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Abstract 

Cox, Kaleb Woodrow. M.S., Department of Chemistry, Wright State University, 2014. 
Synthesis and Biological Activity of Indolinones. 

  

 Indolinones of the type known as Arylidene oxindoles have been demonstrated to possess 

a broad range of activity ranging from proten kinase inhibtors, cell-death inhibitors and tau 

protein binding agents. Small libraries of such molecules were designed and synthesized herein 

in modifications involving variously substituted halogen derivatives, N-alkylation of the 

indolinone nitrogen, and finally a new class of molecules, namely arylidene oxindoles possessing 

extended conjugation.  The biological activities of such molecules were examined and the results 

disclosed herein. 
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Introduction 

 Alzheimer’s disease (AD) is a condition with broad scientific, economic and 

social ramifications and has been the subject of 195,510 publications.1 Alois Alzheimer 

first discovered a novel form of dementia when a patient named Auguste Deter came 

under his care while he was working at the Frankfurt Asylum in 1901.2-3 The first 

symptom exhibited by this patient was jealousy of her husband.2 Soon after she began to 

experience rapid loss of memory and was disorientated in her own home, ultimately 

showing complete helplessness in the institution. Upon death, post-mortem examination 

of the brain showed an evenly atrophic brain without macroscopic focal degeneration and 

the larger vascular tissues (tissues containing blood vessels) showed arteriosclerotic 

change.2 Alzheimer described Deter’s disease as a progressive presenile dementia with 

general atrophy. These findings indicated that the patient had a neurodegenerative disease 

that was similar to Pick’s disease in that both display bilateral degeneration of the cortical 

association areas which begin in the third and fourth decades.2 Silver staining of the 

specimens showed changes in the neurofibrils.2 Inside of a cell that looked completely 

normal were several fibrils that were distinguished by their unique thickness and capacity 

for impregnation.2 With further examination, many fibrils were located next to each 

other, which have been changed in the same way by their thickness and capacity.2 Next, 

they were observed at the surface of the cell combined in bundles.2 Finally, the 

observation of the neurofibrils showed that the nucleus and the cell itself disintegrated 

and only a tangle of fibrils indicated the place where a neuron was previously located.2 

Alzheimer’s first report on this patient was presented at the 37. Versammlung 

sudwestdeutscher Irrenarzte (37th Meeting of the Southwest German Psychiatrists) in 



2 
 

Tubingen on November 3, 1906.2-3 Alois Alzheimer’s second published case was about a 

56-year old demented man named Johann F. who was admitted to the psychiatric clinic in 

1907. When Johann F. died, neuropathological examinations of his brain showed an 

abundance of amyloid plaques but not a single neuron showed neurofibrillary change.5 

Johann F.’s case was in slight contradiction with Deter’s case, whose brain was autopsied 

and an abundance of both amyloid plaques and neurofibrillary tangles were observed.  

 It was hypothesized by some that Auguste Deter might have suffered from a 

different form of dementia.5 One hypothesis from Adamaccia implied that Deter had a 

rare disorder called metachromatic leukodystrophy which affects the growth of myelin,5-7 

a fatty covering that protects and acts like an insulator around nerve fibers.7 As 

Alzheimer was familiar with metachromatic stains, this first hypothesis seems unlikely.5-7 

A second hypothesis by O’Brien suggested that Deter might have suffered from 

arteriosclerosis, which is hardening of the arteries in the brain, causing Auguste’s 

dementia.4,5 

Statistics 

AD is the most common form of dementia and affects roughly 5.4 million people 

in the United States and 35 million people worldwide.8 Longer life expectancies in 

general and the aging of 76 million baby boomers will expectedly increase the numbers 

and percentages of Americans who will be among the oldest-old (85 yrs or older) of that 

generation. Between 2010 and 2050, the oldest old are expected to increase from 15% of 

all older people in the United States to one in every four older Americans (24%). This 

will result in an additional 15 million oldest-old people, individuals at risk for developing 
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AD. By 2050, the number of Americans age 85 and older will nearly quadruple to 21 

million. In 2012, the population age 85 and older will include approximately 2.5 million 

people with AD, or 48% of the AD population age 65 and older. When the first wave of 

baby boomers reaches 85 in 2031, an estimated 3.5 million people aged 85 and older will 

have AD.8 As of 2012, someone in America will develop AD every 68 seconds and by 

the year 2050 someone in America will develop AD every 33 seconds. This will lead to 

nearly a million new cases per year, and AD prevalence is projected to be 11 million to 

16 million at that time.8 At present, AD is the 6th leading cause of death in the United 

States and the 5th leading cause of death in Americans 65 and older.8 While the causes of 

death from other major causes are on the decline, AD has risen dramatically. Between 

2000 and 2008, the proportion of deaths due to heart disease, stroke, and prostate cancer 

decreased by 13%, 20%, and 8%, respectively, whereas the proportion of deaths due to 

AD increased by 66%.8 Thus, the aging of the “baby boom” generation will increase the 

number of persons affected by the disease and place a huge burden on such patients, their 

caregivers, and society.9 This can cause an exponential amount of dollars to be spent on 

the healthcare needs of these patients and cause a huge burden on the people taking care 

of them.  

Diagnosis  

 Although, there is no way to prevent, slow down, or cure AD, the disease can be 

characterized through various pathological biological markers in the brain. These 

pathological markers mainly consist of large numbers of amyloid plaques surrounded by 

neurons containing neurofibrillary tangles, also accompanied by vascular damage from 



4 
 

extensive plaque deposition, and neuronal cell loss.10 It is unknown whether amyloid or 

neurofibrillary tangles are the earliest lesions in the disease process, and thus the role of 

these markers in the etiology of the disease remains controversial.10  

β-Amyloid Hypothesis 

The strong association of amyloid plaques with AD has led to the so-called 

“amyloid hypothesis”, which suggests that amyloid β protein (Aβ) is the causative agent 

of Alzheimer’s pathology and that the neurofibrillary tangles, cell loss, vascular damage, 

and dementia follow as a direct result.10 Amyloid β is a peptide that results from 

processing of the amyloid precursor peptide (APP) and can be anywhere from 39 to 42 

amino acids long.10 Amyloid precursor protein is an intermolecular peptide (inserted into 

the cytoplasmic membrane in the synapses of neurons) and is cleaved at residues 15 and 

17 by enzymes called secretases to afford Aβ fragments which then aggregate to form 

plaques.  

The enzyme α-secretase cleaves APP within the Aβ domain and thus precludes 

the generation of Aβ.11 This cleavage yields secretory α-APPs that comprise most of the 

N-terminus ectodomain of APP, and the remaining membrane-bound C-terminal 

fragment (p3CT).11 Alternatively, APP can also be cleaved by β-secretase, which cleaves 

APP at the N-terminus of Aβ,  generating a truncated, soluble β-APP and a  C-terminus 

fragment of 99 residues (A4CT, C99).11 The β-secretase product A4CT contains the 

entire Aβ domain, the transmembrane domain, and the cytoplasmic tail of APP, and 

represents the direct precursor protein.11 Both membrane bound C-terminal fragments of 

APP (A4CT and p3CT) are cleaved by γ-secretase within their transmembrane domains 
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at the C-terminus of Aβ or p3.11 This cleavage, catalyzed by γ-secretase, releases residual 

40 and 42 Aβ fragments (Aβ40 and Aβ42) with 40 being the most abundant and 42 being 

more neurotoxic and prone to aggregation. The disease state of AD is generally 

considered to be the result of an imbalance between Aβ production and clearance.12 

 

Although the amyloid hypothesis offers a broad framework to explain AD 

pathogenesis, it is currently lacking in detail as to why it causes AD and certain clinical 

observations do not fit with the simplest version of the hypothesis.12 Notably, the number 

of amyloid deposits in the brain does not correlate to the degree of cognitive impairment; 

additionally, some humans without symptoms of AD have appreciable deposits of Aβ.12 

A study by Wang et al used an enzyme-linked immunosorbent assay (ELISA) to compare 

soluble, insoluble, and total Aβ1-40 and Aβ1-42 in AD brains with those of age-matched 

normal and pathologic aging brains.13  There were a total of 43 participants studied: 23 

brains from AD patients (age range of 69-91; average age of 81); 10 pathologic aging 

brains from subjects without clinical evidence of dementia including 4 subjects who were 

documented to be free of cognitive impairments prior to death by serial 

neuropsychological examinations (age range of 67-98; average age of 87) and 10 brains 
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with rare or no AD lesions from elderly individuals without clinical evidence of a 

neurological illness (age range of 60-93; average age of 73).13 The ELISA showed that 

there was a statistically significant increase (20-fold) in the average levels of total Aβ1-40 

in the AD brains compared to the pathologic aging brains (P < 0.003), and the observed 

2-fold increase in the average levels of total Aβ1-42/43 in the AD brains also was 

statistically significant (P < 0.001) compared to the average levels of this Aβ peptide in 

the pathologic aging brains.13 The soluble pools of Aβ1-40 and Aβ1-42 were the largest total 

fractions of Aβ in the normal brain (50 and 23%). These soluble pools were the lowest in 

AD brain (2.7 and 0.7 %) and the pathological brain was intermediate at 8 and 0.8 %.13 

The data on soluble and insoluble Aβ1-40 and Aβ1-42/43 in pathologic aging suggest that this 

condition may reflect a transition state between the normal aging and the AD brain.13 

However, the species of Aβ in the pathologic aging specimens have not been extensively 

characterized and it is likely that these brains accumulate other Aβ species, including 

those found in normal and AD brains.13 These findings could suggest that Aβ could not 

be the cause of AD. 

Another major factor in the amyloid hypothesis is the genetic evidence that the 

AD-causing mutations in APP, presenilin 1 and presenilin 2 (PS1 and PS2), increase the 

production of Aβ, causing early-onset or familial Alzheimer’s disease (FAD).12 A study 

by Citron et al used transfected cell lines and transgenic mice to determine Aβ production 

from PS1 and PS2 mutations. For the transfected cell lines they used 293 kidney cells 

expressing APP695 carrying the Swedish APP mutation14
, which is known to make a better 

substrate for β-secretase, thereby increasing production of Aβ40 and Aβ42. They then 

transfected the mutant APP with PS1 or PS2, and this cell line was chosen for the PS 
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transfection because its high total Aβ secretion allows an accurate quantification of Aβ42 

by (ELISA).14 For the transgenic mice study, Citron et al bred mice bearing wild-type 

human APP695 gene with mice bearing human PS1 transgene.14 These mice would 

produce offspring expressing wild human-type APP695 alone (single-transgenic mice) or 

both wild type APP695 and either mutant or wild-type human PS1 (double-transgenic 

mice).14 The degree to which particle mutation affects Aβ production in cell cultures 

showed no correlation to which symptoms start to first appear.14 This strategy was chosen 

because endogenous mouse APP is not associated with human Aβ production under 

physiological or naturally occurring pathological conditions.14 Additionally, use of the 

same promoter element for both transgenes offers the advantage that both are likely to be 

expressed in adequate quantities in the same cell.14 The combined in vitro and in vivo 

data demonstrated that FAD-linked presenilin mutations directly or indirectly alter the 

activity of γ-secretase, but not α- or β-secretase, resulting in increased proteolysis of APP 

at the Aβ site and heightened Aβ42 production.14 The biological mechanism of this effect 

is presently unknown.14 The correlation between the size of the effect on APP processing 

and the age of onset of disease assessed in families with the mutations was not 

informative.15 Some PS mutations that strongly increase Aβ production seem to be 

associated more with special symptoms such as spastic paraparesis, a disease causing 

weakness affecting the lower extremities, and the occurrence of large “cotton wool” 

plaques,12,16,17 rather than those with early onset AD.12,16,17 Cell cultured models of AD 

have shown that the Aβ-elevating effects of PS mutations are similar to those of the 

COOH- terminal of APP mutations; however, the age at which symptoms appear in the 

latter cases but not the former, is accelerated by inheritance of apolipoprotein E (apoE4) 
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alleles.12,18 The reason for these phenotype discrepancies are unclear, but they may relate 

to the fact that cell culture systems do not adequately reflect the complexity of Aβ 

economy in the human brain.12  

The amyloid hypothesis is still controversial because a specific neurotoxic species 

of Aβ and how it affects neuronal function have not yet been studied in vivo.12 Another 

concern with the amyloid hypothesis is that transgenic mice undergoing progressive Aβ 

deposition19,20 often do not show clear-cut neuronal loss.21 The reasons for the failure of 

mice expressing only an APP transgene to show neurofibrillary degeneration and 

substantial neuronal loss are not yet clear but there are several plausible explanations.12 

For instance, each species of mice can have different neuronal vulnerabilities, the absence 

of human tau molecule in these mice, the lack of a full complement of human-type 

inflammation mediators (certain cytokines) and the relatively short exposure to Aβ could 

also be a reason why these mice show no neuronal loss.12 The finding that an APP 

transgene clearly accelerates neurofibrillary tangle formation in APP/tau double-

transgenic mice22 suggests a causal connection between Aβ accumulation and 

neurofibrillary degeneration, even in mouse models.12  

Another criticism to the amyloid hypothesis was based upon the work of Braak 

and Braak23 who showed that neurofibrillary degeneration of cell bodies increases 

gradually with the age of humans and that these changes predate morphologically 

detectable amyloid plaques. However, the earliest cases examined in these postmortem 

studies were actually nondemented older individuals, and it is impossible to know 
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whether their neurofibrillary changes represented the prodrome, or early symptoms of 

AD.12,23  

The amyloid hypothesis also has discrepancies on whether or not Aβ plaques 

cause AD.12 Patients with Down’s syndrome, who also have dementia and have an 

abundance of Aβ plaques and NFTs, also have died at varying ages where Aβ deposition 

predates neurofibrillary tangle formation.12,24,25 Also, an Australian family had a spastic 

paraparesis variant of familial AD. When an individual family member died of unrelated 

causes, she died after the onset of the paraparesis but before the onset of dementia.17 

During a neuropathological examination, fulminant amyloid deposition was present but 

no neurofibrillary tangles.17 The patient showed altered APP processing and Aβ 

accumulation clearly predated tau changes and neuronal injury. 17 This indicated that the 

patient had Aβ plaques but did not have dementia. Another indication that might suggest 

that Aβ is not the leading causing in AD is the clinical failures of two amyloid antibodies 

solanezumab and bapineuzumab. These two antibody drugs were design to slow the 

decline in memory, cognitive decline, and performance of activities of daily living and 

personal care.27 The antibodies point of attack was to reduce brain amyloid load either by 

reducing soluble amyloid in the fluids, decreasing accumulation of plaques, or by 

increasing plaque clearance through immunogenic microglial activation.27  

Solanezumab was compared with a placebo in two trials involving a total of 2,052 

patients with mild-to-moderate Alzheimer’s disease.26 The patients were given either 400 

mg of Solanezumab or a placebo intravenously ever 4 to 18 weeks.26 The primary 

outcomes were measured from the changes of the baseline to the end of the study on the 



10 
 

11-item cognitive scale the Alzheimer’s Disease Assessment Scale (ADAS-cog11) with 

scores from 0 to 70 and higher scores indicating more impairment and the Alzheimer’s 

Disease Cooperative Study-Activites of Daily Living scale (ADCS-ADL) with a range of 

0 to 78 with lower scores indicative of poorer functioning.26 The first trial was called 

EXPEDITION 1 and after the first trial’s data was analyzed, the EXPEDITION 2 trial 

was revised to include changes in scores of a 14-item ADAS-cog14 in patients with mild 

disease, which is thought to be more relevant for assessing people with earlier-stage 

Alzheimer’s.26 The researchers concluded that “none of the first trials for Solanezumab 

showed any significant improvement in the primary outcomes and that studies failed to 

show treatment effects on the hippocampal or total brain volumes or on amyloid 

accumulation on the PET scan.”26  

However, there were some positive signs for Solanezumab. For example, the 

measures of biomarkers, including plasma cerebrospinal fluid (CSF) levels of antibody, 

are consistent with the target engagement of soluble brain amyloid.26 The edema, 0.9 

percent compared with 0.4 percent, among the drug treatment group compared with 

placebo, and hemorrhage rates were 4.9 percent and 5.6 percent respectively.26 About 25 

percent of participants with mild disease tested negative for amyloid on PET imaging, 

meaning they likely had another type of dementia rather than Alzheimer’s.26 Dr. Eric 

Karren and Dr. John Hardy stated, “in EXPEDITION 3, positivity on PET amyloid is an 

inclusion criteria, and this will greatly increase the potential to show efficacy.”26 

Bapineuzumab was tested in two phase 3 multicenter trials of patients with mild-

to-moderate Alzheimer’s disease.26 There were 1,121 patients who were carriers of the 
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APOE4 gene, which is associated with a higher risk of Alzheimer’s disease, and 1,331 

patients who were non-carriers were treated.26 For every 13 weeks for 78 weeks, patients 

were given an intravenous dose of Bapineuzumab or a placebo with dosage depending on 

body weight.26 The primary outcomes were measured on ADAS-cog11 scores and the 

Disabilities Assessment for Dementia (DAD).26 The DAD scores were from 0 to 100 with 

higher scores meaning less impairment.26 Baseline measurements were compared at the 

end of the 78 weeks trial. The measurements for the secondary outcomes were based on 

the findings of PET imaging and the cerebrospinal fluid phosphorylated tau (phosphor-

tau) concentrations.26 The researchers reported that there were “no significant differences 

between the Bapineuzumab groups and the placebo groups with respect to primary end 

points.”26 The major safety findings were amyloid-related imaging abnormalities with 

edema among patients receiving those in higher doses and APOE carries.26 In the 

secondary outcome measures, the study found a reduction in phosphor-tau concentrations 

in the spinal fluid of APOE carries.26 Researchers believe this may be an indication that 

less neurodegeneration was occurring.26 PET scans also showed that patients receiving 

the drug showed less evidence of amyloid buildup.26 Dr. Salloway stated that both of the 

findings suggest that the antibody therapy was having some effect on amyloid, even if the 

clinical benefit was not apparent and the antibody treatment might work better at an 

earlier stage of Alzheimer’s.26 Researchers conducting the study wrote, “amyloid 

accumulation probably starts many years before the onset of symptoms, and anti-amyloid 

treatment only after dementia develops may be too late to affect the clinical course of the 

disease.”26 
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Norman Relkin, associate professor of neurology at Weill Cornell Medical 

College told Neurology today that there were nuances in the findings that need to be 

considered.26 Relkin suggested the results need to be considered for the overall negative 

findings in context, stating:  “The results don’t mean that there is not a future role for 

immunotherapy for treating AD and they do not mean that amyloid is not a therapeutic 

target. The challenge is to find the right drug, the right timing, the right dose.” Rachelle 

S. Doody, professor of neurology and director of the Alzheimer’s Disease and Memory 

Disorders Center at Baylor College of Medicine, and the lead author of the report on 

solanezumab, said that the negative results in the primary outcomes indicate that the drug 

should not be approved as a treatment for mild-to-moderate Alzheimer’s disease.26 She 

also felt that a secondary analysis of the data suggest that Solanezumab could be useful 

for those with mild disease.26 The drug is currently under way in three trials to test for 

either mild or asymptomatic disease. The study on mild disease involves people with 

sporadic AD and the asymptomatic studies are in carriers of mutations for familial AD 

and in people who have positive amyloid scans.26 Doody suggested that future research 

aimed at studying therapies in people with mild or asymptomatic diseases needs to occur 

alongside the development of new drugs for people with the full-blown illness.26 Doody 

noted that the two drugs that targeted amyloid worked in different ways. Bapineuzumab 

binds to aggregated amyloid beta, including plaques,26 whereas solanezumab binds to 

soluble amyloid beta.26  

β-Amyloid Imaging 
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 There have been many approaches for imaging β-amyloid. The earliest of these 

involved using conjugated dyes for post-mortem staining of the brain. Congo red (1) is a 

dye that can bind to Aβ, but also binds to a whole array of molecules held in proper 

orientation by virtue of the beta-sheet fibril.27 Congo red not only binds to β-amyloid, but 

to tau protein as well.27 However, Congo red is not very lipophilic due to it having a 

positive and negative charge at both ends which precludes its ability to cross the blood 

brain barrier (BBB).27 To modify the lipophilicity of this structure and enhance its ability 

to cross the BBB, Klunk and coworkers at the University of Pittsburgh synthesized 

Chrysamine G (CG) 2.27 CG has hydroxyl and carboxylic acid groups on both ends which 

makes it neutral and allows it to cross the BBB in mice and a lower inhibition constant 

(Ki).27 The Ki value measures the concentration of the inhibitor that is required in ordered 

to decrease the maximal rate of reaction itself. The higher Ki value, then the more 

concentration of ligand is required. For the inhibition of radiolabeled [14C]2 binding to 

Aβ(1-43) had an inhibition Ki of 0.43 ± 0.12 µM compared to CR, while CR had a Ki of 

2.82 ± 0.84µM.27 

   

  1 2 

 The Ki for the inhibition of [14C]2 binding to Aβ(1-43) was also done for the 

analogues of 2 shown below. The difluoro derivative 3 of CG was only slightly less 

potent than CG itself (Ki = 1.6 µM ± 0.19), while the 3,3’-dicarboxylic acid derivative 4 

had a similar Ki value to Congo Red (2.76 ± 0.52 µM).27 

NN
NN

NH2 H2N

HO3S SO3H

NN
NN

HO2C CO2H

OHHO
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 3 4 

 In an attempt to explore the importance of the bidentate nature of the functional 

groups of CG, Klunk et al. studied the binding of the diazo derivative 5, which represents 

one-half of a CG molecule. An approximation of the energy of binding can be calculated 

by using the value of 0.43 µM for the Ki of CG, the energy of binding is roughly 36 

KJ/mole. If the diazo derivative binds with half of this energy, the expected binding 

energy would be about 18,000 J/mole. The derivative 5 has a Ki of 73 ± 54 and the 

binding energy is 23,000 ± 17,500 J/mole, which is in agreement with the predicted 

value. The importance of the hydrophobic region of CG and the aniline derivative is 

demonstrated by the lack of binding of salicylic acid (6) itself.27 

  

 5 6 

Another derivative of CG that was inactive was the 2,2’-disulfonic acid derivative 

7. Since the compound 4 showed little loss of activity from CG, it is unlikely that the 

additional acid moieties are the sole cause for the loss of activity in 7. Presumably, the 

bulky sulfonate groups in the 2-position force the biphenyl group out of planarity. 

N N
NN

FF

HOOHHO2C CO2H

N N
NN

HO2C CO2H

OHHO

HO2C CO2H

N
N OH

CO2H

OH

CO2H
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Molecular modeling studies showed that the dihedral angle between the two-biphenyl 

benzene rings in 7 is 83o. This angle is approximately 35o in CG and all of the other 

active derivatives. The phenol derivative 8 is inactive, but gives important structure 

activity information. Since this derivative is identical to CG except for the carboxylic 

acid groups, the inactivity of the compound suggests that the acid moieties are essential 

for binding.27 

  

 7 8 

 Another dye that is known to stain beta-amyloid post-mortem is Thioflavin-T (9), 

which also has an affinity for tau protein.28 Since Thioflavin-T is a salt and unable to 

cross the BBB, in order to make Thioflavin-T more lipophilic Klunk synthesized 18 

neutral 2-arylbenzothiazoles (BTA) 10 derivatives of thioflavin-T, substituting on the R6 

and R4’ positions.28  

   

 9 10 

 Amongst these benzothiazoles was BTA-1 (11) and 6-OH-BTA-1 (12), also 

known as Pittsburgh Compound-B (PIB). In a test of brain entry levels, BTA-1 with a 

carbon-11 radiolabel showed the highest brain entry with a value of 0.43 (%ID-kg)/g, 

N N
NN OHHO

HO2C CO2H
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HO3S
N N

NN OHHO
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S

CH3

N
CH3

CH3H3C

N
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where (%ID-kg)/g is the percent injected dose per gram of brain (%ID/g) normalized to 

body weight (in kg).28 The highly lipophilic derivatives 6-Br-BTA-2 (13) and 6-Me-

BTA-2 (14) showed the poorest brain entry with (%ID-kg)/g values of only 0.054 and 

0.078, respectively.28 This may be a result of the phenomenon of blood element binding 

by highly lipophilic compounds (log P > 3) where logP is the partition coefficient.29 The 

2-minute brain level of the BTA derivatives studied showed the classic parabolic 

relationship with log PC18. Radiolabelled BTA-1 was the only compound that didn’t 

appear to fit a parabolic-type relationship. This demonstrates a considerably higher brain 

entry than any of the 12 other 11C-labeled BTA derivatives.28   

    

 11 12 13 14 

 The radiolabeled derivatives were also tested for brain penetration in young, wild 

type Swish-Webster mice that had no amyloid deposits in their brain.28 This study reflects 

brain entry and clearance from normal brain tissue.28 A necessary criterion for a good 

PET imaging agent is rapid clearance from brain areas that do not contain the targeted 

binding site.28 This is especially essential for short-lived 11C-labeled radioligands. The 

(%ID-kg)/g values of the BTA derivatives showed that all but the two most lipophilic 

compounds, 13 and 14, provided lower 30 min. brain values than 2 min.28 The compound 

with the lowest 30 min. brain value (%ID-kg)/g value was 12, with a more than 3-fold 

lower concentration than any other derivative.28 
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 Another important parameter for the BTA derivatives is the measure of clearance 

shown by the ratio 2 min-to-30 min (%ID-kg)/g values.28 Both 11 and 12 had the highest 

2 min-to-30 min. brain radioactivity ratio. There was also a correlation between log PC18 

and the clearance as expressed by the 2 min-to-30 min (r = 0.79). The compounds that 

were least lipophilic tended to clear from the brain faster, while the most lipophilic 

compounds accumulated in the brain over 30 min.28  

 PET imaging studies in baboons were performed with five different 11C-labeled 

BTA-1 derivatives including 11, 12, 15, 16, and 17.28 These 5 compounds were injected 

in two or more baboons for PET imaging studies to demonstrate consistent findings. PET 

images 0-9 min after injection with the two most promising derivatives from the mouse 

studies, BTA-1 and 6-OH-BTA-1, showed at early time points radioactivity appeared to 

be relatively uniformly distributed throughout the baboon brains.28 These results were 

consistent with the expected absence of amyloid plaques in the brains of these control 

animals. However, after 0 to 60 min, time-activity plots indicated a hetergeneous 

distribution of brain radioactivity that was most apparent at later times.28 

  

 15 16 17 

The regions of the brain containing higher levels of white matter (such as pons) 

contained 20-30% higher concentration of radioactivity at 60 min than regions that were 

dominated by grey matter such as the temporal, mesial-temporal, and occipital cortex.28 

Gray matter is formed by millions of neuron cell bodies. The color is gray because there 
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is no myelin. Locations of gray matter include the cerebral cortex and basal nuclei. White 

matter is located between the brain stem and cerebellum and surrounds the nuclei. White 

matter is formed by axons of neurons and is white because of myelin. The regional 

heterogeneity of radioactivity concentrations was greater for BTA-1 than it was for 6-

OH-BTA-1, and the pons was particularly evaluated for BTA-1 because of higher 

concentrations of radioactivity. The concentration of radioactivity in baboon cortex was 

nearly identical to that in the cerebellar cortex at all time points for all of the derivatives 

studies.28  

The maximum brain radioactivity concentration (%ID-kg)/g in baboons correlated 

significantly with 2 min (%ID-kg)/g values in mice (r = 0.85), with maximum brain 

concentration of radioactivity resulting from BTA-1>6-MeO-BTA-1>6-CN-BTA-1>6-

Me-BTA-1>6-OH-BTA-1.28 Brain radioactivity concentrations of BTA-1 and 6-OH-

BTA-1 were remarkably similar in mice and baboons (0.43 vs. 0.45 for BTA-1 and 0.21 

vs. 0.27 for 6-OH-BTA-1).28 Compared to the mouse brain, the clearance of radioactivity 

was considerably slower for the baboon brain, although the rank order of clearance rate 

was similar in mice and baboons with 6-OH-BTA-1 being the fastest and 6-Me-BTA-1 

being the slowest clearing derivative.28 Monoexponential fits of radioactivity loss from 

baboon cortices resulted in the following clearance half-times (t1/2 values): 6-Me-BTA-1 

= 111 min, 6-MeO-BTA-1 = 55 min, 6-CN-BTA-1 = 51 min, BTA-1 = 20 min, and 6-

OH-BTA-1 = 13 min.28 As in the mice studies, 6-OH-BTA-1 and BTA-1 resulted in the 

highest ratios of early-to-late brain radioactivity concentrations in baboons (4.6 and 2.8 

respectively).28   
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Comparison of the in vivo behavior of the two lead compounds (6-OH-BTA-1 and 

BTA-1), in baboon brain to that of the entry and clearance of other successful PET 

radioligands in a reference brain region devoid of specific binding sites, like the 

cerebellum, was helpful in selecting the lead 11C-labeled BTA derivative to take into 

human studies.28 Klunk et al compared 6-OH-BTA-1 and BTA-1 to 4 compounds: 

[11C]raclopride 18, [carbonyl-11C]WAY100635 19, [11C](+)-McN5652 20, and 

[18F]altanserin 21.28 

    

 18 19 20 21 

 The relatively rapid nonspecific binding clearance rates of [carbonyl-11C] 

WAY100635, [11C] raclopride, and [18F] altanserin are important in the success of these 

PET radioligands for imaging the serotonin 5-HT1A, dopamine D2, and serotonin 5-HT2A 

receptor systems.30-35 In contrast, the relatively slow in vivo clearance of [11C](+)-

McN5652 has limited the usefulness of this radioligand for imaging the serotonin 

transporter system.36,38 The 11C-labeled BTA compounds with similar rapid nonspecific 

binding clearance properties within the range bracketed by [carbonyl-11C]WAY100635 

and [18F]altanserin might prove useful as an in vivo imaging agent for amyloid plaques.28 

 The brain clearance properties of [11C]6-OH-BTA-1 indicated that the relatively 

rapid rate of nonspecific clearance of this radiotracer (t1/2 = 13 min) was similar to that of 

other useful PET neuroreceptor imaging agents while those of [11C]BTA-1 (t1/2 = 20 min) 
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were too slow.28 From this study, it was only possible to critically assess the rates of in 

vivo clearance of the free and nonspecifically bound  radioactively 11C-labeled BTA 

derivatives in the brains of rodent and nonhuman primate animal models.28 

 As a qualitative measure of specificity for amyloid deposits, nonradiolabeled 

(cold) 6-OH-BTA-1 was used to stain paraffin sections of postmortem AD brain.28 Like 

thioflavin-T, nearly all of the BTA derivatives are fluorescent compounds, and the 

staining of 6-OH-BTA-1 was localized to both Aβ plaques and cerebrovascular amyloid 

(CVA) in frontal cortex.28 The identity of the plaques and CVA stained by 6-OH-BTA-1 

was confirmed by staining serial sections with an antibody to Aβ. Aβ plaques and CVA 

are both composed predominantly of Aβ peptides.28 The overall encouraging in vitro and 

in vivo properties of [11C]6-OH-BTA-1, or Pittsburgh Compound-B (PIB) led to the 

choice of this agent for further evaluation in human subjects.28 

Klunk et al studied amyloid imaging with PET in humans with PIB. In the study, 

25 patients, 16 with diagnosed mild AD and 9 controls, were compared. The AD patients 

typically showed marked retention of PIB in areas of association cortex known to contain 

large amounts of amyloid deposits in AD. The association cortexes consisted of the 

frontal, parietal, occipital, temporal, and cerebellar cortices, while the striatum, pons, and 

subcortical white matter were also investigated.  In the AD group, PIB retention was 

increased most prominently in the frontal cortex (1.94-fold, p = 0.0001).39 Large 

increases also were observed in parietal (1.71-fold, p = 0.0002), temporal (1.52-fold, p = 

0.002), and occipital (1.52-fold, p = 0.002) cortices and the striatum (1.76-fold, p = 

0.0001).39 PIB retention was equivalent in AD patients and controls in areas known to be 
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relatively unaffected by amyloid deposition. These unaffected areas were the subcortical 

white matter, the pons, and cerebellum. The studies in three young (21 years) and six 

older healthy controls (69.5 ± 11 years) showed low PIB retention in cortical areas and no 

significant group differences between young and older controls.39 In cortical areas, PIB 

retention correlated inversely with cerebral glucose metabolism as determined with 18F-

fluordeoxyglucose.39 This relationship was most robust in the parietal cortex (r = -0.72; p 

= 0.0001).39 The results suggest that PET imaging with PIB can provide quantitative 

information on amyloid deposits in living subjects.39 The drawback to using PIB is that it 

uses radiolabeled 11C, which only has a half-life of 20 minutes. Using 11C limits it use for 

facilities with an on-site cyclotron and a radiochemical team.41 

In 2001, Kung et al. synthesized a series of novel stilbenes as probes for amyloid 

plaques. To search for an Aβ probe, Kung purchased a series of benzothiazole and 

stilbenes (SB) (22-24) from Sigma-Aldrich Chemical Company. 

     

 22 23 24 

 These three compounds were screened by in vitro binding assays. Two of the 

compounds (22 and 23) are analogues of TZDM (25), having the same benzothiazole 

core but the iodine is replaced with a -H or a -CH3 and these derivatives showed 

strikingly high binding affinities for the benzothiazole (TZ) binding sites (Ki = 2.3 and 

1.4 nM, respectively), while E-stilbenes 26 and 24 displayed low binding affinities (Ki = 

535 and >1000 nM, respectively).40  
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 25 26 

 Based on these unexpected results, Kung et al. prepared and tested a series of 

stilbenes 27-32, all of which contained an electron-donating group: p-Me2N-, -OMe, or –

OH.40 

       

 27 28 29 30 

   

 31 32 

 These stilbenes were prepared by a Wadsworth-Emmons reaction using diethyl 

phosphonates as the starting materials.40 The in vitro binding assay used preformed Aβ 

aggregates of synthetic Aβ1-40 peptides and [125I]TZDM as the ligand.40 Stilbenes 27-32 

showed high binding affinities (Ki = 2-32 nM) to the TZ sites, while affinities toward SB 

sites were very low (>1000 nM).40 The binding affinity for the p-Me2N-stilbenes is not 

sensitive to the position of the iodo group; o-, m-, or p-iodo substitutions (27, 28 or 29) 

on one of the benzene rings of stilbene displayed about equal potency (2.0-7.7 nM).40 The 

derivative 30 showed slightly lower affinity (Ki = 22 nM).40 It is evident that these 

extremely simple and small silbenes, containing an electron donating group such as p-
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Me2N-, -OMe, or –OH, displayed superb binding affinity to Aβ aggregates. Replacing the 

benzothiazole ring with an iodo- or fluoro-substituted phenyl ring had no effect on 

binding affinity at the TZ binding sites of Aβ aggregates.40 Binding affinity appears to be 

determined by the pharmacophores on one side of the stilbene molecule (i.e., electron 

donating or withdrawing group), suggesting that additional modifications could be 

possible.40 

 The stilbenes were further characterized with [125I]28 as the radiotracer. An in 

vivo biodistribution studies of [125I]28 in normal mice after iv injection suggested good 

brain penetration. The brain uptake was 0.72, 1.12, 1.08, and 0.19% dose/organ, and the 

brain/blood gram ratio was 0.46, 1.46, 1.34, and 0.24, at 2, 30, 60, and 240 min after 

injection. The blood levels were relatively low at 6.5-2.8% dose/organ at all of the time 

points.40 Binding to the aggregates of Aβ1-40 is saturable, and the dissociation constant 

(Kd) was 0.19 nM, which is similar to that observed for [125I]TZDM.40 The results 

suggest that molecular weight can be reduced while maintaining binding affinity; as such, 

it significantly enhances the flexibility on designing new probes for imaging Aβ plaques 

in the brain.40 This finding is important, because it represents a structural simplicity and 

suggests better alternatives for designing probes for binding to Aβ aggregates: (1) these 

probes may contain a simple stilbene-like structure; (2) one of the aromatic rings contains 

an electron-donating group, p-Me2N-, -OMe, or –OH, which appears to be essential for 

the binding affinity, and; (3) there is a bulk tolerance for the second aromatic ring, on 

which radiolabeled, 99mTc, 123I, or 18F, can be readily attached without detrimental effects 

on binding affinity to Aβ aggregates.40 
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 Kung et al. then recognized that the chemical structures of 12 and a stilbene 

derivative SB-13 (33) both have a highly conjugated aromatic ring system and are 

relatively planar molecules, which is an important attribute for insertion between the β-

sheet of Aβ aggregates.41 Another common feature is an electron-donating group with a 

N-methylamine or a hydroxyl group at each end of the molecule.40 The similar structures 

of 12 vs 33 (overlay structure 34) appear to compete for similar binding sites on the Aβ 

aggregates.41 Structure 34 demonstrates overlap of  the aromatic rings and the electron 

donating groups  (e.g., N-methylamino and hydroxyl). In addition, both ligands are 

relatively planar because of the conjugated systems. 

   

 12 33 34 

 The rigid structures of stilbene and styrylpyridine provide the basic core 

structures for developing specific imaging agents for Aβ plaques.42,43 The stilbene 

derivative 33 showed excellent binding affinity to post-mortem AD brain tissue 

homogenates (Kd = 2.4 ± 0.2 nM). In vivo human PET imaging studies with [11C]33 

demonstrated potential usefulness in detecting Aβ plaques in the brain.41 To further 

improve the availability of 18F labeled PET imaging agents as a tool for diagnosis of AD, 

a series of fluorinated stilbenes were synthesized and tested.41  Adding a fluorine atom to 

the side chain for labeling while maintaining the desired binding affinity to Aβ plaques 

and brain penetrability was not a simple exercise. Initial attempts at developing 18F 

labeled 33 by adding a fluoroalkyl substituent group on either end of the stilbene core 

N

SHO
N
H

CH3

HO
N
H

CH3 N

SHO
N
H

CH3

HO
N
H

CH3



25 
 

met with little success.41 The stilbene derivatives were too lipophilic and showed high 

nonspecific binding in normal brain.  

 To reduce the lipophilicity of the stilbenes, two approaches were employed to 

develop 18F labeled PET imaging agents.42.43 Of these approaches, one involved the use 

of a 2-fluoromethyl-1,3-propylenediol group (e.g., as in 35) and another employed a 

fluoro-pegylated (FPEG) group at one end of the phenol group (e.g., as in 36).  

   

 35 36 

Among these two compounds, 35 displayed a high binding affinity in post-

mortem AD brain homogenates (Ki = 5.0 ± 1.2 nM),41 and was successfully labeled with 

18F to produce [18F]35. The radiotracer was neutral and lipophilic and showed a moderate 

log P of 2.95.41 In vivo biodistribution of radiolabeled 35 in normal mice exhibited 

excellent brain penetration and rapid washout after an iv injection (4.66 and 0.33% 

dose/g in the brain at 2 and 60 min post injection, respectively).41 Excellent brain 

penetration and rapid washout are highly desirable for Aβ plaque-specific brain imaging 

agents. However, compound 35 has a fluorine containing side chain that has an optical 

center which might complicate in vivo metabolism.41  

For a compound that does not have an optical center, a stilbene containing a 

FPEG group would be more appropriate. 42-44 The FPEG linker on 33 helps modulate 

lipophilicity, maintain neutrality, and provides a simple nucleophilic substitution 
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mechanism for a labeling site with 18F.44 To modulate the lipophilicity of 18F labeled 

stilbene 36, different chain lengths of ethylene glycol (PEG, n =2-12) were added and the 

end of the chain was capped with a fluorine atom.43,44, The FPEG derivative 36 displayed 

excellent Aβ-binding affinities and high brain penetration.41 Structure-binding studies of 

FPEG linkers showed that for chain lengths up to n = 8, the Ki was <10 nM.41 The 

lipophilicity does not change greatly between log P of 2-3, however; the in vivo 

biodistribution studies in normal mice showed that when n > 5, there was a dramatic 

drop-off in brain penetration.41 These findings are unexpected because the molecular 

weight for 36 (n = 6) is 490, which is below the commonly accepted cut-off point of 600 

for penetration of intact BBB.29 It is likely that molecular size is only one of the factors 

controlling brain penetration of small and neutral molecules.45 The flexible and  polar 

FPEG chain can also interfere and limit brain penetration.41  

Based on its structure-activity characteristics, neutrality, and lipophilicity, 36, 

with a PEG length of 3, was chosen to go on to further testing.41 This ligand is equivalent 

to BAY 94-9172 (AV-1, 37), which was reported as a useful in vivo imaging agent for 

targeting Aβ plaques in the living human brain.46 

  

 37 

Compound 37 provides an excellent combination of in vitro and in vivo properties 

for Aβ plaque labeling, which constitute desirable characteristics suitable for in vivo 
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imaging agents.41 These properties include: (1) high in vitro binding affinity (Ki < 10 

nM); (2) in vitro labeling of post-mortem human brain tissue sections displaying 

excellent labeling of Aβ plaque; (3) very high in vivo brain penetration and fast washout 

from normal brain regions; (4) high ex vivo labeling of Aβ plaque labeling in transgenic 

mice and excellent PET images in normal primate brain (high penetration and fast 

washout from normal regions); (5) low toxicity in normal animal models, and; (6) 

efficient 18F labeling procedure adaptable for automated synthesis of PET tracers under a 

cGMP manufacturing condition.41 This last property is important because the half-life of 

18F is 110 min, which means there is a time-constraint on making the final drug product 

for regional distribution.41 Compound 37 was reported as a useful in vivo imaging agent 

for targeting Aβ plaques in living humans.46 The preliminary clinical data indicated that 

37 showed great promise as a PET imaging agent for detecting Aβ plaques in the living 

human brain.41 The optimal signal-to-noise ratio of 37 was reached at 70-90 min after iv 

injection.41  

With this information, it was found that adding a styrylpyridine to the ring 

reduced lipophilicity even further.41 From a series of styrylpyridines, AV-19 (38) and 

AV-45 (Amyvid, 39) were selected.42 These candidates have more or less met the criteria 

used for developing compound 37: (1) high binding affinity to Aβ aggregates (Ki  < 10 

nM); (2) high binding selectivity (Ki for other sited, >100-fold; of particular importance 

is that there is no tau binding); (3) easily labeled with 18F for imaging with a 

radiochemical yield ranging from 20% to 35%; (4) a class of molecules with low MW (< 

500), acceptable lipophilicity (measured log P = 0.1-3.5), and neutral; (5) good initial 

brain uptake and desirable pharmacokinetics (high initial uptake of  >6.0% dose/g at 2 
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min after iv injection and fast washout at 30 min, less than 30% of initial uptake 

remaining in the brain of normal mice); (6) high brain uptake and fast washout in primate 

brain by PET imaging.41  

  

 38 39 

Initial clinical trials of 38 suggested that the brain uptake was lower than 

expected. This is due to a rapid in vivo metabolism via N-demethylation. The 

monodemethylation of 38 led to the formation of 39, which exhibits excellent brain 

uptake and washout in humans. The signal-to-noise ratio in the brain reaches an optimal 

level in 40-60 min after iv injection. Therefore, PET imaging in AD patients is easier to 

perform.41  

Amyvid (39), approved for Aβ imaging, is a PIB derivative that has a stilbene 

core, a styrylpyridine moiety and a polyethylene glycol (PEG) linker that.67 The PEG 

linker can modulate lipophilicity and therefore allow the agent to more effectively cross 

the BBB and clear the brain readily and the styrylpyridine derivative reduces lipophilicity 

further.41-44 The PEG group also keeps the compound at a relatively low molecular 

weight.44 Amyvid also uses 18F as its radiolabel41,44, allowing for a half-life of 110 

minutes, which makes it more available for regional distribution clinical use.    

Tau Hypothesis 
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The aforementioned weaknesses of the amyloid hypothesis might suggest that 

targeting amyloid β is not the correct route in diagnosing, curing, or even slowing down 

the progression of AD. Another theory to help diagnosis AD is the “tau hypothesis.”47 

The primary function of the microtubule-associated protein (MAP) tau protein is the 

stabilization of microtubules (MTs) that send nutrients to the neurons.47 MAP tau is most 

abundant in the axons of neurons.47 There are six major isoforms of tau expressed in the 

adult human brain, all of which are derived from a single gene by alternative splicing.47 

Tau is characterized by the presence of an MT-binding domain composed of repeats of a 

highly conserved tubulin binding motif48 and which comprises the carboxy terminal (C-

terminal) half of the protein, followed by a basic proline-rich region and an acidic amino-

terminal (N-terminal) region, which is normally referred to as the ‘projection region’. The 

six tau isoforms differ from each other in the number of tubulin-binding repeats (either 

three of four, hence the isoforms are normally referred to as 3R and 4R tau isoforms, 

respectively) and in the presence of either one or two 29 amino-acids long inserts at the 

N-terminal portion of the protein, which is not instrumental for MT-binding.49 Although 

the six isoforms appear to be broadly functionally similar, each is likely to have precise, 

and to some extent distinctive, physiological roles. The various isoforms appear to be 

differently expressed during development, however, the 3R and 4R tau isoforms are 

expressed in a one-to-one ratio in most regions of the adult brain, and deviations from 

this ratio are characteristic of neurodegenerative frontal temporal dementias (FTD) 

tauopathies.50  

In healthy neurons, tau normally has a certain amount of phosphate molecules 

attached and binds to microtubules and stabilizes them.47 In AD and related 
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neurodegenerative disorders that are collectively referred to as tauopathies,51,52 tau 

becomes hyperphosphorylated  and no longer binds to the MTs; instead it becomes 

sequestered into neurofibrillary tangles (NFTs) in neurons, and into glial tangles in 

astrocytes or oligodendroglia. In AD, the largest burden of tau pathology is found in 

neuronal processes known as neutrophil threads or dystrophic neurites.53 The pathological 

consequences of these events could result from a loss of normal tau function combined 

with gains of pathological functions of hyperphosphorylated tau, the filaments formed 

thereof, and the aggregation of these filaments to form glial and neuronal tangles in 

dystrophic neurites.47 

 The loss of tau’s normal MT-stabilizing function would invariably lead to a 

pathological disturbance in the normal structural and regulatory functions of the 

cytoskeleton, which would compromise axonal transport and thus contribute to synaptic 

dysfunction and neurodegeneration.54,55 The importance of the loss of the MT-stabilizing 

function of tau in neurodegeneration was recently validated by proof-of-concept studies 

carried out in vivo, which demonstrated that the MT-stabilizing drug paclitaxel can 

ameliorate the neurodegenerative phenotype of transgenic mouse models of AD-like tau 

amyloid pathologies.56,57 However, the discovery that the total level of NFTs correlates 

with the degree of cognitive impairment58,59 provide the initial circumstantial evidence to 

suggest that toxic gains-of-function by NFTs might play an important part in the 

progression of the disease.  

Small Molecules for Imaging Tau  



31 
 

 In the pursuit of selective binding molecules for tau, small molecules were 

screened to differentiate between amyloid-β plaques, tau neurofibrillary tangles and α-

synuclein.60 To differentiate between these proteins, a library of 72,455 entities was 

screened to establish binding to the tau protein by observing changes in thioflavin-S 

(ThS) fluorescence, followed by a second screening to distinguish the affinity for each 

individual protein.60 From this library of compounds, molecules demonstrating a >10-

fold binding selectivity among these substrates were discovered, wherein those that were 

selective for tau aggregates were found to have at least three aromatic or rigid moieties 

connected by two rotatable bonds.60 During the first screening, 72,455 compounds were 

screened with thioflavin-S (ThS) fluorescence to monitor tau conformation.60 ThS-

reactive tau was prepared with octadecyl sulfate (ODS), which is an alkyl sulfate inducer 

of tau conformational change and aggregation.65 Full length tau was used as a substrate 

because it aggregates in early stages of AD, therefore representing an early marker of AD 

progession.60 Of the molecules screened in the first stage, 45 compounds representing 35 

active and 10 structurally related inactive analogs were chosen for a follow up study.60 

For the second screening, ODS was replaced with arachidonic acid to exclude 

nonspecific alkyl-sulfated mediated effects in ThS. Of the 35 active compounds identified 

in the first screening, all but eight showed similar dose response curves and half-maximal 

activity concentration (AC50) values in the presence of arachidonic acid.60 The eight 

compounds were then removed from study and compounds 40 (Thiazine red R) and 41 

were added to the library because of their high affinity for binding to protein 

aggregates.60 Thiazine red 40 selectively binds to neurofibrillary lesions in AD tissues 

while 41 binds to Aβ aggregates in vitro.61,62 The final test set contained 39 compounds, 
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of which 29 showed AC50 <10 µM (including nine with submicromolar AC50) and 10 

were inactive analogs.60 

  

 40 41 

The active small molecules were placed into 6 scaffolds categories: 

benzothiazole, phenylazenes, quinoxaline nitriles, anilines, anthraquinones and 

indolinones.60 These compounds were then measured for their relative affinity for tau, α-

synuclein, and Aβ1-42. Several of the compounds measured exhibited significant fold 

selectivity for tau relative to at least one other substrate.60 Of these compounds, Evans 

blue (42) and aniline crystal violet (43) were exclusively selective for tau against both α-

synuclein and Aβ1-42. A third compound, Thiazine red (40) was the most selective ligand 

for tau, having a >17 fold selectivity for tau relative to α-synuclein and a >10-fold 

selectivity to Aβ1-42.60 
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Benzothiazole 41, the aniline 44, the anthraquinone 45, and the indolinone 46, 

were all selective for both tau and Aβ1-42 relative to α-synuclein, with the benzothiazole 

being most potent with Ki of 7.8 nM.  

   

 

 

41 44 45   46 

Evans blue (42) was less selective for tau than Thiazine red (40), but was 10-fold 

more potent in all assays, while crystal violet (43) was the most potent of all the 

substrates, however it showed only subtle selectivity.60  

Kuret et al.60 found that aggregates composed of tau, α-synuclein, and Aβ1-42 

display an overlapping variety of small molecule binding affinities. The six different 

scaffold classes that were studied showed tau aggregates to be the most discriminating 

substrate tested with the strongest binding affinities. The α-synuclein fibrils were the least 

discriminating and exhibited weaker overall affinity for the test compounds. Ligand 

selectivity and binding affinity of the compounds for Aβ1-42 aggregates were intermediate 

between those of tau and α-synuclein. The benzothiazine 40 and phenylazene 42 were 

exclusively selective for tau.60 These two compounds shared structural features that 

include at least three aromatic or rigid moieties connected by two rotatable bonds.60 This 

organization allows for the rings to be separated, which allows for certain geometries that 

may be beneficial for selectivity.60 These structures are completely planar, a feature 
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which has also been proposed to be beneficial for tau binding.63 Another common feature 

for tau binding is the presence of a hydroxyl group ortho to an azo linker like the one in 

41, which has been postulated to favor the hydrazone over the azo tautomer, thereby 

creating a six-membered ring through hydrogen bonding which would result in a third 

ring possibly being important for selective interactions with tau filaments. Benzylidene 

oxindole 47 was an effective binder of all filamentous substrates tested and antagonized 

tau fibrillation. Interestingly, the structurally similar indolinone 48 did not bind to any 

aggregates tested. This could be due to the fact that the 1,2,3-trimethoxy substituted 

aromatic ring is closer to the indolinone ring.60 

      

 47 48 

The goal of Kuret’s work was to find a small molecule to serve as a vector for a 

possible tau-imaging agent for the diagnosis of AD.64 Since β-amyloid may not be the 

best biomarker for AD diagnosis, another promising area could be tau neurofibrillary 

tangles. Like most good imaging agents, tau-imaging agents must fulfill four criteria to 

fulfill their diagnostic potiental.64 First, a good tau-imaging agent must be able to cross 

the BBB after intravenous injection while it rapidly leaves the brain. Second, the tau 

imaging agents should be capable of engaging their target within cells undergoing 
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neurofibrillary degeneration. Third, tau-directed radiotracers must bind a target that 

varies in composition and post-translation modification. Finally, successful radiotracers 

must bind tau aggregates with sufficient selectivity so that neuritic lesion spatial 

distribution is not masked or confounded by other lesions that appear in the disease.64 

 There has been previous progress in developing a tau-selective PET radioligand. 

One study is by a group at the Tohoku University/Austion Hospital in Melbourne, who  

synthesized a series of 18F-labeled aryl quinoline derivatives. The compounds that were 

best at binding to tau protein were compounds THK-523 (49), THK-5105 (50), and THK-

5117 (51).  In vitro binding assays demonstrated that 50 and 51 had a higher binding 

affinity for tau protein aggregates than 49. Autoradiographic analysis of AD brain lesions 

of these compounds showed that these radiotracers preferentially bound to neurofibrillary 

tangles and neutrophil threads. These derivatives demonstrated ample initial brain uptake 

and faster clearance in normal mice compared to 49. Compound 50 and 51 showed no 

toxic effects related to the administration of these compounds in mice and rats and no 

significant binding for various neuroreceptor, ion channels, and transporters.68  
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A Siemens/Lilly group reported the 18F-labeled T807 (52) and T808 (53) 

compounds. Both groups have focused initially upon the binding of their tau-selective 

radioligands in the AD brain.  

  

 52 53 

The Siemens/Lilly group found that in a study involving 6 human subjects, 52 

showed a consistently higher standardized uptake value ratio (SUVR) in the AD subjects 

(1.20-1.80) compared to the MCI (1.02-1.38) and HC subjects (1.03-1.16) across the 

temporal lobe, partietal lobe, frontal lobe, and hippocampal area. The pattern of tracer 

retention overlaps with the known areas of paired helical filaments (PHF) tau formation 

according to Braak staging, strongly suggesting that 52 is a promising new biomarker for 

detecting tau deposits in AD patients.69 

Studies of radiotracer 53 in 11 subjects showed promising in vivo imaging of 

PHF-tau in AD subjects. The tracer displayed favorable distribution and uptake kinetics 

with a rapid delivery into the brain and clearance from non-target tissues. These results 

suggest the possibility of brain imaging as early as 30 min after injection. All subjects 

tested showed low tracer retention in the cerebellum and white matter. The HC subjects 

showed little radiotracer retention in the cortical gray matter. The activity in bone 

resulting from [18F]-defluorination is separated from the cortical gray matter and does not 
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interfere with the imaging evaluation, especially at early time points. The more severely 

demented subjects generally showed higher tracer retention across more brain regions 

than less severely demented or HC subjects, suggestive of binding to PHF-tau deposits, 

with one exception being a 96-year-old dementia patient who did not show increased 

radiotracer retention.70 

Additionally, in terms of tau selective agents, Maruyama et al. studied the in vitro 

and in vivo properties of phenyl/pyridinyl- butadienyl-benzothiazoles/benzothiazoliums 

(PBB). Two, in particular, are compounds PBB1 (54) and PBB3 (55).71,72  

   

 54 55 

These PBB compounds fluoresce and are used in in vitro assays and in vivo 

optical imaging studies in transgenic taupathy mouse models. Maruyama et al screened 

compounds 54 and 55 for selective binding to tau deposits (from both AD and non-AD 

tauopathies) over Aβ plaques with the most promising compound being PBB3 (55). 

Maruyama found that compounds with extended conjugated backbones of 13 to 15 Å 

bound most favorably to tau.72 The conjugated butadiene linkage between the two 

aromatic ring systems of PBBs provides the basis for their high tau binding affinities. The 

structural similarities between 12 and 55 are interesting to note because their binding 

affinities to aggregated Aβ and tau are very different. It is also important to note the 

difference in selectivity between 54 and 55. Just like compound 12, compound 54 also 
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binds to Aβ plaques.71 Possessing  π-electron conjugated backbones; these compounds 

exhibit affinities for pathological inclusion in a broad range of tauopathies.71.72  

In vivo and ex vivo fluorescence imaging of tau inclusions with PBBs utilized 

PS19 transgenic mice expressing a FTDP-17 four-repeat tau isoform with the P301S 

mutation, and tau deposits were apparent in the brain stem and spinal cord of the mice. 

Other fluoresence imaging experiments were conducted in a second mouse model 

taupathy (rTg4510 mice expressing the FTDP-17 four-repeat P301L mutation), and these 

mice demonstrated specific binding of PBBs to neuronal tau inclusions in the neocortex 

and hippocampus. In addition, several PBBs were radiolabeled with 11C and examined in 

the mice after intravenous injection using ex vivo autoradiographic analysis and micoPET 

imaging. In the event, [11C]55 performed well in the experiments and demonstrated low 

nonspecific binding, high specific binding to tau deposits, and saturable specific 

binding.72 

The binding of [11C]55 was also compared to [11C]12 using in vitro 

autoradiography of hippocampal sections of AD and control brains, and clear binding 

differences were observed. This comparison is consistent with specific binding of [11C]55 

to tau deposits in NFTs and neutrophil threads and the absence of specific [11C]12 

binding to these structures. PET imaging studies with [11C]55 were conducted in subjects 

with normal cognition, probable AD, or probable CBD and compared to those with 

[11C]12. Compound [11C]55 showed lower nonspecific white matter binding than [11C]12 

in all subjects, but probable AD subjects showed elevated retention with [11C]55 in 

medial temporal regions relative to [11C]12 as well as high levels of  [11C]55 retention in 
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lateral temporal and frontal cortical areas relative to the control subjects. The in vivo 

behavior of [11C]55 in the brains of probable AD in control subjects was consistent with 

that of a tau-selective radiopharmaceutical and was distinctly different from the binding 

pattern of the Aβ-selective imaging agent [11C]12. PET scans using [11C]12 and [11C]55 

in the single CBD subject resulted in low levels of [11C]12 retention throughout the brain 

but significant retention of [11C]PBB3 in neocortical and subcortical regions.71  

The pharmacokinetic properties of the radioligand 55 are generally favorable, 

with rapid brain uptake, relatively fast clearance of tracer from brain regions containing 

low tau loads, reversible specific binding of the tracer in tau-containing brain regions, 

and the absence of lipophilic radiolabeled metabolites in the blood. There are, however; 

several issues that remain for the use of 55 as a tracer: (1) the basis of the relatively high 

retention of the tracer in the dural venous sinuses of human subjects; (2) binding and 

imaging data in three-repeat predominant tau isoform cases such as Pick’s disease; (3) the 

practical impact of the relatively low specific signal of [11C]PBB3 in brain regions of 

high tau load (only 1.5 SUVR units) with respect to detection sensitivity limits in a 

variety of subjects; (4) thorough pharmacokinetic analyses of the radioligand in control, 

probable AD, and three- and four-repeat non-AD tauopathies; (5) critical comparison of 

the properties of [11C]PBB3 relative to those of other putative tau-selective PET imaging 

agents such as the 18F-labeled THK compounds and the 52 and 53 and; validation of tau 

quantification in correlative imaging-postmortem studies as have been done for several 

Aβ-imaging tracers.71,72 

Consideration of Benzylidene Oxindoles as Potential Tau Binding Agents 
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As described earlier, benzylidene oxindoles represent one of six identified classes 

of molecules demonstrated to exhibit selective binding to the tau protein. Benzylidene 

oxindoles are nitrogen-linked Michael acceptors that are most commonly regarded as 

protein kinase inhibitors. Such compounds were amongst the first to be identified as 

receptor tyrosine kinase (RTK) inhibitors. SUGEN in 1998 found that: (1) 3-[(five-

membered heteroaryl ring)methylidenyl]indolin-2-ones are highly specific against the 

vascular endothelial growth factor [VEGF (Flk-1)] RTK activity; (2) 3-(substituted 

benzylidenyl)indolin-2-ones containing bulky groups in the phenyl ring at the C-3 

position of indolin-2-ones showed high selectivity toward the EGF and Her-2 RTKs and; 

(3) pyrrolic compounds containing an extended side chain at the C-3 position of indolin-

2-one exhibit high potency and selectivity when tested against the PDGF and VEGF (Flk-

1) RTKs.73 Crystallographic data show that both the proton at the N-1 position and the 

oxygen at the C-2 position of indolin-2-ones bind to the peptide backbone with ATP 

binding pockets of these RTK, and it was reasoned that bidentate hydrogen bonding 

between the indolin-2-one flat core structure in the adenine binding site may play a 

crucial role to block entry of ATP in the binding site.73 Both the proton at the N-1 

position and the oxygen atom at the C-2 position of the indolin-2-one were found to be 

coordinated to the peptide backbone within the adenine-binding cleft. Additionally, 

alkylation at the N-1 position of the indolin-2-one greatly decreases the inhibitory 

potency of these 3-substituted indolin-2-ones against both the PDGF and VEGF (Flk-1) 

RTKs.73 Thus, since the binding site of benzylidene oxindoles to tau protein is not 

known, it will be important to determine whether or not the N-H functionality, critical for 

kinase inhibition, is a necessary requirement for tau binding. 
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PET and SPECT Imaging 

 Since this thesis deals with the design and synthesis of medical imaging agents, it 

only remains to provide a brief overview of the technology involved. There are two types 

of nuclear medicine imaging devices: single proton emission computed tomography 

(SPECT) and positron emission tomography (PET). The radionuclides utilized play an 

important part for PET and SPECT imaging based on their physical characteristics of 

different half-lives and mode of decay.41 Mode of decay is the emitting of a single photon 

or in the case of PET a positron which is subsequently annihilated with a neighboring 

electron to emit two 511 keV photons at 180o apart.41 PET and SPECT have been 

reported for measuring changes in regional glucose metabolism and blood flow with 

aging and dementia.41 For instance, [18F]-2-fluoro-2-deoxyglucose (56, FDG) is a PET 

radiotracer that has been shown to improve the routine clinical diagnosis of suspected 

AD. When a patient presents clinical symptoms of dementia, cerebral rate of glucose 

(CMRglc) reductions have occurred that are detectable on 18F-FDG PET scans as specific 

patterns of regional hypometabolism as compared with age-matched healthy elderly 

individuals.74  

 

   

 56  

O
OH

18F
OH

OH

HO



42 
 

  

  

Results and Discussion 

In light of the findings by the Kuret group that benzylidene oxindoles were one of 

six classes of organic molecules to display high affinity for the tau protein,60,64 the WSU 

group initiated a program of research to examine the utility of such molecules in the area 

of Alzheimer’s disease (AD) as potential vectors for tau directed imaging agents. From 

the outset, SAR information was negligible since only two benzylidene oxindoles (based 

upon the kinase inhibitor SU4312 57) were examined. In this regard, the Kuret study 

indicated that substitution of an iodo substituent (versus –H) at the C-5 position of 57 had 

little effect on tau binding. This is rather unusual as there are substantial differences in 

the size and polarizability of these two substituents. Our overall plan, therefore, was to 

ascertain: a) if the nature and/or position of a halogen on the benzenoid ring affects tau 

binding; b) if substitution of such benzylidene oxindoles with N-alkyl groups inhibited 

tau binding, and; c) if extending the conjugation of the scaffold leads to an increase in 

tau/Aβ binding (vide infra compound 59). 

In the hopes that binding to tau might be modulated by appropriate substitution of 

the benzenoid ring of benzylidene oxindoles, we were rewarded by the fact that both 

chloro and fluoro substituents at C-5 were found to improve tau binding (Kuret / Ketcha / 

Knisley unpublished results). Moreover, since the 5-chloro substituent appeared to exhibit 

better binding than the 5-fluoro analogue, we next sought to examine the role of 

positional isomerism for chloro substituents.79 
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 57 58  59 

 

 To that end, both the 6- and 7-chloro-2-oxindole derivatives 60 and 61 were 

purchased from Sigma Aldrich ($47.20/5g and $53.40/1g respectively) and were allowed 

to react with 4-(dimethylamino)benzaldehyde (62) in ethanol and a catalytic amount of 

piperidine to afford the desired benzylidene oxindoles 63 and 64.73  

 

Scheme 1 

 

  

  

 

 

 60: 6-Cl 62 63: 6-Cl 

 61: 7-Cl  64: 7-Cl 

 

 Although the data is not provided herein, it was found by the Kuret group that the 

6- and 7-chloro-3-(4-dimethylaminobenzylidene)indolin-2-ones, 63 and 64, were less 
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effective than the 5-Cl derivative in terms of tau binding. Table 1 shows the respective 

compounds with their percent yields and melting points. As will be detailed later, the 6- 

and 7-chloro-3-(4-dimethylaminobenzylidene)indolin-2-ones were observed to exist as 

mixtures of the Z and E stereoisomers about the exocylic double bond. The proportion of 

E or Z isomer is typically found to be dependent on the characteristics of the substituents 

placed at the C-3 position as well as the solvent employed for the NMR. Through the use 

of 1H NMR analysis, the ratio of E or Z isomer could be determined due to the chemical 

shifts of the aromatic protons on the benzylidene ring (H-2’ and H-6’) at the C-3 position 

of the oxindole core (vide infra). In Table 1, the Z isomer is presented as a percentage 

along with the chemical shifts of the aromatic protons from the benzylidene (H-2’ and H-

6’) proton NMR peaks. Since there was a mixture of the E and Z isomers, the values for 

the H-2’ and H-6’ proton NMR peaks (which appear as doublets, were used for both 

isomers if applicable) are provided.  

Table 1: 3-Substitued Indoline-2-ones from Knoevenagel Condensation 

 

 

 

 

 

 

 

 

 

 
 

Compound 
 
 

Percent 
yield Melting point Z% 

Z 
isomer, 
H-2’-6’ 
NMR 
shift, 
ppm 

E 
isomer, 
H-2’-6’ 
NMR 
shift, 
ppm 

63 

 

 

75% 

 

253-256oC 

 

30 

 

8.44 

 

7.76 

64 

 

89% 259-261oC 90 8.47 7.76 
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Having begun to explore the positional effects of chloro substituents on tau 

binding, we next sought to examine the role of an N-alkyl substituent. To that end, it was 

deemed necessary to develop a practical synthesis of N-methyl oxindoles to see if having 

a small alkyl group at the nitrogen position would affect tau binding. Since oxindoles 

display ambident reactivity at the nitrogen and the C-3 position in alkylation 

processes,75,76 it is common practice to N-alkylate the corresponding isatins in the 

presence of an appropriate base and then reductively deoxygenate the C-3 ketone 

carbonyl with a Wolf-Kishner type reaction to obtain the N-alkylated oxindole (Scheme 

2).  

Scheme 2 
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The Ketcha group had previously reported two methods for the expedient N-

alkylation of isatins employing either KF/alumina in acetonitrile (ACN)  or 1,8-

diazabicyclo-[5.4.0]undec-7-ene (DBU) in ethanol.77-80 In these previous studies, 

alkylations were only conducted with benzylic halides derivatives and propargyl halides 

as alkylating agents. So it was therefore  necessary to examine if a small alkyl group 

could be likewise be introduced at the nitrogen position, and if such molecules could 

readily be reduced to the corresponding -alkyl oxindole prior to the ultimate and aldol 
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condensation. Employing the former method, it was found that alkylation of isatin using 

iodomethane (1.5 eq) in the presence of KF/alumina84-85 afforded 1-methylindoline-2,3-

dione (65) in moderate yields. It was also found that alkylation of isatin using 

iodomethane (1.5 eq) in DMF (5 mL) with K2CO3 (1.3 eq) as a base resulted in a purer 

product and involved an easier workup, when compared to using KF/alumina. Table 2 

shows the respective conditions employed. yields and melting points of 1-

methylindoline-2,3-dione (65) 

Scheme 3 
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 65 

A proton NMR spectrum (Figure 1) for compound 65 shows that there is a triplet 

of doublets furthest downfield at 7.59 (HA, J = 1.13 Hz, J = 7.79 Hz), a doublet at 7.54 

(HB, J = 7.47 Hz), a triplet at 7.10 (HC, J = 7.53 Hz), a doublet at 6.89 (HD, J = 7.91 Hz) 

and a singlet at 3.22 ppm (HE). These data correspond to NMR data from Sigma-

Aldrich’s website.91 (Figure 2).

 

Figure 1: 1H Proton of 1-methlyindolin-2,3-one 

 

 

 

Figure 2: 1H Proton of 1-methylindolin-2,3-one  
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Having in hand the requisite N-methylisatin , it was then necessary to establish if 

this compound could then be reduced under Wolf-Kishner conditions to the 

corresponding oxindole86 in anticipation of  condensation with a variety of benzaldehydes 

possessing various electron-donating groups to afford a small library of N-

methylbenzylidene oxindoles for  tau binding studies. The traditional route employed in 

this research group was to treat the isatin (1 mmol) with hydrazine hydrate 80% (15 mL) 

for 3 h with moderate heat and then acidify the solution with 3M HCl to a pH of 4 and let 

the resulting solution sit overnight.80 In this case, this traditional route seemed ineffective 

because the product, upon standing, failed to fall out of solution. The reaction was tried 

again, but rather than waiting overnight for crystallization to occur, the reaction mixture 

was extracted with ethyl acetate (3 x 30 mL) and evaporated under reduced pressure to 

yield a brown oil. The oil was then recrystallized from dichloromethane/hexanes to afford 

a white solid in very low yields (e.g., 60%) to afford 1-methyl-2-oxindole (66). However, 

although the observed melting point (70-73oC) was significantly lower than the literature 

value of 85-87oC, the compound was shown to be pure by GC/MS, TLC and NMR. Due 

to the observed low yield, it was brought to mind that 1-methyl-2-oxindole was available 

from Sigma-Aldrich at a modest cost of $96.00/5g.  

Scheme 4 
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 In results not described herein, it was found that that N-methylation of 

benzylidene oxindoles does not negatively impact tau binding (Cox/Ketcha/Kuret 

unpublished). Having now a point of attachment for a possible radiolabeled fluorine 

reporter group we then sought to investigate similar benzylidene oxindoles bearing an N-

2-fluoroethyl group as the cold version of a possible tau-imaging agent. The cold version 

is the non-radioactive version of the imaging agent, which would be used to see examine 

tau binding. If such “cold” versions exhibited the desired binding affinities, a radioactive 

fluorine could then be incorporated for PET imaging studies.  

To that end, isatin (67) was N-alkylated with 2-fluoroethyl-tosylate (68) to 

produce the corresponding 1-(2-fluoroethyl)indol-2,3-dione (69) in 40 % yield with a 

melting point of 126-128oC (Scheme 5).  

 

Scheme 5 
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 A proton NMR spectrum (Figure 3) for compound 69 shows that there is a 2H 

multiplet furthest downfield at 7.64-7.58 ppm (HA), a triplet of doublets at 7.14 (HB, J = 

0.83, 7.55 Hz, 1H), a 1H multiplet at 7.04-7.01 ppm (HC), a doublet of triplets at 4.71 

(HD, J = 4.76, 47.02 Hz, 2H) and a doublet of triplets at 4.05 (HE, J = 4.76, 26.27 Hz, 

2H). The extra splitting at 4.71 and 4.05 ppm is due to the effects of the fluorine coupling 

with the hydrogens and has a coupling constant of 198 ppm. 

 

Figure 3: 1H Proton NMR of 1-(2-Fluoroethyl)indol-2,3-one 

 

 

The product 69, was then reduced to the corresponding 1-(2-fluoroethyl)indol-2-

one (70) in 60.7 % yield using hydrazine hydrate (80%) and refluxed for 2 h in a RBF 

wrapped with aluminum foil in an oil bath at 130oC. After 2 h, the solution was diluted 

with water (5 mL) and then extracted with ethyl acetate (3 x 30 mL), washed with brine 

(30 mL), dried  (Na2SO4) and evaporated to afford brown solid (Scheme 6).  

 Having developed a synthesis of this fluoroethylated precursor, it now remains to 

conduct Knoevenagel condensations of 70 with various aromatic aldehydes bearing 

electron-donating groups to yield the “cold” versions of potential tau imaging agents  
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Scheme 6 

 

 

 

  

 69 70 

 Returning now to the case of the N-methyl oxindole analogs, Knoevenagel 

condensations with various aldehydes (1.2 eq) utilizing piperidine (0.147 eq) as a catalyst 

in ethanol (4 mL) were conducted to synthesize the desired library of N-methyl-3-

substituted benzylidene oxindoles for tau binding studies. Since it appears as though N-

alkylation (with substituents of modest size) does not inhibit tau binding properties, such 

a library might complement the analogous N-H versions in providing molecules with 

expectedly greater lipophilicity so as to allow for a range of BBB transport properties.  

Scheme 7 
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The 3-substituted N-methylbenzylidene oxindoles thus prepared consisted of 

either the E or Z isomer or a mixture of the two. To determine the E or Z stereochemistry 

of the products, 1H NMR analysis was used, wherein the E/Z isomer ratio could be 

determined by examination of the chemical shifts of the H-2’ and H-6’ aromatic protons 

on the benzylidene ring, and/or the fact that the vinylic proton can also be significantly 

influenced by configuration. If the compound were an E isomer, the vinylic proton (Hvin) 

is more deshielded due to the influence of the C-2 carbonyl just as their ortho-

benzylidene (Ho) are shifted downfield due to the C-2 carbonyl. Therefore, in an E 

isomer, the H-2’,6’ protons would fall in the range of 7.45-7.84 ppm, compared to a Z 

isomer, in which the 2,6’ protons would fall in the range of 7.85-8.53 ppm.89 In cases 

where the 2’,6’ protons are substituted, only the influence of the vinylic proton was used 

to determine configuration, where the vinylic proton occurs about 7.84 ppm for E and 

7.55 ppm for Z.90 Table 3 shows the N-methylbenzylidene oxindoles prepared and their 

properties. The chemical shifts are reported for the 2,6’ protons unless they are 

substituted. In this case the chemical shift is report with the (Hvin). The areas of the two-

isomer protons (H-2’ and H-6’) peaks were employed to calculate the percent Z. If the H-

2’ and H-6’ were substituted then the vinylic protons are used to calculate the percent Z. 

 
Table 3: N-Methyl benzylidene oxindoles  

 Compound Percent  
yield 

Melting  
point 

Z% H-2’ and 
H-6’ 

proton δ 
(ppm) 

(Z) 

H-2’ and 
H-6’ 

proton δ 
(ppm) 

(E) 
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41% 76-90oC 38 8.50 7.71 

73 

 

53% 77-81oC 48 8.72 7.61 
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29% 108-110oC 100 N/A 7.43 

(Hvin) 
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72% 148-151oC 100 N/A 7.64 
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23% 101-103oC 22 8.39 7.71 
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While the effects of a small N-alkyl group on the tau binding properties of 

beznzylidene oxindoles were being evaluated, a paper came out which indicated that 

extended conjugated systems of 15-18 Å were in fact optimal for binding to tau protein 

(e.g., compounds 54 and 55 as discussed previously).,  
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Accordingly, knowing that extended conjugated backbones enhance tau-binding 

properties, a new class of extended benzylidene oxindoles was synthesized with 

conjugated aryl aldehydes.  
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Scheme 8 

 

 

 

 

 

 66: R1 = H; R2 = CH3        80-85 

  79: R1 = 5-Cl; R2 = H 

 To that end, trans-cinnamaldehyde (1.2 eq) was first reacted with 1-methyl-2-

oxindole with piperidine as a catalyst (0.147 eq) to afford a red-brown solid, which was 

recrystallized with ethanol to yield 1-methyl-3-(3-phenylallylidene)indolin-2-one (80). In 

a similar manner,  5-, 6-, and 7-chlorooxindole were reacted with 4-

(dimethylamino)cinnamaldehyde so as to provide extended versions of the tau binding 

parent possessing the dimethlyamino substituted aryl ring compounds known to exhibit 

tau binding. The 5-chloro derivative in this case was obtained as a red solid, which was 

hard to purify because it was not very soluble in the solvents tested (DCM, MeOH, 

EtOH, benzene). It took an excessive amount of ethanol to recrystallize the product, 

which yielded relatively pure 5-chloro-3-(4-dimethylamino)phenyl)allylidene)indolin-2-

one (81). The 6-chloro derivative was produced as a dark red solid, and it also took an 

excessive amount of ethanol to get the product back into solution to yield 6-chloro-3-(4-

dimethylamino)phenyl)allylidene)indolin-2-one (82). Finally, the 7-chloro derivative was 
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produced as a dark purple solid and was insoluble in a number of solvents (DCM, MeOH, 

EtOH, benzene). In order to further purify this samples, whatever sample that did 

dissolve in ethanol was run through a silica gel column (70:30, hexanes:EtOAc) to yield 

7-chloro-3-(4-dimethylamino)phenyl)allylidene)indolin-2-one (83). Interestingly, the 

reaction between 1-methyl-2-oxindole and 4-(dimethlyamino)cinnamaldehyde produced 

a dark red oil, which could be easily dissolved in DCM and run through a silica gel 

column (70:30, hexanes:EtOAc) to produce 1-methyl-3-(4-dimethylamino)phenyl)- 

allylidene)indolin-2-one as a red solid (84). Lastly, the reaction between oxindole and 4-

(dimethylamino)cinnamaldehyde produced 3-(4-dimethylamino)phenyl)allylidene)-

indolin-2-one as a red solid (85), which could easily be recrystallized with ethanol.  

Table 4 shows the resulting compounds and their percent yields. The E and Z isomers 

were not calculated; because it was believe that significant isomerization was happening 

with the products when heated. 

 

Table 4: 3-Substitued-indolin-2-ones from Knoevenagel Condensation 

 Compound Percent 

Yield 

Melting 

Point 

80 

 

 

31% 

 

162-164oC 
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81 

 

 

47% 

 

280-283oC 

82 

 

 

12.5% 

 

269-271oC 

83 

 

 

74% 

 

243-245oC 

84 

 

 

37% 

 

159-161oC 

85 

 

 

13% 

 

230-234oC 

 

Summary 

 The purpose of this research was to design and synthesis a series compounds 

compounds that could one day be used as the next imaging agent for tau. It had 

previously been shown in our research group that a 5-chloro substituent on the indolinone 

ring displayed better binding to tau than a 5-fluoro substituent. It was therefore necessary 
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to establish the positional selectivity of such a chloro substituent, and to that end, the C-6 

and C-7 chloro derivatives of 3-(4-dimethylaminobenzylidene)indolin-2-one were 

prepared.  It was found that benzylidene oxindoles with a chlorine atom on the C-5 

carbon was better in binding to tau than a chlorine atom on the C-6 and C-7 carbon of 

benzylidene oxindoles. Next, it was important to known whether a small alkyl group on 

the nitrogen of the indolinone would affect tau binding in any way. Having established 

(Cox unreported) that N-alkyl groups do not negatively impact tau binding, a library of 1-

methyl-2-benzylidene oxindoles was synthesized. Finally, based on a recent disclosure 

that heterocycles with extended tethering to an aromatic ring with an electron-donating 

group (extended conjugated backbone of 15-18 Å) exhibited selective binding for the tau 

protein, a library of such compounds in which an aromatic ring beraing an electron 

donating was tethered to an indolinone ring was prepared. 

 The significant findings from this research as regards tau binding include: a) 5-

chloro indolinones enhance tau binding relative to other positional isomers; b) relatively 

small N-alkyl substituents on the indolinone core do not inhibit tau binding and might be 

employed as a means of attaching an 18F-radiotracer for tau directed PET imaging agents, 

and; c) indolinones with extended conjugation are effective tau binding agents, and 

perhaps can be utilized as vectors for potential PET imaging agents. 
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Experimental 

Chemical Analysis 

Melting points were determined via the use of open capillaries with an Electrothermal 

melting point apparatus and are reported uncorrected. Elemental analyses were performed 

by Midwest Microlab, Indianapolis, IN. Elemental analysis results are within +0.4% of 

the theoretical values. The 1H and 13C NMR data were obtained on a Bruker Avance 300 

MHz NMR in CDCl3 or DMSO-d6 solution unless otherwise indicated. The chemical 

shifts are reported in δ (ppm) downfield from tetramethylsilane as an internal standard; 

coupling constants (J) are in Hz. The following abbreviations are used to describe peak 

patterns where appropriate: s, singlet; d, doublet; dd, double doublet; t, triplet; q, quartet; 

dt, double triplet; m, multiplet. GC/MS measures were performed using an Hewlett-

Packard 6890 Series GC and Agilent Technologies 7820A Series GC with auto injection 

and mass fragments are reported in, m/z. The GC’s were coupled with a mass 

spectrometer with a Hewlett-Packard 5973 mass selective/quadrupole system and a 

Agilent Technologies 5975 mass selective/quadrupole system respectfully. Flash column 

(Silica Gel, Premium Rf, 200-400 mesh, Sorbent Technologies) and thin layer 

chromatography (TLC) were performed on silica gel with indicated solvents. 

 

6-Chloro-3-(4-dimethylaminobenzylidene)indolin-2-one (63) (KWC-II-78) 

To a 4 dram vial was added 6-chloro-2-oxindole (60) (0.2036 g, 1.215 mmol), 4-

(dimethylamino)benzaldehyde  (0.2280 g, 1.528 mmol, 1.2 equiv), piperidine (18 µL, 



60 
 

0.179 mmol, 0.147 equiv) and EtOH (4 mL). The vial was heated at 90˚C for 3 h while 

stirring. The mixture was allowed to cool to rt and placed in the freezer overnight, after 

which time a brown precipitate (0.2712 g, 75%) was collected by vacuum filtration and 

washed with EtOH: mp 253-256oC; LC/MS (m/z) 299 (M++1); Rf = 0.61 (1:1 

Hexanes/EtOAc); 1H NMR (300 MHz, DMSO-d6) δ: 10.65 (bs, 1H, N-H), 7.76 (d,  

J = 8.27, 1H), 7.67-7.61 (m, 2H), 7.55 (s, 1H, H-Vinyl), 6.99-6.91 (m, 1H), 6.88-6.87 (m, 

1H, H-7), 6.83-7.74 (m, 2H), 3.03 (s, 6H, N(CH3)2); 13C NMR (75 MHz, DMSO-d6) δ: 

169.8, 1512.0, 143.8, 138.7, 132.9, 132.6, 123.2, 121.3, 121.2, 121.2, 120.9, 112.0, 110.1, 

40.1.  Anal. Calcd for C17H17ClN2O: C, 68.34; H, 5.06; N, 9.38; Found: C, 68.18; H, 

4.95; N, 9.34. 

 

7-Chloro-3-(4-dimethylaminobenzylidene)indolin-2-one (64) (KWC-II-79) 

To a 4 dram vial was added 7-chloro-2-oxindole (61) (0.2308 g, 1.377 mmol), 4-

(dimethylamino)benzaldehyde  (0.2535 g, 1.699 mmol, 1.2 equiv), piperidine (20 µL, 

0.202 mmol, 0.147 equiv) and EtOH (4 mL). The vial was heated at 90˚C for 3 h while 

stirring. The mixture was allowed to cool to rt and placed in the freezer overnight, after 

which time an orange precipitate (0.3658 g, 89%) was collected by vacuum filtration and 

washed with EtOH: mp 259-261oC; LC/MS (m/z) 299 (M++1); Rf = 0.59 (1:1 

Hexanes/EtOAc); 1H NMR (300 MHz, DMSO-d6) δ: 10.88 (bs, 1H), 8.46 (d, J = 9.01 

2H), 7.72 (s, 1H, H-Vinyl), 7.60 (d, J = 7.37 Hz, 1H), 7.16 (d, J = 8.03, 1H), 6.96 (t, J = 

7.83 Hz, 1H), 6.78 (d, J = 9.03, 2H), 3.05 (m, 6H, N(CH3)2); 13C NMR (75 MHz, DMSO-

d6) δ:168.0, 152.6, 140.5, 137.0, 135.6, 128.5, 126.7, 122.2, 122.1, 119.7, 117.3, 113.7, 
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111.5, 40.0 ppm.  Anal. Calcd for C17H17ClN2O: C, 68.34; H, 5.06; N, 9.38; Found: C, 

68.30; H, 5.06; N, 9.31. 

 

1-Methylindolin-2,3-dione (65): Route A 

To a 250 mL RBF was added isatin (67) (1.2099 g, 8.223 mmol), KF/alumina (7.5675 g, 

49.495 mmol, 6 equiv), iodomethane (767 µL, 12.3 mmol, 1.5 equiv) and acetonitrile (45 

mL). The resulting solution was refluxed overnight while stirring. After the mixture was 

allowed to cool to rt, the suspended KF/alumina was removed by vacuum filtration. The 

filtrate was then evaporated in vacuo and the resulting solid was recrystallized with 

DCM/hexanes to afford an orange solid (0.7988 g, 60.3%): mp 119-120oC (lit. 81 mp 130-

133oC); GC/MS (m/z) 161 (M+), 28 (100%); LC/MS (m/z) 162 (M++1); Rf = 0.56 (1:1 

Hexanes/EtOAc).  

 

1-Methylindolin-2,3-dione (65): Route B (65) (KWC-II-63) 

To a 4 dram vial was added isatin (67) (1.0306 g, 7.005 mmol), K2CO3 (1.2929 g, 9.355 

mmol, 1.3 equiv), iodomethane (480 µL, 7.705 mmol, 1.5 equiv) and DMF (5 mL). The 

vial was heated at 80oC for 3 h while stirring. The mixture was allowed to cool to rt and 

was then pour over ice to afford an orange solid (0.7162 g, 63.4%) and was recrystallized 

with EtOH (0.5718 g, 50.7%): mp 129-131oC (lit. 81 mp 130-133oC); GC/MS (m/z) 161 

(M+), 28 (100%); Rf = 0.56 (1:1 Hexanes/EtOAc). 1H NMR (300 MHz, DMSO-d6) δ: 

7.59 (td, J = 1.13, 7.79 Hz, 1H), 7.54 (d, J = 7.47, 1H), 7.10 (t, J = 7.53 Hz, 1H), 6.89 (d, 

J = 7.91 Hz, 1H), 3.22 (s, 3H): 13C NMR (75 MHz, DMSO-d6) δ:183.3, 158.2, 151.4, 
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138.5, 125.1, 123.8, 117.4, 110.0, 26.2 ppm. Anal. Calcd for C9H7NO2: C, 67.07; H, 

4.38; N, 8.69; Found: C, 67.15; H, 4.37; N 8.71. 

 

1-Methyl-2-oxindole (66) (KWC-I-64) 

To a 250 mL RBF was added 1-methylindolin-2,3-one (65) (0.2531 g, 1.572 mmol) and 

hydrazine hydrate (80%, 15 mL). The RBF was then wrapped in aluminum foil and 

refluxed for 4 h. The solution was then acidified to a pH of 4 with dilute HCl (3M, 80 

mL). No precipitate formed overnight so the solution was extracted with ethyl acetate 

(3x30 mL) and the combined organic layers were evaporated in vacuo to afford brown 

oil. The oil was then recrystallized with DCM/hexanes to afford a white solid (0.1395 g, 

60.3%): mp 70-73oC (lit.87 mp 85-88oC); GC/MS (m/z) 147 (M+), 28 (100%); Rf = 0.71 

(1:1 Hexanes/EtOAc). 1H NMR (300 MHz, DMSO-d6) δ: 7.28-7.22 (m, 2H), 6.99 (td, J = 

0.98, 7.47, 1H), 6.93 (d, J = 7.70 Hz, 1H), 3.49 (s, 2H), 3.09 (s, 3H): 13C NMR (75 MHz, 

DMSO-d6) δ:174.8, 145.4, 128.0, 125.1, 124.5, 122.2, 108.6, 35.5, 26.2 ppm. Anal. Calcd 

for C9H9NO: C, 73.45; H, 6.16; N, 9.52; Found: C, 72.99; H, 5.90; N, 9.33. 

 

1-(2-Fluoroethyl)-indol-2,3-one (69) (KWC-II-68) 

To a 4 dram vial was added isatin (67) (1.1937 g, 8.113 mmol), 2-fluoroethyl-tosylate 

(1.9625 g, 8.992 mmol, 1.2 equiv), potassium carbonate (1.4620, 10.58 mmol, 1.3 equiv) 

and DMF (4 mL). The vial was heated at 80˚C for overnight while stirring. The mixture 

was allowed to cool to rt and pour into ice water, after which time a red precipitate 

(0.9261 g, 59.1%) was collected by vacuum filtration and recrystallized with EtOH 

(0.6312 g, 40.3%): mp 126-128oC; GC/MS (m/z) 193 (M+), 132 (100%); Rf = 0.57 (1:1 
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Hexanes/EtOAc); 1H NMR (300 MHz, CDCl3) δ: 7.64-7.58 (m, 2H), 7.14 (td, J = 0.83, 

7.55 Hz, 1H), 7.04-7.01 (m, 1H), 4.71 (dt, J = 4.76, 47.02 Hz, 2H), 4.05 (td, J = 4.76, 

26.27 Hz, 2H): 13C NMR (75 MHz, CDCl3) δ: 182.8, 158.4, 151.0, 138.5, 125.3, 123.9, 

117.5, 110.8-110.7, 82.8, 80.5, 41.0, 40.7 ppm.  Anal. Calcd for C10H8FNO2: C, 62.18; H, 

4.17; N, 7.25; Found: C, 61.99; H, 4.09; N, 7.32. 

 

1-(2-Fluoroethyl)indolin-2-one (70) (KWC-II-75) 

In a 5 mL RBF was added 1-(2-fluoroethyl)indol-2,3-one (69) (0.2180 g, 1.129 mmol) 

and hydrazine hydrate (80%, 720 µL). RBF was then wrapped in aluminum foil and 

refluxed for 2 hrs. Solution was then diluted with cold water (5 mL), extracted with 

EtOAc (3x30 mL), washed with brine (30 mL), and dried with Na2SO4 for 1 hr. The 

solution was then evaporated in vacuo to afford a brown solid. (0.1896 g, 93.8 %): mp 

120-123oC; GC/MS (m/z) 179 (M+), 118 (100%); Rf = 0.42 (1:1 Hexanes/EtOAc). 1H 

NMR (300 MHz, CDCl3) δ: 7.31-7.25 (m, 2H), 7.06 (td, J = 0.93, 7.51 Hz, 1H), 6.94 (d, 

J = 7.87 1H), 4.68 (dt, J = 4.98, 47.08 Hz, 2H), 4.04 (td, J = 4.98, 25.59 Hz, 2H), 3.57 (s, 

2H).  Anal. Calcd for C10H10FNO: C, 67.03; H, 5.62; N, 7.82; Found: C, 65.94; H, 5.63; 

N, 8.17. 

 

3-(4-Dimethylaminobenzylidene)-1-methyl-1,3-dihydro-indol-2-one (71) (KWC-I-82) 

To a 4 dram vial was added 1-methyl-2-oxindole (66) (0.3983 g, 2.71 mmol), 4-

(dimethylamino)benzaldehyde  (0.3983 g, 3.25 mmol, 1.2 equiv), piperidine (39.2 µL, 

0.398 mmol, 0.147 equiv) and EtOH (4 mL). The vial was heated at 90˚C for 6 h while 

stirring. The mixture was allowed to cool to rt and placed in the freezer overnight, after 

which time a red precipitate (0.5845 g, 63.4%) was collected by vacuum filtration and 
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washed with EtOH to yield (0.3845 g, 51.04%): mp 145-155oC; GC/MS (m/z) 293 

(M+,100%); Rf = 0.75 (1:1 Hexanes/EtOAc); 1H NMR (300 MHz, DMSO-d6) δ: 8.47 (d, J  

= 9.24 Hz, 2H, H-2’,6’), 7.68 (s, 1H, H-vinyl), 7.65 (s, 1H, H-4), 7.21 (dt, J = 1.10, 

7.65Hz, 1H, H-6), 7.01 (dt, J = 0.99, 7.53Hz, 1H, H-5), 6.94 (d, J  = 7.66 Hz, H-3’,5’), 

3.22 (s, 3H, N-CH3), 3.03 (s, 6H, N(CH3)3-4);  13C NMR (75 MHz, DMSO-d6) δ: 165.7, 

151.8, 140.6, 138.2, 134.8, 132.0, 126.9, 124.9, 121.9, 121.0, 118.9, 118.0, 111.0, 107.8, 

25.7 ppm.  Anal. Calcd for C18H18N2O: C, 77.67; H, 6.52; N, 10.06; Found: C, 77.52; H, 

6.56; N, 10.23. 

 

3-(4-Methoxybenzylidene)-1-methyl-1,3-dihydro-indol-2-one (72) (KWC-I-83) 

To a 4 dram vial was added 1-methyl-2-oxindole (66) (0.2025 g, 1.38 mmol), p-

anisaldehyde (200.9 µL, 1.65 mmol, 1.2 equiv), piperidine (20 µL, 0.202 mmol, 0.147 

equiv) and EtOH (4 mL). The vial was heated at 90˚C for 6 h while stirring. The mixture 

was allowed to cool to rt and was then placed in the freezer overnight. No precipitate 

formed so the solution was evaporated under reduced pressure to afford a red oil which 

was subjected to column chromatography (70:30 Hexanes:EtOAc) to afford a yellow oil 

which was recrystallized with DCM/hexanes to afford a yellow solid (0.1489 g, 40.6%): 

mp 65-70oC; GC/MS (m/z) 265 (M+, 100%); Rf = 0.75, 0.89 (1:1 Hexanes/EtOAc); 1H 

NMR (300 MHz, DMSO-d6) δ: 8.49 (d, J = 8.87 Hz, 1H), 7.68 (s, 1H, H-vinyl), 7.69 (t, J 

= 8.38 3H), 7.33-7.24 (m, 1H), 7.11-6.91 (m, 4H), 3.84 (s, 3H, OCH3-4), 3.20 (s, 3H, N-

CH3); 13C NMR (75 MHz DMSO-d6) δ: 167.4, 165.4, 161.2, 160.6, 143.7, 141.4, 137.0, 

136.5, 134.4, 131.5, 129.6, 128.1, 126.8, 126.4, 124.5, 124.2, 122.8, 121.7, 121.5, 121.4, 
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120.4, 118.8, 114.2, 113.7, 108.7, 108.1, 55.3, 25.8, 25.7 ppm.  Anal. Calcd for 

C17H15NO2: C, 76.96; H, 5.70; N, 5.28; Found: C, 77.03; H, 5.77; N, 5.33. 

 

1-Methyl-3-pyridin-4-ylmethylene-1,3-dihydro-indol-2-one (73) (KWC-I-84) 

To a 4 dram vial was added 1-methyl-2-oxindole (66) (0.2107 g, 1.43 mmol), 4-

pyridinecarboxaldehyde (161 µL, 1.72 mmol, 1.2 equiv), piperidine (20 µL, 0.210 mmol, 

0.147 equiv) and EtOH (4 mL). The vial was heated at 90˚C for 6 h while stirring. The 

mixture was allowed to cool to rt and was then placed in the freezer overnight. No 

precipitate formed so the solution was evaporated under reduced pressure to afford an 

orange oil which was subjected to column chromatography (70:30 Hexanes:EtOAc) to 

afford a yellow oil which was recrystallized with DCM/hexanes to afford a yellow solid 

(0.1794 g, 53.04% ): mp 77-81oC; GC/MS (m/z) 236(M+,100%): Rf = 0.20 (1:1 

Hexanes/EtOAc); 1H NMR (300 MHz, DMSO-d6) δ: 8.72 (dd, J = 1.59, 5.98 Hz, 2H), 

8.66 (dd, J = 1.59, 6.11 Hz, 1H), 8.09 (dd, J = 1.54, 6.12, 1H), 7.78 (s, 1H, H-Vinyl), 

7.74 (dd, J = 0.49, 8.01 Hz, 1H), 7.62-7.59 (m, 2H), 7.34-7.31 (m, 2H), 7.09-6.97 (m, 

1H) 6.90 (dt, J = 0.99, 8.62 Hz, 1H) 3.18 (s, 3H, N-CH3), 3.16 (s, 1H); 13C NMR (75 

MHz DMSO-d6) δ: 166.6, 164.8, 150.1, 149.6, 144.4, 142.6, 142.1, 140.5, 133.3, 132.7, 

130.8, 130.1, 129.6, 129.2, 124.6, 123.0, 122.5, 121.8, 120.2, 119.5, 109.0, 108.5, 26.0 

ppm.  Anal. Calcd for C15H12N2O: C, 76.25; H, 5.12; N, 11.86; Found: C, 76.17; H, 5.06; 

N, 11.75. 

 

3-(2,6-Difluoro-benzylidene)-1-methyl-1,3-dihydro-indol-2-one (74) (KWC-II-73) 
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To a 4 dram vial was added 1-methyl-2-oxindole  (66) (0.3049 g 2.072 mmol), 2,6-

difluorobenzaldehyde (268 µL, 2.490 mmol, 1.2 equiv), piperidine (30 µL, 0.304 mmol, 

0.147 equiv) and EtOH (4 mL). The vial was heated at 90˚C for 6 h while stirring. The 

mixture was allowed to cool to rt and placed in the freezer overnight. No precipitate 

formed so the solution was evaporated under reduced pressure to afford an orange oil 

which was subjected to column chromatography (70:30 hexanes:ethyl acetate) to afford 

an orange oil which was recrystallized with DCM/hexanes to afford a yellow solid 

(0.1619 g, 29% ): mp 108-110oC; GC/MS (m/z) 271 (M+, 100%); Rf = 0.85 (1:1 

Hexanes/EtOAc); 1H NMR (300 MHz, DMSO-d6) δ: 7.67-7.57 (m, 1H), 7.43 (s, 1H, H-

vinyl), 7.37-7.33 (m, 1H), 7.29 (t, J = 8.13 Hz, 2H), 7.04 (d, J = 7.84 Hz, 1H), 6.94-6.93 

(m, 2H), 3.21 (s, 3H, N-CH3); 13C NMR (75 MHz, DMSO-d6) δ: 166.6, 161.8-161.7, 

158.5-158.4, 144.8, 132.7-132.4, 131.8, 131.8, 123.2-123.2, 122.5, 120.8-120.8, 112.8-

112.4, 109.4, 26.4 ppm.  Anal. Calcd for C16H11F2NO: C, 70.84; H, 4.09; N, 5.16; Found: 

C, 71.01; H, 3.93; N, 5.18. 

 

1-Methyl-3-pyridin-2-ylmethylene-1,3-dihydro-indol-2-one (75) (KWC-I-86) 

To a 4 dram vial was added 1-methyl-2-oxindole (66) (0.2181 g 1.48 mmol), 2-

pyridinecarboxaldehyde (169.2 µL, 1.78 mmol, 1.2 equiv), piperidine (21.5 µL, 0.218 

mmol, 0.147 equiv) and EtOH (4 mL). The vial was heated at 90˚C for 6 h while stirring. 

The mixture was allowed to cool to rt and placed in the freezer overnight, after which a 

black precipitate (0.2509 g, 71.6%) was collected by vacuum filtration and washed with 

EtOH: mp 137-140oC; GC/MS (m/z) 236 (M+,100%); Rf = 0.67 (1:1 Hexanes/EtOAc); 1H 

NMR (300 MHz, DMSO-d6) δ: 9.04 (d, J = 7.36, 1H), 8.89-8.87 (m, 1H), 7.97-7.86 (m, 
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2H), 7.64 (s, 1H, H-vinyl), 7.48-7.44 (m, 1H), 7.36 (dt, J = 1.21, 7.68 Hz 1H), 7.07-6.90 

(m, 2H), 3.21 (s, 3H, N-CH3); 13C NMR (75 MHz DMSO-d6) δ: 167.8, 153.0, 149.6, 

144.6, 137.1, 134.1, 130.7, 128.5, 128.3, 127.6, 124.1, 121.6, 120.9, 108.2, 26.0 ppm.  

Anal. Calcd for C15H12N2O: C, 76.25; H, 5,12; N, 11.86; Found: C, 76.07; H, 5.22; N, 

11.86. 

 

3-(4-Chloro-benzylidene)-1methyl-1,3-dihydro-indol-2-one (76) (KWC-I-88) 

To a 4 dram vial was added 1-methyl-2-oxindole (66) (0.2283 g 1.59 mmol), 4-

chlorobenzaldehyde (169.2 µL, 1.78 mmol, 1.2 equiv), piperidine (23 µL, 0.234 mmol, 

0.147 equiv) and EtOH (4 mL). The vial was heated at 90˚C for 4.5 h while stirring. The 

mixture was allowed to cool to rt and placed in the freezer overnight, after which time a 

yellow precipitate (0.2602 g) was collected by vacuum filtration and recrystallized with 

EtOH to afford (0.1000 g, 23.3%): mp 101-103oC;  GC/MS: (m/z) 269(M+,100%), Rf  = 

0.51, 0.67 (1:1 Hexanes/EtOAc); 1H NMR (300 MHz, DMSO-d6) δ 7.70 (d, J = 8.22 Hz, 

2H), 7.65 (s, 1H, H-vinyl), 7.57 (d, J = 8.42, 2H), 7.52-7.48 (m, 1H), 7.32 (td, J = 1.09, 

7.74 Hz, 1H), 7.03-7.00 (m, 1H), 6.91 (td, J = 1.06, 7.64 Hz 1H), 3.19 (s, 3H, N-CH3); 

13C NMR (75 MHz, DMSO-d6): δ 167.5, 165.6, 144.6, 142.5, 135.8, 135.4, 135.3, 134.7, 

134.0, 133.7, 133.2, 131.6, 130.8, 129.7, 129.3, 128.7, 127.7, 126.7, 124.1, 122.6, 

122.19-122.16, 120.4, 120, 109.4, 108.8, 26.4, 26.3 ppm.  Anal. Calcd for C16H12ClNO: 

C, 71.25; H, 4.48; N, 5.12; Found: C, 71.10; H, 4.52; N, 5.13. 

 

3-(2,6-dichlorobenzylidene)-1-methyl-1,3-dihydro-indol-2-one (77) (KWC-I-89) 
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To a 4 dram vial was added 1-methyl-2-oxindole (66) (0.2064 g, 1.40 mmol), 2,6-

dichlorobenzaldehyde (0.3003 g, 1.71 mmol, 1.2 equiv), piperidine (20.4 µL, 0.206 

mmol, 0.147 equiv) and EtOH (4 mL). The vial was heated at 90˚C for 4.5 h while 

stirring. The mixture was allowed to cool to rt and placed in the freezer overnight, after 

which time a yellow precipitate (0.3353 g) was collected by vacuum filtration and 

recrystallized with EtOH to afford (0.2929 g, 68.8%): mp 168-171oC; GC/MS: (m/z) 303 

(M+), 268 (100%);  Rf = 0.52 (1:1 Hexanes/EtOAc); 1H NMR (300 MHz, DMSO-d6) δ: 

7.79 (ddd, J = 0.68, 1.54, 8.03 Hz, 1H), 7.72 (ddd, J = 0.78, 1.54, 7.75 Hz, 1H), 7.64 (s, 

1H, H-vinyl), 7.55-7.50 (m, 1H), 7.35 (td, J = 1.19, 7.64 Hz, 1H), 7.10-7.05 (m, 2H), 

6.89 (td, J = 1.13, 7.56 Hz, 1H), 3.22 (s, 3H); 13C NMR (75 MHz, DMSO-d6): 167.0, 

144.8, 135.9, 132.9, 132.0, 131.8, 131.3, 131.1, 129.6, 129.4, 129.1, 122.9, 122.4, 120.1, 

109.6, 26.5 ppm.  Anal. Calcd for C16H11Cl2NO: C, 63.18; H, 3.65; N, 4.60; Found: C, 

63.16; H, 3.71; N, 4.72. 

 

3-(2-Hydroxybenzyliden)-1-methyl-1,3-dihydro-indol-2-one (78) (KWC-I-90) 

To a 4 dram vial was added 1-methyl-2-oxindole (66) (0.2081 g 1.41 mmol), 

salicylaldehyde (181.0 µL, 1.69 mmol, 1.2 equiv), piperidine (21.0 µL, 0.208 mmol, 

0.147 equiv) and EtOH (4 mL). The vial was heated at 90˚C for 4.5 h while stirring. The 

mixture was allowed to cool to rt and placed in the freezer overnight, after which time a 

yellow precipitate (0.3128 g) was collected by vacuum filtration and recrystallized with 

EtOH to afford (0.1870 g, 52.8 %): mp 209-212oC; GC/MS: (m/z) 251 (M+), 234 (100%); 

Rf = 0.33 (1:1 Hexanes/EtOAc); 1H NMR (300 MHz, DMSO-d6) δ: 10.20 (s, 1H, -OH), 

7.79 (s, 1H, H-vinyl), 7.62 (dd, J = 1.08, 7.58, 1H), 7.54 (d, J = 7.51, 1H), 7.35-7.26 (m, 
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2H), 7.00 (d, J = 7.91, 2H), 6.95-6.89 (m, 2H), 3.20 (s, 3H, N-CH3); 13C NMR (75 MHz, 

DMSO-d6) δ: 167.3, 156.5, 143.7, 133.0, 131.7, 129.6-129.5, 125.5, 122.0, 121.5, 121.2, 

120.6, 118.8, 116.0, 108.6, 25.9 ppm.  Anal. Calcd for C16H13NO2: C, 76.48; H, 5.21; N, 

5.57; Found: C, 76.77; H, 5.36; N, 5.70. 

 

3-(3-Phenyl-2-propenylidene)-1-methyl-1,3-dihydro-indol-2-one (80) (KWC-I-91) 

To a 4 dram vial was added 1-methyl-2-oxindole (66) (0.2399 g, 1.63 mmol), trans-

cinnamaldehyde (246.2 µL, 1.96 mmol, 1.2 equiv), piperidine (24 µL, 0.239 mmol, 0.147 

equiv) and EtOH (4 mL). The vial was heated at 90˚C for 6 h while stirring. The mixture 

was allowed to cool to rt and placed in the freezer overnight, after which time a red 

precipitate (0.2024 g, 47.5%) was collected by vacuum filtration and recrystallized with 

EtOH to afford (0.1323 g, 31.1%): mp 162-164oC; GC/MS: (m/z) 261 (M+, 100%); Rf = 

0.49 (1:1 Hexanes/EtOAc); 1H NMR (300 MHz, DMSO-d6) δ: 7.69-6.73 (m, 10H), 3.15 

(s, 3H, N-CH3) 3.02 (s, 6H, N(CH3)2.  Anal. Calcd for C18H15NO: C, 82.73; H, 5.79; N, 

5.36; Found: C, 82.96; H, 5.91; N 5.41. 

 

3-(3-[4-(Dimethylamino)phenyl]-2-propenylidene-5-chloro-1,3-dihydro-indol-2-one 

(81) (KWC-II-66) 

To a 4 dram vial was added 5-chloro-oxindole  (79) (0.3144 g, 1.876 mmol), 4-

(dimethylamino)cinnamaldehyde (0.3974 g, 2.268 mmol, 1.2 equiv), piperidine (27.2 µL, 

0.276 mmol, 0.147 equiv) and EtOH (4 mL). The vial was heated at 90˚C overnight while 

stirring. The mixture was allowed to cool to rt and placed in the freezer overnight, after 

which time a red precipitate (0.2882 g, 47.3%) was collected by vacuum filtration and 
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recrystallized with EtOH (0.2882 g, 47.3%); mp 280-283oC; LC/MS: 325 (M++1); Rf = 

0.28 (1:1 Hexanes/EtOAc). 1H NMR (300 MHz, DMSO-d6) δ: 10.81 (s, 1H, N-H), 7.69-

6.73 (m, 10H), 3.02 (s, 6H, N(CH3)2).  Anal. Calcd for C19H17ClN2O: C, 70.26; H, 5.28; 

N, 8.62; Found: C, 70.10; H, 5.47; N, 8.64. 

 

3-(3-[4-(Dimethylamino)phenyl]-2-propenylidene-6-chloro-1,3-dihydro-indol-2-one 

(82) (KWC-II-67) 

To a 4 dram vial was added 6-chloro-2-oxindole (60) (0.3187 g, 1.902 mmol), 4-

(dimethylamino)cinnamaldehyde (0.4069 g, 2.555 mmol, 1.2 equiv), piperidine (28 µL, 

0.280 mmol, 0.147 equiv) and EtOH (4 mL). The vial was heated at 90˚C for 24 h while 

stirring. The mixture was allowed to cool to rt and placed in the freezer overnight, after 

which time a dark red precipitate (0.0774) was collected by vacuum filtration and 

recrystallized with EtOH; mp 269-271oC; LC/MS: (m/z) 325 (M++1); Rf = 0.43; 1H NMR 

(300 MHz, DMSO-d6) δ: 10.65 (bs, 1H, N-H), 7.93 (d, J = 8.20 Hz, 1H), 7.65 (d, J = 8.91 

Hz, 2H), 7.50-7.41 (m, 1H), 7.29 (dd, J = 8.22, 13.39 Hz, 2H), 7.00 (dd, J = 2.01, 8.16 

Hz, 1H), 6.86 (s, 1H), 6.74 (d, J = 9.0 Hz, 2H), 3.01 (s, 6H); 13C NMR (75 MHz, DMSO-

d6): 169.6, 151.9, 147.4, 143.2, 137.5, 132.5, 130.5, 125.0, 123.9, 122.1, 121.5, 121.2, 

118.6, 112.3 109.9, 40.2 ppm: Anal. Calcd for C19H17ClN2O: C, 70.26; H, 5.28; N, 8.62; 

Found: C, 69.15; H, 5.20; N, 8.44. 

 

3-(3-[4-(Dimethylamino)phenyl]-2-propenylidene-7-chloro-1,3-dihydro-indol-2-one 

(83) (KWC-II-33) 
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To a 4 dram vial was added 7-chloro-2-oxindole (61) (0.3562 g, 2.125 mmol), 4-

(dimethylamino)cinnamaldehyde (0.4528 g, 2.584 mmol, 1.2 equiv), piperidine (40 µL, 

0.312 mmol, 0.147 equiv) and EtOH (4 mL). The vial was heated at 90˚C for 7 h while 

stirring. The mixture was allowed to cool to rt and placed in the freezer overnight, after 

which time a dark purple precipitate (0.5139 g, 74.4%) was collected by vacuum 

filtration and ran what would dissolve in DCM through a silica gel column (70:30 

hexanes:EtOAc) to afford a dark purple solid (0.0545 g, 7.9%); mp 243-245oC; LC/MS: 

(m/z) 325 (M++1); Rf = 0.47 (1:1 Hexanes/EtOAc); 1H NMR (300 MHz, DMSO-d6) δ: 

10.80 (bs, 1H), 7.91 (d, J = 7.01 Hz, 1H), 7.66 (d, J = 8.94 Hz, 2H), 7.53-7.44 (m, 2H), 

7.38-7.34 (m, 1H), 7.29-7.22 (m, 1H), 7.01 (dd, J = 7.72, 8.06 Hz, 1H), 6.75 (d, J = 8.97 

Hz, 2H), 3.01 (m, 6H); 13C NMR (75 MHz, DMSO-d6) δ: 169.4, 168.8, 152.0, 151.9, 

148.0, 145.9, 139.6, 139.1, 138.6, 137.9, 130.6, 129.9, 127.9, 127.6, 125.1, 124.0, 123.8, 

122.8, 122.4, 122.3, 121.8, 121.5, 119.5, 118.4, 118.1, 114.2, 114.1, 112.6, 112.3, 40.2 

ppm.  Anal. Calcd for C19H17ClN2O: C, 70.26; H, 5.28; N, 8.62;  Found: C, 70.27; H, 

5.26; N, 8.56. 

 

3-(3-[4-(Dimethylamino)phenyl]-2-propenylidene-1-methyl-1,3-dihydro-indol-2-one 

(84) (KWC-II-36) 

To a 4 dram vial was added 1-methyl-2-oxindole (66) (0.3021 g, 2.053 mmol), 4-

(dimethylamino)cinnamaldehyde (0.4476 g, 2.554 mmol, 1.2 equiv), piperidine (22.2 µL, 

0.302 mmol, 0.147 equiv) and EtOH (4 mL). The vial was heated at 90˚C for 7 h while 

stirring. The mixture was allowed to cool to rt and placed in the freezer overnight. No 

precipitate formed so the solution was evaporated under reduced pressure to afford a dark 
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oil which was subjected to column chromatography (70:30 Hexanes/EtOAc) to afford an 

oil which was recrystallized with DCM/hexanes to afford a brick red solid (0.1973 g, 

31.6 %): mp 159-161oC; LC/MS: (m/z) 305 (M++1); Rf = 0.44 (1:1 Hexanes/EtOAc); 1H 

NMR (300 MHz, DMSO-d6) δ: 8.26 (dd, J = 11.67, 15.50 Hz, 0.4H), 7.96 (dd, J = 0.18, 

7.35 Hz, 1H), 7.64 (d, J = 8.91 Hz, 1H), 7.58-7.50 (m, 1H), 7.46-7.42 (m, 1H), 7.36 (d, J 

= 12.22, 1H), 7.30-7.27 (m, 1H), 7.25-7.20 (m, 1H), 7.13-7.07 (m, 1H), 7.05-6.95 (m, 

2H) 6.81-6.72 (m, 2H), 3.18(s, 3H), 3.00 (d, J = 4.01, 6H). Anal. Calcd for C20H20N2O: 

C, 78.29; H, 6.62; N, 9.20; Found: C, 78.68; H, 6.51; N 9.17. 

 

3-(3-[4-(Dimethylamino)phenyl]-2-propenylidene-1,3-dihydro-indol-2-one (85) 

(KWC-I-100) 

To a 4 dram vial was added oxindole (86) (0.2840 g, 2.133 mmol), 4-(dimethylamino) 

cinnamaldehyde (0.4613 g, 2.633 mmol, 1.2 equiv), piperidine (31 µL, 0.313 mmol, 

0.147 equiv) and EtOH (4 mL). The vial was heated at 90˚C for 6 h while stirring. The 

mixture was allowed to cool to rt and placed in the freezer overnight, after which time a 

red precipitate (0.1038 g, 16.8%) was collected by vacuum filtration and recrystallized 

with EtOH (0.0796 g, 13%) and again with EtOH (0.0284 g, 5%): mp 230-234oC; 

GC/MS: (m/z) 261 (M+), M+ (100%); Rf = 0.57 (1:1 Hexanes/EtOAc). 1H NMR (300 

MHz, DMSO-d6) δ: 10.75 (s, 1H, N-H), 7.68-6.71 (m, 11H), 3.01 (s, 6H, N(CH3)2 Anal. 

Calcd for C19H18N2O: C, 78.59; H, 6.25; N, 9.65; Found: C, 78.49; H, 6.30; N 9.70. 
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