Creating Real-Time Dynamic Knowledge Graphs

Swati Padhee
Wright State University - Main Campus

Sarasi Lalithsena

Amit P. Sheth
Wright State University - Main Campus, amit.sheth@wright.edu

Follow this and additional works at: https://corescholar.libraries.wright.edu/knoesis

Part of the Bioinformatics Commons, Communication Technology and New Media Commons, Databases and Information Systems Commons, OS and Networks Commons, and the Science and Technology Studies Commons

Repository Citation
https://corescholar.libraries.wright.edu/knoesis/1143

This Presentation is brought to you for free and open access by the The Ohio Center of Excellence in Knowledge-Enabled Computing (Kno.e.sis) at CORE Scholar. It has been accepted for inclusion in Kno.e.sis Publications by an authorized administrator of CORE Scholar. For more information, please contact corescholar@www.libraries.wright.edu.
Creating Real-Time Dynamic Knowledge Graphs
Swati Padhee¹, Sarasi Lalithsena², Amit Sheth¹
¹Kno.e.sis Center, Wright State University, Dayton OH, USA
²IBM Watson, San Jose, CA, USA
{swati, amit}@knoesis.org Sarasi.Lalithsena@ibm.com

International Semantic Web Research School (ISWS) 2018, Bertinoro, Italy.

Motivation

- Real world events are dynamic in nature
 - Recurring events e.g. US Presidential Election
 - Non-recurring events e.g. Hurricane Irma
- Need for real-time predictive analysis, trend analysis, public opinion analysis for events.
- Current state-of-the-art curates evolving knowledge graph from structured text but not from incoming real-time user generated unstructured text.

Contributions

- We address the changing nature of relationships between real-world entities during evolving events.
- We propose to create an evolving event-specific Dynamic Knowledge Graph (DKG) which is complementary to the static information in traditional knowledge graphs such as DBpedia, Freebase and YAGO.

Applications

- Question-answering systems: Query responses for temporally changing answers.
- Disaster response: Building a machine-understandable semi-structured knowledge repository that represents evolving situational awareness of events during a disaster response.
- Chatbots: DKG can provide a structured platform for the more accurate chatbot responses.

Overview

- Dynamic Knowledge Graph
 - Predictive Analysis
 - Trend Analysis
 - QA - Chatbots
 - Event-specific evolving fact identification
 - Event-specific schema design
 - Event-specific user data collection

Architecture

- Events: Specific Schema
 - Event-specific TWEETS
 - Entity Annotation
 - Entity type Annotation
- Schema Mapping
 - Schema
 - Synchronization
 - Similarity Computation
 - Coarsegrained mapping

Us Presidential Election Schema

Evaluation Criteria

- Social-Media Text
 - July 12 – Bernie Sanders endorses Hillary Clinton

We evaluate the performance of our approach with respect to the temporal facts associated with United States Presidential Election 2016 timeline article page from DBpedia.

References

2. Lalithsena, Sarasi. Domain-specific knowledge extraction from the web of data. Diss. Wright State University, 2018.

Acknowledgements

- We would like to acknowledge Shreyansh Bhatt for his valuable suggestions.
- We would also like to acknowledge partial support from the National Science Foundation (NSF) award: CNS-1513721: “Context-Aware Harassment Detection on Social Media”, NSF award EAR-1520870 “Hazards SEES: Social and Physical Sensing Enabled Decision Support for Disaster Management and Response”.

We would like to acknowledge Shreyansh Bhatt for his valuable suggestions.