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ABSTRACT  
 

 

Hendricks, Jessica Marie, M.S. Department of Physics, Wright State University, 2013.  

Electromagnetic Characterization of AF455 with DNA-CTMA in Solvent Blends. 

 

 

 

This work studies the electromagnetic properties of AF455, a two photon dye, DNA bound with 

cetyltrimethyl ammonium (CTMA), in liquid solvent blends for use in thin film optical filters.  

The liquid properties of the materials are believed to be transferred to the films.  The solvent 

blends used are ratios of toluene (T) and dimethyl sulfoxide (DMSO).  The complex permittivity 

and permeability of the samples are measured using the short open coaxial line technique in the 

frequency range of 1.0 x 10
7
 Hz to 2.0 x 10

9
 Hz.  In this frequency range, AF455 does not act as a 

two photon absorber.  The results show there is an interaction between AF455 and DNA-CTMA 

that increases the real permittivity for two solvent blends (50-50, and 60-40, T-DMSO).  There is 

also a clear conformation change in the samples with the solvents and DNA-CTMA only that is 

observed in the real permittivity.  In the 70-30 blend, the conformation of the DNA-CTMA is a 

clear helix.  In the samples with less toluene the conformation of the DNA-CTMA is a coil 

structure.  The imaginary permittivity increases with the addition DNA-CTMA.  The real and 

imaginary permeability are constant across all samples.   
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1.0 INTRODUCTION 

 The two photon absorption (TPA) molecule, AF455, can be used in thin films as an 

optical filter
1
.  A TPA molecule absorbs two photons of lower energy instead of a single higher 

energy photon (see Figure 1).   

 

Figure 1.  Two Photon Schematic 

 

The energy of the photon in the TPA process is half of the value of the single photon which 

reduces the exposure to higher energy, more damaging photons.  The peak of TPA is 419 nm in 

toluene and dimethyl sulfoxide blends for AF455.  Previous research has shown there is an 

increase in the absorption of two photons when AF455 binds with DNA-CTMA (cetyltrimethyl 

ammonium)
2
.   

 DNA is used to create thin films and biosensors
3
.  The optical/electromagnetic properties 

of DNA-CTMA can vary with its conformation which is the shape of the molecule.  Two 

common conformations of DNA-CTMA are a coil or a helix.  The permittivity of the DNA-

CTMA varies depending on the conformation and how it is processed
4,5,6,20

.  The permittivity of 
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DNA can be as high as 80 for a helix
7
 or as low as 7

8
.  The permittivity for a coil is automatically 

lower than the permittivity for a helix.  Figure 2 shows some possible conformations of DNA
9
.   

 

Figure 2.  DNA Conformations (Coil and Helix)
7 

 

 DNA readily dissolves in water, but does not dissolve in other organic solvents.  To make 

thin films with DNA, it must be bound to CTMA
4,10

.  The DNA-CTMA can then be dissolved in 

dimethyl sulfoxide (DMSO).  AF455 does not dissolve in DMSO, to compensate for this, AF455 

must be dissolved in toluene.  There is a possible interaction between the two solvents, toluene 

and DMSO, that may affect the permittivity
11

.  This will be further explored in Section 4.1.  The 

fluid consisting of all these materials can be spin-coated or deposited by matrix assisted pulsed 

laser evaporation (MAPLE) to produce thin films
12

.  It is believed the properties of the liquid are 

transferable to the films
5
.  

 This work investigates the electromagnetic characteristics of AF455 with DNA-CTMA in 

several ratios of toluene to DMSO at 1.0 x 10
7
 Hz to 2.0 x 10

9
 Hz.  AF455 does not behave as a 

TPA in this range, but single photon absorption can still occur.  This work will look into whether 
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permittivity will increase in single photon absorption when AF455 and DNA-CTMA bind.  

Another interesting aspect this work will investigate is how the conformation of DNA-CTMA 

will affect the permittivity.  Since the DNA molecule is very polar in its helix conformation, the 

permittivity should increase when it is in this conformation.  This will also give an additional 

indicator to the conformation of polar molecules in addition to circular dichroism.  Chapter two 

discusses the theoretical background of permittivity and permeability and their relationship to 

optical properties.  Chapter three describes the materials and measurement techniques.  Chapter 

four presents the results and discusses the meaning of those results.  The final chapter, Chapter 

five, summarizes the results and offers areas of further research.   
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2.0 THEORETICAL BACKGROUND 

 This chapter will look at the background information in the following order: permittivity, 

permeability, relationship to optical properties, and finally, TPA. 

2.1 Permittivity 

 The permittivity is a measure of how easily a material polarizes in response to an electric 

field.  The dipole moment determines the material's polarization.  The polarization is the net 

dipole moment per unit volume.  A material can be polarized by two different mechanisms.  The 

first is when an applied external electric field induces dipole moments.  The second scenario 

involves an already polar material, which has a permanent dipole moment
13

.   

 The polarization relates to the permittivity in the following manner.  The polarization,  ⃗ , 

is proportional to the electric field,  ⃗ , by  

 
0 eP E 

uur uur
 (1) 

where ε0 is the permittivity of free space and    is the relative electric susceptibility.  A material 

that follows Equation 1 is a linear dielectric and describes linear optical properties.  The 

displacement field,  ⃗⃗ , describes the overall electric field in the material.  It is defined by Equation 

2.   

 
0

D E P 
ur ur ur

 (2) 

Further simplifying of Equation 2 leads to: 

 
0 0 eD E E   

ur ur uur
 (3) 

 
0
(1 )eD E  

ur uur
 (4) 
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0 r

D E 
ur uur

 (5) 

 (1 )
r e    (6) 

where εr relative permittivity.  In general, εr  is a complex number.   

 ' ''
r

i     (7) 

The real part of the permittivity, ε', represents how much energy the material is able to store and 

the imaginary part, ε'', represents how dissipative the material is.  The loss tangent, Equation 8, 

compares the amount of energy lost to the amount of energy stored.  Generally, one does not want 

a very lossy material. 

 
1 ''

'
Tan

Q





   (8) 

The reciprocal of the loss tangent is the quality factor,   , which describes how much energy the 

material stores.  Figure 3 shows the frequency dependence of relative permittivity between10
3
 

and 10
17

 Hz
14

. 
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Figure 3.  Relationship Between ε' and ε'' with Respect to Frequency
14 

 

 In the region of interest in this study, dipolar interactions will be the dominant 

mechanism responsible for permittivity.  Other mechanisms, ionic, atomic, and electronic, are 

responsible for the permittivity outside the range of interest.  When an electric field is applied, the 

distance between charges remains constant for a material with a permanent dipole moment.  The 

molecules will attempt to reorient themselves in response to the external electric field.  The 

overall permittivity is the addition of all the individual dipole moments of the material.  If the 

material does not have a permanent dipole moment, an electric field can induce one.  This 

induced dipole moment then contributes to the permittivity.  This is what is meant by the dipolar 

interactions in Figure 3.   
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2.2 Permeability 

 Permeability is similar to permittivity, but describes the response of the material with 

respect to magnetic fields
15

.  The magnetization of a material is defined by  ⃗⃗ , which is the 

magnetic dipole moment per unit volume.  The auxiliary field,  ⃗⃗ , is used to find the relationship 

between the magnetization and the permeability.  The external magnetic field,  ⃗ , is produced by 

current.  There are two different pieces of the current: the free current,       , and the bound 

current,        .  The free current induces the magnetic field due to the movement of charge.  The 

bound current is due to the magnetization of the material, the aligned magnetic dipoles.  Using 

Ampere's Law,  

 
0 0 0

E
B J

t
  


  



ur
ur ur ur

 (9) 

 with the definition of the current density,  

 free boundJ J J 
ur ur ur

 (10) 

the relationship between the auxiliary field, magnetic field, and magnetization can be found.  At 

low frequencies, the change of the electric field is small, therefore, the second term on the right 

side of Equation 9 is neglected.   

 0 0( )free boundB J J J    
ur ur ur ur ur

 (11) 

 0( ( ))freeB J M   
ur ur ur ur uur

 (12) 

where μ0 is the permeability of free space and the bound current in the material is defined as  

 boundJ M
ur ur uur

 (13) 

Simplifying Equation 12 leads to 
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0

1
( ) freeB M H J


   
ur ur uur ur uur ur

 (14) 

 

0

1
H B M


 

uur ur uur
 (15) 

Now, with the definition of the auxiliary field, the relationship between it and the magnetization 

can be given as follows 

 mM H
uur uur

 (16) 

where   is the magnetic susceptibility.  Like the electric materials that obey Equation 1, 

materials that obey Equation 16 are also linear materials.  Finding the relative permeability is 

similar to that of the relative permittivity. 

 0 0 0( ) (1 )m rB H M H H        
ur uur uur uur uur

 (17) 

 (1 )
r m    (18) 

If this relative permeability value is a scalar value, then the material is isotropic and behaves in 

the same manner from any direction.  If the value is a tensor, it is anisotropic.  In this work, only 

linear materials will be discussed.   

 There are three possible values for the relative permeability:     ,     ,     .  

The first case is where the material is diamagnetic.  The second case is in a vacuum.  The third 

case is where the material is paramagnetic or ferromagnetic.  For both diamagnetic and 

paramagnetic cases, the material only displays the magnetism under an externally applied 

magnetic field.  For a diamagnetic material the dipoles align themselves antiparallel to the 

external field.  Paramagnetic dipoles align themselves parallel to the field.  When the field is 

removed, the dipoles in both types of material become randomly oriented.   
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 The relative permeability is also a complex number. 

 ' ''r i     (19) 

The real part of the permeability, μ', is the storage term and the imaginary part, μ'', is the loss 

term, just like in permittivity.  Usually, the effects of permeability at low frequencies are quite 

small.  There is also a quality factor akin to the permittivity quality factor (Equation 20). 

 
1 ''

'Q
Tan






   (20) 

2.3 Optical Properties 

 This section will relate the permittivity and permeability to the optical properties of a 

material
13

.  Beginning with Maxwell's equations (Equations 21-24) the wave equation for 

electromagnetism can be found. 

  ⃗⃗   ⃗⃗    (21) 

  ⃗⃗   ⃗    (22) 

 
B

E
t


  



ur
ur ur

 (23) 

 free

D
H J

t


  



ur
ur uur ur

 (24) 

Using the equations for the displacement field, Equation 5, and the auxiliary field, Equation 17, 

and setting the free current and electric charge density equal to zero: 
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0 r

H
E

t
 


  



uur
ur ur

 (25) 

 
0 r

E
H

t
 


  



ur
ur uur

 (26) 

by taking the curl of Equation 25 and using Equation 26, the electromagnetic wave equation is 

obtained. 

 

2
2

0 0 2r r

E
E

t
   


 



uuur
ur

 (27) 

where the wave velocity, v, is 

 0 02

1
r r

v
     (28) 

For an electromagnetic wave in vacuum, Equation 28 becomes: 

 0 02

1

c
   (29) 

 

0 0

1
c

 
  (30) 

From Equations 28-30 it is easy to see that the velocity of an electromagnetic wave through a 

medium is 

 

r r

c
v

 
  (31) 

To determine the optical properties of a material, a complex value n is defined as 

 r r

c
n

v
    (32) 
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The real part, n', is the velocity of an electromagnetic wave through a material and is the index of 

refraction.  The imaginary part, n'', is the extinction coefficient.   

 ' '' ( ' '')( ' '')n n in i i         (33) 

Solving Equation 33 will give the index of refraction and extinction coefficient as a function of 

permittivity and permeability.  The solution is 

 
1

'
2

n    (34) 

 
1 '' ' ' ''

''
2

n
   




 (35) 

where Ω is defined by: 

 
2 2 2 2' ' '' '' ( ' '' )( ' '' )              (36) 

To check that Equations 34 and 35 are correct, set μ'=1 and μ''=0 and simplify.  The result should 

give the same result as the derivation when it is assumed in Equation 32 that μr=1.  Performing 

the calculation leads to 

 
1 1
2 22 21

' ( ' ( ' '' ) )
2

n       (37) 

 
1 1
2 22 21

'' ( ' ( ' '' ) )
2

n        (38) 

Equations 37 and 38 are what is commonly found in textbooks
13

.  The index of refraction 

describes how fast an electromagnetic wave will move through a medium.  This is important in 

optical physics and the details are not discussed here.  The extinction coefficient is related to the 

absorptivity of a material.  The relationship will be derived later. 
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 The solution to the electromagnetic wave equation for a wave propagating in the x-

direction is 

 
( )

0( , ) E i kx tE x t e   (39) 

where k is the wave number, ω is the angular frequency, and    is the amplitude of electric field.  

For a wave traveling through a medium, the wave number is 

 
2 2n nf n

k
c c

  


    (40) 

Using Equation 40 and expanding n into its real and imaginary components, Equation 39 can be 

written in the following form 

 
'' / ( ' / )

0( , ) E n x c i n x c tE x t e e    (41) 

Finding the intensity, *I EE , of Equation 41 gives 

 
2 2 '' /

0( ) n x cI x E e   (42) 

By direct comparison with Beer's Law for intensity, 
0

xI I e 

 2 '' / 4 ''/n c n      (43) 

where λ is the wavelength in vacuum.  This gives a measure of how much light will be absorbed 

by one photon absorption.   
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2.4 Two Photon Absorption and AF455 

 The AF455 molecule has the ability to absorb two photons in addition to one photon 

absorption.  TPA is a nonlinear optical process.  This process is proportional to the square of 

intensity instead of being proportional to the intensity as in Beer's Law.  The derivation of "Beer's 

Law" for a TPA is done as follows
16 

 
2( )dI x

BI
dx

   (44) 

where B is a constant.  Solving the differential equation leads to 

 
1

Bx G
I

     (45) 

where G is the constant of integration. 

 
1

I
Bx G




 (46) 

Applying the boundary conditions ( 0( 0)I x I  ) yields the final result 

 0

0

( )
1

I
I x

I x



 (47) 

 However, the AF455 molecule does not always absorb two photons
17

.  In the frequency 

range of this work, the molecule behaves as single photon absorber.  The energy range where the 

molecule acts as a TPA is in the ultraviolet and visible frequency range.  This work looks into the 

properties in the radio frequency range.  The energy of the photons in this range is not high 

enough to see the two photon effects.  This allows for the use of the single photon intensity 

formulas (Equations 42 and 43). 



14 

 

3.0 MATERIALS, METHODS, AND PROCEDURES 

This section first discusses the materials used, toluene, DMSO, AF455, and DNA-CTMA.  Then 

it will discuss the method used to make the liquid samples.  Finally, a description of the short 

open coaxial line technique and circular dichroism concludes the chapter. 

3.1 Materials 

The materials used are toluene, DMSO, AF455, and DNA-CTMA.  The details of these 

substances are described in the following four sections. 

3.1.1 Toluene 

 Toluene is a common organic solvent.  It is used in this work for the purpose of 

dissolving the TPA molecule.  Toluene has a very low relative permittivity, 2.38 at 23°C, and has 

a small dipole moment, 0.375 C∙m.  Common properties of toluene are summarized in Table 1.
18 

Table 1.  Properties of Toluene
18 
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3.1.2 Dimethyl Sulfoxide (DMSO) 

 Dimethyl sulfoxide, DMSO, is a solvent with many medical, biological, and chemical 

applications.  It is a very polar molecule and has the highest relative permittivity (47.24 at 20°C) 

of all the substances used in this study.  DMSO is used because it dissolves the DNA-CTMA 

easily.  Table 2 displays the properties of DMSO
18. 

Table 2.  Properties of DMSO
18 
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3.1.3 AF455 

 AF455 is an organic dye that can absorb two photons in the UV-Vis range.  Figure 4 

shows the structure of AF455
17

 

 

Figure 4.  Structure of AF455 

 

Table 3 shows some of the known properties of AF455
17

. 

Table 3.  Properties of AF455 

Formula C138H174N6 

Molecular Weight (g/mol) 1916.94 

Max Absorption λ for 

TPA in toluene (nm) 
419 

Extinction Coefficient at 

419 nm (cm
-1

∙mol
-1

) 
63.01/cm∙mol 

Index of Refraction, n 1.64 

Net Dipole Moment 0 

 

 

N N

N

NN

N

*C10H21
*C10H21 *C10H21

*C10H21

*C10H21

*C10H21

C138H174N6

MW=1916.94

n (in-plane) = 1.6435 + 0.31%
n (out-of-plane) = 1.6428 + 0.86%  

= 16.1 cm/GW (7.3 ns, THF, 0.02 M) 
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3.1.4 DNA-CTMA 

 Salmon DNA is used in this work.  This must be bound to cetyltrimethyl ammonium 

(CTMA) to enable it to dissolve in organic solvents such as DMSO
6,10

.  It has been discovered 

that binding DNA-CTMA with the AF455 increases the absorbance of AF455
2,5

.  DNA is a polar 

molecule, however, the conformation of the molecule will affect this.  The environment 

determines the conformation, it can be in a coil or a helix form.  If it is in a coil, the polarity will 

not be as prominent as it would be if the DNA is in a helix form.   
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3.2 Preparation of Samples 

This section describes the preparation of all the samples: toluene and DMSO blends, AF455 plus 

the solvent blends, DNA-CTMA plus the solvent blends, and AF455 plus DNA-CTMA plus the 

solvent blends. 

3.2.1 Toluene/DMSO Ratios 

 The first set of samples does not include either the AF455 dye or the DNA-CTMA.  Each 

sample had a total volume of 10 mL, the volume of toluene or DMSO was pipetted from a bottle 

of the solvent according to Table 4. 

Table 4.  Toluene and DMSO Sample Ratios 

Sample Toluene (%) DMSO (%) 

1 70 30 

2 60 40 

3 50 50 

4 40 60 

5 30 70 

 

3.2.2 Toluene/DMSO Ratios with AF455 

 The second set of samples included the AF455 dye.  The AF455 stock was made using 

the following procedure.  The powder was weighed on a Sartorius Research balance to 2.54 mg.  

This was then transferred to a 25 mL flask and diluted with toluene.  The AF455 dissolved easily 

into the toluene.  The concentration of the stock solution was 0.10160 mg/mL.  Then 0.20 mL of 

this stock was pipetted into the large vials.  Toluene was then pipetted into the vials in an 

appropriate amount to make the correct percentage of toluene to DMSO.  DMSO was pipetted in 

last, making the total volume of each vial 10 mL.  This procedure allowed each sample to have 

the same AF455 concentration, which allows for direct comparison of their photophysical 

properties.  Tables 5 and 6 display the volume and ratios for the AF455 samples. 
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Table 5.  Volume for AF455 Solutions 

Sample by % Tol AF455 Stock (mL) Toluene (mL) DMSO (mL) 

30 0.2 2.8 7.0 

40 0.2 3.8 6.0 

50 0.2 4.8 5.0 

60 0.2 5.8 4.0 

70 0.2 6.8 3.0 

 

Table 6.  Toluene and DMSO Sample Ratios with AF455 

Sample Toluene (%) DMSO (%) AF455 Concentration (mg/mL) 

1 70 30 0.0020 

2 60 40 0.0020 

3 50 50 0.0020 

4 40 60 0.0020 

5 30 70 0.0020 

 

3.2.3 Toluene/DMSO Ratios with DNA-CTMA 

 The third set of samples was made with solid DNA-CTMA.  The concentration of each of 

these five samples needed to be 5.00 mg/mL.  This concentration was chosen to match previous 

data
12

.  The DNA-CTMA does not dissolve easily in toluene, so in making the solutions it was 

best to add only the DMSO initially.  After the DNA-CTMA dissolved into the DMSO, the 

toluene was added.  The total volume of liquid was again 10 mL.  Table 7 displays the solvent 

ratios and concentration of DNA-CTMA samples.   

Table 7.  Toluene and DMSO Sample Ratios with DNA-CTMA 

Sample Toluene (%) DMSO (%) DNA-CTMA Concentration (mg/mL) 

1 70 30 5.00 

2 60 40 5.00 

3 50 50 5.00 

4 40 60 5.00 

5 30 70 5.00 
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3.2.4 Toluene/DMSO Ratios with DNA-CTMA and AF455 

 This final set of samples was made with both DNA-CTMA and AF455.  The DNA-

CTMA was dissolved in DMSO in the same manner as the third set of samples.  When adding the 

toluene, however, the AF455 was added in as well in the same concentration as the second set of 

samples.  The total volume of each sample was 10 mL.  The concentrations and ratio of toluene to 

DMSO is shown in Table 8. 

Table 8.  Toluene and DMSO Ratios with Both DNA-CTMA and AF455 

Sample Toluene (%) DMSO (%) 
AF455 Concentration 

(mg/mL) 

DNA-CTMA 

Concentration (mg/mL) 

1 70 30 0.0020 5.00 

2 60 40 0.0020 5.00 

3 50 50 0.0020 5.00 

4 40 60 0.0020 5.00 

5 30 70 0.0020 5.00 

 

 

3.2.5 Concentrations of Samples 

 It is useful to list the concentrations of the samples in a different manner than that above.  

Table 9 lists the concentrations of the samples by mole fraction, percent mass, and molar 

concentration. 
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Table 9.  Concentrations of Samples 

Sample 

Set 
Sample 

Percent by Mass Molar Concentration (mol/L) 

Toluene 

(%) 

DMSO 

(%) 

AF455 

(x10
-4

 %) 

DNA 

(%) 
Toluene DMSO 

 AF455 

(x10
-6

) 

 DNA 

(x10
-6

) 

1 

0-100 0 100 0 0 0 12.85 0 0 

30-70 27 73 0 0 2.83 9.00 0 0 

40-60 37 63 0 0 3.78 7.71 0 0 

50-50 46 54 0 0 4.72 6.43 0 0 

60-40 57 43 0 0 5.67 5.14 0 0 

70-30 67 33 0 0 6.61 3.86 0 0 

100-0 100 0 0 0 9.44 0 0 0 

2 

30-70 27 73 2.10 0 2.83 12.85 1.06 0 

40-60 36 63 2.13 0 3.78 9.00 1.06 0 

50-50 46 53 2.16 0 4.72 7.71 1.06 0 

60-40 56 43 2.19 0 5.67 6.43 1.06 0 

70-30 67 33 2.22 0 6.61 5.14 1.06 0 

100-0 99 0 2.32 0 9.44 3.86 1.06 0 

3 

0-100 0 100 0 0.10 0 12.85 0 5.00 

30-70 27 73 0 0.10 2.83 9.00 0 5.00 

40-60 36 63 0 0.10 3.78 7.71 0 5.00 

50-50 46 53 0 0.11 4.72 6.43 0 5.00 

60-40 56 43 0 0.11 5.67 5.14 0 5.00 

70-30 67 33 0 0.11 6.61 3.86 0 5.00 

4 

30-70 27 73 2.10 0.10 2.83 9.00 1.06 5.00 

40-60 36 63 2.13 0.10 3.78 7.71 1.06 5.00 

50-50 46 53 2.16 0.11 4.72 6.43 1.06 5.00 

60-40 56 43 2.19 0.11 5.67 5.14 1.06 5.00 

70-30 67 33 2.22 0.11 6.61 3.86 1.06 5.00 
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3.3 Permittivity and Permeability Measurements 

 The technique used to measure complex permittivity and complex permeability uses a 

short and open coaxial line
19

.  A signal is sent down the cable and into a sample cell filled with 

fluid.  The reflection coefficient is measured based on the difference between it and the original 

wave.  

 The short open coaxial line (SOCL) technique is based on two existing measurement 

techniques: the short closed coaxial line (SCCL) technique and the open ended coaxial line 

(OECL) technique.  These techniques are not suitable if a large dielectric component of the 

material is expected.  This is because the measurement is not very sensitive if μ is small and ε is 

large, the SOCL technique does not have this limitation.  The SOCL uses two small cavities, one 

that has an open circuit and the other that has a short circuit.  The reflection coefficients, Γs 

(short) and Γo (open), are measured and used to determine the complex permittivity and 

permeability with a high degree of accuracy over a large frequency range.   

 The system used for these measurements is outlined in red in Figure 5.  The Agilent 

Technologies Network Analyzer sends an outgoing wave though the cable and measures the 

reflected wave in the small cavity at the end of the coaxial line.   
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Figure 5.  System for SOCL Technique 

 

In Figure 6, A is the top of the probe, B is the short cavity, and C is the open cavity.  Figure 7 

shows the top view of the cavities.  The fluid is injected into the cavity inside of the O-ring.  

Figures 8 and 9 show the short and open cavities connected to the coaxial line. 

 

Figure 6.  Cavities Used for SOCL Technique (A-Top of Cavity, B-Short Cavity, 

and C-Open Cavity) 
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Figure 7.  Top View of Cavity 

 

 

Figure 8.  Short Cavity Connected to Probe 

 

 

Figure 9.  Open Cavity Connected to Probe 
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 The permittivity and permeability are calculated using the reflection coefficients at the 

input port of a single port coaxial cell of length L.  The target values are related to the reflection 

coefficients by the following equations from the SCCL and OECL techniques: 
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where  1i   , L is the length of the cell, and   is the free space propagation constant.  

Rearranging Equations 48 and 49 gives: 
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From Equations 50 and 51 
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which leads to  
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3.4 Circular Dichroism Measurements 

 The instrument for the circular dichroism (CD) measurements is the CD Spectrometer J-

815.  The CD technique uses right and left circularly polarized light to analyze the conformation 

of asymmetric molecules
20

.  Asymmetric biological molecules absorb in one direction more than 

the other.  The CD is the difference between these two absorption values.  The resulting light is 

then elliptically polarized.  Figure 10 depicts circularly and linearly polarized light.   

 

Figure 10.  Circularly Polarized Light (Top) and Linearly Polarized Light 

(Bottom)
20 

 

 Beer's Law is followed for circularly polarized light and the equation for determining the 

difference in absorption is simply 

 
'' '' ''

left right left rightA A A n LC n LC n LC        (55) 

where A is the absorption, L is the sample length, C is the concentration, and n'' is the extinction 

coefficient.  Equation 55 is related to the ellipticity, θ, of the elliptically polarized light.  The 
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tangent of the ellipticity is the ratio between the minor axis and the major axis of the ellipse and 

due to its small size is equal to θ in radians.  From this definition θ is related to ΔA by 

 32.98 A    (56) 

where θ is in degrees.  The molar ellipticity, [θ], is given by  

 [ ] 3298 ''n    (57) 

where [θ] has the units deg∙cm
2
∙mol

-1
.  This is the measurement observed on the instrument. 
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4.0 RESULTS AND DISCUSSION 

This chapter discusses the results of the SOCL technique.  First, the relative permittivity is 

discussed followed by the relative permeability. 

4.1 Permittivity Measurements 

The relative permittivity results are discussed in this section.  The real permittivity is discussed 

first and the imaginary permittivity is discussed second.  The results are summarized in the final 

section. 

4.1.1 Real Permittivity 

 Figure 11 shows the real permittivity vs. frequency for the solvent blends. 

 

Figure 11.  Real Permittivity for Solvent Blends 

 

 The data follows the expected path at lower frequencies.  At higher frequencies, the 

resonance of the cavity used in the SOCL technique are evident.  This pattern continues through 
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all of the data hereafter.  The known dielectric constant of 100% DMSO is 47.24 and the known 

dielectric constant of 100% toluene is 2.38.  Using these and assuming no interaction between the 

solvents, the dielectric constant can be predicted using the rule of mixtures, Table 10. 

 

Table 10.  Theoretical Dielectric Constants for Mixtures of Toluene and DMSO 

Toluene 

(%) 

DMSO 

(%) 

Predicted 

Real 

Permittivity 

Measured 

Real 

Permittivity 

0 100 47.24 47.74 

30 70 33.78 - 

40 60 29.30 30.56 

50 50 24.81 25.46 

60 40 20.32 20.23 

70 30 16.37 17.12 

100 0 2.38 2.60 

 

 It is clear the theoretical values derived by the theory of mixtures match the values from 

Table 10.  It has been hypothesized that there is an interaction between the two solvents.  The 

conclusions by Thirumaran and Rajeswari
11

 are inconsistent with the results here.  In their work, 

they look at aromatic hydrocarbons with DMSO.  They hypothesize there to be dipole-dipole and 

dipole-induced-dipole interactions, but state these interactions are very tiny.  The data in Figure 9 

and Table 10 indicate there is no interaction between the solvents. 

 Figure 12 shows the permittivity in the solvents for a frequency of 250 MHz.  The nice 

linear pattern that is expected is evident. 
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Figure 12.  Real Permittivity at 250 MHz 

 

With the addition of AF455, there is a tiny drop of overall permittivity in the solvent blends. 

 

Figure 13.  Real Permittivity with AF455 
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Figure 14.  Real Permittivity with AF455 at 250 MHz 

 

 The slight overall reduction of real permittivity with AF455 can be attributed to the 

dipole moment of the "arms" of the AF455 molecule.  The structure of AF455 is trigonal planar.  

It is hypothesized that only one "arm" is oriented in the field with the DMSO.  The other two 

"arms" being oriented in a different direction reduce the overall field.   

 When DNA-CTMA is added to the solvent mixtures the permittivity remains unchanged 

for all but one of the mixtures. 
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Figure 15.  Real Permittivity with DNA-CTMA 

 

 The conformation of DNA-CTMA is important in this one case.  For most of the 

mixtures, the DNA-CTMA is in a coil.  (See section 4.1.2)  This results in no change to the 

permittivity even though DNA is a polar molecule.  In the 70% toluene mixture, however, the 

DNA-CTMA is in the shape of a helix.  This affects the permittivity by increasing it.  Figure 16 

depicts the data for 250 MHz.  The increased polarity of the 70% Toluene solution is easily seen. 
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Figure 16.   Real Permittivity with DNA-CTMA at 250 MHz 

 

Figure 17 shows real permittivity as a function of frequency for solutions containing both AF455 

and DNA-CTMA. 

 

Figure 17.  Real Permittivity vs. Frequency for AF455 and DNA-CTMA 
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Figure 18.  Real Permittivity for AF455 and DNA-CTMA Blends at 250 MHz 

 

 For two of the solvent blends (50-50, 60-40), the overall permittivity increases when 

AF455 and DNA-CTMA are combined.  The change could be a result of how the AF455 and 

DNA-CTMA bind.  It is known from previous, parallel studies that when DNA-CTMA binds 

with AF455 there is an increase in the overall absorbance
2
.  In the 70% toluene blend, the 

conformation change of the DNA-CTMA does not appear.  There is an interesting trend in this 

data that can be modeled.  The permittivity,     , as a function of the percent of toluene between 

30% and 70% is 

     (    )             
                    (58) 

 In Figure 19, all of the data is plotted against toluene percent. 
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Figure 19.  Permittivity vs. Percent Toluene at 250 MHz 

 

 The solvent blends and solvents plus AF455 follow a linear pattern.  The solvent blends 

plus DNA-CTMA and all materials do not precisely follow this pattern.  In Table 11, the real 

permittivity values for 250 MHz are listed. 

Table 11.  Real Permittivity Values at 250 MHz 

Percent 

Toluene 

Real Permittivity 

Solvents AF455 DNA-CTMA All 

100 2.60 2.57 - - 

70 17.12 14.18 31.47 15.21 

60 20.23 17.85 21.96 25.71 

50 25.46 24.31 26.25 31.62 

40 30.56 31.47 33.12 34.52 

30 - 36.12 39.02 37.51 

0 47.74 - 51.80 - 
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4.1.2 Circular Dichroism Measurements 

 Measurements by circular dichroism provide details on the conformation of DNA.  Spin 

coatings made with the same materials as the permittivity data is used
21

.  The use of the spin 

coatings is necessary because they can be measured directly.  If the liquids were used, data would 

be difficult to obtain because the solvents absorb in the same region of the spectrum as the DNA-

CTMA. 

 

Figure 20.  CD Data for Spin Coatings
21 

 

 Figure 20 displays the spin coat data
21

.  The graph on the far left displays data for 30% 

toluene and increases by 10% to 70% toluene displayed to the right.  As the toluene percent 

increases, there is an obvious change in conformation of the DNA in the coating.  The DNA for 

lower toluene is in a coil and in 70% toluene it is clearly a helix.  This change is responsible for 

the increase in permittivity that is seen in Figure 16.    
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4.1.3 Imaginary Permittivity 

 The imaginary permittivity should be close to zero
22

.  Figures 21 and 22 show imaginary 

permittivity for the solvent blends. 

 

Figure 21.  Imaginary Permittivity vs. Frequency for the Solvent Blends 

 

 

Figure 22.  Imaginary Permittivity at 250 MHz 
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As expected the imaginary permittivity for the solvent blends is roughly zero.  Figures 23 and 24 

show the results for the addition of AF455. 

 

Figure 23.  Imaginary Permittivity with AF455 

 

 

Figure 24.  Imaginary with AF455 at 250 MHz 
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 The values of imaginary permittivity with the addition of AF455 are also about zero, as 

expected.  Figures 25 and 26 show the imaginary permittivity for the solvent blends with DNA-

CTMA.   

 

Figure 25.  Imaginary Permittivity with DNA-CTMA 

 

 

Figure 26.  Imaginary Permittivity with DNA-CTMA at 250 MHz 
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 The value of imaginary permittivity with DNA-CTMA is much higher than the solvent 

blends and the solvent blends plus AF455.  This is expected since DNA-CTMA is a more 

complex structure.  The permittivity decreases with increasing percent toluene.  The decrease can 

be explained due to the conformation of the DNA-CTMA.  The coil structure appears to be more 

lossy than a helix structure.  Figures 27 and 28 have the results for all combined materials. 

 

 

Figure 27.  Imaginary Permittivity with AF455 and DNA-CTMA 

 

 

Figure 28.  Imaginary Permittivity with AF455 and DNA-CTMA at 250 MHz 
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 The value for the imaginary permittivity with both AF455 and DNA-CTMA is about 4.5.  

It is higher for the 50-50 blend and lower for the 70-30 blend.  The way the AF455 binds with the 

DNA-CTMA could contribute to this effect as well as the conformation.  Figure 29 shows all of 

the samples as a function of percent toluene. 

 

Figure 29.  Imaginary Permittivity vs. Percent Toluene for 250 MHz 

 

 This graph shows the increase of imaginary permittivity for DNA-CTMA and all 

materials as compared to the solvents and AF455.  Table 12 gives the values for 250 MHz. 
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Table 12.  Imaginary Permittivity Values at 250 MHz 

Percent 

Toluene 

Imaginary Permittivity 

Solvents AF455 DNA-CTMA All 

100 0.028 0.055 - - 

70 0.099 0.43 0.73 2.51 

60 0.36 0.28 2.76 4.08 

50 0.29 0.62 3.58 6.52 

40 0.23 0.73 4.42 4.67 

30 - 0.40 5.00 4.89 

0 0.20 - 5.93 - 

Average 0.29 0.42 3.74 4.53 

 

The electric loss tangent, Table 13, is trivial for the solvent blends and solvents plus AF455.  

However, it is an order of magnitude larger when the DNA-CTMA is included. 

 

Table 13.  Electric Loss Tangent for 250 MHz 

Percent 

Toluene 

Electric Loss Tangent 

Solvents AF455 DNA-CTMA All 

100 0.01 0.02 - - 

70 0.01 0.03 0.02 0.16 

60 0.02 0.02 0.13 0.16 

50 0.01 0.03 0.14 0.21 

40 0.01 0.02 0.13 0.14 

30 - 0.01 0.13 0.13 

0 0.004 - 0.11 - 

Average 0.01 0.02 0.11 0.16 
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4.1.4 Summary of Permittivity Results 

 The results of the real permittivity section indicate there is no interaction between the 

solvent blends.  Table 10 lists the theoretical values of the real permittivity if the solvents behave 

as a pure mixture and the experimental data.  The values are all within range.   

 When AF455 is added to the solvent blends, there is a slight decrease in overall 

permittivity.  This could be the result of an interaction between the dipole moment of the "arms" 

of the AF455 molecule.  This effect is very tiny, however. 

 Adding DNA-CTMA to the solvent blends does not affect the permittivity at all except 

for the 70-30 blend.  The increase of permittivity in the 70-30 sample is indicative of a 

conformation change.  The CD data suggests the conformation is a helix shape in this solvent 

blend.   

 When AF455 and DNA-CTMA is added into the solvent blends, there is an increase in 

the permittivity of the 50-50 and 60-40 blends.  Previous work suggests binding between the 

AF455 and DNA-CTMA can cause this.  Additionally, the conformation change in the 70-30 

blend is not observed.  The binding between the two could also cause this.   

 The imaginary permittivity for all samples is very low, as is expected.  The real 

permittivity is fairly constant across the frequency range.  The relationship between real 

permittivity and imaginary permittivity is a derivative over frequency, therefore, the expected 

values should be very low.   

 The imaginary permittivity increases when DNA-CTMA is added, indicating this is a 

lossy material.  The imaginary permittivity increases for decreasing toluene percent.  This is 

evidence of the conformation change also observed in the real permittivity.  A coil structure is 

more lossy than a helix structure.  When all materials are added, the imaginary permittivity is 



44 

 

lower for the 70-30 blend and higher for the 50-50 blend.  This is due to the binding between 

AF455 and DNA-CTMA and the conformation change. 

 Though there are changes for some of the samples, the results are not dramatically 

different.  The interesting properties of the TPA, AF455, are not evident in this range.  The 

permittivity of the samples is not very different from the solvent blends themselves.  The most 

interesting observation is the detection of a strong conformation change of the DNA-CTMA in 

the permittivity.  The DNA-CTMA is more lossy than the samples without it, but this is expected 

since the molecule is very complex.   
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5.0 CONCLUSIONS 

 The real permittivity data gives the most information about the liquid blends.  There is a 

slight reduction in AF455 when added to the solvent blends.  This change could be the result of 

the dipole moment of the "arms" of the AF455 molecule reducing the overall field.  When DNA-

CTMA is added to the solvent blends, a strong conformation change is evident.  The sharp 

increase in permittivity is due to the polarity of the DNA in a helix structure.  This change was 

confirmed with CD measurements.  When all materials are combined, there is an increase in 

permittivity for the 50-50 and 60-40 blends.  Binding between the AF455 and DNA-CTMA 

increases the polarity of these samples.  The imaginary permittivity is low for these materials 

indicating they are not very lossy.  The blends with DNA-CTMA are higher, but this is expected 

since DNA-CTMA is a complex molecule.   

 The real permeability is consistent across all the samples, see Table 14.  This indicates 

the material is isotropic and paramagnetic.  The imaginary permeability is also consistent across 

all the samples, Figure 48.  Table 16 displays the magnetic loss tangent.  These materials are 

more lossy in the magnetic part than the electric part.   

 In this work, finding the conformation change of the DNA-CTMA with the permittivity is 

the most significant.  There is also evidence of binding between the DNA-CTMA and AF455 in 

this frequency range.  Future work can look into the details of the binding between the two 

materials.  Additionally, work into the binding will help optimize the absorption of light for each 

of the solvent mixtures.  Other interesting research measuring the relative permittivity and 

permeability values in the UV-Vis-NIR range.  Developing a model for the optical properties and 

the effects of the various materials are of interest. 
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LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS 

 

Acronym Description 

AFRL Air Force Research Laboratory 

CD Circular Dichroism 

CTMA Cetyltrimethyl ammonium 

DMSO Dimethyl sulfoxide 

DOD Department of Defense 

MAPLE Matrix assisted pulsed laser evaporation 

OECL Open ended coaxial line 

RX Materials & Manufacturing Directorate 

SCCL Short closed coaxial line 

SOCHE Southwestern Ohio Council for Higher Education 

SOCL Short open coaxial line 

TPA Two Photon Absorption 

USAF United States Air Force 

WPAFB Wright-Patterson Air Force Base 
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