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ABSTRACT

Benasutti, Patrick. M.S. Physics, Physics Department, Wright State University, 2012. Electronic
and Structural Properties of Silicene and Graphene Layered Structures.

Graphene is a two-dimensional nanomaterial with useful and novel properties, but it is

a material that does not integrate well with the current silicon microchip infrastructure.

Silicene could solve this problem, as it is made of silicon yet retains the novel properties

that make graphene desirable. This thesis will outline density functional calculations of a

newly proposed structure involving the combination of these two materials. The structure

includes silicene layered on graphene in such a manner that it composes a superlattice. It

will be examined using the ab-initio density functional theory software Quantum Espresso.

This superlattice structure is proposed to have an increase in electronic transport as well as

higher binding energy versus standard graphene. Examination of the proposed superlattice

is accomplished by using PBE-GGA functionals versus a previous LDA methodology. In

conclusion, the results confirm the pattern of increased binding energy in the superlattice

as well as increased electron transport, but the amount of increase in the electron transport

is not the same as the accepted results. The desirable structural effects of graphene are

maintained by the data.

iii



Contents

1 Introduction 1

2 Background 3
2.1 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Band Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 External Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Physical Parameter Verification . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Density Functional Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.6 Many-Body Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.6.1 Born-Oppenheimer Approximation . . . . . . . . . . . . . . . . . 11
2.6.2 Hartree Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.6.3 Hartree Fock Theory . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6.4 Density Functional Theory . . . . . . . . . . . . . . . . . . . . . . 15

2.7 Kohn Sham Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.8 Local Density Approximation . . . . . . . . . . . . . . . . . . . . . . . . 18
2.9 Basic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.10 Research Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.11 Binding Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.12 Band Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.13 PBE-GGA pseudopotentiall . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Calculations 23
3.1 Introduction to Calculations . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Structural Calculation of Graphene Parameters . . . . . . . . . . . . . . . 24
3.3 Silicene Structural Parameter Calculations . . . . . . . . . . . . . . . . . . 28
3.4 Band Structure Calculations . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 New Research 35
4.1 New Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1.1 Bilayer Silicene and Graphene . . . . . . . . . . . . . . . . . . . . 36
4.1.2 Superlattice Calculations . . . . . . . . . . . . . . . . . . . . . . . 47

iv



4.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5 Appendix A 55
5.1 Plane Wave-Self Consistent Calculations . . . . . . . . . . . . . . . . . . . 55
5.2 Structural Optimization Methods . . . . . . . . . . . . . . . . . . . . . . . 56
5.3 Running Band Structure Calculation: . . . . . . . . . . . . . . . . . . . . . 57
5.4 Post Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.5 Plotting Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

v



List of Figures

2.1 Silicene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 The Brillouin zone of silicene . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 A flowchart of a Kohn-Sham equation algorithm [36] . . . . . . . . . . . . 20
2.4 SiC2, bilayer band structure, note the Fermi level position [2] . . . . . . . . 22

3.1 Graphene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 The Brillouin zone of silicene . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3 Quantum Espresso band structure plot of graphene . . . . . . . . . . . . . 33
3.4 Band structure calculated in another paper [2] . . . . . . . . . . . . . . . . 34

4.1 SiC2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 The originally proposed structure . . . . . . . . . . . . . . . . . . . . . . . 37
4.3 SiC2, ideal structure image drawn with Avogadro software [39] . . . . . . 39
4.4 SiC2, Unit cell structure drawn with the Avogadro software [39] . . . . . . 40
4.5 SiC2, optimized structure of a bilayer slab Avogadro software [39] . . . . . 41
4.6 SiC2, bilayer band structure . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.7 SiC2, bilayer band structure comparison [2] . . . . . . . . . . . . . . . . . 42
4.8 Si2C6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.9 Si2C6, ideal structure drawn with Avogadro software [39] . . . . . . . . . . 44
4.10 Si2C6, optimized structure drawn with Avogadro software [39] . . . . . . . 46
4.11 Si2C6, bilayer band structure . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.12 SiC2, superlattice unit cell . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.13 SiC2, superlattice repeated in all 3 dimensions . . . . . . . . . . . . . . . 49
4.14 SiC2, superlattice band structure . . . . . . . . . . . . . . . . . . . . . . . 50

vi



List of Tables

3.1 Brillouin Zone Coordinates Table . . . . . . . . . . . . . . . . . . . . . . . 32

4.1 Atomic Coordinates: SiC2 . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2 Atomic Coordinates: SiC2 . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3 Atomic Coordinates: Si2C6 . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.4 Atomic Coordinates: Si2C6 . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.5 Atomic Coordinates: SiC2 . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.6 Atomic Coordinates: Si2C6 . . . . . . . . . . . . . . . . . . . . . . . . . . 52

vii



Acknowledgment
I would like to take this opportunity to extend my thanks to Dr. Lok who, when I switched

advisors, offered me guidance and direction. To Dr. Farlow and Dr. Deibel for all their

excellent teaching and support. To Dr. Kozlowski and Dr. Patnaik for the teaching and

feedback. Dr. Clark for his help with a particularly tough project and Stephen Wynne in

CATS for his help with the Linux server. Finally, I would like to thank Dr. Foy for being

on my committee at a last minutes notice.

viii



Dedicated to my very recent fiancée who does not care for physics, but puts up with me

anyways.

ix



Introduction

A standard computer processor works through the use of silicon based transistors. A tran-

sistor can be used for various purposes, such as amplification, logic, and memory. All of

these utilities are dependent on the physical properties of the material used to create the

transistor. The current rapid advancement in the field of electronics is largely dependent

on advances in transistor technology. However, recently transistor technology has reached

a plateau. The current methodology is centered about placing more transistors in the same

unit area. Through this method the speed and throughput of processors have continued to

rise. The speed and efficiency of the processor has changed as well, but if you could dra-

matically improve the switching speed of a transistor, you could theoretically increase the

speed of a processor by an equivalent amount. This thesis will examine a new material that

could vastly increase the speed of a transistor. That material is silicene, which is the silicon

version of the well-know material, graphene. The method used will be density functional

theory implemented through the software suite Quantum Espresso.

Graphene is a two-dimensional version of graphite, and it is has novel properties

with respect to its electron dispersion characteristics. The corner of the Brillouin zone

in graphene has been shown to exhibit linear dispersion characteristics. This means that

fermion charge carriers in this region have an effective mass close to zero. These mass-

less fermions could correspond to unique physical properties, such as increased mobility.

However, graphene is composed of a lattice of carbon. This makes it difficult to integrate

graphene with current circuitry infrastructures, which are composed primarily of silicon.
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Recently, silicene, a silicon version of graphene, has been proposed as a solution to this

problem. [1] Silicene is a two-dimensional buckled lattice of silicon atoms with hexagonal

lattice structure. A structure of one layer of silicene upon one layer of graphene will be

discussed in this thesis. Once again, this proposed structure could be used to bridge the gap

between graphene and the bulk silicon infrastructure.

When examining a new material for an application, it is a worthwhile task to use ab-

initio calculations to determine the physical properties for that material before investing

time and money on manufacture. To that effect the structural and electronic properties

of the new structure will be simulated. This simulation will be done using the Quantum

Espresso software suite. Quantum Espresso is based on density functional theory, or DFT.

Density functional theory relies on many-body theory, among other approximations, to set

up the Schrödinger wave equation, abbreviated as SWE. This many-body version of the

SWE uses numerous Kohn-Sham equations; they provide the wavefunction of an electron

inside a solid. The Kohn-Sham equations are not solvable analytically. They can, however,

be solved by approximation methods using Quantum Espresso.

The overarching goal of this paper is to verify the results in a paper by Yong Zhang

et al. [2] In the paper there are two conclusions. A superlattice structure is proposed. That

structure is a lattice of materials where alternating layers are made of graphene and silicene

respectively. Between two layers of graphene there is always a layer of silicene. The

silicene is often referred to as an intercalate. From this structure the binding energy of the

material is said to increase as well as an increased electron transport in the graphene. This

superlattice structure may have the benefit of bridging the gap between graphene and the

silicon architecture while adding increased properties over standard graphene or graphite.

2



Background

Solid state physics is the largest branch of condensed matter physics. It describes various

large-scale properties and how they are determined from the atoms and structures of the

crystals and or solids in question. Solid state physics, like any field, has many new topics to

consider. One of the most often considered new materials in the field is graphene. Graphene

is a two-dimensional carbon crystal that has the same structure as a single layer of graphite.

Graphene has shown various unique properties that have drawn the attention of the solid

state physics community. However it is silicene and the possible integration of silicene and

graphene that is the focus of this thesis.

Silicene is a relatively new material, one with a wealth of new topics and possible

research. One major reason why silicon nanostructures are of interest is that they may be

a viable substitute for graphene. Again, graphene is a two-dimensional lattice of carbon

atoms with hexagonal structure. Graphene has shown characteristics that make it desirable

in theoretical as well as practical applications. The band structure of graphene shows simi-

lar characteristics to the solution to a version of the Dirac equation, notably the version that

describes massless fermions. As was mentioned this characteristic may lead to graphene

having a much larger electron mobility than many current devices. [3] However graphene

does not integrate well with the current infrastructure, which is silicon based. This thesis

will focus on how silicene may be helpful in this regard. It has been theorized that silicene

has the same beneficial properties as graphene. Various structures have been proposed to

integrate the two materials. [2] Bilayer graphene and silicene will be used as a model for the
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more complicated structure, called a superlattice. However, before that is done the general

structures of both graphene and silicene will need to be outlined.

2.1 Structure

The first thing to consider in a crystal structure is the lattice type and then the unit cell.

The basic lattice type of graphene is hexagonal and the unit cell placed at each lattice point

has two atoms. In Figure 2.1, the light colored atoms labeled one through four, are the

atoms located at lattice points of the hexagonal structure. The darker-colored atoms, for

example atom number 5, are the second atom in the unit cell. Here the distinctive hexagons

that make up graphene are outlined. [3] The next physical property that needs to be veri-

fied are the lattice parameters of the two materials. The parameters of silicene have been

determined by density functional theory as well as by experimental methods, prior to this

paper. One of the most often cited papers for the parameters of silicene determined by

computational methods gives the lattice parameter of silicene to be 3.89 Å. [4] From that

lattice parameter, the minimum bond length oof 2.25 Å can be determined. The lattice

parameter of graphene is also well known and is approximately 2.45 Å. [5] Figure 2.1 out-

lines the general structure for both graphene and silicene, however silicene has a pseudo

two-dimensional structure. In silicene the darker colored atoms, have a buckling in the

z-direction. Where a buckling is when the second atom in the unit cell is depressed from

the flat plane of the lattice so that the structure is no longer purely two-dimensional.

The lattice vectors of the hexagonal lattice with respect to the frame of reference used

in the software Quantum Espresso are as follows:

~a1 = a î, (2.1)
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Figure 2.1: Silicene
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~a2 = −a
2
î+

√
3a

2
ĵ, (2.2)

~a3 = k̂. (2.3)

The next parameter to examine is the buckling amount of the second atom in the unit

cell. The distance of this buckling parameter (∆z) is often given as 0.44 Å. [6] While sil-

icene may seem three-dimensional due to the buckling parameter, it is more like a pseudo

two-dimensional structure. The structure is actually two-dimensional except for that buck-

ling parameter. Keep in mind that the vector a3 is only present for calculation reasons in

the case of the two-dimensional structures. The buckling amount will be verified in the cal-

culations section. Notice the buckling amount will vary when introduced into the bilayer

and superlattice structure. But the buckling amount of stand-alone silicene will be verified

so that Quantum Espresso can be proven effective.

2.1.1 Band Structure

Once the lattice structure is determined, the next step is to determine the band diagrams of

these silicene-graphene composites. To accomplish that one needs to construct the Brillouin

zone of this hexagonal lattice. Using the Wigner-Seitz construction method to build the

Brillouin zone in reciprocal space, the Figure 2.2 is drawn using equations 2.1 through 2.9.

The Brillouin zone has some symmetry points that will be used to plot the band struc-

ture. The equations for the reciprocal vectors as well as the equations for the points in the

Brillouin zone used to plot the band structure are,

~b1 =
2π

a
√

3

(√
3k̂x + k̂y

)
, (2.4)

~b2 =
4π

a
√

3
k̂y, (2.5)
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Figure 2.2: The Brillouin zone of silicene

~b3 = 2π k̂z. (2.6)

Which are derived from the equations,

~b1 = 2π
~a2 × ~a3

~a1 · [~a2 × ~a3]
, (2.7)

~b2 = 2π
~a3 × ~a1

~a1 · [~a2 × ~a3]
, (2.8)

~b3 = 2π
~a1 × ~a2

~a1 · [~a2 × ~a3]
. (2.9)

Any vector in the reciprocal space can be written in terms of the cartesian coordinates,

which is how the equations 2.10 through 2.12 can be derived. The high symmetry points in

the Brillouin zone will be written in this frame of reference. The units of 2π
a

are pulled out to

the front. Keep in mind, that in equation 2.6, because the lattice is purely two-dimensional

the lattice parameter cancels out of the equation.

~Γ =
2π

a
[0, 0, 0] (2.10)
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~M =
2π

a

[
0,

1√
3
, 0

]
(2.11)

~K =
2π

a

[
2

3
, 0, 0

]
(2.12)

Knowing this information it is possible to graph the band structure of the material between

these points. It is important to note that the Brillouin zone of the two materials will be the

same.This produces two sets of coordinates that are used for the graphing of the Brillouin

zone to be very similar, if not identical. The actual calculations and results will be outlined

more thoroughly in the Data and Calculations sections.

2.2 External Research

This section will cover some of the recent research in the field of silicene simulations.

Simulation is a valuable tool used to determine the properties of a material and has been

widely used to characterize silicene. A semi-exhaustive list of all the research to date in this

field will be covered herein. A simulation method often used to determine the electronic

and physical structures of silicene is density functional theory. Density functional theory

has some major pros and cons, as it is very capable at determining the structure of a system,

but it is not as capable at determining the energy band structure. [7] There are various types

of software that have been used for this kind of calculation, and all of them rely on density

functional theory. Various papers have been published on this topic. Of those there have

been several Siesta software calculations, [8–12] some with the Vienna software. [13–17]

ABINIT and CASTEP were also used. [18,19] This is not a complete list of the software’s

used but it provides a good coverage of the types of software used. The software that will

be used for this project is called Quantum Espresso. There have been various papers using

this software on similar topics. [12, 4, 20, 21]
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2.3 Physical Parameter Verification

As silicene is proposed substitute for graphene one will want to make sure to understand

the electronic and structural parameters of the material. Graphene is known to have a lattice

parameter of 2.45Å. [5] The knowledge of the parameters will be of particular use when

building simulations of graphene. It is also shown that silicene has a comparable electronic

structure to graphene. Notably, the often talked about Dirac points appear to be present in

silicene. These Dirac points give rise to the massless Dirac fermions which have caused a

large amount of interest in graphene. Their presence in silicene continues to establish the

motivation for research in silicene. [9] The theoretical foundation of silicene’s structure

has been well established by computational methods in previous sections. In order to de-

termine the suitability and usefulness of the material experiments needed to be performed.

There were a variety of experiments done to verify the parameters of silicene. The first

and most prominent method used to determine the parameters is a method called angle

resolved photoelectron spectroscopy or ARPES. ARPES is useful because it is one of the

most direct methods of determining the electronic structure of materials. [22] These param-

eters are often determined while the silicene is on a silver substrate. Silver has a similar

structure to that of silicene leading to easy deposition. Another prominent methodology

is called scanning tunneling microscopy. Scanning tunneling microscopy or STM creates

an image of the surface and from those images it is possible to directly view the structure

of the nanosheets. From STM analysis there are indications that silicene forms a buckled

structure. This structure can be identified because the first atom in the unit cell is raised

above the second atom in the same cell. [23] Graphene is known to have a standard honey-

comb structure where the second atom is not displaced out of the plane, but remains in a

flat two dimensional structure. [24]
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2.4 Future Research

Now that it has been determined that future research in silicene is worth investigation, the

focus of the articles reviewed will be narrowed tol provide more focus on the topic. The

articles that are of particular interest to the future research of this project are ones that

outline silicene deposited on a substrate. Silver and aluminum nitride are the two types

of substrates proposed for silicene. The growth of silicene on silver has been definitively

demonstrated. The creation of silicene on silver is a multi-step process involving high

vacuum evaporation. [25–27] Another topic that is of interest and has already been re-

searched is the effect of hydrogenation on silicene. Silicene is not magnetic under normal

circumstances, however the hydrogenation of silicene can introduce magnetism as well as

a significant shift in the electronic properties. [28] The adsorption of various elements on

silicene is useful to study as it illuminates the effectiveness of hydrogenation of silicene

as determined by Quantum Espresso. There is some speculation that adsorption may have

other uses such as expanding the band gap of the two materials in question. [29] The stor-

age of hydrogen is another way that hydrogenation can be useful. Energy or hydrogen

storage is a research topic that is highly in demand. A good method to store hydrogen is in

high demand and is a valuable research possibility. As fossil fuels become more and more

scarce the search for renewable energy will continue to grow. The possibility of silicene as

a hydrogen storage structure has already been researched. [30]

The optical properties of silicene are also of merit. Silicene could theoretically be used

in solar cell applications as well as various optical detection circuits. As was mentioned

before, renewable energy sources are viable and lucrative research topics that may need

continuing research. Silicene’s optical properties were investigated using density functional

theory and were considered feasible for future research. This article outlines this feasibility

and paved the way for more research in the area of silicene photodiodes. [9]

To delve more into relevant topics, we want to examine papers on multiple layers

of silicene. This will hopefully provide insight into the bilayer and superlattice proposed
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structures this paper covers. Silicene as a two-dimensional sheet has been researched in a

definitive manner, but silicene in combination with other materials is still full of potential.

A cursory search does not reveal any papers that immediately overlap with the proposed

research, which is promising, since this paper hopes to provide new insights. There has

been some research into multiple layers of silicene and the friction between them. [31] One

of the challenges when dealing with placing another material on top of another is called

reconstruction; it is when the material in question changes from its crystal structure, at the

interface with another material, to accommodate the differences between the two. Some

insight may be garnered from an article detailing the molecular dynamics between two

different sheets of silicon. [32]

2.5 Density Functional Theory

Density Functional Theory is one approximate solution to the many-body theory of solids.

Many-body theory is well known to be unsolvable analytically, so an approximation must

be made. There are various approximations and computational methods that are used to

give a good approximation to the solution of this problem. They are discussed herein.

2.6 Many-Body Theory

2.6.1 Born-Oppenheimer Approximation

There are many approximations that one must make when dealing with a many-body prob-

lem in the realm of solids. The first one is known as the Born- Oppenheimer approximation.

This approximation is based on the idea that in a solid the nuclei are not moving as quickly

as the electrons. The nuclei, which are approximated as ions in this case, are assumed to be

stationary. Since the electrons are much less massive and move at much higher velocities
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than the nuclei, the positions of the electrons are considered variables and the positions of

the ions are considered parameters. In order to examine this situation we define the general

Hamiltonian for a many-body system from the standard Hamiltonian. Remember the basic

Hamiltonian in this situation is the potential and the kinetic energy as in,

H = T + V where T =
−h̄2

2m
∇2. (2.13)

However the potential, V, changes based on the potential of the system. There are two

kinetic energy terms and three potential energy terms that needed to be added. They can be

written as,

H =
−h̄2

2m

n∑
e

∇2
i −
−h̄2

2m

n∑
i

∇2
i −

n∑
i,e

Zie
2

4πε0rei
+

1

2

n∑′

i,j

ZiZje
2

4πε0ri,j
+

1

2

n∑′

e,e

e2

4πε0ree
. (2.14)

Where the subscripts (i,j) refer to ions and the subscript (e) refers to the electrons.

The key components of the mathematical Born-Oppenheimer approximation are that first

the nuclear energy term is left separate and that the positions of the electrons with respect to

the ions in the nucleus are considered as parameters. Essentially the fourth term is neglected

and the term rei is changed into a set parameter. This allows a great simplification of the

equations when dealing with solids.

2.6.2 Hartree Energy

The Born-Oppenheimer approximation begins the outline a many-body Hamiltonian in a

useful manner by reducing out various terms. But the many-body problem is a complex

one and the Hamiltonian derived in the Born-Oppenheimer is still not suitable for calcula-

tions. There are further approximations that must be made to achieve better accuracy and
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minimize calculation time. That is what is involved in the derivation of the Hatree Energy

equations.

As was mentioned previously the Schrödinger wave equation will be used to solve

for the energy of the many-body solid. First, take the Hamiltonian that is defined in the

Born-Oppenheimer approximation and put it into the SWE with a new wavefunction. Then

to define a wavefunction as a new combination of products of the wavefunctions that cor-

respond to individual electrons. It can be written as,

Ψ = φ1(r1)φ2(r2)φ3(r3) . . . φn(rn). (2.15)

However this wavefunction cannot be put straight into the Schrödinger wave equation

without some analysis and manipulation. The first step is to use the variational principle to

analyze and set the energy of a system involving these wavefunctions. Our overall goal is

to find the ground state and the variational principle places a limit on the minimum energy

of the system. It outlines the equation below, where the ε is defined as,

E =
〈Ψ|H|Ψ〉
〈Ψ|Ψ〉

. (2.16)

Where E ≥ E0 and E0 is the ground state energy of the system. From this it is

possible to get an energy minimum. However that minimum is not necessarily the ground

state energy. This method

Using this variational principle one can derive the Hartree energy equation Using these

equations and the variational principle it is possible to derive the Hartree Energy equations,

however it more useful to include the Pauli-Exclusion principle and show the Hartree-Fock

equation as the equations are essentially the same.
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2.6.3 Hartree Fock Theory

The Hartree energy equations can be useful under some specific circumstances, but they

still lack some important characteristics. Primarily, the lack of spin is troubling. It can be

included in a post analysis. However, that is an ad-hoc solution and doesn’t contain useful

information. spin characteristics into the wavefunction from the beginning. It can be done

by using what is called the Slater determinant. The Slater determinant,

Ψ(x1 . . . xn) =
1√
n!

∣∣∣∣∣∣∣∣∣∣∣∣∣

Φ1(x1) Φ2(x1) . . . Φn(x1)

Φ1(x2) Φ2(x2) . . . Φn(x2)

. . . . . . . . . . . .

Φn(xn) Φn(xn) . . . Φn(xn)

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (2.17)

A slater determinant, as in above is an n by n matrix that includes the Pauli exclusion

principle, which is essential if each state has to be unique. If φi = φj then two columns of

the determinant would be 0. This is desirable as makes sure that a non-physical situation

such as the equality of two different states cannot happen.

It can be written in a more straightforward fashion with a permutation operator such

that,

Ψ(x1 . . . xn) =
1√
n!

∑
p

(−)pP (Φ1(x1)Φ2(x2) . . .Φn(xn)) . (2.18)

This permutation operator works by switching either the coordinates or the subscripts

of the Φ wavefunctions. Keep in mind that these individual wavefunctions are orthogonal

in a manner such that,

〈Ψi(rk)|Ψj(rk)〉 = δij (2.19)

is true. Using this information and methodology it is possible to derive the Hartre-Fock
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Equations, which boil down to,

(
− h̄2

2m
+ V (r) + VH(r)+

)
φi(r) = Eiφi(r) (2.20)

Where the VH(r) term is the Coulomb repulstion term which can be written as,

VH(r) = e2
∫

n(r
′
)

|r − r′ |
d3r

′
. (2.21)

These equations are useful but still lack an approximation for the exchange correlation

potential, which is covered in a later section.

2.6.4 Density Functional Theory

Now that the fundamentals of the Hartree-Fock and the Hartree energy equations have been

reviewed, there is a system of equations that covers the many-body problem between the

electrons and the ions in a solid. The equations that have been derived are correct, but have

a large number of variables and are therefore not useful. For example the wavefunction

of each electron in a solid would need to be solved and a solid of any significant volume

would have a number of electrons on the order of Avogadro’s number. This is an impractical

number of equations to solve; so in order to find a useable solution one needs to find a way

to condense these equations.

Hohenberg, Kohn and Sham together developed a method to deal with the many-body

problem. This approach involves a method that relies on electron functionals. The theorem

dictates that a potential can be determined uniquely from the ground state electron density.

It also goes on to say that the reverse is true. From a known potential one can determine the

electron density. One knows this because a definite electron potential fixes the Hamiltonian.

Which is known from the existence theorem. The existence theorem states that a density

functional uniquely determines the Hamiltonian.
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The software uses density functional theory as the basis of the solutions. So a func-

tional needs to be defined. A functional takes a function and defines a single number from

the function, such as,

F [f ] =

∫ 1

−1
f(x)dx. (2.22)

So the Hohenberg and Kohn’s theorem is such that a ground state energy can be ex-

pressed as E[n(r)] where n(r) is the electron density and hence the reason for the name

density functional theory. [33]

That means that one needs to come up with an expression for n(r). This is where the

Thomas-Fermi contribution to the theory needs to be outlined, which will illuminate further

practical steps. Thomas and Fermi posited that the electron density is uniquely determined

by the potential. To start, one need to know the density of states as in,

N = V
∑
σ

dkρ(k) =
2

(2π)3
4π

2π
k3
fV. (2.23)

This is a well-known equation. It outlines the the amount of energy states that elec-

trons can occupy in a given volume. When one know the density of states one can estimate

the kinetic energy of particles in the system. From the kinetic energy it is possible to esti-

mate the potential. However this estimation is not complete, for example there is something

called exchange correlation energy that is not included, and that leads to large systematic

errors in the final answers. The exchange correlation energy is actually two terms that have

been combined into one energy. Both energies are unknown in the current formalism and

must be approximated, so to simplify matters they have been combined.

An exchange energy refers to the exchange interaction theory. In that theory, particles

with overlapping wavefunctions of identical particles have different energies than expected.

The correlation energy is often referred to as the Coulomb correlation and has to do with the

the coulombic repulsion spatial characteristics of atoms. One of the primary goals of den-

16



sity functional theory is to come up with a good approximation of the exchange-correlation

energy, which will be discussed more in the Local Density Approximation section.

2.7 Kohn Sham Equations

The Kohn-Sham equations are often broken down into three equations that give essentially

the same information as the Hartree and Hartree-Fock equations. However this new equa-

tion is a single equation versus the many-body equations in the previous versions. Keep in

mind that these two methods are not equivalent. The Kohn-Sham enable a mapping of the

original Hartree-Fock equations that can yield a similar answer. Which is the ground state

electron density of of the system. Density functional theory is only capable of determining

the ground state density of the system. If an excited state is desired it is possible to figure

that out from the ground state.

Next the Kohn-Sham equations need to be derived. Fortunately, however, the proce-

dure to derive them is very similar to the process shown in the derivation of the Hartree

and Hartree-Fock methods. It involves the variational principle and minimizing the expec-

tation value of the Hamiltonian. For the sake of the reader only the solution and salient

points will be given. For details on the derivation one can see Patterson and Bailey’s Solid-

State Physics: Introduction to the Theory, a large amount of the theory is was garnered

from this source [34] as well as private lectures with Dr. Lok C. Lew Yan Voon. [35] The

Kohn-Sham equations end up giving a set of equations similar to the Euler-Lagrange equa-

tions seen in classical mechanics. However the variable that would normally be used in the

Euler-Lagrange is replaced by a wavefuction. It can be seen through the variational method

that these equations based on the new functional definition of the energy start as,

F [n] = FKE[n] + Exc[n] +
e2

2

∫
n(r)n(r

′
)dτdτ

′

|r − r′|
. (2.24)
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Knowing this one can then obtain the Euler-Lagrange equations for this system as

δFKE[n]

δn(r)
+ veff (r) = µ. (2.25)

Which when one substitutes in,

n(r) =
N∑
j=1

|φj(r)|2 (2.26)

as the electron density, we can then obtain one form of the Kohn-Sham Equation as,

(
−1

2
∇2 + νeff (r)− εj.

)
φj(r) = 0. (2.27)

2.8 Local Density Approximation

There is a crucial last local density approximation that needs to be mentioned. This approx-

imation can help to actually calculate the electron density as if it were a uniform electron

gas with the density of states as mentioned above. Over a small enough region one can

always make this approximation. From a summation over all the regions it is possible to

get an approximate expression for the entire solid. So first one wants to write down an

effective potential such that,

νeff (r) = ν(r) +

∫
n(r

′
)

|r − r′|
dr

′
+ νxc(r). (2.28)
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This is the same effective potential as before. The next step is to write down a new exchange

correlation energy for this approximation which can be written as

ELDA
xc =

∫
neuxc[n(r)]dr. (2.29)

Keep in mind that this exchange energy is representative of the energy for each particle.

This new energy can be rewritten as, νxc(r) as

νxc(r) =
δExc[n]

δn(r)
. (2.30)

Which is the final theoretical step one needs before moving these equations into practical

applications.

2.9 Basic Algorithm

All of the basic theory has been outlined about density functional theory, but theory is not

enough. The methodology needs to be outlined so that a more functional understanding of

the theory can be obtained. As was mentioned the goal is to obtain the ground state energy

of a many-body system. With that goal in mind an algorithm has been outlined in figure

2.3, to defined the method used to solve the Kohn-Sham equations in Quantum Espresso.
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Figure 2.3: A flowchart of a Kohn-Sham equation algorithm [36]

2.10 Research Goals

There are specific data goals that this paper will attempt to verify as well as new research

to propose. The data that needs to be verified is first, the increase in binding energy, and

secondly the shift of the Fermi energy of the SiC2 superlattice. The binding energy of the

superlattice is supposed to increase with respect to graphite and the Fermi level is supposed
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to shift upwards. [2]

The topics that are new to this paper are twofold. First the type of pseudopotential

used herein will be a different kind to see if there are any major changes between the old

and the new. Secondly the characteristics of a second type of superlattice will be outlined.

This new superlattice designated Si2C6, will be outlined and examined as a possible useful

structure as it has lower symmetry than the SiC2 structure.

2.11 Binding Energy

One of the key goals of this paper is to show that the interlayer binding energy of the

superlattice is better than graphite. In order to verify this it is important to understand how

to calculate the interlayer binding energy. The values of the interlayer binding energy of

two types of graphite are given as 1 and 2. [2] In order to calculate it for a new material,

there are three needed. First, one needs the energy of each type of atom in the lattice. This

is done in the software by creating an atom inside a very large unit cell and minimizing the

energy. Secondly, one needs the energy of each layer of the structure in question. There are

two distinct layers in each superlattice, so the energy of layer will be needed. Finally, one

needs the energy of the total superlattice. The binding energy of a lattice such as the one

under consideration is calculated through the following formula. EB =
(Elat−

∑
i(Esinglei)

N
.

[2] Where EB is the binding energy, Elat is the energy of the superlattice, and Esingle is

the energy of each layer of the lattice and N is the number of atoms in the unit cell.

2.12 Band Structure

The other major goal of this paper is to verify that the Fermi energy of the band structure

shifts with respect to the Dirac points of the band structure. The band structure diagram of

the superlattice in the data from Zhang, predicts and upward shift of the Fermi level with
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respect to the dirac point of the band structure of silicene. This upward shift of the Fermi

level corresponds to an increase in the electron transport properties of the graphene. [2] It

is this papers goal to reproduce this upward shift shown in Figure 2.4.

Figure 2.4: SiC2, bilayer band structure, note the Fermi level position [2]

2.13 PBE-GGA pseudopotentiall

One of the major differences in methodology between the original paper proposed by Zhang

et al and this paper, is the difference in the types of functionals used to generate the data. A

standard pseudopotential in the previous methodology was generated using the local den-

sity approximation for the exchange correlation. The pseudopotentials used in this project

were generated using the Perdew-Burke-Ernzerhof Generalized Gradient Approximation

to estimate the exchange correlation.
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Calculations

3.1 Introduction to Calculations

Now that the background has been outlined the data can be analyzed in a comprehensive

manner. The first thing that needs to be covered is how to relate the structures in a manner

that the Quantum Espresso software can understand. Often data will be presented as the

output of a program; every effort will be made to interpret the output for the reader in an

logical manner. Then a verification of the Quantum Espresso will be completed and finally

the actual superlattice combination structure will be covered.

[37]

Figure 3.1: Graphene

In order to use a software package

for research, several calculations need to

be made in order to verify that the pro-

gram is working to an acceptable level of

accuracy. This is done to a rigorous ex-

tent as a major criticism of such methods,

is that it is difficult to verify the results

that are obtained. Various similar verification calculations serve a dual purpose. They

are conducive to the learning of the software and also provide appropriate benchmarks for

accuracy.
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3.2 Structural Calculation of Graphene Parameters

The first benchmark that we want to use to verify Quantum Espresso’s accuracy is the

calculation of the structural parameters of graphene. It was mentioned earlier that silicene

may be used to replace graphene in certain applications. Then it is only prudent to make

sure that the parameters of graphene, a simpler material, can be calculated first. Below is

the input code provided for the graphene calculation.

&CONTROL

calculation =’relax’,

restart_mode=’from_scratch’,

pseudo_dir = "/home/w003pbb/espresso-4.3.2/pseudo",

outdir = "/home/w003pbb/tmp",

/

&SYSTEM

ibrav = 4,

celldm(1) = 4.64117D0,

celldm(3) = 12.2149837D0,

nat = 2,

ntyp = 1,

ecutwfc = 60,

occupations = "smearing",

smearing = ’fermi-dirac’,

degauss = 0.02,

/
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&ELECTRONS

conv_thr = 1.D-8,

mixing_beta = 0.3D0,

/

&IONS

ion_dynamics = "bfgs",

pot_extrapolation = "atomic",

/

ATOMIC_SPECIES

C 12.0107 C.pbe-van_bm.UPF

ATOMIC_POSITIONS

C 0.0000000 0.0000000 0.000000

C 0.0000000 0.67735027 0.000000

K_POINTS automatic

30 30 1 1 1 1

Each of these input parameters have meanings that need to be considered. Any of

the sections that have an ampersand are described in the literature as ”cards” and the rest

are simple parameter specifications. Each equality such as calculation =′ relax′ will be

considered a field. The first card is CONTROL and it describes various parameters like

bookkeeping for the system. There are two important fields to mention here.

The first is calculation = ′relax′, which determines the type of calculation to com-

plete where the various types of calculations are explained in the appendix. In this case the

relax calculation uses Newtonian mechanics to minimize the energy of the system from a
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purely geometric energy standpoint.

Secondly restart mode = ′from scratch′ this field tells the program to restart the

calculations from scratch if there is a problem.

The SYSTEM card describes the structure of the system under calculation. The field

ibrav = 4 tells the type of bravais lattice to use for the calculation, in this case the 4 stands

for the hexagonal lattice. The field celldm(1) and celldm(3) give the lattice parameters

for a, b and c respectively. The parameter c is only included as the program requires it; it

will be given as very large value to separate the layers and provide separation. The D0 part

is simply an addition that tells the system to use the input without rounding the decimals.

The field nat = 2 gives the amount of atoms in the unit cell. The field ntyp = 1 tells

the system how many types of atoms there are in the unit cell. The field ecutwfc = 30

gives the energy cutoff for the wavefunction calculations in units of Rybergs. Rydbergs

in S.I. units are 13.6 ev. The cutoff energy for the wavefunction tells how much energy

can be used for the dispersion relation of the plane-waves used to determine structure of

the system. The field occupations = ”smearing” tells the system to use the smearing

method. The field smearing = ′gauss′ tells the system the type of distribution to use

when smearing. For graphene a gaussian distribution can work to properly determine the

structure. However for silicene a fermi-dirac distribution is needed.

The ELECTRONS card has only two key fields. The first field is conv thr = 1.D− 7

which gives the value for the convergence threshold of the energy of the final wavefunc-

tions. The calculations will finish when the value of the self consistent calculation gives an

energy difference less than the threshold. The field mixing beta = 0.3D0 tells the system

that when it gets results to feed them back into the calculations with a percent equal to the

mixing beta parameter.

The IONS card describes different ways to run calculations when dealing with a re-

laxation calculation. The ion dynamics = ”bfgs” field tells the system which algorithm

to use when dealing with the relaxation. The potextrapolation = ”atomic” field describes
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the type of potential extrapolation to be used.

The first set of parameters, the ATOMIC SPECIES card gives the information to be

used by the machine for the atoms in the system. The C part is the abbreviation for carbon

and later will be changed to Si for silicon. The next value gives the atomic weight. The

final value in this parameter is the name of the pseudopotential file to be used.

The last set of parameters are the K POINTS and these parameters gives various ways

to determine the K POINTS used for various calculations like the band structure.

All fields have been explained, except for the ones inside the ATOMIC POSITIONS

parameter. It is in units of lattice parameters (alat) which is set to 4.64117. It is converted

to Angstroms to make it more palatable. First 4.64117 is converted back to angstroms first

as it is in bohrs. It now equals 2.456, which is the accepted value. Graphene B, the second

Carbon in the card, is at a y-distance which is multiplied by the lattice parameter to get 1.42

angstroms, the accepted minimum bond length. [3] Keep in mind that 0.577503 in lattice

parameters is 1.42 in Angstroms, which is the final value. Now to test that everything is

working properly, the Y input parameter of the B carbon was shifted by a factor of 0.1

from the desired and as expected Quantum Espresso corrected the shift back to the desired

parameter, which can be seen below.

Input parameters

ATOMIC_POSITIONS

C 0.0000000 0.0000000 0.000000

C 0.0000000 0.67735027 0.000000

Output positions.

ATOMIC_POSITIONS (alat)

C 0.000000000 0.049999564 0.000000000
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C 0.000000000 0.627350706 0.000000000

End final coordinates

In the final parameters you can see that 0.627350706-0.049999564 = 0.57735027.

Which is the minimum bond length parameter returned within an acceptable percentage in

units of lattice parameter (a).

3.3 Silicene Structural Parameter Calculations

The second benchmark that will be useful for this program is the calculation of silicene’s

structural parameters.

&CONTROL

calculation =’vc-relax’,

restart_mode=’from_scratch’,

dt = 30.D0,

pseudo_dir = "/home/˜",

outdir = "/home/˜",

/

&SYSTEM

ibrav = 4,

celldm(1) = 7.35304D0,

celldm(3) = 5.132002392D0,

nat = 2,
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ntyp = 1,

ecutwfc = 60,

occupations = "smearing",

smearing = "fermi-dirac",

degauss = 0.003D0,

/

&ELECTRONS

conv_thr = 1.D-8,

mixing_beta = 0.3D0,

diago_david_ndim = 2,

/

&IONS

ion_dynamics = "bfgs",

pot_extrapolation = "none",

wfc_extrapolation = "none",

/

&CELL

cell_dynamics = ’bfgs’,

/

ATOMIC_SPECIES
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Si 28.086 Si.vbc.UPF

ATOMIC_POSITIONS (angstroms)

Si 0.0000000 0.0000000 0.000000

Si 0.0000000 2.200000 -0.440000

K_POINTS automatic

30 30 1 1 1 1

Each of these input parameters has been explained , except for the new values in the

ATOMIC POSITIONS card. It is in units of angstroms. The three position components of

each atom have been given as the three values after each Si label. The output of the silicene

file gives upon completion as,

the Fermi energy is -3.2084 ev

Final enthalpy = -15.7511018894 Ry

CELL_PARAMETERS (alat= 7.35304000)

0.980796776 0.000000000 0.000000000

-0.490398388 0.849350383 -0.000454249

0.000000000 -0.002758610 5.124605488

ATOMIC_POSITIONS (angstrom)

Si 0.000000000 -0.021913866 0.000013120
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Si -0.000000000 2.179790137 -0.440532883

End final coordinates

Here one can see that both the coordinates have shifted slightly but are well within

what would be considered acceptable errors. Using Pythagoreans theorem one can get the

Si-Si bond length of approximately 2.25 Å, and one can directly determine the appropriate

length of the ∆Z which is approximately -0.44 Å. It is worthwhile to note that the original

file gives slightly different values from the accepted so as to show that it is not simply

taking in a value and outputting the same. It does indeed converge to the accepted values

on its own.

3.4 Band Structure Calculations

The next benchmark, before moving onto the primary calculation, is the calculation of the

band structures of both graphene and silicene. The band structure is a visual representation

of the energy levels that the electrons can have inside the solid. These calculations are done

almost entirely within the Quantum Espresso suite of programs. If the objective is just

to complete a band structure calculation, that is accomplished by calculating an integral

over the brillouin zone of the crystal. However, Quantum Espresso does the numerical

integration in an earlier step so then all that is needed is to designate the points desired for

plotting.

The brillouin zone of graphene, and essentially silicene, is a two dimensional hexagon.

The band structure and outline of the Brillouin zone is well known. The figure below is the

author’s depiction of the Brillouin zone. Table 3.1 outlines the coordinates of the key points

in the brillouin zone. Keep in mind that the table outlines the coordinates in multiples of
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u, v, w from equation 2.7.

Figure 3.2: The Brillouin zone of silicene

Table 3.1: Brillouin Zone Coordinates Table

Coordinates x y z

Γ : 0 0 0

M: 0 1√
3

0

K1: 1
3

1√
3

0

K2: 2
3

0 0

Once again Quantum Espresso uses density functional theory to calculate the band

structure using the Kohn-Sham equations, however it is well known that the band structure

has significant error because the band gap calculations of semiconductors are known to

have an error of at least 50 percent. [7]

Plotting the band structure requires knowledge of the high symmetry lines between

the high symmetry points, the points used in a comparison plot will be Γ, M and K1 from
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the Table 3.1 and Figure 3.2.

Figure 3.3: Quantum Espresso band structure plot of graphene

In order to verify the effectiveness of Quantum Espresso, the band structure needs to

be compared to a well known accurate band structure model. See Figure 3.3 and how it

compares to the correct band structure 3.4.

The graphing styles are slightly differenty but one can see that they are very similar.

In the one calculated by Quantum Espresso, The lines do not appear to cross, but instead

meet at points. This is just due to the graphical style of plotting.
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Figure 3.4: Band structure calculated in another paper [2]
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New Research

4.1 New Research

The structure and unique characteristics of silicene and graphene have been shown, but the

object of this thesis is to provide some new research towards integration and the practical

use of these materials. To that effect a structure is proposed to combine them. The combi-

nation involves silicene placed upon graphene at the rate of one layer per layer of graphene.

Superlattices may help to provide the bridge between the silicon based infrastructure and

the unique properties of graphene. So multiple groups of bilayers of silicene and graphene

will be considered as well. [14]

The physical compatibility of the two materials must first be taken into account. If one

is to examine the lattice parameters of standard buckled silicene with respect to graphene

you will notice that silicene upon graphene does not exhibit any long range symmetry. It

may not seem immediately obvious, but since the atom to atom bond length of silicene is

not a direct factor of the lattice parameter of graphene then it is essentially impossible to

achieve the desired symmetry over the scope of this project. But as was mentioned before,

materials placed in such proximity will exhibit an effect known as reconstruction. Recon-

struction is the process where atoms at the boundaries in a solid reposition themselves to

better accommodate the new material. This is especially important to consider in the case

of a single layer, because the entirety of both layers will undergo reconstruction. However

as the bilayers are allowed to relax, the software automatically takes this reconstruction
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into consideration. If the single layers experiences reconstruction and reach an equilib-

rium state, it is not necessarily true that multiple layers will reach a similar equilibrium.

So both a bilayer and superlattice structure calculations will be done to examine any dif-

ferences. All calculations have a threshold convergence of 1 ∗ 10−8 Rydbergs. For the the

two-dimensional structures a 20 x 20 x 1 Monkhort- Pack mesh of k-points have been used.

For three dimensional structures a 20 x 20 x 20 have been used. The cutoff energy has been

set to 60 rydbergs. The functionals used are Perdew-Burke-Ernzerhof(PBE) GGA pseu-

dopotentials. Generalized gradient approximations or GGA’s are a type of functional that

include spin as in the localized spin density, however the GGA’s include gradients of the

spin densities. The PBE-GGA uses the key characteristics of both the localized spin density

functional or LSD as well as the GGA’s major characteristics to calculate the psuedopoten-

tials of the atoms. This methodology is better at dealing with density inhomogeneity than

previous functionals. [38]

4.1.1 Bilayer Silicene and Graphene

Now that the goals and various types of bilayer and superlattice structures have been out-

lined there is another issue to address. There are two different types of unit cells that are

possible to achieve long range symmetry in these structures. The first is the well known

SiC2 which has a silicon atom placed above the center of each hexagon in graphene. There

is another structure not considered in previous research that retains more of the original

structure of silicene. It has a unit cell composed of two silicons and six carbons and will be

known as Si2C6. It has lower symmetry than the previously mentioned structure. In Figure

4.1 you can see a diagram of the unit cell of SiC2 where the smaller atoms are the carbons

and the larger ones are silicon. This ideal structural image is given so that it is possible to

see what the structure might look like. This will be used as a model for the input, and then

if there are any changes the output structure will be used for any further calculations. If the

output structure reaches equilibrium near these initial conditions a secondary set of inputs
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will be used to reverify the equilibrium structure. This is to make sure that a local minimum

does not dominate the equilibrium structure. Several initial starting positions are used, not

all are documented here. This methodology is used for all lattice structure determinations.

Figure 4.1: SiC2

Which you can compare to the structure originally proposed. [2]

Figure 4.2: The originally proposed structure
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Table 4.1 gives the coordinates of the atoms in the unit cell for the standard SiC2 unit

cell given in Figure 4.4.

Table 4.1: Atomic Coordinates: SiC2

Atoms x y z

C:1 0 0 0 Å

C:2 0 1.42000 Å 0 Å

Si:1 1.225 Å 0.71010 Å 2

In Figure 4.1 you can see the ideal structure of SiC2. As you can see, the silicon

atoms reside above the carbon atoms, directly above the center of each hexagonal graphene

structure. In Figure 4.3 you can see an image of what the input structure looks like after

being plotted by the crystal plotting software. [39]

38



Figure 4.3: SiC2, ideal structure image drawn with Avogadro software [39]

Upon structural relaxation with a cutoff energy of 60 Ry and a vacuum layer of 20 Å,

where the unit cell was both fixed and allowed to vary, the lowest energy structure given

by Quantum Espresso is provided in Table 4.2 below. Similar to the background section,

Various input positions and lattice parameters were considered. The below configuration is

the minimum energy structure of those examined with the SiC2 unit cell.

Table 4.2: Atomic Coordinates: SiC2

Atoms x y z

C:1 0 0 -0.767 Å

C:2 0 1.42000 Å -0.767 Å

Si:1 1.225 Å 0.7110 Å 3.505 Å

Table 4.2 is a table of the positions of the atoms after they have been optimized. As
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you can tell from the table of the output, the positions have changed little from the original

position. It is worth mentioning that while this new position is a local minimum, there

is another minimum located at another position, where the y-coordinate is 1.10Å Keep in

mind that the difference between these two minimums is on the order of 3−4 Rydbergs.

Since they are so close in energy it is difficult to predict which configuration is more likely

to occur in a laboratory situation. However the positions given in the table correspond to the

lowest energy state found. In Figure 4.4 and 4.5 there are two visuals of the post-relaxation

unit cell and and a visual of various angles of a bilayer slab respectively.

Figure 4.4: SiC2, Unit cell drawn with the Avogadro software [39]
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Figure 4.5: SiC2, optimized structure of a bilayer slab drawn with the Avogadro software

[39]

Now that the equilibrium lattice structure of a bilayer has been determined the band

structure of the bilayer can be outlined. The band structures are calculated using an al-

gorithm designed externally from Quantum Espresso plotting a minimum of 60 equally

spaced points.
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Figure 4.6: SiC2, bilayer band structure

Both the individual points and a graphically smoothed version are given to avoid any

confusion as to how the plotting program interprets the points. Below is the original band

structure submitted in the paper by the Zhang et al. [2]

Figure 4.7: SiC2, bilayer band structure comparison [2]
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One can see upon cursory examination that the two structures are very similar. This

helps to verify the methodology used here.

Now that the equilibrium structure of the first bilayer structure has been determined

the next step is to analyze the other bilayer structure, Si2C6. It has more atoms per unit

cell than the standard SiC2. Figure 4.8 gives the structure of Si2C6 and you can see the

coordinates of the various atoms in the Table 4.3. Also since the unit cell is larger a different

lattice parameter is used to define the structure. It has been set to 4.24 Å so as to set the

minimum bond length at 2.45 Å. This is what allows the long range symmetry to work out.

Once again these are the positions used for an initial input calculation.

Figure 4.8: Si2C6
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Table 4.3: Atomic Coordinates: Si2C6

Atoms x y z

Si:1 0 0 2

Si:2 0 2.45 Å 2

C:1 -0.71 Å 1.225 Å 0

C:2 -1.42 Å 2.45 Å 0

C:3 0.71 Å 1.225 Å 0

C:4 1.42 Å 0 0

C:5 2.84 Å 0 0

C:6 1.42 Å 2.45 Å 0

Table 4.3 gives the coordinates of the various atoms in the unit cell for Si2C6. The

lower symmetry of the system requires more atoms per unit cell.

Figure 4.9: Si2C6, ideal structure drawn with Avogadro software [39]
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Upon structural relaxation with a cutoff energy of 60 Ry and a vacuum layer of 20

Å, where the unit cell was both fixed and allowed to vary, the lowest energy structure

provided by Quantum Espresso is given in Table 4.4 below. Similar to the background

section various input positions and lattice parameters were considered. The configuration

outlined in Table 4.4 and Figure 4.10, is the minimum energy structure of those with the

Si2C6 unit cell. Notice a significant deviation in positions of the atoms from the input to

the output.

Table 4.4: Atomic Coordinates: Si2C6

Atoms x y z

Si:1 0.0093 Å 0 3.78Å

Si:2 0.0101 Å 2.449 Å 3.80 Å

C:1 -0.704 Å 1.226 Å -0.59 Å

C:2 -1.413 Å 2.453 Å -0.59 Å

C:3 0.713 Å 1.226 Å -0.59 Å

C:4 1.422 Å 0.001 Å -0.59 Å

C:5 2.840 Å 0.001 Å -0.59 Å

C:6 1.422 Å 2.454 Å -0.59 Å
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Figure 4.10: Si2C6, optimized structure drawn with Avogadro software [39]

The relaxation geometry has been outlined as before so the next step is to calculate

the band structure of the new material. The band structure is,

Figure 4.11: Si2C6, bilayer band structure

There is no comparison for this graph, apparently it has no previous counterpart.

Now that the two types of bilayers of silicene and graphene have been examined, the

next step is to outline a different ways to arrange the silicene with respect to graphene. It
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has been theorized that a superlattice will be the most stable system as well as the easiest

to synthesize. Up until now the only structures that have been outlined are single bilayers.

But a superlattice would contain multiple bilayers. Think of a superlattice as graphene with

silicene used as a binding agents between the layers. [2]

4.1.2 Superlattice Calculations

The superlattice structure has the same basic unit cell as the unit cells of the two bilayer

structures. The primary difference in the superlattice is that instead of a 20 Å vaccuum

layer between bilayers, the bilayers are allowed to continue. The distance between the

bilayers or, if one prefers, between layers is set. This is important as creating a single

bilayer could be very difficult, but creating multiple bilayers should be easier to accomplish

experimentally.

One would expect that a superlattice might have a different configuration of lowest

energy with respect to the unit cell. Upon a relaxation the superlattice unit cell moves to

the locations in the table below. There are some minor difference between the superlattice

and the bilayer.

Table 4.5: Atomic Coordinates: SiC2

Atoms x y z

C:1 0 0.01229 Å -0.45507 Å

C:2 0 1.41662 Å -0.418172 Å

Si:1 1.234 Å 0.7109 Å 3.34907 Å

Where the unit cell looks like,
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Figure 4.12: SiC2, superlattice unit cell

and the superlattice structure looks like,
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Figure 4.13: SiC2, superlattice repeated in all 3 dimensions

Since the structure of the superlattice has been verified, one of the key goals of this

paper can be examined. That goal is to show that this superlattice gives an increase of the

binding energy over graphite. From the data on the superlattice the total energy comes to

-30.635706 Ry, the energy of two-dimensional graphene minimizes at -22.795567 Ry and

the results for buckled silicene are -7.84832809 Ry. When using the same formula that

Zhang and his group used for the binding energy outlined in Section 2.11, a different value
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is gained than what was reported. There are two unique layers in the superlattice and the

sum of their individual energies are 0.00272969 Ry greater than the full superlattice energy.

(−30.635706− (−22.795567 +−7.84832809)

3
= 0.002729 (4.1)

The value given is in Ry, but when one converts the value it gives 37.12 meV/atom

which is reasonably close to the prior reported value of 35.1 meV/atom, which is larger

than both of the two different forms of graphite which have reported values of 24.4 and

15.0 meV/atom. [2]

The binding energy energy has been examined which is dependent on the structural

calculations, next the band structure calculations will be needed to examine the other pri-

mary goal of this paper, the shift in the Fermi level.

Figure 4.14: SiC2, superlattice band structure

This band structure, Figure 4.14, runs through the same high symmetry points as Fig-

ure 4.6, except now it is plotted through the H point. Now the band structures will be
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examined with regards to the goal of this paper.

The band structure calculations lead to a very similar answer as to that which is given

by Doctor Zhang. You can see from Figure 4.14 that the difference between the Fermi

energy and the nearest dirac point is 0.01 eV higher than the Fermi level. This is slightly

less than what was predicted by Zhang et al. If you look at the bilayer structure of the

bilayer SiC2 then you have results that agree more closely. The nearest dirac point to the

Fermi level in the bilayer band structure diagram is 0.0754 electron volts below the Fermi

level. This value is closer to the reported value of 0.245 eV. In this case, the shift of the

Fermi level above dirac points may represent a charge transfer from the silicon in the lattice

to the graphene. The increase in the Fermi level can causethe superlattice to have increased

electron transport over standard graphene. Both values of the change in the Fermi level in

the band structures agree with the trend of the increase of the Fermi level. With respect to

the value of the increase it appears that the methodology used here appears to underestimate

this value as the ones documented are much lower than the accepted.

Earlier two different kinds of bilayer structures were examined. Here the second su-

perlattice Si2C6 will be examined in the same manner that SiC2 has been. Upon optimiza-

tion the location of the atoms move to the positions in Table 4.6.
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Table 4.6: Atomic Coordinates: Si2C6

Atoms x y z

Si:1 0.4825 Å 0.286 Å 3.511Å

Si:2 0.48922 Å 2.704 Å 4.133 Å

C:1 -0.7448 Å 1.219 Å -0.157 Å

C:2 -1.228 Å 2.024 Å -1.064 Å

C:3 0.7598 Å 1.214 Å -0.764 Å

C:4 1.5066 Å -0.147 Å -1.380 Å

C:5 2.981 Å -0.019Å 0.168 Å

C:6 0.992 Å 2.516 Å -0.447 Å

One can see from Table 4.6 that this superlattice form is highly irregular. If it is

deemed worthwhile, this second structure may need to be proven unstable experimentally.

However because of the breakdown of the hexagonal graphene like structure that gives rise

to the unique Dirac points this structure will no longer be examined. All of the structural

data has now been presented.

4.2 Conclusions

Now all the simulated data has all been presented, it must be analyzed. Since Quantum

Espresso has shown reasonable accuracy in providing electronic and structural results in

similar cases, it is reasonable to assume that the results it has given are trustworthy. The

band structure diagram of graphene was nearly identical to a previous accepted diagram.

This is further verification of the methodology.

With that being said, the results that have been obtained also match to a certain de-
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gree the results of another researcher in the field. Doctor Zhang and his associates have

also calculated the superlattice electronic and lattice structures for SiC2. This thesis has

set out verify this research as well as possibly expand on a different superlattice struc-

ture. The Si2C6 was proposed theoretically in a presentation given by Zhang, but was not

examined in depth. Here the unit cell and basic structure have been outlined and the re-

sults of the equilibrium structure have been obtained. Upon examination, the new structure,

Si2C6, does not appear to be worth further consideration. The structure loses the hexagonal

structure that creates the unique properties of graphene as the band structure and transport

properties are almost entirely dependent on structure.

Improved binding energy and enhanced transport properties are the proposed benefits

of the original superlattice structure with silicene as the intercalate. This paper has also

shown these proposed benefits, but not to the same degree as Doctor Zhang. His results

are considered reliable, so that means the methodology in this paper underestimates both

the shift in the Fermi energy and the Binding energy. The binding energy calculated by

Doctor Zhang is 35.1 meV/atom, whereas here it is calculated to be 37.12 meV/atom. The

Fermi level is predicted to be 234 meV above the Dirac point, where in this paper the

Fermi level is only 10 meV above. This means there is some sort of systematic error in this

methodology for the graphing of the Dirac points. The new type of functional was reported

to be better at estimating band structure calculations. However, it appears to have done an

acceptable job of calculating the binding energy, but it apparently failed at the graphing of

the Dirac point. This could be some sort of error in the methodology and it is possible that

changing the input values may yield a similar value.

In conclusion, the structure of the superlattice has been verified to be the same as what

was predicted in the paper by Zhang. [2] In this case the open source software, Quantum

Espresso, was used as well as a different type of functional. Because of the different func-

tional, some variation in the band structure is to be expected. The positions of the Dirac

points maintain the same pattern that was predicted, which leads to silicon providing extra
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charge for graphene and the binding energy does indeed increase over graphite. So the

results here do not completely agree with the accepted values, but they do help to show

the continued usefulness of the superlattice structure, if only for a way to utilize the Dirac

points in practical applications.
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Appendix A

5.1 Plane Wave-Self Consistent Calculations

This section defines how to run a basic plane wave calculation in Self Consistent mode

to find charge density. The first thing that needs to be done is define an input file. The

previous section has covered how to write the input file. This section will show how to

run the file. Keep in mind that all the programs are in bin directory inside the Quantum

Espresso Directory, so that is where one needs to direct the command line to find them.

(Bin Directory) = ˜/espresso-4.3.2/bin/pw.x

prompt> ˜bin/pw.x < Name of input > Name of output

This is all that is needed, as long as the input file is written properly. In the above

example the name of the input is not arbitrary, but the name of the output is arbitrary. Input

is based on the name inside the file. e.g. si.scf.in, whereas the output file can have any

name that you want. Keep in mind that this will create a temporary file as well to work

with, so two new files will be created in the directory.

The key here is to remember that the program is running an algorithm that uses a

numerical process to implement the physics that was mentioned in the theory section. This

charge density algorithm that is mentioned here is finding wavefunctions that fit the given

input. This input that is being used is designated as self-consistent field calculation. There
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are various other types of calculations that can be specified from the input file. They are

outlined below.

• Self-Consistent Field Calculation (’scf’)

A self-consistent field calculation uses a plane wave pseudopotential method to determine

the Kohn Sham wavefunctions and their solutions. It does so using an algorithm called the

modified broyden method. [40] Every time the plane wave algorithm is called, it begins by

using this broyden method. It is the foundation of the rest of the calculations in Quantum

Espresso. Once the kohn-sham wavefunctions have been determined we can use them

to determine the charge density. From basic quantum mechanics it is known that it is

calculated by summing over the modulus of the wavefunctions squared.

• Non Self Consistent Field Calculation (’nscf’)

This calculation always has to follow a self-consistent field calculation. Once the

orbitals are determined one can use this method to determine the density of states.

• Band Structure Calculation (’bands’)

This calculation always has to follow a self-consistent field calculation. Once again

the orbitals need to be determined and by a standard Brillouin zone sampling it will deter-

mine the band structure. Brillouin zone sampling, in this case, is a standard computational

methods term that refers to the integration calculations that are done on the Brillouin zone

to determine the properties of a solid.

5.2 Structural Optimization Methods

• Geometric Relaxation (’relax’)
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The relax method is used to calculate the relaxation positions of atoms in molecules

or crystals. Like most of the molecular dynamics methods it uses the Broyden-Fletcher-

Goldfarb-Shanno algorithm or BFGS for short. The relax method determines the equilib-

rium position of the atoms in a structure using geometry energy calculations. This relax

method, unlike molecular dynamics, cannot conduct calculations at different temperatures.

This method also maintains the unit cell parameters and can only shift the atoms while

maintaining the periodicity.

• Molecular Dynamics (’md’)

The molecular dynamics method is also used to determine the positions but it can

calculate them at different temperatures. It uses the Verlet Algorithm to accomplish this

task alongside the original BFGS. It has the same restrictions on cell parameters as the

relax method.

• Variable Cell Molecular Dynamics (’vc-md’)

This is essentially the same as the original molecular dynamics method except that the

unit cell parameter is allowed to vary in this method.

• Variable Cell Geometric Relaxation (’vc-relax’)

This is essentially the same as the original relaxation dynamics except that the unit

cell is allowed to vary in this method. This version of the variable cell method uses the RM

Wenzcovitch algorithm in conjunction with the BFGS.

5.3 Running Band Structure Calculation:

How to run a standard plane wave calculation, make sure that you include the ’bands’ field

in the CONTROL card.
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prompt> ˜/espresso-4.3.2/bin/pw.x < Input > Output

In this case we will use si.band.in and si.band.out. You will need to delete the tempo-

rary file for this to work. Next you will need another band file to work with si.bands.in

However this file is basically used to create the right directory file, from the previous bands

file.

prompt> ˜/espress-4.3.2/bin/bands.x < Input > Output

Use si.bands.in and si.bands.out. It is sequential; you cannot use si.bands.in unless you

run pw.x previously. Keep in mind it is also important to run the self consistent calculation

before you run the band structure calculation Then you can run plotband.x as

prompt> ˜/espress-4.3.2/bin/plotbands.x

And then it asks for an input. You have to choose a range for the energies, so pick lower

than the lowest. In this case choose -6. Here we will choose 10 just as an example. It does

not graph the entire range of the band structure. To do that you will simply choose higher

than the highest energy value. Choose two different file names for outputs, like in previous

examples. Then choose a guess at a Fermi energy. Let us choose 6.337 for this example.

It will then ask for a range of energies, the change in energy (delta energy) and a reference

energy. Choose the Fermi energy as a reference and then choose 1 for the delta energy. If

you choose the wrong Fermi energy, the band structure comes out incorrectly.

This methodology may work better in the newer version, but in the version 4.3.2 this

process didn’t work. So a program was written in Mathematica 7.0 to accomplish this

task. [41]

5.4 Post Processing

Once you have run the plane wave you will need to take care of the post processing of the

file. Post processing just means to take the file and extract the date from it so that it can be
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run by the output plotting algorithm. The following file changes the plane wave file so that

it is,
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si.pp_rho.i

&inputpp

prefix = ’si’

outdir = ’/home/w003pbb/tmp/’

filplot = ’sicharge’

plot_num= 0 // This tells it to be a charge plot

/

&plot

nfile = 1

// Number of data files

filepp(1) = ’sicharge’

// name of the file output

weight(1) = 1.0

// Just like it says, it is a weighting factor

iflag = 2

// dimensions of plot, 2d plot.

output_format = 2

// Gives output type

fileout = ’si.rho.dat’

// name of the file

e1(1) =1.0, e1(2)=1.0, e1(3) = 0.0,

// 3d vectors that do the plotting lines

e2(1) =0.0, e2(2)=0.0, e2(3) = 1.0,
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// for an input variable of iflag, the variables e2 are needed

nx=56, ny=40 // number of points in the plane

/

Then you just need to run the pp.x algorithm to garner the plotting files that we need.

prompt> ˜/espress-4.3.2/bin/pp.x < Input > Output

Then it will generate two files based on the inputs. In the above case it provided a sicharge

file and si.rho.dat. We don’t need sicharge for now, but we do want the .dat file. Now to

generate the charge plot diagram you need to run another algorithm.

prompt> ˜/espresso-4.3.2/bin/plotrho.x

And then give it the name of a file. In this case use si.rho.dat. It will ask for a name. Give

it any name, in this case use si.rho.ps. It will also ask for a logarithmic scale, tell it ’no’

for now. Then it will ask you to choose a scale. Choose one greater than both the bounds it

gives you and make the maximum number of levels 6. This is just arbitrary for now.

5.5 Plotting Algorithm

Based on the .dat file created by Quantum Espresso, an algorithm was developed to plot

it properly. For various reasons the plotting algorithm included in the Quantum Espresso

package was unsuitable. Mostly due to the nature of the environment that the software was

installed on. The algorithm has been included here for completeness.

File1 = Import["newbands.dat", "Table"];

(* This imports the file that we want *)
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n = Dimensions[File1];

(* Takes in the dimensions of the .dat file that we imported. This \

only gives us the depth, or at least it should*)

x = n[[1]];

Iter = Table[2 i + 1, {i, 1, x/2}];

(* Here i’m iterating through the .dat file input to find the data \

that I want *)

Temp = Table[File1[[Iter[[i]]]], {i, x/2}];

(* This fills the Funct matrix with other the data that we wanted, \

which are the energy levels of the bands *)

File1[[Iter[[1]], 1]];

Temp = Table[

Something =

Table[n*(File1[[Iter[[n]], i]]/n)ˆz, {i, 8}, {z, 0, 1}], {n, 1,

x/2}];

(* This is an interesting bit,First File1[[Iter[[n]],i]] gives the \

components of the input matrix and then you need the z-value to give \

a 1 as the other part of the data point. Then then n variable when \

multiplies that 1 by the number you are on as well as iterate through \

the various rows of the data that we want. *)
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Final = Table[Temp[[All, n]], {n, 1, 8}];

(* This bit reorients it so the matrix can be plotted properly *)

ListLinePlot[Final, Method -> None]

ListPlot[Final]
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