Adaptive Knowledge Networks: A Time Capsule

Swati Padhee
Wright State University - Main Campus, padhee.2@wright.edu

Anurag Illendula
Wright State University - Main Campus

Amit Sheth
Wright State University - Main Campus, amit@sc.edu

Krishnaprasad Thirunarayan
Wright State University - Main Campus, t.k.prasad@wright.edu

Valerie L. Shalin
Wright State University - Main Campus, valerie.shalin@wright.edu

Follow this and additional works at: https://corescholar.libraries.wright.edu/knoesis

Part of the Bioinformatics Commons, Communication Technology and New Media Commons, Databases and Information Systems Commons, OS and Networks Commons, and the Science and Technology Studies Commons

Repository Citation
https://corescholar.libraries.wright.edu/knoesis/1162

This Presentation is brought to you for free and open access by the The Ohio Center of Excellence in Knowledge-Enabled Computing (Kno.e.sis) at CORE Scholar. It has been accepted for inclusion in Kno.e.sis Publications by an authorized administrator of CORE Scholar. For more information, please contact library-corescholar@wright.edu.
Adaptive Knowledge Networks: A Time Capsule

Swati Padhee¹, Anurag Illendula², Amit Sheth¹, Krishnaprasad Thirunarayan¹, Valerie Shalin¹
¹Kno.e.sis Center, Wright State University, Dayton OH, USA
²Department Of Mathematics IIT Kharagpur
swati@knoesis.org

The 2019 CRA-W Grad Cohort for Women Workshop

MOTIVATION
❖ Real world events are dynamic in nature. Periodic events e.g. US Presidential Election. Non-periodic events e.g. Cyclone Idai.
❖ Need for real-time predictive analysis, trend analysis, spatio-temporal decision making, public opinion analysis for events.
❖ Current state-of-the-art curates dynamic knowledge graph from structured text.
❖ We propose creating an Adaptive Knowledge Network from incoming real-time multimodal spatio-temporally evolving data.

HOW
We define two problems:
(1) Automatically extracting and predicting patterns for a class of periodic events (e.g. US Presidential Election).
(2) Inferring temporal information for non-periodic events (e.g. disasters) from real-time multimodal data to create an Adaptive Knowledge Network.

We rely on combining text mining approaches with machine learning and neural networks using knowledge from: (1) hierarchical and non-hierarchical relationships in KGs, (2) unstructured textual event-specific information, and (3) semi-structured collaborative KGs.

OVERVIEW

REFERENCES
2. Lalithsena, Sarasi. Domain-specific knowledge extraction from the web of data. Diss. Wright State University, 2018.

ACKNOWLEDGEMENTS
We would like to acknowledge Dr. Pavan Kapanipathi and Dr. Sarasi Lalithsena for their invaluable guidance and support in this project. We would also like to acknowledge partial support from the National Science Foundation (NSF) award: CNS-1513721: “Context-Aware Harassment Detection on Social Media,” NSF award EAR-1520870 “Hazards SEES: Social and Physical Sensing Enabled Decision Support for Disaster Management and Response.”