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ABSTRACT 
 
 
 
Rapetti, Todd Joseph.  M.S. Department of Neuroscience, Cell Biology, and 
Physiology, Wright State University, 2015.  Connectivity of Monosynaptic Ia 
Afferents on Renshaw Cells in Neonatal Mice 
 
 

 

Proprioception allows sensory information about muscle position and length to 

enter the CNS without the aid of visual cues.  One type of fiber that carries this 

information is the Ia afferent, which innervates muscle spindles that respond to 

mechanical perturbation in muscle.  Ia fibers are known to synapse with Ia 

interneurons (INs) and motor neurons (MNs), setting up important circuits which 

affect movement.  Another type of IN is the Renshaw cell (RC), which is located in 

the ventral part of lamina VII of the spinal cord and is critical for the functionality of 

the recurrent inhibitory circuit.  In addition to sending inhibitory axons to MNs, RCs 

were recently discovered to receive monosynaptic Ia afferent connections.  Sensory 

connections increase from birth through postnatal day (P) 15 in a mouse model, and 

then decline functionally into adulthood.  The functional relevance and possible 

muscle-specific patterns of sensory connectivity with RCs is poorly understood.  To 

investigate this question, we mapped the connections of proprioceptive afferents of 

quadriceps and obturator nerves (with fluorescent dextran retrograde tracing) onto 

immunohistochemically defined RCs in neonatal mice (P0 or P1).  We hypothesized 
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the quadriceps and obturator afferents would contact different populations of RCs, 

implying selective activation.  Our results indicate RCs are almost twice as likely to 

receive obturator sensory contacts as quad contacts at this stage, and that there is a 

population of RCs which receive contacts from both types of afferents.  A possible 

explanation is that synaptic contact patterns may change in the course of postnatal 

development to eliminate convergent inputs from both types of afferents.  

Alternatively, all RCs may be contacted by afferents from various muscle nerves to 

allow for generalized feedforward inhibition during early postnatal development.    
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I. INTRODUCTION 

 

General Anatomy of the Spinal Cord 

The spinal cord is a main component of the central nervous system, and is 

critically important for receiving and integrating sensory information from the 

periphery, as well as sending motor output to skeletal muscle.  The spinal cord is 

divided between the white matter, which forms the exterior, and the gray matter in 

the interior.  The white matter consists of groups of myelinated nerve cell processes 

(axons) called tracts, which relay information to and from the brainstem and 

cerebrum.  For example, the corticospinal tract carries efferent information from the 

primary motor cortex, through the brainstem and is processed in the spinal cord.  

Eventually, this information is relayed to muscle for production of voluntary 

movement.  The gray matter consists of neuronal cell bodies, and in the spinal cord 

it is broken up into three main areas—the ventral horn, lateral horn, and dorsal 

horn.  The ventral horn contains motor neurons and processes motor output, the 

lateral horn mainly contributes to the sympathetic portion of the autonomic 

nervous system, while the dorsal horn is generally responsible for processing 

incoming sensory information.  All three horns contain interneurons, which act as 

mediators between neurons that are motor or sensory.  The three horns of the 

spinal cord are further broken up into ten different laminae, with laminae I-VI 
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located in the dorsal horn, part of lamina VII and lamina X in the lateral or 

intermediate horn, and part of lamina VII and laminae VIII and IX in the ventral 

horn.  The different laminae are organized by the type and function of neurons in a 

certain location, or more specifically their physiological, histochemical, and 

cytoarchitectonic properties (Sengul et al., 2012).  This thesis is focused on the 

ventral-most portion of laminae VII and IX; lamina IX contains motorneurons (MNs), 

and lamina VII has a specific type of interneuron (IN) that is of particular interest. 

Spinal Cord Circuitry 

 All of the sensory information that is entering the spinal cord is transduced 

into an electrical signal via various somatosensory receptors located throughout the 

body. The different modalities of receptor type include but are not limited to 

thermoreception, mechanoreception, nociception, and proprioception. 

Proprioception allows us to be aware of our body’s position in space and the 

amount of force being used on our muscles during movement without the aid of 

visual cues.  This is partially accomplished through proprioceptors called muscle 

spindles, which are located in the body of a muscle and detect changes in muscle 

length.  Muscle spindles are innervated by Ia afferents and group II afferents, fibers 

which enter the spinal cord through the dorsal root entry zone and make 

projections to the ventral horn.  Group Ia afferents make connections with MNs and 

Ia INs in the ventral horn (Wang et al., 2008), and are integral to the monosynaptic 

stretch reflex and reciprocal inhibition, respectively.  The monosynaptic stretch 

reflex and reciprocal inhibition are types of spinal cord circuits, which essentially 

consist of neurons that are interconnected and fire together to produce an action in 
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muscles.  For example, when a muscle is stretched, Ia afferents innervating muscle 

spindles activate MNs in the ventral horn which then project to homonymous or 

synergistic muscles.  These muscles then produce a contraction to oppose the 

stretch, thus termed the “monosynaptic stretch reflex” (Chen et al., 2003).  

Reciprocal inhibition is a little more complicated because it is disynaptic, and the Ia 

afferents from a flexor muscle first synapse with Ia inhibitory INs.  This IN then 

decreases the firing rate of the extensor MN, thus preventing the extensor muscle 

from contracting at the same time as the flexor muscle.  From these two examples, it 

is clear that spinal cord circuits are an essential aspect of proper motor function. 

Renshaw Cells, Recurrent Inhibition, and Physiology 

 Another important circuit in the spinal cord is recurrent inhibition.  This is 

mediated by a type of IN called a Renshaw cell (RC), which is the focus of this study.  

RCs are located in proximity to MNs in the ventral portion of laminas VII and IX.  

They are excited by alpha MN (MN’s that innervate extrafusal muscle fibers of 

skeletal muscle and cause contraction) axon collaterals, and send inhibitory 

projections to homonymous and synergistic MNs (Alvarez et al., 2013), providing a 

negative feedback loop.  This inhibition of MNs via RCs is a powerful one, because 

there is a lot of neurotransmitter release sites on the MNs, mainly their dendrites 

(Bhumbra et al., 2014).  In fact, a single RC is capable of inducing a significantly 

lower MN firing rate (Bhumbra et al., 2014).  Because the alpha MN is now firing 

less, over-activity of the muscle is prevented.  Thus, RCs are integral to coordination 

of motor activity (Bhumbra et al., 2014).   
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The circuitry and physiology of RCs are more complicated than just a simple 

negative feedback loop.  RCs are known to inhibit antagonistic RCs, inhibit IaINs, and 

receive descending information from the brain (Alvarez and Fyffe, 2007).  During in 

vivo electrophysiology experiments, when MNs are excited to evoke motor activity, 

RCs receive simultaneous inhibitory inputs from inhibitory INs other than RCs, and 

the degree of inhibition is proportional to the amount of excitatory inputs to MNs 

(Nishimaru et al., 2010).   This is presumably a way of decreasing RC inhibition on 

active MNs, and this type of RC modulation is an important factor when considering 

how motor output is controlled in the spinal cord (Nishimaru et al., 2010).  It has 

also been shown that according to the frequency range, RC action varies (Williams 

and Baker, 2009).  For example, when RCs are set at a 10 Hz frequency using a 

biophysical computational model, synchronous oscillations are sent back to MNs 

which leads to inhibition of MN firing (recurrent inhibition) (Williams and Baker, 

2009).  Using this same model, setting the RCs at 30 Hz actually increases MN 

activity (Williams and Baker, 2009).  Because physiological tremor has been shown 

to occur when MNs are firing at 10 Hz oscillations, the RC feedback loop can aid in 

diminishing the severity of physiological tremor. 

  Interestingly, RC inhibition is greater on motor pools that innervate proximal 

musculature (more ventrally located motor neurons) than distal musculature (more 

dorsally located motor pools) (Alvarez et al., 2005); so, RC’s indirectly exert more of 

an effect on trunk muscles than on muscles of the digits.  RCs mainly affect MNs 

which innervate neck muscles, proximal limb muscles (excluding digits), and the 

diaphragm (Bhumbra et al., 2014). 
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Development of RCs 

Regarding development of RCs, they all stem from V1 INs, a type of 

embryonic post-mitotic IN.  There are three other classes of embryonic INs (V0, V2, 

V3) that differentiate into premotor INs in the ventral horn (Siembab et al., 2010).  

All four of these embryonic INs arise from progenitor cells PO, P1, P2, or P3 that are 

each located in a specific domain in the developing ventral spinal cord (Siembab et 

al., 2010).  Approximately 9% of V1 INs become RCs, 13% become IaINs, and the 

vast majority develop into unknown types of INs (Alvarez et al., 2005).  V1 INs are 

divided into early and late maturation groups, with RC’s fitting the early category 

and IaINs developing later (Benito-Gonzalez and Alvarez, 2012); this early phase 

corresponds from E9.5 to E10.5, the time when RCs are born (Alvarez et al., 2005).  

V1 interneurons are inhibitory in nature, originate in the p1 progenitor area, and 

eventually migrate ventrolaterally to become positioned adjacent to motor pools.   

These motor neurons are then targeted by growing axons of the V1 interneurons 

(Siembab et al., 2010).  Thus, V1 interneurons are positioned close to MNs, 

providing an important relationship between anatomical location and function.   

Various transcription factors are necessary for the development of V1 INs 

and eventually RCs.  For example, V1 interneurons develop from 

Pax6+/Nkx6.2+/Dbx2+ progenitors.  In Pax6 gene knockout mice, RC’s are absent, 

which proves that Pax6 is necessary for RC differentiation (Sapir et al., 2004). Pax6 

is integral to normal development of RC’s, however the Pax6 gene is not required for 

IaIN formation (Wang et al., 2008)—this shows that Pax6 is selective for specific 

types of V1 interneurons (i.e., RCs).   
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Pax6 is required for RC formation, but other transcription factors affect RC 

development differently at various stages.  For example, En1 is expressed by V1 INs, 

and En1 mutants have the same number of RC’s as wild type, however there are less 

inhibitory connections with MNs (Sapir et al., 2004).  Thus, the recurrent inhibitory 

circuit would be impacted.  Alternatively, MafB is not necessary for the development 

of the recurrent inhibitory circuit, however, it is needed for RCs to express calbindin 

(a calcium binding protein that is a marker for RCs along with anatomical location) 

and for RCs to stay functional (Stam et al., 2012); consequently, MafB is required for 

the maintenance of RCs.  Oc1/Oc2 transcription factors are also needed for RCs to 

continue to express MafB and calbindin after Foxd3 initiates their expression in 

developing RCs (Stam et al., 2012).  So, in the absence of Oc1 and Oc2, Calbindin will 

not be present to bind calcium, and RCs will not function properly at the synaptic 

level.  Also, Foxd3 is required for RCs to develop after their fate has been 

determined postmitotically (Stam et al., 2012).  In addition, RCs can begin to 

differentiate when Oc1 and Oc2 are not present, however after E12.5, RC numbers 

wane as the developmental process becomes interrupted (Stam et al., 2012); thus, 

Oc1/Oc2 are also required for early RC development.  Overall, various transcription 

factors are responsible for the formation of different interneurons (i.e., RCs) and 

their inclusion into spinal circuits that control movement. 

Development of Interneuronal Circuits 

There are four discrete phases in the development of interneuronal circuits 

(Alvarez et al., 2013).  The first step is that specific genes encode for various 

interneurons at the progenitor level.  An example of this is the Pax-6 gene being a 
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necessity for RC formation.  Secondly, connectivity is determined based on 

information about position and targets of growing axons.  For example, En1 is a 

requirement for the targeting of inhibitory RC connections with MNs.  The third step 

is that synaptogenesis occurs separately from neuronal activity.  For instance, the 

recurrent inhibitory circuit formation does not require synaptic activity (Alvarez et 

al., 2013).  Lastly, after birth, synapses eventually mature in an activity-dependent 

manner.  An example of this is the alteration of different inputs which affect RC 

activity as the animal reaches adulthood.  Interestingly, even in the absence of 

neural activity, RCs still form synapses with motor neurons, albeit with less 

organization—this implies that activity may refine these connections, and thus be 

an integral component in setting up the proper recurrent inhibition pathways 

necessary for motor function (Stam et al., 2012).   In summary, before birth, there is 

strong organization and input selectivity on interneurons, and strengthening or 

weakening of these synapses occurs postnatally which can result in significant 

circuit changes (Siembab et al., 2010). 

Development of Proprioceptive Afferents 

Similar to development of RCs and interneuronal circuits, development of 

proprioceptive afferents and their innervation of muscle spindles are also a 

complicated process involving numerous transcription and growth factors.  Ia 

proprioceptive afferents fail to develop properly in ER81 mutant mice and do not 

make it to the ventral horn to supply MNs.  Instead, the afferents will terminate in 

the lateral horn. The nerve growth factor NT3 induces expression of ER81 in Ia 

afferents (Patel et al., 2003).  Thus, Ia afferent projections do not form in mice 
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deficient of NT3, and neither do IaINs (Kucera et al., 1995).  NT3 also affects circuit 

formation, because elevated NT3 causes disruption in the development of the 

stretch reflex circuit (Wang et al., 2007).  The receptor for NT3 is TrkC, and so it 

follows that this receptor is also needed for proprioceptive sensory neurons to stay 

alive (Chen et al., 2003).  Muscle spindles provide an important peripheral source of 

NT3 during postnatal development.  In Egr3 knockout mice, muscle spindle function 

is lost, thus decreasing NT3—this leads to decreased firing of MNs when stimulated 

by proprioceptive sensory afferents (Chen et al., 2002). 

In addition to ER81 and its associated proteins, cell-adhesion molecules F11 

and NrCAM are necessary for Ia afferents to make their proper terminations in the 

ventral horn (Chen et al., 2003).  Another important transcription factor is Runx3, 

which is integral to differentiation and proper connectivity of Ia afferents (Chen et 

al., 2006).  As far as Ia afferent connectivity with MNs is concerned, Ia afferents that 

express Wnt3 help these afferents branch to their MN targets (Chen et al., 2003).  

Also, synapse formation between MNs and Ia afferents may be mediated by 

cadherins, a type of cell-surface protein (Chen et al., 2003). 

Monosynaptic Ia Afferent Connections with RCs 

Because we know that Ia afferents develop projections to the ventral horn 

and make connections with MNs, do Ia afferents form direct synapses with RCs?  

When RCs were first discovered, it was shown that activating dorsal roots stimulate 

RCs (Renshaw, 1946).  This was later explained by way of the monosynaptic stretch 

reflex:  when MNs are discharged by the afferents, the MN collaterals are 

secondarily activated and RCs are excited (Eccles et al., 1954).  Thus, it was believed 
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for a very long time that there were no direct sensory connections with RCs.  Several 

years later it was shown that this statement is indeed false.   

It has been demonstrated via dorsal root fills that there are monosynaptic 

sensory neuron connections with RC’s in newborns to age P15, but that they lose 

functionality in adulthood (Mentis et al., 2006).  Adult-like locomotion occurs 

around P15, coinciding with a functional decline of monosynaptic afferent 

connections on RC’s and stabilization of motor synapses with RC’s (Siembab et al., 

2010).  These sensory synapses were identified with vesicular glutamate 

transporter 1 (VGLUT1), a presynaptic marker, and the motor axon synapses were 

identified with vesicular acetylcholine tranporter (VAChT).  Thus, from birth until 

P15 there is an increasing number of RCs with monosynaptic afferent inputs, as 

every RC in the L4/L5 area received primary afferent contact by P10 (Mentis et al., 

2006).  These primary afferents are most likely Ia afferents, due to the ventral 

location of the RCs (Mentis et al., 2006).  In addition to providing anatomical 

evidence of monosynaptic Ia afferent connections with RCs, it was also proved that 

these connections are functional via electrophysiological studies (Mentis et al., 

2006).   

The aim of this thesis is to further study these Ia afferent contacts with RCs 

and gain a better understanding of the development, connectivity pattern, and 

anatomy of the connections.  Mentis et al. (2006) performed backfills on dorsal root 

L5, so in order to expand upon this work, the connectivity of afferents from different 

muscles during development will be examined.  This will be accomplished by using a 

spinal cord preparation of newborn mice, where two different nerves that supply 
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different muscles will be backfilled.  Specifically, we will use the quadriceps and 

obturator nerves.  These nerves provide a good model because they innervate 

different muscles that act on separate joints and have different actions.  Also, their 

afferent cells are in the same DRGs and their axons enter the same dorsal roots, so 

their neuronal connections with RCs in the ventral horn can easily be compared.  

Importantly, the quadriceps nerve innervates only quadriceps MNs, and the 

obturator nerve innervates only obturator MNs.  Thus, we can see from these 

studies if the same pattern holds true with afferent connections on RCs.  In addition 

to specific nerve fills, immunohistochemistry will be performed so that the 

connectivity pattern of Ia afferents on RCs can be examined.  I hypothesize that Ia 

afferents from quad/obturator nerves will contact a separate population of RC’s in 

non-overlapping clusters in the ventral part of lamina VII and IX at birth (P0 or P1).  

This would suggest that the connectivity pattern is leading to a specific function 

during murine development.   
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II. MATERIALS AND METHODS 

 

All animal experimental procedures were conducted under the approval of 

the Wright State University Laboratory Animal Care and Use Committee.   

 

Preparation and quadriceps and obturator nerve tracing  

 Fluorescent dextrans (Invitrogen) were used to trace sensory afferents of 

wild type (WT) mice (age P0 or P1) from the quadriceps and obturator nerves to 

their terminations in the spinal cord.  The animal was anesthetized via hypothermia 

in an ice cold water bath for approximately 2 minutes.  It was then pinned in a dish 

with a Sylgard base and the thoracic cavity was exposed.  This allowed access to the 

heart and the left ventricle, where 5 ml of ice cold oxygenated artificial 

cerebrospinal fluid (ACSF) was transcardially perfused with a 5 ml syringe bearing a 

27 gauge needle.  The ACSF consisted of 127 mM of NaCl, 1.9mM of KCl, 1.2 mM 

KH2PO4, 1 mM MgSO4 * 7H2O, 26 mM NaHCO3, 16.9 D(+)glucose monohydrate, 

and 500 µl of CaCl2 was added to this solution after it was bubbled in oxygen for a 

minimum of 15 min.  This solution was continually oxygenated throughout the 

duration of the experiment.     

The animal was decapitated, and the organs eviscerated.  The skin was 

removed over the dorsal aspect of the mouse to ensure adequate access to the 
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vertebrae.  The left hind limb was removed at the hip joint as well as the tail.  The 

prep was transferred to a chamber, also with a Sylgard base, that allows continual 

flow of the cold oxygenated ACSF via a pump (ThermoScientific) to keep the 

neurons in the spinal cord alive.  A dorsal laminectomy was then performed to 

expose the spinal cord, roots, and DRGs.  The dura mater over the spinal cord was 

also removed.  Next, the cord was hemisected longitudinally because only the right 

side is needed, and it allows more efficient perfusion.  The dorsal roots of the 

thoracic and sacral cord were cut to free up the cord, and the lumbar dorsal roots 

(especially L3/L4) were kept intact.  All ventral roots were cut because we only 

want the dextrans to trace the sensory afferents, not the motor axons.  To finish the 

prep, various leg and vertebral column muscles and connective tissue were cut away 

to expose the quadriceps and obturator nerves on the animals’ right side. 

The two nerves were then cut free and fitted with glass pipettes from World 

Precision Instruments Inc. (4 inch thinwall glass; 1.2mm OD/0.9mm ID), and shaped 

to the proper size of the nerves via fire polishing.  Manipulators were utilized to 

correctly place the pipette near the nerves, and the nerves were suctioned into the 

glass capillaries.  Next, the ACSF was withdrawn from the pipette and a solution (2.5 

μl) of fluorescently labeled dextran was added.  In order to visualize the quad nerve, 

Tetramethylrhodamine dextran (3000 MW; Invitrogen [cat. no. D3308] was used, 

and for the obturator nerve, biotinylated dextran amine (BDA, 3000 MW; Invitrogen 

[cat no. D‐7135]) was utilized.  To allow the axons of these afferent nerves to be 

properly retrogradely transported and reach the ventral horn, the glass pipettes 

were left on the nerves for 19 hours.  To maintain a temperature of about 30°C in 
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the dissection chamber, the oxygenated ACSF was placed on a hot plate during this 

time period.  The quality of retrograde transport and axon labeling was checked 

using an Olympus MVX10 fluorescent dissecting stereomicroscope, and the 

specimen was then placed in 4% paraformaldehyde fix for 24 hrs.  After being in fix 

for a day, the prep was cryoprotected by immersion into a 30% sucrose solution for 

a minimum of 24 hours, until ready to be sectioned.   

Once ready for sectioning, the spinal cord was again viewed under the 

fluorescent stereomicroscope and a segment of cord where axons were labeled most 

vibrantly with tetramethylrhodamine, corresponding to approximately L3 and L4, 

was removed.  In addition, L3 and L4 DRGs were cut out along with their attached 

bone.  These sections of tissue were then embedded in O.C.T. Embedding Compound 

(TissueTek; # 4583, Electron Microscopy Sciences) and frozen in ‐80° C for at least 

45 min.  The tissue was then brought to an optimal cutting temperature by being 

placed in the Thermo Scientific HM 550 cryostat at around -30° for 45 min.  Keeping 

with this temperature, the tissue was mounted and cut into 20 µm thick sections 

using the cryostat.  Both spinal cord and DRG sections were placed on Fisherbrand 

Superfrost Plus microscope slides, and organized into 3 or 4 series for each tissue.   

Immunohistochemistry 

 Sections on the slides to be stained were first outlined with a hydrophobic 

pen (Aqua Hold II Barrier Pap Pen, Scientific Device Laboratories) in order to keep 

the antibody solution on top of the sections.  Slides were next washed 3X for 5 min 

in 1X PBS.  Blocking buffer was made so the antibody only binds the antigen of 
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interest.  (PBS, 1 % BSA (Fisher Scientific), 0.1% Triton detergent solution).  There 

were 3 different primary antibodies and 3 different secondary antibodies used for 

the experiments, and they were mixed at the proper working dilution with the 

blocking buffer solution.  The first primary used was rabbit α-

tetramethylrhodamine (Life Tech, 1:5000) in order to enhance the rhodamine 

backfill signal.  Mouse α-biotin (Jackson IR, 1:1000) amplified the BDA backfill 

signal.  Finally, for the primaries, goat α-Calbindin (Santa Cruz Biotech, 1:500) was 

utilized.  The secondary antibodies were donkey α-rabbit (Jackson IR, 1:1000), 

donkey α-mouse (Jackson IR, 1:1000), and donkey α-goat (Jackson IR, 1:100).  They 

were each conjugated to the following fluorophores, respectively:  Cy3 (quad nerve), 

Alexa 488 (FITC; obturator nerve), and Alexa 647 (Cy5; Cablbin/RCs).  All of the 

antibodies used are listed in Table 1.  The primary antibodies were centrifuged 

(Eppendorf 5415D) and added to the chosen amount of blocking buffer solution to 

meet the proper working dilution.  This entire solution was mixed by a Fisher 

Scientific Vortex Mixer, distributed on the slides, and left overnight at 4°C.  The 

following day, slides were washed 3X 5 min in 1X PBS, and secondary antibodies 

were prepared the same way, except for a filtering step after the antibodies were 

added to the blocking buffer.  The solution was captured with a syringe and passed 

through a Millex-GV 0.22 µm Filter Unit to purify the secondary antibody solution.  

This solution was placed on the sections for 45 min at room temperature and then 

washed 3X 5 min in 1X PBS.  Finally, the slides were cover-slipped using Vectashield 

mounting Medium (Vector Laboratories) and VWR micro cover glass.   
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Confocal Imaging and Spot Scope 

 The stained sections were imaged via an Olympus FV1000 confocal 

microscope.  488 nm, 568 nm, and 633 nm lasers were utilized to view the BDA, 

tetramethylrhodamine, and calbindin, respectively.  There were around 3 series for 

each animal, and 1 series was imaged per animal, thus each section was 

approximately 60 µm apart.  20X images were taken of the entire section to view the 

calbindin position and obtain a reference point for the higher magnification 60X 

images. The 20x image stack was taken with a 1μm z‐step size.  60X objectives were 

used to obtain image stacks of Renshaw cells and the axons using all 3 lasers.  These 

images were taken with a 0.3μm z‐step size and were set at a 2.5X optical zoom.  

PMT values were set accordingly to prevent oversaturation of the image, as was 

laser intensity to maximize signal brightness while preventing bleaching of the 

tissue.  The 60X image stacks allowed us to acquire data in 3 channels for 

quantification of quad and obturator contacts on RCs using the Imaris analysis 

software.  For the DRG cell counts, an Olympus Epi Fluorescence Scope with RT Spot 

color camera was used.  Obturator sensory DRG neurons were counted manually 

through the 20X objective using the FITC channel, and the quad sensory DRG 

neurons were counted in the same way using the Cy3 channel.   

Image Analysis     

Images were analyzed using the Imaris x64 7.6.5 software.  The contacts on 

individual cells under 60X magnification were assessed using the Ortho Slicer under 

the surpass mode.  The Ortho Slicer allowed us to go through each individual slice in 
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the z-stack, to see if an obturator or quad contact occurred on the RC.  The 

brightness and contrast of the signals were changed in each channel to better 

visualize possible contacts, without actually creating a false signal (altering the 

gamma level).  If there was a contact in a certain plane, the position was noted.  In 

addition, the number of contacts on a specific cell were noted.  The cell was included 

as having an obturator, quad, or both types of contact if one or more contact was 

present on the soma or dendrites.                
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Table 1.  Antibodies used in this study. 
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Antigen Host/Type Manufacturer Specificity Dilution Catalogue #    Lot # 

Tetramethyl- 
rhodamine 
 

Rabbit 
Polyclonal 

Invitrogen Detects the 
Rhodamine 
Red 
Fluorophore 

1:5000 A6397  430232 

Biotin Mouse 
Polyclonal 

Jackson IR Detects the 
BDA blue 
Fluorophore 

1:1000 200-002-211 92972 

Calbindin Goat 
Polyclonal 

Santa Cruz 
Biotech 

Detects a 
single band 
of calbindin 
D‐28K 

1:500 sc-7691 E0514 

Anti-rabbit 
Cy3 
Fluorophore 

Donkey Jackson IR Reacts with 
whole 
molecule 
Rabbit IgG 

1:1000 711-165-152 110864 

Anti-mouse 
Alexa Fluor 
488 

Donkey Jackson IR Reacts with 
whole 
molecule 
Mouse IgG 

1:1000 715-545-151 114474 

Anti-goat 
Alexa Fluor 
647 

Donkey Jackson IR Reacts with 
whole 
molecule 
Goat IgG 

1:100 705-605-003 98917 
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II. RESULTS 

 

Retrograde tracing was performed on quadriceps and obturator Ia afferents 

to compare and examine their connectivity pattern with RCs in P0 and P1 mice.  RCs 

were classified based on calbindin (CB) immunoreactivity and anatomical location.  

CB+ cells were only counted as a RC if they were located in the RC area (Fig. 1).  The 

RC area is basically defined as the ventral-most area of the ventral horn adjacent to 

the white matter border, and medial to the lateral MNs (yellow box in Fig. 1).  In 

addition, in P18 mice, the Renshaw cell area is defined as a CB+ cell within 200 µm 

dorsal from the white matter border in laminas VII and IX (Sapir et al., 2004).   For 

our purposes, in P0 and P1 mice with smaller cords, we were conservative in 

defining our RCs as being within 100 µm from the white matter border and lateral to 

the midline of the hemisected cord (yellow box in Fig. 1).  Also in Figure 1, the red 

fluorescence illustrates quadriceps axons in the Cy3 channel, and the green 

fluorescence illustrates obturator axons in the FITC channel.  Actual connectivity on 

RCs was not able to be examined until higher magnification images were taken.  The 

raw count of CB+ cells located in our defined RC area for 5 animals ranged from 35-

86, and total length of cord examined ranged from 900-1740 um, as seen in Table 2.  

This variation was due to estimating the length of cord where the axons are labeled 

with the dissection microscope, and cutting the cord based on this visual estimation.     
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Figure 1.  Immunohistochemical 20X image panel of P0/P1 hemisected spinal cord.  Merge 

shows green fluorescence as obturator afferents, red fluorescence as quad afferents, and 

Calbindin+ cells in grey.   Blue dashed line indicates border of the cord, white dashed line is 

white matter border.  Arrowheads indicate Renshaw Cells.  Yellow box is approximate RC 

area. Scale bar 100 um. 
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Table 2.  Number of CB+ cells in the RC area and total length of cord examined (um) 

for 5 animals. 
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Number of CB+ cells in the RC area and total length of cord examined (um) for 

5 animals. 

  

Animal Number Total Calbindin + 
Cells in RC Area 

Total Length of 
Cord Examined 
(um) 

1 35 1140 

2 45 900 

3 59 1260 

4 57 1620 

5 86 1740 
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Also from 20X images, we were able to ascertain the length of cord with only 

obturator afferents in the RC area, only quadriceps afferents in the RC area, or both 

obturator and quadriceps afferents in the RC area (Fig. 2).  This allowed us to 

separate the data, with the majority of the data coming from where the two types of 

axons are both present in the RC area.  In fact, only the obturator afferents occurred 

in the RC area at places in the spinal cord where quadriceps afferents did not.  Thus, 

obturator afferents were present in the RC area for a longer length of cord than the 

quad afferents for all five animals.  This could have occurred either rostral or caudal 

to the part of the cord where quad afferents were present in the RC area, as seen in 

Figure 2.   

 To evaluate the quality of afferent labeling, dorsal root ganglion (DRG) 

sections were also stained.  From these sections, the number of labeled sensory 

neurons could be determined.  The number of labeled quadriceps neurons (Cy3) and 

obturator neurons (FITC) in DRGs L3 and L4 were quantified.  This provides a 

control for how well the retrograde labeling worked, with a high cell count yielding 

a better result.  Thus, if the cell count is high, the backfill is more likely to have 

worked completely, and maximal axons will have reached the RC area for analysis.  

For all five animals, the cell counts were acceptable, so we were able to analyze 

those animals.  As seen from Table 3, the cell count for the obturator DRG neurons 

was fairly low for animal 2, with 246 cells.  This could be explained by the fact that 

animal 2 most likely shifted its development of quad and obturator neurons from 

DRG L3 and L4 to L3 and L2.  Thus, we did not see labeled neurons in DRG L4, and 

the count was slightly lower.  Despite this, the obturator afferents were still labeled 
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well for a normal length of cord, and they had similar percentage of contacts with 

other animals.  Thus, we were able to keep this animal in the data set.  As seen from 

Figure 3, the quad and obturator DRG neurons are co-localized in the same L4 DRG, 

thus the afferent connectivity with RCs can be compared in the spinal cord.       
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Figure 2.  The distribution of obturator and quad afferents in the RC area of segments 
L3/L4 around the rostrocaudal axis.  Scale bar 200 um. 
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Table 3.  Number of total L3/L4 DRG neurons for the quad and obturator nerves in 

5 animals, and the average of those 5 animals.  
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Number of total L3/L4 DRG neurons for the quad and obturator nerves in 5 animals   
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Figure 3.  Immunohistochemical image panel of L4 DRG neurons of the quadriceps 

(red fluorescence) and obturator (green fluorescence) nerves. 
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High magnification images were used to analyze afferent connectivity on 

each RC.  There were four different possibilities for contact on calbindin + RCs (Fig. 

4).  First, the cell could have had no contact at all.  Second, the cell could have been 

contacted by the quadriceps nerve (rhodamine) only. Third, the cell could have been 

contacted by the obturator (BDA) only.  Lastly, the cell could have had both 

quadriceps and obturator contacts.  The criterion for inclusion was 1 or more 

contacts on the soma or dendrite.  An example of an image panel of different cells 

that appear to have only obturator, only quad, or both types of contacts is located in 

Figure 5.  This shows immunohistochemical evidence for both exclusive and 

convergent inputs to RCs from afferent muscle nerves on subsets of RCs.  Even when 

analysis was restricted to portions of the cord where both quad and obturator 

afferents were present in the RC area, the average percentage of RCs across five 

animals with no contacts was 55.6±4.64% (SEM for n=5).  The average percentage 

of RCs with obturator only contact was 20.2±2.42%, the average percentage of RCs 

with quad only contact was 12.6±2.09%, and the average percentage of RCs with 

both types of contact was 11.6±1.69%.  The general trend on average for 

connectivity from all the animals is that obturator only contacts are greater (almost 

2X) than quad only or both types of contact (Fig. 6 and Table 4).  Also, the frequency 

of quad only contacts are roughly equivalent to a cell having both types of contacts 

on average.  The overall contact data yielded an average of a little more than 1 

contact per cell for the first three animals, and animals 4 and 5 having around 1.5 

contacts per cell (Table 5).  The range was usually around 1-3 contacts per cell, with 

a cell in animal 5 having the highest number of contacts with 6 (Table 5).  Thus, 
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overall, the average number of contacts per cell was low for all animals examined, 

and the densities for quad and obturator contacts showed no significant differences.         
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Figure 4.  Types of RC populations. 
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Figure 5.  Immunohistochemical image panel showing obturator contacts (green 
fluorescence overlapping calbindin fluorescence), quad contacts (red fluorescence 
overlapping calbindin fluorescence), and both types of fluorescence overlapping a 
calbindin+ RC. 
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Table 4.  Cell Contact Data for obturator and quad nerves in the RC area. 
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 Cell Contact Data for obturator and quad nerves in the RC area. 
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Figure 6.  Average percent of RCs with different types of contact for 5 animals. 
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Table 5.  Average number of contacts/cell and the range for 5 animals.  
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Average # of contacts/cell and the range for 5 animals. 
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In addition to the above data where analysis was performed when obturator 

and quad axons were present in the RC area, we also have data from when only the 

obturator axons were in the RC area.  As mentioned previously, depending on the 

animal, this could have occurred rostrally or caudally to the area where the two 

types of afferents overlap in the RC area.  Approximately 74.8±8.32% of the cells in 

these areas did not have contacts.  25.2±8.32% of cells had at least one obturator 

contact.  The average number of contacts for each cell for animal 1 was 1.3, and the 

other four animals only had an average of 1 contact per cell.  Again, the number of 

contacts per cell was a low number, and densities were roughly equivalent between 

quad and obturator contacts.             
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III. DISCUSSION 

 

This thesis examined the connectivity of Ia afferent neurons with RCs during 

development by looking at the quadriceps and obturator nerves.  Thus, we were 

able to characterize anatomically the proprioceptive innervation of RCs from 

newborn mice.  We found that there is some bias towards selectivity for the 

obturator nerve forming connections with RCs over the quad nerve.  Specifically, the 

average percentage of RCs over five animals with obturator only contact was 

20.2±2.42%, while the percentage of quad only contacts was 12.6±2.09%.  The 

percentage of RCs that had convergent contacts from both obturator and quad 

nerves was 11.6±1.69%.  Thus, there was some unexpected convergence of Ia 

afferents on RCs during development.  In addition, there was a low average of the 

number of contacts per cell at this age, with a cell typically having only one or two 

contacts.   

An important point to take into consideration is that when we refer to a cell 

as being innervated and having a “contact,” we are not absolutely sure it is a true 

synapse.  Our lab has done experiments to address this question:  instead of 

performing a backfill, which was a technique performed in this thesis, an antibody 

was used against parvalbumin (PV), a specific marker for Ia afferents.  In addition, a 

CB antibody identified RCs, along with location, as was done in this thesis.  Finally, a 
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synaptophysin antibody was utilized.  Synaptophysin is a synapse-vesicle anchoring 

protein, so presumably immunostaining for it helps to visualize synapses.  When 

there was Ia afferent (PV+) contact with a RC (CB+), there was overlap with 

synaptophysin approximately 74.2% of the time (Ladle Lab, unpublished 

observations 2015; n=4).  Thus, we can come to the conclusion that about three 

quarters of the contacts in this thesis are likely synapses.  This number could also be 

an underestimation, because at such an early time point in development, a synapse 

could lack detectable synaptophysin and not be fully mature.  The synapse could 

either have a very weak signal or be too young to acquire the protein, which would 

cause these synapses to not be detected with the antibody.   

We could also determine if the synapse is functional through 

electrophysiological studies.  Mentis et al. (2006) showed that RCs receive inputs 

from dorsal root sensory primary afferents, and that these inputs represent 

functional monosynaptic glutamatergic synapses.  We could conduct experiments 

that are more specific, and which involve stimulating either the quad or the 

obturator nerve and recording from a pool of RCs in L3/L4 to test for a response.  In 

theory, if we tested all the available RCs, we could get a total percentage of RCs that 

have either quad, obturator, or both types of Ia afferent input.         

 One of the conclusions from the experiments was that obturator afferents 

contacted RCs almost twice as frequently as quad afferents.  This could be explained 

several different ways.  First, it could be just a transient developmental state.  For 

example, an obturator connection could be seen on a RC at P0, but if examined at P5 

this obturator afferent connection may be absent on the RC because this innervation 
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could have retracted due to CNS plasticity.  A similar process is known to occur in 

the brain with the visual system during postnatal development.  During a critical 

period, if an eye lacks visual input, the synapses from axonal branches that carry 

this information to the visual cortex will retract, causing blindness in that eye 

(Antonini and Stryker, 1993).  Thus, it is possible that the Ia afferent could 

withdrawal it’s synapses from the RC at a later period of development due to an 

activity-dependent mechanism similar to that seen in the visual system.    

 Another explanation for having more contacts on the obturator nerve has to 

do with the anatomical locations of the adductor and the quad muscles and their 

relationship to the amount of RC inhibition their respective motor neuron pools 

receive.  It has been shown that RC inhibition of more ventrally located MNs of 

proximal musculature is stronger than more dorsally located MNs of distal 

musculature (Alvarez et al., 2005).  Thus, because adductor muscles are more 

proximally located than quad muscles and presumably their MN pools more ventral, 

they may have more monosynaptic afferent activity on RCs to produce stronger 

inhibition of their MN pools. 

 Differential connectivity between MNs and RCs could be investigated by 

performing a very similar set of experiments to the ones in this thesis.  For example, 

we could cut the dorsal roots instead of the ventral roots during the dissection.  If 

we still performed the same backfills of the quad and obturator nerves as well as 

immunostainings for the dextrans and CB, we could visualize the motor axon 

collaterals that synapse with RCs.  We could then identify the number of motor axon 

collateral contacts on RCs, similar to the analysis of afferent contacts in this thesis.  
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This would allow us to compare the results from the two different experiments to 

see if the selectivity pattern is similar or different.  If the results show a similar bias 

for motor axon collateral inputs to RCs (i.e, the obturator nerve), this may help 

explain our findings.  For example, it is possible that obturator RCs mature faster 

than quad RCs, by forming their inputs at an earlier time period in development.  

Later on in development, the amount of mature RCs could even out for both quad 

and obturator cells. 

 This is one of the reasons it is very important to look at different time points 

during development in future experiments.  Performing these experiments on 

animals at an older age will allow us to concisely map the selectivity of Ia afferent 

connections on RCs during development.  We will be able to see how this selectivity 

changes over time and what its final anatomy is in the adult animal.  One technical 

limitation to these experiments is that the backfills performed in this study are not 

effective after P3.  This is because the dextran will not retrogradely travel far 

enough when the nerve becomes too long in an older animal.  We know that by P15, 

practically all RCs in the lumbar area are contacted by dorsal root sensory primary 

afferents, but that the number of functional synapses greatly declines in the adult 

(Mentis et al., 2006).  It would be very useful if future methods could find a way to 

map the connectivity of the quad and obturator nerves in ages up to the P15 animal, 

when functional synapses are maximized.     

 One way to do this is use viral tracing methods.  We can use a recombinant 

rabies virus attached to a fluorescent protein (i.e, GFP), to anterogradely label 

proprioceptive sensory afferents terminating on cells in the ventral horn (Zampieri 
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et al., 2014).  We could inject the rabies virus into the adductors and quad muscles, 

and 3-6 days after infection we could euthanize the animal and map the afferent 

connectivity to RCs (Zampieri et al., 2014).  For example, if we injected on P9, we 

could examine the connectivity pattern at approximately P14 or P15.   

There are other experiments that could be performed that would explain the 

bias towards obturator connectivity with RCs.  For example, NT3 is a type of 

neurotrophin, which is important for the differentiation and survival of developing 

neurons and their circuits (Korsching, 1993).  It has been shown that altering NT3 

levels in muscle in prenatal transgenic mice changes selective connectivity of 

proprioceptive afferents with MNs (Wang et al., 2007).  We could test the 

connectivity of proprioceptive afferents with RCs in these transgenic mice that have 

altered NT3 levels in the obturator and quad muscle, to see if there is a difference 

with the findings in this thesis.  This would allow us to see if and how NT3 levels 

affect Ia afferent synapses on RCs.  Perhaps these muscles express different levels of 

NT3, which leads to the difference in proprioceptive afferent connectivity with RCs.   

Another way to study the development of Ia afferent connections with RCs 

would be to see if the formation of these connections are activity-dependent.  This 

could be done by blocking synaptic activity through utilization of a conditional 

knockout allele for munc18-1, a protein that is important in vesicle docking and 

fusion (Rizo and Sudhof, 2002).  This allele would be combined with a cre-

recombinase allele only expressed in proprioceptive afferents (Parvalbumin-cre), 

and Ia afferent synaptic transmission would be blocked (Dallman and Ladle, 2013).  

We could then use this as a tool to study Ia afferent connectivity during 
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development in the absence of activity at the level of the synapse, and these results 

could be compared with that of a wild-type animal.  Although the recurrent 

inhibition circuit doesn’t require synaptic activity to develop properly (Alvarez et 

al., 2013), it would be interesting to see if Ia afferent connections with RCs are 

affected by a lack of synaptic activity.   

 Another outcome not predicted by our initial hypothesis is that 

approximately 10% of the RCs on average had convergent contacts.  We would 

expect there to be no dually innervated RCs because the quad and adductor muscles 

are not related in any way.  Thus, in a very structured and functional system, we 

would expect obturator and quad afferents to contact separate pools of RCs.  

However, early on in development, the process seems to be more random than this.  

Stimulating a dorsal root in the rat activates a greater variety of MNs in earlier 

development than later stages, hinting at less specificity of connections which will 

later become a more focused system (Saito, 1979).  Similarly, it is quite possible that 

these dually innervated RCs have inappropriate connections that will dissipate with 

later development and locomotion.  This may represent a sort of activity-dependent 

plasticity, similar to the process mentioned above that occurs with development of 

the visual system.  Another possibility is that one synapse may overpower or silence 

the other synapse, in effect making only one input functional.  Alternatively, the RCs 

with convergent contacts could represent the population that show contacts on the 

analysis, but one of the afferents does not actually form a synapse.  We could test for 

this by performing the synaptophysin staining mentioned earlier in the discussion.  

Synaptophysin could have been viewed because we have 4 channels available on 
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our confocal microscope.  This would have allowed us to count a contact only when 

synaptophysin was co-localized with CB and rhodamine or BDA, ensuring a more 

accurate possibility of a true synapse.  However, this was not performed in the 

thesis because it would make analysis too difficult due to the abundance of 

synaptophysin staining in the cord along with possible bleaching issues.  In addition, 

as mentioned previously this was performed as a separate project, which allows us 

to say with confidence what percentage of contacts are actually synapses.      

In our study, the majority of cells (55.6 ±4.6%) had neither obturator nor 

quad contacts.  This could be explained by the fact that only at P15 are 100% of RCs 

contacted by a monosynaptic afferent in the lumbar region (Mentis et al., 2006).  At 

an early stage in development right after birth (P0/P1), it would follow that this 

circuitry would not be fully mature and thus many RCs would not be innervated yet.  

Specifically, 60-64% of mouse RCs received contacts from dorsal root axons at birth 

(Mentis et al., 2006).  This would make approximately 40% of RCs lacking afferent 

contact at birth in the Mentis study, compared to our 56%.  A way to explain this 

discrepancy is that there are nerves that innervate other muscles besides the quad 

and adductors, which send their sensory information to DRG L4.  For example, the 

tibial nerve and fibular nerve innervate muscles in the legs, and they send sensory 

afferents to the L4 spinal segment.  Thus, it is quite possible that some of the RCs 

that did not receive putative synapses from either quad or obturator nerves could 

be innervated by the tibial or fibular nerves.   

One purpose for these monosynaptic Ia afferent inputs to RCs could be to 

produce a generalized feedforward inhibition mechanism.  An example of 
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feedforward inhibition occurs in the medial prefontal cortex of the brain, which is 

activated by local interneurons that receive powerful excitation from basolateral 

amygdala pyramidal neurons (Dilgen et al., 2013).  This allows emotional 

information from the amygdala to impact our decision-making skills in the prefontal 

cortex.  Likewise, the possible feed-forward inhibition mechanism at work in this 

thesis would allow Ia afferents to excite RCs which would subsequently inhibit MNs, 

largely affecting motor output.          

Clearly if RCs were not functioning properly, this feed-forward inhibition on 

MNs would also be impaired.  One hypothesized way diminished RC function occurs 

is in disease states, such as ALS.  In early stages (presymptomatic) of ALS, there is a 

loss of motor axon synapses with RCs, which affects the recurrent inhibition circuit 

(Wootz et al., 2013).  This would indirectly decrease the amount of inhibition to MNs 

by way of RCs and eventually lead to MN degeneration, presumably affecting motor 

output.  If decreased excitation of RCs is one of the causative factors of ALS, it is 

quite possible that monosynaptic Ia afferent inputs to RCs could also be affected.  

Without this input, we would also have decreased excitation of RCs leading to less 

inhibition of MNs.  An experiment to conduct would be to utilize a SOD1 transgenic 

mouse (ALS mouse model) and perform the same protocol that was used in this 

thesis.  This would allow us to see if glutamatergic synapses on RCs are affected by 

the experimental form of ALS at a developmental stage well before symptom onset.       

To conclude, we have discovered information pertaining to the 

proprioceptive afferent connectivity of different muscle nerves with RCs during 

development in a mouse model.  Specifically, we found that the Ia afferent 
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component of the obturator nerve contacts RCs at a frequency almost two times 

greater than the quad nerve at P0/P1.  Also contrary to our hypothesis is the finding 

that there is a population of RCs that receive convergent contacts from both quad 

and obturator nerves at the same age.  Finally, over half the RCs do not receive input 

from either the quad or obturator nerves.  In order to obtain more information 

regarding the reasons for the results in this thesis, many future experiments will 

need to be performed.              

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



54 
 

 

 

 

IV. BIBLIOGRAPHY 
 

 
Alvarez, F. J., Benito-Gonzalez, A., and Siembab, V. C. (2013).  Principles of   

interneuron development learned from Renshaw cells and the motoneuron 
recurrent inhibitory circuit.  Annals of the New York Academy of Sciences, 
1279, 22-31. 

 
Alvarez, F. J., and Fyffe, R. E. (2007). The continuing case for the Renshaw cell. The 

Journal of Physiology, 584(1), 31-45. 
 
Alvarez, F. J., Jonas, P. C., Sapir, T., Hartley, R., Berrocal, M. C., Geiman, E. J., Todd, A. J., 

and Goulding, M. (2005).  Postnatal phenotype and localization of spinal cord 
V1 derived interneurons.  Journal of Comparative Neurology, 493(2), 177-192. 

 
Arber, S., Ladle, D. R., Lin, J. H., Frank, E., and Jessell, T. M. (2000).  ETS gene Er81 

controls the formation of functional connections between Group Ia sensory 
afferents and motor neurons. Cell, 101(5), 485-498. 

 
Antonini, A., and Stryker, M. P. (1993).  Rapid remodeling of axonal arbors in the 

visual cortex.  Science, 260(5115), 1819-21.  
  
Benito-Gonzalez, A., and Alvarez, F. J. (2012).  Renshaw cells and Ia inhibitory 

interneurons are generated at different times from p1 progenitors and 
differentiate shortly after exiting the cell cycle.  Journal of Neuroscience, 
32(4), 1156-1170.   

 
Bhumbra, G. S., Bannatyne, B. A., Watanabe, M., Todd, A. J., Maxwell, D. J., and Beato, 

M. (2014).  The recurrent case for the Renshaw cell.  The Journal of 
Neuroscience, 34(38), 12919-12932. 

 
Chen, A. I., de Nooij, J. C., and Jessel, T. M. (2006).  Graded activity of transcription 

factor Runx3 specifies the laminar termination pattern of sensory axons in 
the developing spinal cord.  Neuron, 49, 395-408. 

 
Chen, H. H., Hippenmeyer, S., Arber, S., and Frank, E. (2003).  Development of the 

monosynaptic stretch reflex circuit.  Current Opinion in Neurobiology, 13, 96-
102. 



55 
 

Chen, H. H., Tourtellotte, W. G., and Frank, E. (2002).  Muscle spindle-derived 
neurotrophin 3 regulates synaptic connectivity between muscle sensory and 
motor neurons.  Journal of Neuroscience, 22, 3512-3519. 

 
Dallman, M. A., and Ladle, D. R. (2013).  Quantitative analysis of locomotor defects in 

neonatal mice lacking proprioceptive feedback.  Physiology & Behavior, 120, 
97-105. 

 
de Nooij, J. C., Doobar, S., and Jessel, T. M. (2013).  Etv1 inactivation reveals 

proprioceptor subclasses that reflect the level of NT3 expression in muscle 
targets.  Neuron, 77, 1055-1068. 

 
Dilgen, J., Tejeda, H. A., and O’Donnell, P. (2013).  Amygdala inputs drive 

feedforward inhibition in the medial prefrontal cortex.  Journal of 
Neurophysiology, 101(1), 221-229. 

 
Eccles, J. C., Fatt, P., and Koketsu, K. (1954).  Cholinergic and inhibitory synapses in a 

pathway from motor-axon collaterals to motoneurones.  Journal of Physiology 
(London), 126, 524-562. 

    
Korsching, S. (1993). The neurotrophic factor concept: A reexamination. Journal of 

Neuroscience, 13, 2739–2748. 
 
Kucera, J., Fan, G., Jaenisch, R., Linnarsson, S., and Ernfors, P. (1995).  Dependence of 

developing group Ia afferents on neurotrophin-3.  The Journal of Comparative 
Neurology, 363 (2), 307-320. 

 
Mentis, G. Z., Siembab, V. C., Zerda, R., O'donovan, M. J., and Alvarez, F. J. (2006).  

Primary afferent synapses on developing and adult Renshaw cells. Journal of 
Neuroscience, 26(51), 13297-13310. 

 
Nishimaru, H., Koganezawa, T., Kakizaki, M., Ebihara, T., and Yanagawa, Y. (2010). 

Inhibitory synaptic modulation of Renshaw cell activity in the lumbar spinal 
cord of neonatal mice.  Journal of Neurophysiology, 103, 3437-3447. 

 
Patel, T. D., Kramer, I., Kucera, J., Niederkofler, V., Jessell, T. M., Arber, S., and Snider, 

W. D. (2003).  Peripheral NT3 signaling is required for ETS protein 
expression and central patterning of proprioceptive sensory afferents.  
Neuron, 38(3), 403-416.  

  
Renshaw, B. (1946).  Central effects of centripetal impulses in axons of spinal  central 

roots.  Journal of Neurophysiology, 9, 191-204. 
 
Rizo, J., and Südhof, T.C. (2002). Snares and munc18 in synaptic vesicle fusion. 

Nature Reviews Neuroscience, 3(8), 641–53. 
 



56 
 

Saito, K. (1979).  Development of spinal reflexes in the rat fetus studied in vitro. 
Journal of Physiology (London), 294, 581–594. 

 
Sapir, T., Geiman, E. J., Wang, Z., Velasquez, T., Mitsui, S., Yoshihara, Y., Frank, E., 

Alvarez, F. J., and Goulding, M. (2004).  Pax6 and Engrailed 1 regulate two 
distinct aspects of Renshaw cell development.  The Journal of Neuroscience, 
24(5), 1255-1264. 

 
Sengul, G., Puchalski, R. B., and Watson, C. (2012).  Cytoarchitecture of the spinal 

cord of the postnatal (P4) mouse.  The Anatomical Record (Hoboken), 295(5), 
837-45. 

 
Siembab, V. C., Smith, C. A., Zagoraiou, L., Berrocal, M. C., Mentis, G. Z., and Alvarez, F. 

J. (2010).  Target selection of proprioceptive and motor axon synapses on 
neonatal V1-derived Ia inhibitory interneurons and Renshaw cells.  Journal of 
Comparative Neurology, 518(23), 4675-4701.  

 
Stam, F. J., Hendricks, T. J., Zhang, J., Geiman, E. J., Francius, C., Labosky, P. A., 

Clotman, F., and Goulding, M. (2012).  Renshaw cell interneuron 
specialization is controlled by a temporally restricted transcription factor 
program.  Development, 139(1), 179-190. 

 
Wang, Z., Li, L., Goulding, M., and Frank, E. (2008). Early postnatal development of 

reciprocal Ia inhibition in the murine spinal cord.  Journal of Neurophysiology, 
100(1), 185-196. 

 
Wang, Z., Li, L., Taylor, M. D., Wright, D. E., and Frank, E. (2007).  Prenatal exposure 

to elevated NT3 disrupts synaptic selectivity in the spinal cord.  Journal of 
Neuroscience, 27, 3686-3694.  

 
Williams, E. R., and Baker, S. N. (2009).  Renshaw cell recurrent inhibition improves 

physiological tremor by reducing corticomuscular coupling at 10 Hz.  The 
Journal of Neuroscience, 29(20), 6616-6624. 

 
Wootz, H., Fitz-Simons-Kantamneni, E., Larhammar, M., Rotterman, T. M., Enjin, 

 A., Patra, E., van Zundert, B., Kullander, K., Alvarez, F. J. (2013).   
  Alterations in the motor neuron-Renshaw cell circuit in the Sod1 
  mouse model.  Journal of Comparative Neurology, 521(7), 1449-1469. 

 
Zampieri, N., Jessel, T. M., and Murray, A. J. (2014).  Mapping sensory circuits by 

anterograde trans-synaptic transfer of recombinant rabies virus.  Neuron, 
81(4), 766-778. 

  
Zhang, L., Schmidt, R. E., Yan, Q., and Snider, W. D. (1994).  NGF and NT-3 have 

differing effects on the growth of dorsal root axons in developing mammalian 
spinal cord.  Journal of Neuroscience, 14, 5187–5201. 


	Connectivity of Monosynaptic Ia afferents on Renshaw Cells in Neonatal Mice
	Repository Citation

	tmp.1466772847.pdf.WS52r

