, I outline predictions generated by each of the hypotheses discussed 

above to explain host plant use in A. dicaeus and A. stratonice. 

 

Physiological Efficiency 

 If patterns of host plant use are driven by selection for adaptations to 

overcome secondary plant chemicals or to overcome nutritional deficiencies, 

then I would expect to see a significant decrease in performance on secondary 

host plants. Specifically I would predict slower growth, longer time to pupation, 

and lower survival on secondary host plants. In addition if there is a reduction in 

performance on one host plant I would expect females to place smaller clutches 

on that plant. Finally if one host plant increases performance relative to the other 

I would expect the plant with increased performance to have a higher protein 

concentration.  

 

Enemy Avoidance 

If patterns of host plant use are driven by enemies I would expect lower 

rates of parasitism and predation on the primary host plant than other hosts and 

for caterpillars to exhibit higher concentrations of cyanogenic glycosides on the 

primary host plant, thus increasing their ability to defend against enemies. 
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Food Availability 

 If patterns of host plant use are driven by plant abundance, I would expect 

to see more abundant plants used more often in proportion to their abundance.  

Plant size may also influence patterns of host plant use. If patterns of host plant 

use are driven by plant size, I would expect plants to be used in proportion to 

their size.  

 

Methods 

 

Study Site 
 

All collections and experiments took place within 5 km of the Yanayacu Biological 

Research Station Cosanga, Napo Province, Ecuador (36°00'00.0"S 

77°53'00.0"W 

, 2100 m in elevation) in Andean cloud forest.  Rapid plant growth necessitates 

frequent clearing of the access road leading to the Yanayacu Biological 

Research Station.  This creates the disturbed habitat favored by E. polymnioides, 

M. hastifolia and M. pinnatipartita. In addition to cloud forest surrounding the 

station there are also several cattle farms with pasture grass along the same 

road. Farmers often make a special effort to clear M. pinnatipartita from their land 

because of its apparent toxicity to pasture grass. M. pinnatipartita also facilitates 

regrowth of native plants (Paoletti et al. 2012). This is consistent with my 

observations that cattle pasture is poor habitat for M. pinnatipartita, M. hastifolia 

and E. polymnioides, and by extension A. dicaeus and A. stratonice.  
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Caterpillar Surveys 
 

Caterpillar surveys were initially conducted to evaluate in situ patterns of 

host plant use by caterpillars. Data was also used to determine if my data were 

consistent with the data from the Caterpillars and Parasitoids of the Eastern 

Ecuadorian Andes (CAPEA) project, which has been rearing caterpillars from the 

area surrounding the Yanayacu Biological Research Station for more than ten 

years methods described in Dyer et al. (2007).  My collections began December 

2012 and ended in March 2013. A. dicaeus and A. stratonice caterpillars were 

collected from along the access road in a haphazard fashion. After collection, 

caterpillars were reared in an open sided shed in one gallon plastic bags. The 

number of caterpillar groups found on each host plant was used to determine 

patterns of host plant use.  

 

Clutch size by host plant 

  Plant use by A. dicaeus and A. stratonice, was also evaluated using egg 

clutches.  I photographed all egg clutches I encountered starting December 2012 

and ending May 2013, and again December 2013 through January 2014 and 

counted the number of eggs in each clutch.  During this time I located 47 

clutches, 21 A. dicaeus clutches, 13 on E. polymnioides, and eight on M. 

hastifolia, 26 clutches of A. stratonice 20 on M. pinnatipartita and 6 M. hastifolia.  

The average number of eggs per clutch was calculated and a two tailed t-test 

was used to determine if A. dicaeus and A. stratonice placed the same number of 
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eggs on both of their commonly used host plants. To reliably identify Altinote 

species at the egg stage I waited for eggs to develop, because mature A. 

dicaeus and A. stratonice eggs are different colors. Mature A. stratonice eggs are 

red and mature A. dicaeus eggs are creamy white. 

I compared the patterns of host plant use I observed in both caterpillars 

and eggs to the data collected by the CAPEA. The host plant relationships the 

CAPEA project observed were very similar to the relationships I observed.  

 

Physiological Efficiency 
 

Rearings 

To test whether A. dicaeus and A. stratonice perform better on their 

primary host plants than their secondary host plants, I collected eggs, first, and 

second instar larvae of both A. dicaeus and A. stratonice. Collections began 19 

December 2012 and ended May 2013, and rearing continued until June 2013. 

Due to the high mortality of eggs and first instar larvae under the rearing 

conditions, only the results of second instar larvae were analyzed. Caterpillars 

were reared in groups because they could not survive alone in early instars. 

Groups of ten caterpillars from the same clutch were placed on freshly collected 

leaves from E. polymnioides, M. hastifolia or M. pinnatipartita. The caterpillars 

and leaves were then placed in plastic bags and hung up. The rearing shed was 

open sided, allowing the temperature to fluctuate with ambient temperature. 

Inside the shed, the temperature was noticeably lower than the caterpillars 

experience in situ on sunny days and these lower temperatures may have 
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slowed development times.  In total I reared 22 clutches of A. dicaeus and A. 

stratonice in this manner. However only 11 clutches were included in statistical 

analyses because, 11 clutches experienced 100% mortality under rearing 

conditions.  For statistical analysis I used six clutches of A. stratonice (180 

caterpillars), three clutches collected from M. pinnatipartita and three clutches 

collected from M. hastifolia. I used five clutches of A. dicaeus (150 caterpillars), 

three clutches collected from E. polymnioides, and two clutches collected from M. 

hastifolia.  The survival data was used to estimate a Kaplan-Meier curve and 

significance was assessed using a log-rank test to determine if survival was host 

plant dependent. 

Growth rates were not calculated because removing caterpillars from 

leaves to get an accurate mass often resulted in the death of that caterpillar even 

when a small paint brush was used. Length of individual caterpillars was 

measured to the nearest mm and an average was taken for the group. However 

these measurements proved unreliable and were not included in statistical 

analysis.  

When pupae were sufficiently sclerotized they were removed from the 

leaf, and weighed. The approximant number of days to pupation and the mass of 

the pupae were compared between host plant treatments with two tailed t-tests.  

Crude Protein 

 To test whether protein concentrations were higher in primary host plants 

than secondary host plants leaves were collected from E. polymnioides, M. 

hastifolia, and M. pinnatipartita along the access road to Yanayacu Biological 
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Research Station and from the surrounding area. Leaves were collected from 32 

plants: 8 E. polymnioides, 14 M. hastifolia, and 10 M. pinnatipartita from January 

through May 2013 and then again from December 2013 through January 2014. 

Leaves were collected from plants with egg clutches and plants of an equivalent 

age nearby. Because I was interested in the protein concentration of leaves 

where caterpillars were likely to feed I was careful to collect leaves females had 

placed eggs on or leaves of comparable age to the leaves females had placed 

eggs on.  After collection leaves were placed in small ziplock sandwich bags with 

a generous amount of silica gel to dry.  The analysis of protein concentrations 

was done at Wright State University, Dayton, Ohio. 

Protein Extractions 

In a cold room at 2oC-11oC, I crushed 0.25 – 0.5 g of dry leaf material in 3 

ml of neutral pH sodium phosphate buffer and centrifuged the samples for 15 

minutes. The supernatant was then transferred to a second tube and frozen 

before the protein concentration was measured (Bollag and Edelstein 1991).  

Protein Concentration 

To create a standard curve for comparison a series of albumin protein 

dilutions were made as follows: 3, 1.5, 0.75, 0.38, 0.19, 0.094, 0.047, 0.00 

mg/ml. This series was use to interpret the protein concentrations in the plant 

samples. Samples of extracted leaf protein were thawed and placed on ice while 

the Bio-Rad Dye Reagent warmed to room temperature. The Bio-Rad Dye 

Reagent was diluted to 1:2.5 ratio with water. Each sample was loaded into a 

microplate in triplicate and read in a Photospectrometer. A mean was taken from 
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the replicates of each sample and then placed into the linear equation generated 

using the standard curve. 

 

Enemies 
 

Parasitoid Rearing 

Caterpillars collected for host-use surveys were reared and used to 

estimate rates of parasitism. After collection caterpillars were reared on the same 

plant species on which they were found in the field.  If found together, caterpillars 

were reared together. Caterpillars were cleaned twice a week and given fresh 

leaves. To maintain a hygienic environment, some large groups had to be placed 

in more than one bag at around the third instar.  To minimize infection by 

potential pathogens, plastic bags were placed overnight in a 5% bleach solution 

before reuse. Removal of first and second instars from plant material often 

results in mortality. For this reason the part of the leaf with the first or second 

instar caterpillars was transferred with them into the clean bags with fresh leaves.  

The fate (i.e., dead, pupa or parasitoid) was recorded for each caterpillar. 

Parasitoids of three families emerged from A. dicaeus and A. stratonice 

caterpillars: Tachinidae, Ichneumonidae, and Braconidae. Caterpillars were 

counted as dead if a body was found and no parasitoid located, or occasionally, if 

a caterpillar was missing and may have been eaten by the others. Caterpillars 

had to successfully pupate to be considered a pupa. Pupa were weighed when 

they were sclerotized enough to be handled. Voucher specimens of adult male 
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and female butterflies were placed in Dr. J.O. Stireman’s collection at Wright 

State University, Dayton, Ohio. 

 Frequency of parasitism were calculated from the rearings that I 

conducted and from the data collected by the CAPEA project.  A χ2 test was used 

to determine if rates of parasitism were different on different host plants for both 

A. dicaeus and A. stratonice. A logit regression was run on data from both 

species to test if overall parasitism frequency differed by host plant.  Dead 

caterpillars were excluded from statistical analysis of rates of parasitism because 

the reason the caterpillar died was unknown and they could have been a 

parasitized. Data from the CAPEA project was only included if the identity of the 

caterpillar could be verified with a photo. A. dicaeus and A. stratonice look very 

similar to each other, however later instar A. stratonice caterpillars have a white 

pattern on their dorsum while A. dicaeus remains solid black. The white 

patterning on A. stratonice is highly variable and may be very subtle or very bold 

(fig. 2).  

 

 

Cyanogenic Glycoside Testing 

I tested 3rd instar caterpillars for cyanogenic glycosides to see if different 

host plants increase or decrease the caterpillar’s ability to synthesize cyanogenic 

glycosides de novo. Lower levels of cyanogenic glycosides make caterpillars 

more vulnerable to enemies, particularly generalist predators (Gleadow and 

Woodrow 2002).  



23 
 

Sodium Picrate Paper 

To make sodium picrate paper a slurry was created using 5 g sodium 

bicarbonate, 50 ml of 10% picric acid and 50 ml of distilled water. One by ten cm 

strips of filter paper were submerged in the solution and then placed on 

newspaper and allowed to dry overnight. The prepared indicator paper was 

stored in a sealed plastic bottle.  

Standard Curve 

I made an initial 20.0 mg/L solution of potassium cyanide and water. This 

solution was than diluted by halves to make 10.0, 5.0, 2.5, 1.25, 0.625, and 0 

mg/L solutions. One ml of each dilution was placed in a test tube and a strip of 

sodium picrate paper added. It was then allowed to sit for eight hours at ~20oC. 

The test strips were then photographed on a white background with a Macbeth 

Color Checker Card. 

 

Testing for Cyanogenic Glycosides 

Ten third instar larvae of each species were collected from their primary 

and secondary host plants. Each caterpillar was placed in a tube with 1 ml of 

distilled water and crushed. A strip of sodium picrate paper was then placed in 

the test tube and the time recorded. Controls were made using 1 ml distilled 

water and a second negative control was made using a crushed caterpillar of 

Dysschema sp. (Erebidae: Arctiinae), of approximately the same size. 

Dysschema sp. was used because I found it feeding on both E. polymnioides and 

M. hastifolia in large gregarious groups, thus it is ecologically similar to A. 
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dicaeus. Because the complete color change can take several hours the picrate 

paper was left in the test tubes with the caterpillar extract in a room where the 

temperature measured 20oC. Temperatures higher than 20oC have been shown 

to alter the coloration of sodium picrate paper (Egan et al. 1998). Photographs of 

test strips were taken on a white background with a Macbeth Color Checker 

Card. The photographs of the test strips were first run through imageJ using the 

Chart_White_Balance plug-in to white balance.  The colors were then visually 

compared to those of the standard curve, also white balanced, to approximate 

cyanogenic glycoside concentrations.  

 

Predation 

To test if predation pressure of each butterfly species differed between 

their primary and secondary host plants I followed caterpillar clutches in the field 

and assessed rates of disappearance. For both A. dicaeus and A. stratonice I 

located 20 clutches of 1st, 2nd or 3rd instar caterpillars. Ten clutches on their 

primary host plant and ten clutches on their secondary host plant, for a total of 40 

initial clutches. Each clutch was marked by attaching pink or orange flagging to 

the host plant and assigning it an ID. Then both sides of the leaf were 

photographed to capture as many caterpillars as possible. Later the number of 

caterpillars in the group was counted using the photographs. This method may 

not capture all caterpillars, because caterpillars moved while I photographed the 

clutch. However, it is more accurate than trying to count large groups of moving 

individuals by hand in the field. Plants were visited six times over the course of 

two weeks. At first the interval between visits was three days but this was clearly 
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too infrequent because many clutches went missing, so the interval was reduced 

to two days and then one day between visits. For the first three periods of data 

collection missing clutches were replaced by comparable clutches.  It rapidly 

became clear that third instar caterpillars migrated frequently. Data from those 

clutches is considered to be unreliable and not indicative of predation. All third 

instar clutches were excluded from statistical analysis. Additional data was 

excluded from clutches where the number of caterpillars increased dramatically 

between visits, because those data clearly did not represent rates of predation.  

All told data was collected from 55 clutches but only 34 clutches were included in 

statistical analysis. A total of 1377 A. dicaeus and 1365 A. stratonice caterpillars, 

were used to create a Kaplan-Meier survival curve to compare survival of A. 

stratonice and A. dicaeus caterpillars on E. polymnioides, M. Hastifolia, and M. 

pinnatipartita. I conducted a Log Rank Test to see if there was a  statisically 

significant difference between the survival cuves of A. dicaeus and A. stratonice 

on their primary versus secondary hostplants 

 

Food Availability  
  

To test whether patterns of host plant use are associated with host plant 

abundance or host plants size I surveyed and collected plant stems along the 

access road leading to Yanayacu Biological Research Station. 
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Plant Distribution Surveys 

Plant distribution was surveyed from along the access road leading to 

Yanayacu Biological Research Station for 7.4 km, starting from where the access 

road meets the main road (Amazónica/E45). This represents the area where I 

collected the majority of my plants and caterpillars. Portions of the road were 

surveyed on three separate days, one side on 16 and 17 December, 2013 and 

the second side on 31 December 2013.  Approximately every 100 m, a quadrat 

was sampled. Plants were sampled by recording which species of host plant 

were present if any and then counting the number of ramets inside a one m2 

quadrat. If caterpillars or eggs were present the species was recorded. To 

determine the location of the quadrat I closed my eyes and threw the quadrat 

toward the side of the road. I then sampled inside the quadrat.  To estimate the 

distance between quadrats I used one stride to estimate 1 m. However my stride 

is ~ 0.85 m and thus slightly shorter than 1 m resulting in 174 quadrats instead of 

the expected 148 (7.4 km sampled every 100 m = 74 quadrats x two sides of the 

road = 148 quadrats). These data were used to calculate plant frequency (the 

number of quadrats in which a species appears), plant abundance and rates of 

plant occupancy. Finally an index of dispersion was used to test for an 

aggregated plant distribution.  

 

Leaf area / plant 

 To quantify the observed variation in plant size, I haphazardly gathered 

ten ramets each from E. polymnioides, M. hastifolia, and M. pinnatipartita from 

the road side. The ramets were collected and taken back to the field station and 
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photographedon a white bed sheet. I then used imageJ to calculate leaf area of 

each leaf on an individual ramet.  The leaf areas for all leaves on a ramet were 

summed and an average area per leaf per ramet was calculated for E. 

polymnioides, M. hastifolia and, M. pinnatipartita. To determine if leaf area per 

ramet varied significantly among plant species an ANOVA was used.  Because 

the leaves of E. polymnioides wilted during the walk back to the station the 

average is considered an underestimate. These data were used in conjunction 

with the plant surveys to calculate plant abundance (the number of ramets in a 

given m2) and the leaf area in a given m2. 

 

Results 

Physiological efficiency 
 

Survival 

Under the experimental rearing conditions, survival of larvae was very low 

for both A. dicaeus and A. stratonice. A total of 22 caterpillar clutches were 

reared, but half of the clutches experienced 100% mortality and were excluded 

from statistical analysis. Survival was further reduced by unsuitable host plants 

(fig. 4a). A. dicaeus experienced the lowest rate of survival on M. pinnatipartita 

(2%), and approximately equal rates of survival on E. polymnioides (34%) and M. 

hastifolia (40%) under experimental conditions. A. stratonice experienced 100% 

mortality on E. polymnioides, moderate survival on M. pinnatipartita (13%) and 
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the highest rate of survival (20%) on M. hastifolia under rearing conditions (fig. 

4b).  

          A)  A. dicaeus           B) A. stratonice 

 

Figure 4 Caterpillar survival under experimental rearing conditions Kaplan Meier estimators of caterpillar 

survival on E. polymnioides, M. hastifolia and M. pinnatipartita. A  “+”  is used to represent an individual that 
pupated and survived longer than the study’s  duration. A) Survival of A. dicaeus ( N= 150) differed 
significantly across host plants (P <<0.0001). B) A. stratonice (N = 180) survival also varies significantly 

across host plants (P << 0.0001).  

 

Development Time and Pupal Mass 

Of the 330 caterpillars followed, 53 survived to pupation.  Of these, 36 

pupa were A. dicaeus and 17 were A. stratonice.  Of the five groups of A. 

dicaeus caterpillars that were placed on M. hastifolia, four produced pupae (19 

total pupae). Of the five groups of A. dicaeus caterpillars placed on E. 

polymnioides, four produced pupae (17 total pupae). A. dicaeus pupated once on 

M. pinnatipartita but was not included in statistical analysis of development time 

or pupal mass because a sample size of one is unlikely to produce reliable 

results. Six groups of A. stratonice caterpillars were placed on M. hastifolia, and 

three of these produced pupae (11 total pupae), and of the six groups of A. 
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stratonice caterpillars placed on M. pinnatipartita, four produced pupae (6 total 

pupae). None of the A. stratonice larva survived to pupation on E. polymnioides. 

The mean pupal mass of A. dicaeus caterpillars on E. polymnioides (22.4 mg) 

was not statistically significantly different from the mean pupal mass (20.4 mg) of 

those on M. hastifolia (T = -0.891, df = 34, P = 0.3792; fig. 5). The larval 

development time for A. dicaeus appears approximately the same on both E. 

polymnioides and M. hastifolia, with means of 55 days and 58 days respectively 

(T = -1.1381, df = 34, P = 0.263) (fig. 3). A. stratonice caterpillars took longer to 

pupate on M. hastifolia (mean 51 days) than on M. pinnatipartita  (mean of 47 

days)  but the difference is not statistically significant ( T = 1.3038, df = 17, P = 

0.2097) (fig. 5). There was no difference in the mean pupal mass on either M. 

hastifolia 16.3 mg or M. pinnatipartita 15.3 mg (T = 0.752, df = 17, P = 0.4623) 

(fig. 6).  While I did measure caterpillar length the measurements proved 

unreliable and are therefore not included. 

A) A. dicaeus          B) A. stratonice 

 

Figure 5 Mean and range of larval development. A) A. dicaeus (P = 0.263).  B)  A. stratonice (P = 0.2097).  
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         A)  A. dicaeus         B) A. stratonice           

 

Figure 6 The mean and range of pupal mass for caterpillar raised on alternate plant diets. A) A. dicaeus 

(P = 0.3792). B) A. stratonice caterpillars (P = 0.4623). 

 

Caterpillar Survival by Clutch 

An examination of the survival of particular clutches on different host 

plants supports the notion that caterpillars of both species survive best on the 

host plants on which they were placed by their mother, although limited sample 

size prevents statistical inference. In three out of four A. dicaeus caterpillar 

cltuches examined, survival was higher on the plant from which they were 

collected in the field than it was on either of the two alternate host plants. In all 

cases A. dicaeus preformed better on both E. polymnioides and M. hastifolia than 

it did on M. pinnatipartita (fig. 7a). In four out of five A. stratonice clutches 
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examined, caterpillars performed better on their original host plant than they did 

on the alternate host plants. As mentioned earlier, there was no survival on E. 

polymnioides (fig. 7b).  

 

          

 

A) A. dicaeus           B) A. stratonice 

 

Figure 7 Proportion of each family surviving on each host plant. Caterpillar families collected from E. 

polymnioides plants are in blue, caterpillar families collected from M. hastifolia are in orange and caterpillar 
families collected from M. pinnatipartita are in green. Each was assigned its own symbol. 

 

Clutch size 

 

A total of 21 A. dicaeus clutches were observed, 13 on E. polymnioides 

and eight on M. hastifolia. A total of 26 A. stratonice clutches were observed six 

on M. hastifolia and 20 on M. pinnatipartita. A. dicaeus’s clutch size is not 

statistically different (T = -0.1214, df = 16.357, P = 0.9049) between host plants, 

E. polymnioides (mean  178 ± 90) and on M. hastifolia (mean 182 ± 80).  In 
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contrast, A. stratonice has almost 46 % larger  clutches on M. hastifolia  (mean  

248 ± 59) than on M. pinnatipartita (mean 169 ± 73) and clutch size is 

significantly different (T = 2.7186, df = 9.97, P = 0.02166) (fig. 8).  

A) A. dicaeus             B) A. stratonice 

 

 

Figure 8. Mean (± stdev) number of eggs per clutch female butterflies placed on each host plant in the 

field. A) A. dicaeus (P = 0.9049). B) A. stratonice mean clutch size differs significantly (P = 0.02166).  

  

Host Plant Protein Content 

A total of 32 plants were assayed for protein content: eight E. 

polymnioides, 14 M. hastifolia and 10 M. pinnatipartita. Mean protein 

concentrations are not statistically different (F-value = 2.34, P = 0.114). Crude 

protein was found to be highest in E. polymnioides, 0.021 protein (mg)/ leaf (mg), 

followed by M. pinnatipartita 0.015 protein (mg)/ leaf (mg) and lowest on M. 

hastifolia 0.014 protein (mg)/ leaf (mg).  Differences between plant species are 

not statistically significant (fig. 9).  
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Figure 9 The mean protein concentrations in protein (mg) / plant (mg) ± stdev of the three commonly used 

host plants. Differences are not significant (P = 0.114).  

 

 

Enemies 

 

De novo synthesis of Cyanogenic Glycosides 

Each caterpillar species, irrespective of host plant appears to be equally 

well defended. The concentration of cyanogenic glycosides was found to fall 

between 0.625 and 1.25 mg/L for all 20 Altinote caterpillars. The Dysschema sp. 

caterpillars used as negative controls did not produce cyanogenic glycosides 

(i.e., 0 mg/L).  While there may be differences between species or among host 
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plants in ability to synthesize cyanogenic glycosides, I did not find any evidence 

of this using the sodium picrate paper assay.                                                                             

Parasitoids 

I calculated frequency of parasitism using the 875 caterpillars I collected 

and 474 caterpillars from the CAPEA project for a total of 1349 caterpillars. Data 

was collected from 686 A. dicaeus caterpillars, 565 from E. polymnioides, 117 

from M. hastifolia and three from M. pinnatipartita. Of the 545 A. stratonice 

caterpillars collected 469 were from M. pinnatipartita and 76 were from M. 

hastifolia. The reason caterpillars died was unknown and could have been the 

result of unsuccessful parasitoid so they were excluded. Out of 473 caterpillars 

that either survived to pupation or produced a parasitoid, 131 parasitoids were 

reared. The results of a logit regression found both butterfly species and host 

plant where significant indicators of the frequency of parasitism (table 1).  Each 

event of parasitism was treated as separate because one clutch of caterpillars 

could produce parasitoids from three parasitoid families. All parasitoids reared 

from A. dicaeus and A. stratonice were from one of the following families 

Tachinidae, Ichneumonidae, or Braconidae.  A. dicaeus and A. stratonice appear 

to experience somewhat lower rates of parasitism when feeding on M. hastifolia, 

than on their primary host plants (fig. 8).The rate of parasitism for A. dicaeus 

drops on M. hastifolia from 18% parasitism to 7% parasitism these differences 

are statistically significant for A. dicaeus (χ2 = 9.1715, df = 1, P = 0.002458). The 

rates of parasitism are much higher on A. stratonice.  Overall the trend is similar 

for A. stratonice, which has 37% parasitism on M. pinnatipartita, but drops to 
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28% parasitism on M. hastifolia. This difference is not statistically significant (χ2 = 

1.7748, df = 1, P = 0.1828) (fig. 10). 

 

        A) A. dicaeus           B) A. stratonice 

 

Figure 10 The proportion of caterpillars that either pupated or were parasitized relative to the host plant 

they were collected on. Pupa (Pu), Tachinidae (Ta), Ichneumonidae (Ic), Braconidae (Br).  A. dicaeus N = 
192, P = 0.002458  A. stratonice N = 281 rates of parasitism are not significantly different with inspecies P = 

0.1828. Data I collected and data from Dyer et al. (2015).   

 

                           Table 1 Results of a logistic regression comparing the effects of Lepidoptera  
            species and host plant on the frequency of parasitism. 

 Df Residual P 

Host Plant 2 24.536 0.0000047 
Lep.Sp.  1 12.008 0.0005297 

 

 

Predation  

Judging from rates of larval disappearance in followed clutches, A. 

dicaeus appears to be equally vulnerable to predation on both E. polymnioides 

and M. hastifolia hosts. Disappearances could occur for a number of reasons, 
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death from enemies or migration. The predation data on E. polymnioides is 

truncated earlier than the data for M. hastifolia, because I initially included more 

third instar A. dicaeus larva on E. polymnioides so a larger number of the original 

clutches were excluded than A. dicaeus clutches on M. hastifolia. Altinote 

stratonice appears to experience significantly lower rates of predation on M. 

hastifolia than it does on M. pinnatipartita (fig. 11). 

   

   A) A. dicaeus              B) A. stratonice 

 

Figure 11 Survivorship plots of A. dicaeus and A. stratonice clutches in situ. A) A. dicaeus ( P = 0.702). B 

A. stratonice (P < 0.001). 

 

Host Plant Size and Density 
 

Among the host plant species examined size varied considerably. Erato 

polymnioides has the largest mean leaf area per ramet 0.45 m2/ramet ± 0.14 m2 

followed by M. pinnatipartita with 0.15 m2/ramet ± 0.0097 m2, and M. hastifolia 
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has the smallest leaf area per ramet with 0.07 m2/ramet ± 0.024 m2. The results 

of an ANOVA found the three means are not equal to each other (F = 5.72, df = 

2, P = 0.00849) (fig. 10a). Not only was host plant size variable but so was host 

plant frequency.  Frequency was defined as the number of times a plant species 

appears in a given number of sample points. Both Munnozia species are 

rhizomatous so it is difficult to distinguish between individual plants. For this 

reason the number of times a plant appeared in a quadrat was used to calculate 

the frequency and not the number of plants in a given area. M. hastifolia occurred 

most frequently appearing in 28% (49) of  the quadrats, M. pinnatipartita 

appeared in 14% (25) of the quadrats and E. polymnioides was encountered 

least often in 12% (21) of the quadrats (fig. 12b).  

 

         A) Leaf Area                B) Plant Frequency 

 

Figure 12. Size and number of plants. A) The mean leaf area per plant ± SEM (P = 0.00849). B) The 

frequency of plant occurrence out of the 174 sampled quadrats, E. polymnioides n = 21, M. hastifolia n = 49, 
M. pinnatipartita n = 24. 
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To estimate plant abundance, the number of ramets of each plant species 

(E. polymnioides = 62 ramets, M. hastifolia = 216 ramets and M. pinnatipartita = 

262 ramets) was divided by the number of sampled quadrats (N = 174). M. 

pinnatipartita is the most abundant species with 1.5 ramets/m2, followed closely 

by M. hastifolia 1.24 ramets/m2, the least abundant species is E. polymnioides 

0.36 ramets/m2 (fig. 13a). All plant species have an aggregate distribution, E. 

polymnioides (I = 6.242458, χ2 = 1079.9453, P << 0.00001), had the most 

aggregated distribution followed by M. pinnatipartita (I = 5.057487, χ2 = 

874.9453, P << 0.00001), and lastly M. hastifolia (I = 3.357495, χ2 = 580.8467,   

P << 0.00001). 

Despite or perhaps because E. polymnioides is both the least frequent 

and least abundant plant, it also experiences the highest rate of occupancy, with 

19% of ramets occupied, followed by M. hastifolia, with 4% of ramets occupied, 

and finally M. pinnatipartita with 1% of ramets occupied (fig. 35b).  
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 A)  Plant Abundance               B) Occupied Ramets 

 

Figure 13 Histograms of host plant abundance and plant occupancy by Altinote caterpillars and eggs. A) 

The total number of ramets surveyed (Ep = 62, Mh = 216, Mp = 262 respectively) divided by the number of 
quadrates was used to sample abundance (N=174 quadrats) ± SEM. B) The number of ramets with 

caterpillars or eggs divided by the number of ramets of that plant species ± SE (Ep = 16 plants, Mh = 8 
plants, Mp = 3 plants).  

 

The leaf area in a given meter squared may be the most relevant 

estimator of host plant availability. Given that M. pinnatipartita has about four 

times the number of total ramets and a mean leaf area more than double M. 

hastifolia (0.236 m2 leaf/m2), it is not surprising that it has the largest leaf area in 

an average meter, followed by E. polymnioides (0.161 m2 leaf/m2) and lastly by 

M. hastifolia (0.082 m2 leaf/m2) (fig. 14).  
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Figure 14 Mean leaf area of each host plant in the landscape.  

 

Of the 540 ramets searched, I found caterpillars or eggs on 23 ramets. 

There were seven plants occupied by A. stratonice and 16 plants occupied by A. 

dicaeus. The relative frequency of plant encounters appears to be associated 

with host plant use by A. stratonice (fig. 15a) and plant size appears to be a good 

predictor of A. dicaeus host plant use (fig. 15b).  
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A) Relative Frequency            B) Relative Plant Size         

 

Figure 15 Figures depict host plant use by A. dicaeus and A. stratonice by relative frequency and relative 

plant size. Each plant species is given an abbreviation (Ep = E. polymnioides, Mh = M. hastifolia, and Mp = 
M. pinnatipartita). Each caterpillar species is given its own color, pink = A. dicaeus and yellow orange = A. 
stratonice. The percent use in both A and B was calculated by taking the total number of caterpillars of each 
species on each plant. A) The dotted line represents expected use if females select plants simply according 
to their frequency. B) The dashed line represents expected host plant use if plant size predicts patterns of 

host plant use. 

 

 

Discussion 

 Low rates of survival on unused or rarely used host plants is consistent 

with the physiological efficiency hypothesis, which states that caterpillar should 

use host plants that provide the highest quality food and highest rates of survival, 

fastest development times, highest pupal mass and highest rate of fecundity. In 

this system the physiological efficiency hypothesis would predict that A. 

stratonice would use M. hastifolia more often than M. pinnatipartita, and A. 

dicaeus would use E. polymnioides and M. hastifolia equally however this pattern 

was not observed.  
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In recent years the enemy avoidance hypothesis has gained a lot of 

support in the literature. Unlike the physiological efficiency hypothesis, the enemy 

avoidance hypothesis allows herbivores to feed on suboptimal host plants if the 

plant provides protection from enemies and increases overall survival. The 

results of this study were not consistent with the enemy avoidance hypothesis, 

because while M. hastifolia does appear to offer A. stratonice some protection 

from enemies it does not appear to drive host plant use. Host plant use appears 

to be associated to some extent with host plant abundance (A. stratonice) and 

host plant size (A. dicaeus). This indicates that bottom up forces both in plant 

suitability and plant availability are important predictors of host plant use in A. 

dicaeus and A. stratonice.  

 

 

Physiological Efficiency 
 

All rates of survival under rearing conditions were very low. Two reasons 

why rates of survival might have been artificially low are, 1) gregarious 

caterpillars often need relatively large groups to attained optimal survival even 

under laboratory conditions (Fordyce 2003, Allen 2010) and, 2) gregarious 

animals may experience high rates of pathogen transmission (Hochberg 1991, 

Brown et al. 2001). Groups of caterpillars in these experiments may have been 

too small to support proper development, and this may have been exacerbated 

by rearing caterpillars in relatively small plastic bags. Even with low rates of larval 

survival under rearing conditions, host plant taxon clearly played a role in overall 

larval survival, as it did in a similar study by Reader and Hochuli (2003) on 
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Doratifera casta (Lepidoptera: Limacodidae). Similar strong impacts of host plant 

on larval survival have been found in many systems (e.g., Strong et al. 1984, 

Reader and Hochuli 2003, Price et al. 2011, Davis and Cipollini 2014). 

The overlapping but disparate host plant use observed in A. dicaeus and 

A. stratonice can be partially explained by the physiological efficiency hypothesis. 

While E. polymnioides, M. hastifolia, and M. pinnatipartita all belong to the same 

tribe (Funk et al. 2012), they do not provide A. dicaeus and A. stratonice with 

equally suitable sources of food. A. dicaeus appears to perform just as well on E. 

polymnioides as it does on M. hastifolia and very poorly on M. pinnatipartita. Poor 

performance on M. pinnatipartita explains why it is rarely used as a host plant by 

A. dicaeus. Similarly the poor performance of A. stratonice on E. polymnioides 

probably explains why it is not a suitable host plant. As caterpillars ate all plants 

offered to them it is unlikely that difference in performance on different host 

plants are due to absent feeding stimulants.  Clearly the physical properties of E. 

polymnioides and M. pinnatipartita must be different, or both A. dicaeus and A. 

stratonice would be able to use the plants interchangeably. We surmise that even 

though both A. dicaeus and A. stratonice can use M. hastifolia, it must have 

different chemical or physical properties from both E. polymnioides and M. 

pinnatipartita because otherwise it would be a suitable host plant for either A. 

dicaeus or A. stratonice but not for both.  Because protein content did not differ 

significantly between species, and there are no obvious nutritional differences, 

this suggests that the plants are defended in different, species specific ways. 

This would be consistent with the physiological efficiency hypothesis, which 
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presumes that adaptations for specific plants may be required to overcome the 

arsenal of species-specific plant defenses, and these defenses drive host plant 

specialization. Future research should include categorization of plant defenses in 

each of these species. 

One possible difference among host plant species in defense is in the type 

and concentration of pyrrolizidine alkaloids (PAs), toxins found in many related 

asteraceous species (Brown and Francini 1990, Silva-Brandâo 2008). Previous 

research has focused primarily on the toxic effects PAs have on vertebrates, 

because there have been cases where livestock and humans have died after 

consuming food contaminated with PAs. In vertebrates PAs cause liver disease, 

jaundice, photosensitization, copper poisoning and ammonia intoxication. The 

symptoms of PA toxicity are often delayed until near death (Rizk 1990).  

The causes of PA toxicity in invertebrates are less well understood partly 

because the deterrent effects of PAs are so strong that many nonadapted insects 

and predators will vehemently reject leaves or prey containing PAs. When 

Philosamia ricini, a generalist silkworm, was fed leaves treated with PAs, growth 

was slower than on untreated leaves. This result indicates that PAs make plants 

suboptimal hosts for unspecialized herbivores (Narberhaus et al. 2005). While 

other species in the tribe Liabeae tested positive for PAs, E. polymnioides, M. 

hastifolia or M. pinnatipartita have not yet been tested for the presence of PAs 

(Brown and Francini 1990, Rizk 1990, Silva-Brandâo 2008).  

To determine which plant defenses differ and how they differ, further 

investigation is required. Further evidence that A. stratonice perceives M. 
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hastifolia and M. pinnatipartita as being of different quality can be found by 

comparing clutch sizes on the different plants. A. stratonice females place larger 

clutches on M. hastifolia than on M. pinnatipartita. The question then becomes: 

are these butterflies actively placing larger clutches on host plants where survival 

is highest, or is there genetic variation within A. stratonice? If there is genetic 

variation, it would appear a butterfly that prefers M. pinnatipartita as a host plant 

also produces smaller clutches.  

Given that we observed increased survival on mother-selected host 

plants, genetic variation may underlie this variation in host use. Genetic variation 

and resource partitioning is not without precedent in Lepidoptera.  A cryptic 

species complex among Leptidea sinapis and Leptidea reali butterflies found 

preference for either forest or prairie habitat was responsible for host plant use 

and not larval performance (Friberg and Wiklund 2008). However, it is possible 

that conditioning occurs and changes gene expression to favor performance on 

one plant species over others (Després et al. 2007). By artificially switching host 

plants I may have inadvertently reduced survival. However this does not explain 

the larger clutch sizes on M. hastifolia. 

 

Tritrophic interactions 
 

Sometimes plants offer protection from enemies that can outweigh 

bottom-up forces associated with varying plant quality or defense, and avoiding 

enemies can be the strongest driver in the occurrence or frequency of host plant 

use (Singer and Stireman 2003, Murphy and Berenbaum 2004, Rodrigues et al. 
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2010). Solitary caterpillars may be more vulnerable to enemies, than large 

groups which may be able to swamp predators, or mount coordinated defenses 

(Reader and Hochuli 2003, Allen 2010). However, in at least five observed 

events of parasitism in the field, I did not see evidence that the coordinated 

defense (fig. 16) by Altinote caterpillars deterred parasitoids (fig. 17), which is 

consistent with the high rates of parasitism I measured. High rates of parasitism 

appear to be common in chemically defended caterpillars (Gentry and Dyer 

2003) and gregarious caterpillars (Stireman and Singer 2003). Both chemical and 

physical defenses of aposematic caterpillars maybe more affective against 

vertebrate and invertebrate predators than parasitoids (Bowers 1993 and Dyer 

1995, 1997). I did not observe any events of predation possibly because 

predators are more active at night or possibly because the combined physical 

defenses (hairs, and coordinated defensive behavior), and chemical defenses 

(cyanogenic glycosides) provide Altinote butterflies with an effective defense 

against most predators.  

 In the present system, enemy avoidance does not appear to explain host 

plant use. In both caterpillar species, the rate of parasitism appears to be slightly 

(but not statistically significantly) lower on M. hastifolia which is used as a 

secondary host plant by both A. dicaeus and A. stratonice. If enemies were 

important in determining host plant use in the Altinote butterflies, the apparent 

trend towards reduced parasitism on M. hastifolia would be expected to increase 

the use of M. hastifolia as a host plant relative to either E. polymnioides or M. 

pinnatipartita. Also it is noteworthy that A. stratonice, which is locally more 
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specialized than A. dicaeus, experienced much higher rates of parasitism. 

Herbivores that are closely tied to a host plant may experience higher rates of 

parasitism because parasitoids may have adaptions which allow them to use 

plant volatiles to locate caterpillars (Fatouros et al. 2012, Ichiki et al. 2012). 

Plants are larger and easier to find than small caterpillars so it seems likely that 

many enemies may use plants to locate hosts or prey. The more closely tied a 

caterpillar species is to their host plant, the easier it would be to locate that 

caterpillar species using plant volatiles.  

 When the net effect of enemies was measured in situ, M. hastifolia 

appeared to provide A. stratonice with more protection for enemies than M. 

pinnatipartita. However the increased protection from enemies does not result 

from higher levels of de novo production of cyanogenic glycosides on either M. 

pinnatipartita for A. stratonice nor E. polymnioides for A. dicaeus. While enemies 

are clearly an important source of mortality, selection pressures from enemies 

alone does not appear to drive the observed patterns of host plant use. 

An alternate explanation for the observed increase in survival experienced 

by A. stratonice on M. hastifolia is larger clutch size. Large clutches may provide 

increased protection against predators as observed by Reader and Hochuli 

(2003) using Doratifera casta (Lepidoptera: Limacodidae). In situ experiments 

using small, medium and large groups both exposed to and sheltered from 

enemies found higher mortality due to enemies in small groups than in medium 

or large groups when compared to caterpillars sheltered from enemies. The 
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lower rates of predation observed on M. hastifolia may be a function of group 

size and not host plant per se.  

 

 

Figure 16 Group defensive posture of third instar A. dicaeus. In addition to the raised heads some 

caterpillars appear to have a drop of liquid held in their mandibles, possibly regurgitate. The caterpillars with 
their heads on the leaf are scraping their mandibles on the leaf creating a rasping noise.  
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Figure 17 Three events of parasitism from three families, A) Ichneumonidae, B) Braconidae, and C) 

Tachinidae. 

 

Resource Availability 
 

Host plant abundance and patch size are important forces limiting host 

plant use by some insect herbivores (McLain 1981, Strong et al. 1984, Lee 1988, 
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Krauss et al. 2004, Mason et al. 2011).  Large resource patches formed by either 

monocultures or simple polycultures have been shown to increase the density of 

specialist insect herbivores (Strong et al. 1984, Lee 1988).  For example in the 

European corn borer (Ostrinia nubilalis, Lepidoptera, Pyralidae) oviposition is 

positively correlated with host plant densities (Lee 1988). In polycultures, 

herbivore densities are often higher on single plants than expected (Strong et al. 

1984) and this may be part of the reason a greater densities of A. stratonice 

caterpillars were found on M. hastifolia which is more often near other plants 

thanon M. pinnatipartita when plants were surveyed. In contrast when caterpillars 

were surveyed more were found on M. pinnatipartita possibly because caterpillar 

densities may be higher within the spectacularly large monocultures formed by 

M. pinnatipartita.  

Concentrated resources appear to be advantageous for specialist 

herbivores. Large plants may be thought of conceptually as large patches 

because they both offer a particular resource in a concentrated manner forming a 

resource island. Both large plants and large patches might conceivably offer a 

variety of advantages to insect herbivores. A large plant or patch may provide 

more resources which may be of particular importance to gregarious caterpillars, 

a large plant or patch may make it harder for predators to locate prey because 

they need to expend more energy searching a larger area, and large plants or 

patches may be easier for females to find, because they may give off more 

volatiles and be easier to see (Allen 2010). Large plants may offer additional 

benefits, like avoiding grazing by herbivores so an insect is less likely to be 
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consumed accidentally with the leaves (Gish et al. 2012). Large plants may also 

have greater access to sun and be able to repair damage inflicted by and insect 

herbivore more quickly, there by continuing to provide the insect with shelter and 

food (Allen 2010). 

Gregarious caterpillars may be more likely to depend on larger plants if 

plants are spaced further apart, forming resource islands, because it may be 

difficult to find another plant if the original plant is completely consumed or dies 

for other reasons. Additionally in some species of gregarious caterpillars, females 

only lay a single clutch of eggs; in those cases selecting a “good” host plant that 

provides sufficient resources is particularly important. However in the case of A. 

dicaeus, plant size appears to be more important than plant quality, because 

when given the option of using a more frequent plant providing equivalent 

survival and pupal mass, A. dicaeus uses the larger, less common plant. Field 

observations suggest that large individuals of the plant E. polymnioides are used 

more frequently by multiple females than smaller plants. Similarly Benson et al. 

(1975) suggested that the gregarious Heliconius hewitsoni feeds only on large 

Distephana coccine plants. 

In some gregariously feeding species, group sizes might be large enough 

to warrant selection for either large patches of plants or large plants. In the case 

of A. dicaeus, there were often one or more groups of different ages on the same 

plant indicating either clutches laid by different females, or different oviposition 

events by the same female. Female H. hewitsoni will both oviposit gregariously 

with other females and return to the same host plant to deposit additional eggs 
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(Reed 2003).   This behavior is observed in H. hewitsoni even though food is 

plentiful. Host plants of A. dicaeus are not in short supply, and in the case of all 

three host plant species, the majority of plants have neither caterpillars nor eggs 

on them. So, it appears that something other than food scarcity is driving host 

plant use.  While using the same host plant for multiple cohorts might be driven 

by some of the benefits of large group size, there are alternate hypotheses that 

are worthy of investigation such as amount of sun, possible variation in host plant 

quality, and plant apparency   

 

Plant Distribution 

Using plants proportional to their frequency indicates that either females 

oviposit on the first plant they come across or repeated encounters influence host 

acceptance. Females may not look for the “best plant” if they are time limited, 

resources are rare, or they are patchily distributed (Doak et al. 2006). Such a 

strategy is consistent with observed host use in A. stratonice but not in A. 

dicaeus. This may help to explain why A. stratonice is reported to also use 

another host, Liabum sp. in Columbia (Brown and Francini 1990). Although I did 

not observe local use of a Liabum sp., there is a small population of plants in the 

genus Liabum sp. near my study location. In contrast, A. dicaeus has been 

reported to dominate herbivore assemblages on E. polymnioides at another site 

in southern Ecuador at La Reserva Biolόgica San Francisco (Bonder et al. 2012). 

Several websites also report A. stratonice and A. dicaeus feeding on a variety of 
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genera including Eupatorium, Vernonia, and Mikania, however they did not cite 

sources, and I was unable to verify those claims.  

The use of plants relative to their abundance by A. stratonice is similar to 

the pattern of host plant use by the fall web worm (Hyphantira cunea), which 

uses abundant plants more often regardless of variation in quality (Mason et al. 

2011). This seems particularly strange given that the fall webworm only produces 

one clutch, and therefore her reproductive success depends upon one plant. 

While the number of clutches an A. stratonice female produces is unknown, it is 

unlikely that she would be able to produce very many clutches of 100+ eggs, and 

thus her reproductive potential may be limited by host plant quality. Hyphantira 

cunea has a spectacularly wide range of acceptable host plants, and by 

comparison, both species of Altinote are specialized.  

Finally, in a few studies of closely related butterfly species with 

overlapping host plant ranges have largely focused on partitioning as a result of 

interspecies competition for resources (Emmel and Emmel 1969, Queiroz 2002, 

Friberg and Wiklund 2009). Friberg and Wiklund (2009) measured female host 

plant preference and larval performance of Leptidea sinapis and Leptidea reali on 

seven host plants and found females preferred to use a relatively small number 

of good quality, locally available host plants. Oviposition preference appears to 

correlate more closely with habitat than with larval survival. It is possible that A. 

dicaeus and A. stratonice experience in situ fitness costs associated with their 

overlapping host plant use, which in turn reduces the use of an otherwise 

suitable host.  
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Conclusion 
 

While mortality caused by enemies may vary by host plant in these two 

Altinote species, it does not appear to drive host plant use. Instead, bottom up 

forces appear to be more important in limiting host plant use. This may be true 

for many gregarious caterpillars that are relatively well defended against enemies 

but may be more susceptible to plant availability, quality and defenses (Stamp 

and Bowers 1990, Reader and Hochuli 2003, Mason et al. 2011).  Even though 

M. hastifolia appears to provide A. stratonice with protection from enemies and 

may provide A. dicaeus with protection from parasitoids, selection pressures from 

enemies does not appear to be strong enough to increase the use of M. hastifolia 

by either species. A similar trend was seen in the temperate and much more 

generalized fall webworm (Mason et al. 2011). Selection pressures from bottom-

up forces may be more important in driving host plant use by well defended 

gregarious caterpillars than those from the top down. However further 

investigation of genetic differentiation, and the effects of intraspecific competition, 

is required. These should be paired with additional longer term studies of 

predation, plant abundance and caterpillar host plant use, and finally more in-

depth analysis of plant and caterpillar defenses. 
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