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ABSTRACT 

 

Baker, Scott Edward. M.S. Department of Earth and Environmental Sciences, Wright 

State University, 2016. Power Distribution and Probabilistic Forecasting of Economic 

Loss and Fatalities Due to Hurricanes, Earthquakes, Tornadoes, and Floods in the United 

States. 

 

 

 Traditionally, the size of natural disaster events such as hurricanes, earthquakes, 

tornadoes, and floods is measured in terms of wind speed (m/sec), energy released (ergs), 

or discharge (m
3
/sec). Economic loss and fatalities from natural disasters result from the 

intersection of the human infrastructure and population with the natural event. This study 

investigates the size versus cumulative number distribution of individual natural disaster 

events in the United States. Economic losses are adjusted for inflation to 2014 United 

States Dollars (USD). The cumulative number divided by the time over which the data 

ranges is the basis for making probabilistic forecasts in terms of the Number of Events 

Greater Than a Given Size Per Year and it’s inverse, Return Period. Such forecasts are of 

interest to insurers/re-insurers, meteorologists, seismologists, government planners, and 

response agencies. 

 Plots of size versus cumulative number distributions per year for economic loss 

and fatalities are well fit by power scaling functions of the form P(x) = Cx
-β

; where, P(x) 

is the cumulative number of events per year with size equal to and greater than size x (or 

probability of occurrence), C is a constant which measures the activity level, x is the 
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event size, and β is the scaling exponent. Power distributions have a property referred to 

as self-similar or scale free, so that any sample of the distribution at any scale is 

statistically identical to the whole distribution. 

Economic loss and fatalities due to hurricanes, earthquakes, tornadoes, and floods 

are well fit by power functions over one to five orders of magnitude in size. Economic 

losses for hurricanes and tornadoes have greater scaling exponents, β = 1.1 and 0.9 

respectively, whereas earthquakes and floods have smaller scaling exponents, β = 0.4 and 

0.6 respectively. The value of the scaling exponent determines the petitioning of losses 

between larger and smaller sized events. All of the data sets exhibit a roll-off for smaller 

economic loss events. The roll-off below a certain size is attributed to either under 

estimating the economic losses or to a transition away from a power function below 

which the cumulative number is independent of size. Fatalities for tornadoes and floods 

have greater scaling exponents, β = 1.5 and 1.7 respectively, whereas hurricanes and 

earthquakes have smaller scaling exponents, β = 0.4 and 0.7 respectively.  
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CHAPTER 1 

INTRODUCTION 

1.1 Purpose of Study 

 Natural disasters in the United States are of concern to national and regional 

planners, the insurance industry, and the emergency response community because of the 

associated economic losses and fatalities. Traditionally, the size of a natural disaster is 

measured in terms of wind speed (m/sec) for hurricanes and tornadoes, energy released 

(ergs) for earthquakes, and discharge (m
3
/sec) for floods.  

Economic loss and fatalities from natural disasters result from the intersection of 

the human infrastructure and population with the natural event. An important purpose of 

this study is to determine whether economic loss and fatalities can be fit by a 

mathematical distribution. This study investigates economic loss and fatalities due to four 

natural disaster types (hurricanes, earthquakes, tornadoes, and floods) in the United States 

for various windows of time. 

1.2 Previous Studies 

 Identifying a mathematical function permits forecasting the probability of an 

event of a given size and greater, during a given time window. This approach was 

developed and applied in two previous studies where economic loss and fatality data 

were used as measures of event size for natural disasters by Barton and Nishenko, 1994 
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and Nishenko and Barton, 1996. These two studies were the first to show that economic 

losses and fatalities due to natural disasters are well fit by a power function. Their work 

provides the basis for the present study in which the outcome and analysis of newer, more 

complete data sets of the present study can be compared. 

 Barton and Nishenko (1994) developed a method to forecast economic losses and 

fatalities for natural disasters using power functions and their scaling exponents. Plotting 

size versus cumulative number, they found that for hurricanes and earthquakes, 

individual event sizes are well fit by a power function over one and a quarter to three and 

a half (1.25-3.5) orders of magnitude in size for economic losses (Figure 1.1 (page 4) and 

Table 1.1 (page 6)). Plotting size versus cumulative number, they found that for 

hurricanes, earthquakes, tornadoes, and floods, individual event sizes are well fit by a 

power function over one to three and a quarter (1-3.25) orders of magnitude in size for 

fatalities (Figure 1.2 (page 5)). Note that they reported economic loss distributions only 

for hurricanes and earthquakes with scaling exponents, β = 1.0 and 0.4 respectively 

(Figure 1.1 and Table 1.1). 

Nishenko and Barton (1996) studied size versus cumulative number distributions 

for fatalities due to earthquakes at locations around the world and compared the power 

function scaling exponents, β = 0.2-0.5. For Asia, Europe, and South America, the data 

was well fit by a power function. For the Middle East, the data rolled off from a power 

function at both larger and smaller losses. A roll-off of the data for larger losses and a 

roll-off of the data to a slope of zero for the smallest sizes were not addressed. Nishenko 

and Barton (1996) also showed fatalities distributions for hurricanes, earthquakes, 

tornadoes, and floods in the United States (see Figure 1.2 (page 5) and Table 1.1 (page 

6)). In addition to demonstrating power function behavior over one to three and a quarter 
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(1-3.25) orders of magnitude in size, the scaling exponents form two groups. Hurricanes 

and earthquakes are associated with smaller scaling exponents, β = 0.6 and 0.4 

respectively, while tornadoes and floods have greater scaling exponents, β = 1.4 and 1.3 

respectively. The results of these two previous studies are summarized in Table 1.1. 

 Table 1.2 (page 7), reproduced from Barton and Nishenko (1994), presents 

probability estimates of an event of a given size and greater in any given year for 10 and 

1000 fatality events for each disaster type. It also provides a return period (inverse of the 

probability of occurrence in any given year) based on the power functions shown on 

Figure 1.2 (page 5). The return period is an estimate of the likelihood of an event based 

on historical data collected, not its periodic recurrence. They noted that floods and 

tornadoes have relatively shorter return periods for small events, while earthquakes and 

hurricanes have relatively short return periods for large events. 
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Figure 1.1. Plot of cumulative frequency of economic loss (in 1990 USD) due to 

earthquakes and hurricanes in the United States between 1900 and 1989. Data plotted as 

loss size (x-axis) versus cumulative number of events (y-axis) are well fit by power 

functions with scaling exponents for earthquakes = 0.4 and hurricanes = 1.0. Note, each 

point on the plot represents a single event. Number of data points for earthquakes = 49 

and for hurricanes = 27. (Barton and Nishenko, 1994). 
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Figure 1.2. Plot of cumulative frequency of life loss due to earthquakes, hurricanes, 

tornadoes, and floods in the United States between 1900 and 1989. Data plotted as 

fatality size (x-axis) versus cumulative number of events per year (y-axis) are well fit by 

power functions with scaling exponents of 0.4 for earthquakes, 0.6 for hurricanes, 1.4 for 

tornadoes, and 1.3 for floods. Note, each point on the plot represents a single event. 

Number of data points used to fit power function for earthquakes = 28, hurricanes = 30, 

tornadoes = 56, and floods = 28. Power functions range from one to three and a half 

orders of size in X; the scaling exponents form two groups. Hurricanes and earthquakes 

are associated with relatively flat slopes (0.4-0.6); while tornadoes and floods have 

steeper slopes (1.3-1.4). Open symbols were not used in fitting power functions. (Barton 

and Nishenko, 1994). 
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Table 1.2. Probability estimates for the occurrence of earthquake, hurricane, flood, and 

tornado disasters with 10 and 1000 fatalities per event in the United States during 1, 10, 

and 20 year exposure times, and estimates of the mean return periods in years. Note the 

reversal in recurrence times for small and large events. Tornadoes and floods have 

relatively short return periods for small events, while hurricanes and earthquakes have 

relatively short return periods for large events. (Barton and Nishenko, 1994) 
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CHAPTER 2 

DATA 

2.1 Introduction 

 Economic loss and fatality data for natural disasters (hurricanes, earthquakes, 

tornadoes, and floods) in the United States are collated from public and private sources 

including: United States Geological Survey (USGS), National Oceanic and Atmospheric 

Administration (NOAA), and insurance companies. The data used in the present study 

were downloaded from the following websites: NOAA National Center for 

Environmental Information (NCEI) (earthquakes, tornadoes, and floods) and NOAA 

National Hurricane Center (NHC) (hurricanes). The data are collated and presented 

online, but are not edited by NOAA (https://www.ncdc.noaa.gov/stormevents/faq.jsp). As 

part of the present study, the value of economic losses was adjusted to 2014 USD using 

the Bureau of Labor Statistics Consumer Price Index Inflation Calculator 

(http://www.bls.gov/data/inflation_calculator.htm). 

2.2 Sources, Time and Value Ranges of Data 

 The data used in this study are collated on the NOAA National Center for 

Environmental Information webpage (https://www.ncei.noaa.gov/), but are generated by 

several federal agencies. Tornado and flood data were generated by NOAA National 

Weather Service (http://www.weather.gov/), hurricane data were generated by NOAA 

https://www.ncdc.noaa.gov/stormevents/faq.jsp
http://www.bls.gov/data/inflation_calculator.htm
https://www.ncei.noaa.gov/
http://www.weather.gov/
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National Hurricane Center (http://www.nhc.noaa.gov/), and earthquake data were 

generated by United States Geological Survey and collated by NOAA National 

Geophysical Data Center
 
(https://www.ngdc.noaa.gov/). A data summary for each natural 

disaster type is presented below and in Table 2.1 (page 13). Procedures used to process 

the data, to group it into events, and to prepare it for analysis are given in Appendix A. 

2.2.1 Hurricane Data Source 

Hurricane data used in the present study were downloaded from NOAA National 

Hurricane Center Tropical Cyclone Reports (http://www.nhc.noaa.gov/data/#tcr). As 

shown in Table 2.1, the data ranges in time from 1950 to 2014, with 94 individual events. 

Of the 94 individual events, 92 have reported economic losses ranging from $610,500 to 

$130,680,000,000 (2014 USD). Of the 94 individual events, 82 have reported fatalities 

ranging from 1 to 1,833. In the present study, unreported losses are not interpreted to 

equal zero or any other value. The data are listed in the source by event. The data were 

assembled by NOAA National Hurricane Center, and incorporate insurance company 

data. A second data set was assembled by the NOAA National Weather Service and 

collated by NOAA National Center for Environmental Information (NCEI) 

(ftp://ftp.ncdc.noaa.gov/pub/data/swdi/stormevents/csvfiles/). This second data set was 

incomplete and was used in the present study to investigate the consistency in loss data 

for hurricanes and by extrapolation, other loss data sets. 

2.2.2 Earthquake Data Source 

Earthquake data used in the present study were downloaded from NOAA National 

Center for Environmental Information Significant Earthquake Database 

http://www.nhc.noaa.gov/
https://www.ngdc.noaa.gov/
http://www.nhc.noaa.gov/data/#tcr
ftp://ftp.ncdc.noaa.gov/pub/data/swdi/stormevents/csvfiles/
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(http://ngdc.noaa.gov/nndc/struts/form?t=101650&s=1&d=1) (formerly NOAA National 

Geophysical Data Center). As shown in Table 2.1, the data ranges in time from 1900 to 

2014, with 196 individual events. Of the 196 individual events, 144 have reported 

economic losses ranging from $75,200 to $64,000,000,000 (2014 USD). Of the 196 

individual events, 58 have reported fatalities ranging from 1 to 700. In the present study, 

unreported losses are not interpreted to equal zero or any other value. The data are listed 

by event. The data were assembled by the United States Geologic Survey and collated by 

NOAA National Center for Environmental Information 

(http://www.ngdc.noaa.gov/hazard/earthqk.shtml). 

2.2.3 Tornado Data Source 

 Tornado data used in the present study were downloaded from NOAA National 

Center for Environmental Information Storm Events Database 

(ftp://ftp.ncdc.noaa.gov/pub/data/swdi/stormevents/csvfiles/) (formerly NOAA National 

Climatic Data Center). As shown in Table 2.1, the data set ranges in time from 1950 to 

2014, with 46,402 individual events. Of the 46,402 individual events, 31,567 have 

reported economic losses ranging from $14.70 to $2,217,500,000 (2014 USD). Of the 

46,402 individual events, 1,282 have reported fatalities ranging from 1 to 116. In the 

present study, unreported losses are not interpreted to equal zero or any other value. The 

data are listed by event. The data for each event were assembled by NOAA National 

Weather Service County Warning Area (CWA) offices (Figure 2.1 (page 11)) and then 

collated by NOAA National Center for Environmental Information 

(ftp://ftp.ncdc.noaa.gov/pub/data/swdi/stormevents/csvfiles/). 

http://ngdc.noaa.gov/nndc/struts/form?t=101650&s=1&d=1
http://www.ngdc.noaa.gov/hazard/earthqk.shtml
ftp://ftp.ncdc.noaa.gov/pub/data/swdi/stormevents/csvfiles/
ftp://ftp.ncdc.noaa.gov/pub/data/swdi/stormevents/csvfiles/
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Figure 2.1: NOAA National Weather Service County Warning Area (CWA) map. This 

map shows the location of the 122 NWS filed offices throughout the country. Each label 

represents the city location of the office within the CWA. 

(http://innovation.srh.noaa.gov/you/officemap.php) 

 

2.2.4 Flood Data Source 

Flood data (including: floods, flash floods, marine floods, and coastal floods) used 

in the present study were downloaded from NOAA National Center for Environmental 

Information Storm Events Database 

(ftp://ftp.ncdc.noaa.gov/pub/data/swdi/stormevents/csvfiles/) (formerly NOAA National 

Climatic Data Center). As shown in Table 2.1, the data set ranges in time from 1996 to 

2014, with 6,230 individual events. Of the 6,230 individual events, 4,131 have reported 

http://innovation.srh.noaa.gov/you/officemap.php
ftp://ftp.ncdc.noaa.gov/pub/data/swdi/stormevents/csvfiles/


12 
 

economic losses ranging from $11.70 to $134,925,353,120 (2014 USD). Of the 6,230 

individual events, 601 have reported fatalities ranging from 1 to 38. In the present study, 

unreported losses are not interpreted to equal zero or any other value. The data for each 

event was collected by NOAA National Weather Service CWA offices and collated by 

NOAA National Center for Environmental Information 

(ftp://ftp.ncdc.noaa.gov/pub/data/swdi/stormevents/csvfiles/). 

2.2.5 Combining Flood Data into Events 

 The hurricane, earthquake, and tornado data are presented as individual events in 

the online NOAA databases. Flood data are not combined into individual events and this 

task was done as part of the present study. 

 The NOAA National Weather Service is made up of 122 offices (Figure 2.1 (page 

11)) around the United States and surrounding territories. These offices use storm 

damage surveys (Appendix D) to estimate economic losses; while a majority of economic 

loss and fatality data are reported by state and other federal agencies, public media, and 

insurance companies (https://www.ncdc.noaa.gov/stormevents/faq.jsp). Compiling 

information from these sources, by NOAA employees, provides the data in the NOAA 

data sets. Economic loss and fatality data collected by NOAA National Weather Service 

CWA’s are input into NOAA National Center for Environmental Information Storm 

Events Database by the NOAA NWS CWA, and then aggregated at the state level. Each 

event that crosses a CWA boundary is reported once for each county affected, with a 

beginning and ending location. NOAA NWS CWA offices report loss numbers by county 

(https://www.ncdc.noaa.gov/stormevents/pd01016005curr.pdf, 76 & 81-83).

ftp://ftp.ncdc.noaa.gov/pub/data/swdi/stormevents/csvfiles/
https://www.ncdc.noaa.gov/stormevents/faq.jsp
https://www.ncdc.noaa.gov/stormevents/pd01016005curr.pdf
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2.3 Preparation of the Data Before Analysis 

 Step-by-step directions for downloading the economic loss and fatality data sets 

from the NOAA National Center for Environmental Information website in comma 

delimited files and reconfiguring into Excel files for grouping the data into events using a 

Matlab code are given in Appendix A. 

2.3.1 Hurricanes 

 For hurricanes, the economic loss and fatality values in the database 

(ftp://ftp.ncdc.noaa.gov/pub/data/swdi/stormevents/csvfiles/) did not agree with those in 

the NOAA National Hurricane Center Tropical Cyclone Reports 

(http://www.nhc.noaa.gov/data/#tcr). Fatality values varied based on indirect and direct 

fatalities associated with each natural disaster. The present study summed all fatalities 

(indirect and direct) from an event and incorporated them into the total value. Economic 

loss values did not agree due to adjustments after the event occurred, as well as NOAA 

National Weather Service CWA’s improperly reporting events. NOAA NHC Tropical 

Cyclone Reports were extensively detailed, so they will be used for this study. 

2.3.2 Earthquakes 

Earthquake economic loss and fatality data for individual events often cited a 

range of values (ex. $50-$500, or 1-10 fatalities). In the present study, the mean of the 

range was the value used for analysis. 

2.3.3 Tornadoes 

ftp://ftp.ncdc.noaa.gov/pub/data/swdi/stormevents/csvfiles/
http://www.nhc.noaa.gov/data/#tcr


15 
 

Tornado data were already sorted into individual events. 

2.3.4 Floods 

Flood data in the NOAA database 

(ftp://ftp.ncdc.noaa.gov/pub/data/swdi/stormevents/csvfiles/) were compiled by NOAA 

National Weather Service, and then grouped by state, which makes grouping by event a 

labor-intensive process. For the present study, Federal Emergency Management Agencies 

Disaster Declarations webpage (https://www.fema.gov/disasters) was used to group the 

data into individual events. The Disaster Declarations pages were used to establish the 

time frame and location of each event, which were then combined to form an event. 

2.4 Errors in the Data 

 Economic loss and fatality data used in this study contain errors. Error originates 

from the incomplete and erroneous collection of data. “The Storm Events Database is an 

official publication of the National Oceanic and Atmospheric Administration (NOAA) 

which documents the occurrence of storms and other significant weather phenomena 

having sufficient intensity to cause loss of life, injuries, significant property damage, 

and/or disruption to commerce. When information included in Storm Data originates 

from a source outside the NWS, such as insurance losses included in the present study, 

the source is cited. The data are collected using the best available information, but data 

values are unverified by NOAA due to time and resource constraints,” 

(https://www.ncdc.noaa.gov/stormevents/faq.jsp). A National Weather Service Directive 

(https://www.ncdc.noaa.gov/stormevents/pd01016005curr.pdf, pp. 9-13) details how 

economic losses and fatalities can be estimated if true values cannot be obtained. “CWA 

ftp://ftp.ncdc.noaa.gov/pub/data/swdi/stormevents/csvfiles/
https://www.fema.gov/disasters
https://www.ncdc.noaa.gov/stormevents/faq.jsp
https://www.ncdc.noaa.gov/stormevents/pd01016005curr.pdf
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meteorologists are allotted sixty days to gather data from sources for each event. 

Additions and corrections to the data turned in within the first sixty days may be made at 

a later time, up to several years after the event,” (Stuart Hinson, NCDC, personal 

communication). NWS Directives Appendix B gives CWA meteorologists a range of 

values for objects frequently damaged during events. CWA meteorologists have 

significant latitude in what they choose to report. This introduces an unknown error into 

each loss value listed in the NOAA data sets. Therefore, no errors are reported for any of 

the economic loss and fatality values analyzed in the present study. 

2.4.1 Sources of Errors in Hurricane Data 

 NOAA National Weather Service CWA offices label many concurrent events 

with a different identifier number. For example, Hurricane Katrina impacted three 

National Weather Service CWA offices serving Louisiana: New Orleans, Lake Charles, 

and Jackson (see Figure 2.1 (page 11)). These three offices labeled this event with three 

different episode identifiers of 197919, 196079, and 196783 respectively. Summing the 

economic losses and fatalities reported by each office with the Baker Event ID Number 

(Appendix C Table C.1 (page 90)), did not result in economic loss and fatality values 

reported in the NOAA National Hurricane Center Tropical Cyclone Report 

(http://www.nhc.noaa.gov/data/tcr/AL122005_Katrina.pdf). The NOAA National 

Hurricane Center Tropical Cyclone Reports are detailed. The NOAA NCEI database was 

initiated in 1996, and previous events are not included. Losses and fatalities for events 

prior to 1996 are contained in the Tropical Cyclone Reports of NOAA National 

Hurricane Center’s Data Archive (http://www.nhc.noaa.gov/data/#tcr), which extends 

back to 1950. As shown in Table 2.1 (page 13), this data set also included 2 events for 

http://www.nhc.noaa.gov/data/tcr/AL122005_Katrina.pdf
http://www.nhc.noaa.gov/data/#tcr
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which no economic losses are reported and 12 events for which no fatalities are reported. 

The present study does not interpret a lack of economic loss or fatality values to mean 0, 

or a value greater than 0. 

2.4.2 Sources of Errors in Earthquake Data 

 The earthquake data set had errors associated with both economic loss and 

fatalities, previously listed in Section 2.3. As shown in Table 2.1, this data set also 

included 52 events for which no economic losses are reported and 138 events for which 

no fatalities are reported. The present study does not interpret a lack of economic loss or 

fatality values to mean 0, or a value greater than 0. 

2.4.3 Sources of Errors in Tornado Data 

 NOAA National Weather Service CWA offices conduct tornado damage surveys 

as well as gather data from other institutions, not limited to governmental facilities. 

Another source is when tornado paths overlap, causing economic loss and fatality values 

to be incorrectly assigned. As shown in Table 2.1, this data set also included 14,835 

events for which no economic losses are reported and 45,120 events for which no 

fatalities are reported. The present study does not interpret a lack of economic loss or 

fatality values to mean 0, or a value greater than 0. 

2.4.4 Sources of Errors in Flood Data 

 Floods were not combined into events in the NOAA database. Combining episode 

data by date and state identified events. As shown in Table 2.1, this data set also included 

2,099 events for which no economic losses are reported and 5,629 events for which no 
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fatalities are reported. The present study does not interpret a lack of economic loss or 

fatality values to mean 0, or a value greater than 0. 

2.4.5 Estimating Errors 

 NOAA provides no estimate of error for any of the economic loss or fatality data. 

Since the true value of these losses is not known, it is not possible to calculate or even 

estimate an error for the economic loss or fatality data used in the present study. 

However, consistency of the values can be quantified where there are two values of 

losses for the same event. There are two databases for losses due to hurricanes. The 

difference in the economic loss and fatality data, between the NOAA National Center for 

Environmental Information Storm Events Database 

(ftp://ftp.ncdc.noaa.gov/pub/data/swdi/stormevents/csvfiles/) and the NOAA National 

Hurricane Center Tropical Cyclone Reports (http://www.nhc.noaa.gov/data/#tcr). The 

difference in loss values is a measure of consistency between data sets and is used to 

quantify consistency. Table 2.2 (page 19) lists the economic loss and fatalities for thirty-

two hurricane events. Without two data sets, it is not possible to quantify consistency for 

earthquakes, tornadoes, and floods. Consistency of the hurricane data is calculated by 

taking the absolute value of the difference in economic loss or fatalities between the two 

data sets. Figures 2.2 (page 20) and 2.3 (page 21) present a graphical representation of the 

consistency of economic loss and fatalities respectively.

ftp://ftp.ncdc.noaa.gov/pub/data/swdi/stormevents/csvfiles/
http://www.nhc.noaa.gov/data/#tcr
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Table 2.2: Differences in hurricane economic loss and fatality reporting. Data includes: 

event date, NOAA NCEI database economic loss (2014 USD), NOAA NHC economic 

loss (2014 USD), difference in economic loss (2014 USD), NOAA NCEI fatalities, 

NOAA NHC fatalities, and difference in fatalities. 

EVENT 

DATE 

ECONOMIC LOSS 

(2014 USD) 
ECONOMIC 

LOSS 

DIFFERENCE 

(2014 USD) 

FATALITIES 

FATALITIES 

DIFFERENCE 
NOAA NCEI 

NOAA NHC 

REPORTS 

NOAA 

NCEI 

NOAA 

NHC 

REPORTS 

07/1996 $474,404,250 $407,700,000 $66,704,250 3 7 4 

09/1996 $1,885,914,500 $4,832,000,000 $2,946,085,500 14 34 20 

07/1997 $99,960,000 $99,960,000 $0 1 9 8 

08/1998 $521,360,550 $1,044,000,000 $522,639,450 1 3 2 

09/1998 $10,624,150 $114,550,000 $103,925,850 2 3 1 

09/1998 $1,958,151,050 $8,700,000,000 $6,741,848,950 1 1 0 

08/1999 $4,454,540 $0 $4,454,540 0 0 0 

09/1999 $6,570,127,000 $9,798,000,000 $3,227,873,000 14 56 42 

10/1999 $926,231,920 $1,136,000,000 $209,768,080 1 8 7 

09/2000 $6,918,500 $0 $6,918,500 0 0 0 

11/2001 $67,000 $0 $67,000 0 0 0 

10/2002 $907,305,313 $1,221,000,000 $313,694,687 0 2 2 

07/2003 $14,035,587 $232,200,000 $218,164,413 0 3 3 

09/2003 $1,295,886,270 $6,927,300,000 $5,631,413,730 6 50 44 

08/2004 $7,239,518,750 $18,891,250,000 $11,651,731,250 9 35 26 

08/2004 $0 $162,500,000 $162,500,000 0 9 9 

08/2004 $9,437,500 $9,437,500 $0 0 1 1 

09/2004 $7,042,775,000 $11,883,750,000 $4,840,975,000 0 48 48 

09/2004 $8,335,582,250 $23,525,000,000 $15,189,417,750 14 57 43 

09/2004 $927,006,250 $9,575,000,000 $8,647,993,750 0 4 4 

07/2005 $2,118,649,500 $3,466,650,000 $1,348,000,500 2 16 14 

08/2005 $40,545,563,300 
$130,680,000,00

0 
$90,134,436,700 21 1,833 1,812 

09/2005 $74,971,600 $84,700,000 $9,728,400 0 1 1 

09/2005 $7,571,109,150 $14,564,770,000 $6,993,660,850 6 62 56 

10/2005 $12,342,000,000 $25,418,470,000 $13,075,470,000 5 5 0 

09/2007 $3,420,000 $3,420,000 $0 0 1 1 

07/2008 $0 $1,155,000,000 $1,155,000,000 0 1 1 

09/2008 $24,079,000 $5,079,800,000 $5,055,721,000 0 52 52 

09/2008 $1,482,800,000 $32,472,000,000 $30,989,200,000 1 85 84 

08/2011 $3,675,000 $16,590,000,000 $16,586,325,000 0 41 41 

08/2012 $750,767,000 $4,052,000 $746,715,000 3 5 2 

07/2014 $0 $4,052,000 $4,052,000 0 0 0 
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 Figure 2.2 shows consistency for economic losses due to hurricanes in the United 

States over the time window, 1996-2014. The smaller time window used for comparison 

is due to the limitation of data through the NOAA NCEI database, dating back to 1996. 

The consistency of each event shows that the values of economic loss (2014 USD) follow 

a linear function, over time, in which the difference between the data sets increases at a 

rate equivalent to the increase in economic loss (2014 USD). 

 
Figure 2.2. Economic loss consistency for United States hurricanes, 1996-2014. The x-

axis is the economic loss difference (2014 USD) between the NOAA NCEI database and 

NOAA NHC Tropical Cyclone Reports. The y-axis is the larger economic loss value 

(2014 USD) of the two data sets used for comparison to estimate consistency between the 

data. 
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 Figure 2.3 shows consistency for fatalities due to hurricanes in the United States 

over the time window, 1996-2014. The smaller time window used for comparison is due 

to the limitation of data through the NOAA NCEI database, dating back to 1996. The 

consistency of each event shows that the values of fatalities follow a linear function, over 

time, in which the difference between the data sets increases at a rate equivalent to the 

increase in fatalities. 

 
Figure 2.3. Fatalities consistency for United States hurricanes, 1996-2014. The x-axis is 

the fatalities difference between the NOAA NCEI database and NOAA NHC Tropical 

Cyclone Reports. The y-axis is the larger fatalities value of the two data sets used for 

comparison to estimate consistency between the data. 
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CHAPTER 3 

ANALYSIS OF DATA 

3.1 Method of Analysis 

 Barton and Nishenko (1994) and Nishenko and Barton (1996) pioneered the use 

of power functions to fit size-cumulative frequency plots of natural disaster economic 

losses and fatalities over one to four orders of magnitude in size (Figures 1.1 (page 4) and 

1.2 (page 5)). Newman (2006) cites a wide variety of natural and non-natural disaster 

data sets for which cumulative frequency distributions and histograms follow a power 

function over multiple orders of magnitude in size (including: 1. earthquake magnitude, 

2. word frequency in the novel Moby Dick, 3. citations of scientific papers published in 

1981, and cited between publication and June 1997, 4. web hits received by web sites 

from users of AOL Internet, 5. population of US cities recorded by US Census Bureau in 

2000, and others). These examples show that power function distributions are not limited 

to natural sciences, they can occur in physical, biological, technological, and social 

systems of various kinds (Newman, 2006). 

 The method of analysis used in the present study (following Barton and Nishenko, 

1994, and Nishenko and Barton, 1996) is to plot the economic loss or fatality data for 

individual events on a size versus cumulative frequency plot with log-log axes and fitting 

the data (Figures 3.1-3.8 (pages 26-35)) with a power function of the form:
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p(x) = Cx-β 

where: 

p(x) = cumulative number of events per year with size equal to and 

greater than size x (probability of occurrence) 

C = a constant; measure of the activity level 

β = the slope value of the power function fit to the data 

 The probability of the occurrence for an event of a given size and greater in any 

one year, left y-axis on the size-cumulative frequency plots (Figures 3.1-3.8), is 

calculated by dividing the cumulative number of events by the number of years spanned 

by the data set. The “return period” (in years) for any given event size and greater, is the 

inverse of the probability of occurrence and is shown on the right y-axis on each plot. 

 Economic losses less than ~$1 million for tornadoes and floods, ~$10 million for 

earthquakes, and ~$10 billion for hurricanes fall away from the power function fit to the 

larger events. The economic losses roll-off for values less than ~$100,000 for tornadoes 

and floods, and ~$100 million for hurricanes is attributed to either an under estimate of 

smaller sized events or to a decrease in the number of events with decreasing event size, 

or to a transition from a power function to a size below which the cumulative number is 

independent of size, i.e. the data can be fit by a power function with a scaling exponent of 

zero (a horizontal line). Hurricane data between 50 and 60 fatalities has a rapid increase 

in the number of events. Fatality data below ~5 for earthquakes fall away from the power 

function fit to the larger events. Tornado fatalities below 1 roll-off from the power 

function fit to larger events, and include a roll-off at an upper limit. Flood fatalities are 

well fit by a single power function over the entire distribution. 
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 For purpose of comparison, the size-cumulative frequency plots also include the 

data plotted in histogram form, which is non-cumulative, with equally sized bin intervals 

(Burroughs and Tebbens, 2001, and Newman, 2006). The bin interval sizes used in 

Figures 3.1-3.8 (pages 26-35) are stated in the figure captions. The points shown in 

Figures 3.1-3.8 are the top right corners of the histogram bars. The data sets were too 

small and too scattered to permit the tops of the histogram bars to be meaningfully fit by 

any function or functions. 

3.2 Results of Data Analysis 

 Figures 3.1-3.8 show cumulative number of events per year equal to and greater 

than size x (an event) for economic losses (odd numbered figures) and fatalities (even 

numbered figures). The x-axis is the size of individual events, the left y-axis is the 

number of events of a given size and greater divided by the time span of the data set, 

which is the probability of occurrence in any one year. The probability of the largest 

event is 1/(time span of the data set) and the probability of the second largest event and 

greater is 2/(time span of the data set) and so on for all of the event sizes in the data set. 

The right y-axis is the return period (in years) for an event of any given size and greater. 

As illustrated on Figures 3.1-3.8, where there are repetitive size values, only the greatest 

cumulative value is used for fitting a mathematical function to the data (Burroughs and 

Tebbens, 2001). Non-fit and repetitive values for economic loss and fatalities are shown 

on the plots in light gray, the black data points are fit by a power function.  
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3.2.1 Hurricanes 

 Figure 3.1 is a size-cumulative frequency plot for economic losses in the United 

States for individual hurricane events during the time window 1950-2014. Data greater 

than $7 billion are well fit by a power function over one and a quarter orders of 

magnitude in size. The roll-off below $100 million is attributed to an under estimate of 

smaller sized events or a decrease in the number of events with decreasing event size, or 

to a transition from a power function to a size below which the cumulative number is 

independent of size, i.e. the data could be fit by a power function with a scaling exponent 

of zero (a horizontal line).
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Figure 3.1. Size-cumulative frequency plot of hurricane economic losses for 92 of 94 

individual events in the United States, 1950-2014. Data greater than $7 billion are well fit 

by a power function. The x-axis is economic loss adjusted to 2014 USD. The left y-axis is 

cumulative number of events per year equal to and greater than x. The right y-axis is 

return period, in years, of an event equal to and greater than x. Histogram points are the 

upper-right corner of histogram bars for the non-cumulative frequency distribution of 

events. Histogram bin size is $7.5 million.
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 Figure 3.2 is a size-cumulative frequency plot for fatalities in the United States for 

individual hurricanes during the time window 1950-2014. Data greater than 60 fatalities 

and the data below 50 fatalities are well fit by separate power functions over three orders 

of magnitude in size. The zone of unfitted data between the two power functions is due to 

a rapid increase in the number of events between 50 and 60 fatality events and no 

explanation for this behavior is offered. 

Figure 3.2. Size-cumulative frequency plot of hurricane fatalities for 82 of 94 individual 

events in the United States, 1950-2014. Data greater than 60 fatalities and the data below 

50 fatalities are well fit by separate power functions. The x-axis is number of fatalities. 

The left y-axis is cumulative number of events per year equal to and greater than x. The 

right y-axis is return period, in years, of an event equal to and greater than x. Histogram 

points are the upper-right corner of histogram bars for the non-cumulative frequency 

distribution of events. Histogram bin size is 1 fatality.  
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3.2.2 Earthquakes 

 Figure 3.3 is a size-cumulative frequency plot for economic losses in the United 

States for individual earthquakes during the time window 1900-2014. Data greater than 

$20 million are well fit by a power function over three and a half orders of magnitude in 

size. The roll-off below $1 million is attributed to an under estimate of smaller sized 

events or a decrease in the number of events with decreasing event size, or to a transition 

from a power function to a size below which the cumulative number is independent of 

size, i.e. the data could be fit by a power function with a scaling exponent of zero (a 

horizontal line). 

 
Figure 3.3. Size-cumulative frequency plot of earthquake economic losses for 144 of 196 

individual events in the United States, 1900-2014. Data greater than $20 million are well 

fit by a power function. The x-axis is economic loss adjusted to 2014 USD. The left y-

axis is cumulative number of events per year equal to and greater than x. The right y-axis 

is return period, in years, of an event equal to and greater than x. Histogram points are the 

upper-right corner of histogram bars for the non-cumulative frequency distribution of 

events. Histogram bin size is $750,000.  
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 Figure 3.4 is a size-cumulative frequency plot for fatalities in the United States for 

individual earthquakes during the time window 1900-2014. Data greater than 5 fatalities 

are well fit by a power function over two and a quarter orders of magnitude in size. The 

roll-off below 5 fatalities is attributed to an under estimate of smaller sized events or a 

decrease in the number of events with decreasing event size, or to a transition from a 

power function to a size below which the cumulative number is independent of size, i.e. 

the data could be fit by a power function with a scaling exponent of zero (a horizontal 

line). 

Figure 3.4. Size-cumulative frequency plot of earthquake fatalities for 58 of 196 

individual events in the United States, 1900-2014. Data greater than 5 fatalities are well 

fit by a power function. The x-axis is number of fatalities. The left y-axis is cumulative 

number of events per year equal to and greater than x. The right y-axis is return period, in 

years, of an event equal to and greater than x. Histogram points are the upper-right corner 

of histogram bars for the non-cumulative frequency distribution of events. Histogram bin 

size is 1 fatality.  
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3.2.3 Tornadoes 

 Figure 3.5 is a size-cumulative frequency plot for economic losses in the United 

States for individual tornadoes during the time window 1950-2014. Data between $4 

million and $2 billion are well fit by a power function over two and three quarter orders 

of magnitude in size. The roll-off above $2 billion is indicative of an upper size limit to 

the power function (Burroughs and Tebbens, 2001). The roll-off below $10,000 is 

attributed to an under estimate of smaller sized events or a decrease in the number of 

events with decreasing event size, or to a transition from a power function to a size below 

which the cumulative number is independent of size, i.e. the data could be fit by a power 

function with a scaling exponent of zero (a horizontal line).



31 
 

 
Figure 3.5. Size-cumulative frequency plot of tornado economic losses for 31,567 of 

46,402 individual events in the United States, 1900-2014. Data between $4 million and 

$2 billion are well fit by a power function. The x-axis is economic loss adjusted to 2014 

USD. The left y-axis is cumulative number of events per year equal to and greater than x. 

The right y-axis is return period, in years, of an event equal to and greater than x. 

Histogram points are the upper-right corner of histogram bars for the non-cumulative 

frequency distribution of events. Histogram bin size is $1,600.  
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 Figure 3.6 is a size-cumulative frequency plot for fatalities in the United States for 

individual tornadoes during the time window 1950-2014. The data greater than 2 

fatalities are well fit by a power function over two orders of magnitude in size. The data 

below 2 fatalities fall away from the power function and is attributed to an under estimate 

of smaller sized events or a decrease in the number of events with decreasing event size, 

or to a transition from a power function to a size below which the cumulative number is 

independent of size, i.e. the data could be fit by a power function with a scaling exponent 

of zero (a horizontal line). 

 
Figure 3.6. Size-cumulative frequency plot of tornado fatalities for 1,282 of 46,402 

individual events in the United States, 1900-2014. The data greater than 2 fatalities are 

well fit by a power function. The x-axis is number of fatalities. The left y-axis is 

cumulative number of events per year equal to and greater than x. The right y-axis is 

return period, in years, of an event equal to and greater than x. Histogram points are the 

upper-right corner of histogram bars for the non-cumulative frequency distribution of 

events. Histogram bin size is 1 fatality.  
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3.2.4 Floods 

 Figure 3.7 is a size-cumulative frequency plot for the economic losses in the 

United States for individual floods during the time window 1996-2014. The data greater 

than $2 million are well fit by a power function over five orders of magnitude in size. The 

roll-off below $10,000 is attributed to an under estimate of smaller sized events or a 

decrease in the number of events with decreasing event size, or to a transition from a 

power function to a size below which the cumulative number is independent of size, i.e. 

the data could be fit by a power function with a scaling exponent of zero (a horizontal 

line).
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Figure 3.7. Size-cumulative frequency plot of flood economic losses for 4,131 of 6,230 

individual events in the United States, 1996-2014. The data greater than $2 million are 

well fit by a power function. The x-axis is economic loss adjusted to 2014 USD. The left 

y-axis is cumulative number of events per year equal to and greater than x. The right y-

axis is return period, in years, of an event equal to and greater than x. Histogram points 

are the upper-right corner of histogram bars for the non-cumulative frequency 

distribution of events. Histogram bin size is $2,000.  
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 Figure 3.8 is a size-cumulative frequency plot for fatalities in the United States for 

individual floods during the time window 1996-2014. The data greater than 1 fatality are 

well fit by a power function over one and a half orders of magnitude in size. 

Figure 3.8. Size-cumulative frequency plot of flood fatalities for 601 of 6,230 individual 

events in the United States, 1996-2014. The data greater than 1 fatality are well fit by a 

power function. The x-axis is number of fatalities. The left y-axis is cumulative number 

of events per year equal to and greater than x. The right y-axis is return period, in years, 

of an event equal to and greater than x. Histogram points are the upper-right corner of 

histogram bars for the non-cumulative frequency distribution of events. Histogram bin 

size is 1.  
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3.3 Analysis of Drift in Data Over Time 

 Improved technology and improved methods of data collection may contribute to 

drift in the data over time, especially when the time ranges are as long as 1900-2014 

(earthquakes), 1950-2014 (hurricanes and tornadoes), and 1996-2014 (floods). It is also 

possible that climate change may affect the size and number of economic losses and 

fatalities for weather induced disasters. In order to test for these possible affects, and to 

test the stability through time of the data, each data set is divided in half by time and each 

half analyzed with the method used for the entire data set in Section 3.2. Note that when 

the data was divided in half by time, P(x) was calculated using half of the time interval 

spanned by the entire data set (ex. 64 year time span for entire data set becomes 32 years 

for each half of the data set when calculating P(x)). The position of data sets and the 

position of power functions fit to the data plotted on a size-cumulative frequency plot, is 

set by the size of the largest data point in the data set. The resulting plots are shown in 

Appendix E (Figures E.1-E.8 (pages 114-121)) and are summarized in Table 3.1 (page 

40). 

The scaling exponents for economic loss are within 0.1 of each other for each 

disaster type indicating that the exponents are stable and unaffected by data collection 

methodology or by factors such as climate change when the data is separated into halves 

based on time. The scaling exponents for fatalities depend on disaster size for hurricanes, 

earthquakes, and tornadoes when the data is separated into halves based on time with 

larger events having a larger scaling exponent. The scaling exponents for flood fatalities 

are within 0.1 and 0.2 of each other for each disaster type indicating that the exponents 
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are stable and unaffected by factors such as climate change when the data is separated 

into halves based on time. 

3.4 Composite Size-Cumulative Frequency Plots 

 Figures 3.9 and 3.10 are composite size-cumulative frequency plots of the 

economic loss and fatalities for each of the four natural disaster types. The x-axis is 

economic loss or fatalities for each event. The left y-axis is cumulative number of events 

per year equal to and greater than X. The right y-axis is return period (in years) of an 

event of any given size and greater, and is the inverse of the value on the left y-axis. The 

scaling exponents for economic loss fall into two groups (see Table 3.1 (page 40)). 

Hurricanes and tornadoes have scaling exponents, β = 1.1 and 0.9, respectively. 

Earthquakes and floods have scaling exponents, β = 0.4 and 0.6, respectively. The scaling 

exponents for fatalities also fall into two groups. Tornadoes and floods have scaling 

exponents, β = 1.5 and 1.7, respectively. Earthquakes and hurricanes have scaling 

exponents, β = 0.4 and 0.7, respectively. 
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CHAPTER 4 

DISCUSSION OF RESULTS 

4.1 Discussion 

The size-cumulative frequency plots presented in Figures 3.1-3.8 (pages 26-35) 

show data fit with power functions extending from one to five orders of magnitude in 

size. Size-cumulative frequency composite plots of the economic losses and fatalities 

data, and power functions fit, are plotted in Figures 3.9-3.10 (pages 38-39) to permit 

comparison between disaster types, by visual inspection, of the extent of power function 

behavior, the values of the scaling exponent, the activity level, the probability of 

occurrence of any given event size in any given year, and the return period. 

A roll-off of the data for larger losses was not addressed by Nishenko and Barton, 

1996, but is now interpreted to indicate an upper limit to the size of the largest event 

following Burroughs and Tebbens, 2001. Roll-off of the data to a slope of zero for the 

smallest sizes was not addressed by Barton and Nishenko, 1996 either, but is now 

interpreted to indicate that below a certain size, the number of losses is constant i.e. 

independent of size. 

4.2 Comparison of Results to Previous Studies 

 Table 1.1 (page 6) summarizes the results of Barton and Nishenko (1994) and 

Nishenko and Barton (1996). Table 3.2 (page 41) summarizes the results of the present 
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study. The time spanned in the present study for both economic loss and fatalities is 

shorter for three of the disaster types (hurricanes: 1950-2014, tornadoes: 1950-2014, and 

floods 1996-2014) than in the previous studies (1900-1989). The time spanned in the 

present study, for earthquakes (1900-2014), is longer than in the previous studies (1900-

1989). The total number of all the events, from smallest to largest, in the present study is 

larger (94-46,402) than in the previous studies (44-56). The size range of all economic 

losses is larger in the present study ($11.70-$134,925,353,120) (2014 USD) than in the 

previous studies ($1 million-$6 billion) (1990 USD). The size range of all fatalities in the 

present study (1-1,833) is smaller than in the previous studies (1-5,900), perhaps due in 

part to improvements in advanced warning systems for weather related disasters. The 

scaling exponents for all disaster types are equal to and greater in the present study (0.4-

1.7) than in previous studies (0.4-1.4). Even though the scaling exponents have not 

changed much over the past twenty years from the previous studies to this present study, 

the size of total number of events and the range over which the events scale is much 

larger. 

 Where there is more than one event of a given size plotted on a size-cumulative 

frequency plot, then only the topmost repetitive event size should be used when fitting a 

power function to the data (Burroughs and Tebbens, 2001). Barton and Nishenko (1994) 

fit power functions to all of the data including repetitive event sizes which slightly 

depressed the values they found for scaling exponents (Figures 1.1 (page 4) and 1.2 (page 

5) and Table 1.1 (page 6)). 

4.2.1 Economic Loss 
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 The time spanned for economic loss events in the present study for hurricanes is 

shorter (1950-2014) than in previous studies (1900-1989). The time spanned for 

economic loss events in the present study for earthquakes is longer (1900-2014) than in 

previous studies (1900-1989). The number of economic loss events in the present study 

for hurricanes and earthquakes is larger (92-144) than in previous studies (27-49). The 

size range of economic loss values in this study for hurricanes and earthquakes is larger 

($75,200-$130,680,000,000) (2014 USD) than previous studies ($1 million-$6 billion) 

(1990 USD). The scaling exponent for hurricanes in the present study, β = 1.1, is greater 

than in previous studies, β = 0.6. The scaling exponent for earthquakes in the present 

study, β = 0.4, is the same as in previous studies, β = 0.4. 

4.2.2 Fatalities 

 The time spanned for fatality events in the present study for three disaster types is 

shorter (hurricanes: 1950-2014, tornadoes 1950-2014, and floods: 1996-2014) than in 

previous studies (1900-1989). The time spanned for fatality events in the present study 

for earthquakes is longer (1900-2014) than in previous studies (1900-1989). The size 

range of fatality values in this study (1-1,833) is smaller than previous studies (1-5,900). 

Even though there have been more events (58-1,282) than the previous study (28-56), the 

quality of improved warning systems (http://earthquake.usgs.gov/research/earlywarning/ 

and http://www.nhc.noaa.gov/prepare/wwa.php) may have contributed to smaller 

fatalities for weather related disasters. The scaling exponent for hurricanes is, β = 0.4 and 

0.7, which is less than and greater than in previous studies, β = 0.6. The scaling exponent 

for earthquakes is, β = 0.7, greater than in previous studies, β = 0.4. The scaling exponent 

for tornadoes is, β = 1.5, greater than in previous studies, β = 1.4. The scaling exponent 

http://earthquake.usgs.gov/research/earlywarning/
http://www.nhc.noaa.gov/prepare/wwa.php
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for floods is, β = 1.7, greater than in previous studies, β = 1.3. The grouping of floods and 

tornadoes, and hurricanes and earthquakes, based on similar scaling exponents, found in 

the present study was also found by Barton and Nishenko (1994). 

4.3 Probabilistic Forecasting and the Return Period for Individual Natural Disaster 

Events as a Function of Size of Loss 

 To calculate forecasts for the probability of occurrence of an event, for any of the 

four natural disasters, the present study will use a Poisson distribution: 

P(n≥1,t,τ)=1 – e-t/τ 

where: 

n = the number of events 

t = the probability of occurrence (number of years) 

τ = the return period of an event 

This equation is given as equation 1.2 in Feller (1971), where expectation = τ = α. There 

are associated assumptions that must be taken into account when using a Poisson 

distribution (Feller, pp.12). The occurrence of one event does not affect the probability 

that a second event will occur, meaning the events are independent of previous events. 

The rate at which events occur over time is constant. Two events of the same natural 

disaster cannot occur at exactly the same instant. 

 To calculate the return period needed for computation of the Poisson distribution, 

refer to the power function equations from Figures 3.1-3.8 (pages 26-35). Replacing x 

with the value of the economic loss or fatalities, and taking the inverse of the result gives 

the return period. The present study evaluates the probability of occurrence for economic 
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losses resulting from events with $10 million and $10 billion and greater, and fatalities 

resulting from events with 10 and 100 and greater. Replacing t and τ with their respective 

values from the equation above, a probability of occurrence value can be obtained for 

each natural disaster over an infinite time window. 

 Determination of the return period for an event of a given size and greater 

provides a basis for establishing insurance rates, building codes, and disaster relief 

agencies’ response plans for natural disasters over a range of magnitudes in size. The 

return period is an estimate of the likelihood of an event based on historical data 

collected, not its periodic recurrence. Return period is not interpreted to mean an event 

will occur within that time window, but it offers the idea that an event of a specific 

magnitude in size and greater could occur (i.e. A 100-year flood is not interpreted to 

occur regularly every 100 years. It might occur once, twice, or not at all in a 100- year 

time window). The probabilities provided in Tables 4.1 (page 48) and 4.2 (page 49) 

represent a per year percentage, within the total number of years, that an event could 

occur. Economic loss data is provided in Table 4.1 for each of the four natural disaster 

types with probability of occurrence for events of $10 million and $10billion and greater, 

as well as their estimated return period in years. For example, in the United States, a 

hurricane with an economic loss value of $10 billion and greater has the probability to 

occur 0.86 times per year over a 10 year time window. So the return period for a 

hurricane event with $10 billion economic losses and greater is 5 years. The probability 

of the occurrence of a tornado event in any given year with economic losses of $10 

million and greater is 99%, with a return period of 0.05 years. Fatality data is provided in 

Table 4.2 for each of the four natural disaster types with probability of occurrence for 
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events of 10 and 100 fatalities and greater, as well as their estimated return period in 

years. 

 



48 
 

R
E

T
U

R
N

 P
E

R
IO

D
 

(Y
E

A
R

S
) 

$
1
0

,0
0

0
,0

0
0

,0
0
0
 

A
N

D
 G

R
E

A
T

E
R

 

P
E

R
 E

V
E

N
T

 

5
 

1
1
.6

4
 

2
5
 

(e
x

tr
ap

o
la

ti
o
n

) 

2
.2

8
 

$
1
0

,0
0

0
,0

0
0
 

A
N

D
 G

R
E

A
T

E
R

 

P
E

R
 E

V
E

N
T

 

--
--

- 

0
.7

3
 

0
.0

5
 

0
.3

6
 

P
R

O
B

A
B

IL
IT

Y
 O

F
 O

C
C

U
R

R
E

N
C

E
 

5
0
 Y

E
A

R
S

 

$
1
0

,0
0

0
,0

0
0

,0
0
0

 

A
N

D
 G

R
E

A
T

E
R

 

P
E

R
 E

V
E

N
T

 

>
0

.9
9
 

0
.9

9
 

0
.8

6
 

(e
x

tr
ap

o
la

ti
o
n

) 

>
0

.9
9
 

$
1
0

,0
0

0
,0

0
0
 

A
N

D
 G

R
E

A
T

E
R

 

P
E

R
 E

V
E

N
T

 

--
--

- 

>
0

.9
9
 

>
0

.9
9
 

>
0

.9
9
 

P
R

O
B

A
B

IL
IT

Y
 O

F
 O

C
C

U
R

R
E

N
C

E
 

1
0
 Y

E
A

R
S

 

$
1
0

,0
0

0
,0

0
0

,0
0
0
 

A
N

D
 G

R
E

A
T

E
R

 

P
E

R
 E

V
E

N
T

 

0
.8

6
 

0
.5

8
 

0
.3

3
 

(e
x

tr
ap

o
la

ti
o
n

) 

0
.9

9
 

$
1
0

,0
0

0
,0

0
0
 

A
N

D
 G

R
E

A
T

E
R

 

P
E

R
 E

V
E

N
T

 

--
--

- 

>
0

.9
9
 

>
0

.9
9
 

>
0

.9
9
 

P
R

O
B

A
B

IL
IT

Y
 O

F
 O

C
C

U
R

R
E

N
C

E
 

1
 Y

E
A

R
 

$
1
0

,0
0

0
,0

0
0

,0
0
0
 

A
N

D
 G

R
E

A
T

E
R

 

P
E

R
 E

V
E

N
T

 

0
.1

8
*
 

0
.0

8
 

0
.0

4
 

(e
x

tr
ap

o
la

ti
o
n

) 

0
.3

6
 

$
1
0

,0
0

0
,0

0
0
 

A
N

D
 G

R
E

A
T

E
R

 

P
E

R
 E

V
E

N
T

 

--
--

- 

0
.7

5
 

>
0

.9
9
 

0
.9

4
 

E
X

P
O

S
U

R
E

 

T
IM

E
 

       D
IS

A
S

T
E

R
 

H
U

R
R

IC
A

N
E

 

E
A

R
T

H
Q

U
A

K
E

 

T
O

R
N

A
D

O
 

F
L

O
O

D
 

T
ab

le
 4

.1
 P

ro
b
ab

il
it

y
 e

st
im

at
es

 f
o
r 

th
e 

o
cc

u
rr

en
ce

 o
f 

h
u
rr

ic
an

e,
 e

ar
th

q
u
ak

e,
 t

o
rn

ad
o
, 
an

d
 f

lo
o
d
 e

v
en

ts
 w

it
h

 $
1
0
,0

0
0
,0

0
0
 

an
d
 $

1
0
,0

0
0
,0

0
0
,0

0
0
 a

n
d

 g
re

at
er

 e
co

n
o
m

ic
 l

o
ss

es
 p

er
 e

v
en

t 
in

 t
h
e 

U
n
it

ed
 S

ta
te

s 
d
u
ri

n
g

 1
, 
1
0
, 
an

d
 5

0
 y

ea
r 

ex
p
o
su

re
 t

im
es

, 

an
d
 e

st
im

at
es

 o
f 

th
e 

m
ea

n
 r

et
u
rn

 p
er

io
d
 i

n
 y

ea
rs

. 
E

m
p
ty

 b
o
x
 v

al
u
es

 n
o
t 

u
se

d
 d

u
e 

to
 r

o
ll

-o
ff

 f
ro

m
 p

o
w

er
 f

u
n

ct
io

n
. 



49 
 

  

R
E

T
U

R
N

 P
E

R
IO

D
 

(Y
E

A
R

S
) 

1
0
0

 F
A

T
A

L
IT

IE
S

 

A
N

D
 G

R
E

A
T

E
R

 

P
E

R
 E

V
E

N
T

 

1
2
.5

6
 

2
2
.8

4
 

2
8
.0

9
 

6
0
.9

7
 

(e
x

tr
ap

o
la

ti
o
n

) 

1
0
 F

A
T

A
L

IT
IE

S
 

A
N

D
 G

R
E

A
T

E
R

 

P
E

R
 E

V
E

N
T

 

1
.7

9
 

4
.5

6
 

0
.8

9
 

1
.2

2
 

P
R

O
B

A
B

IL
IT

Y
 O

F
 O

C
C

U
R

R
E

N
C

E
 

5
0
 Y

E
A

R
S

 

1
0
0

 F
A

T
A

L
IT

IE
S

 

A
N

D
 G

R
E

A
T

E
R

 

P
E

R
 E

V
E

N
T

 

0
.9

8
 

0
.8

9
 

0
.8

3
 

0
.5

6
 

(e
x

tr
ap

o
la

ti
o
n

) 

1
0
 F

A
T

A
L

IT
IE

S
 

A
N

D
 G

R
E

A
T

E
R

 

P
E

R
 E

V
E

N
T

 

>
0

.9
9
 

>
0

.9
9
 

>
0

.9
9
 

>
0

.9
9
 

P
R

O
B

A
B

IL
IT

Y
 O

F
 O

C
C

U
R

R
E

N
C

E
 

1
0
 Y

E
A

R
S

 

1
0
0

 F
A

T
A

L
IT

IE
S

 

A
N

D
 G

R
E

A
T

E
R

 

P
E

R
 E

V
E

N
T

 

0
.5

5
 

0
.3

5
 

0
.3

0
 

0
.1

5
 

(e
x

tr
ap

o
la

ti
o
n

) 

1
0
 F

A
T

A
L

IT
IE

S
 

A
N

D
 G

R
E

A
T

E
R

 

P
E

R
 E

V
E

N
T

 

>
0

.9
9
 

0
.8

9
 

>
0

.9
9
 

>
0

.9
9
 

P
R

O
B

A
B

IL
IT

Y
 O

F
 O

C
C

U
R

R
E

N
C

E
 

1
 Y

E
A

R
 

1
0
0

 F
A

T
A

L
IT

IE
S

 

A
N

D
 G

R
E

A
T

E
R

 

P
E

R
 E

V
E

N
T

 

0
.0

8
 

0
.0

4
 

0
.0

3
 

0
.0

2
 

(e
x

tr
ap

o
la

ti
o
n

) 

1
0
 F

A
T

A
L

IT
IE

S
 

A
N

D
 G

R
E

A
T

E
R

 

P
E

R
 E

V
E

N
T

 

0
.4

3
*
 

0
.2

0
 

0
.6

7
 

0
.5

6
 

E
X

P
O

S
U

R
E

 

T
IM

E
 

       D
IS

A
S

T
E

R
 

H
U

R
R

IC
A

N
E

 

E
A

R
T

H
Q

U
A

K
E

 

T
O

R
N

A
D

O
 

F
L

O
O

D
 

*
 0

.4
3

 =
 4

3
%

 P
ro

b
ab

il
it

y
 o

f 
O

cc
u

rr
en

ce
 

T
ab

le
 4

.1
 P

ro
b
ab

il
it

y
 e

st
im

at
es

 f
o
r 

th
e 

o
cc

u
rr

en
ce

 o
f 

h
u
rr

ic
an

e,
 e

ar
th

q
u
ak

e,
 t

o
rn

ad
o
, 
an

d
 f

lo
o
d
 e

v
en

ts
 w

it
h

 $
1
0
,0

0
0
,0

0
0
 

an
d
 $

1
0
,0

0
0
,0

0
0
,0

0
0
 a

n
d

 g
re

at
er

 e
co

n
o
m

ic
 l

o
ss

es
 p

er
 e

v
en

t 
in

 t
h
e 

U
n
it

ed
 S

ta
te

s 
d
u
ri

n
g
 1

, 
1
0
, 
an

d
 5

0
 y

ea
r 

ex
p
o
su

re
 t

im
es

, 

an
d
 e

st
im

at
es

 o
f 

th
e 

m
ea

n
 r

et
u
rn

 t
im

e 
in

 y
ea

rs
. 

T
ab

le
 4

.2
 P

ro
b
ab

il
it

y
 e

st
im

at
es

 f
o
r 

th
e 

o
cc

u
rr

en
ce

 o
f 

h
u
rr

ic
an

e,
 e

ar
th

q
u
ak

e,
 t

o
rn

ad
o

, 
an

d
 f

lo
o
d
 e

v
en

ts
 w

it
h

 1
0
 a

n
d
 1

0
0
 

fa
ta

li
ti

es
 a

n
d
 g

re
at

er
 p

er
 e

v
en

t 
in

 t
h
e 

U
n
it

ed
 S

ta
te

s 
d
u
ri

n
g
 1

, 
1
0
, 

an
d
 5

0
 y

ea
r 

ex
p
o
su

re
 t

im
es

, 
an

d
 e

st
im

at
es

 o
f 

th
e 

m
ea

n
 

re
tu

rn
 p

er
io

d
 i

n
 y

ea
rs

.`
 

 



50 
 

CHAPTER 5 

CONCLUSIONS 

 Size-cumulative frequency plots of economic losses and fatalities for individual 

events due to hurricanes, earthquakes, tornadoes, and floods are well fit by power 

functions, over one to five orders of magnitude in size, with exponents between 0.4 and 

1.7. The scaling exponents for economic loss fall into two groups (see Table 3.1 (page 

40)). Tornadoes and hurricanes have scaling exponents, β = 0.9 and 1.1, respectively, 

while earthquakes and floods have scaling exponents, β = 0.4 and 0.6, respectively. The 

scaling exponents for fatalities also fall into two groups. Floods and tornadoes have 

scaling exponents, β = 1.5 and 1.7, respectively, while hurricanes and earthquakes have 

scaling exponents, β = 0.4 and 0.7, respectively. 

 Determination of the return period for an event of a given size and greater 

provides a basis for establishing insurance rates, building codes, and disaster relief 

agency response plans for natural disasters over a range of magnitudes in size. The return 

period, based on historical data, is not interpreted to mean an event will occur within that 

time window, but it offers the idea that an event of a specific magnitude in size and 

greater could occur (i.e. A 100-year flood is not interpreted to occur regularly every 100 

years. It might occur once, twice, or not at all in a 100-year time window). The 

probabilities provided in Tables 4.1 and 4.2 represent a per year percentage, within the 

total number of years, that an event could occur. Economic loss data is provided in 
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Table 4.1 for each of the four natural disaster types with probability of occurrence for 

events of $10 million and $10 billion and greater, as well as the estimated return period in 

years. Fatality data is provided in Table 4.2 for each of the four natural disaster types 

with probability of occurrence for events of 10 and 100 fatalities and greater, as well as 

their estimated return period in years. For example, in the United States, an earthquake 

with a fatality value of 100 and greater has the probability to occur 0.89 times per year 

over a 100-year time window. So the return period for an earthquake event with 100 

fatalities and greater is 22.84 years. The probability of the occurrence of a flood event in 

any given year with 100 fatalities and greater is 2% (based on extrapolation of power 

function from Figure 3.8 (page 35)), with a return period of 60.97 years. 
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APPENDIX A 

Step-by-Step Extraction of Data from the NOAA Databases and MATLAB 

Computer Code for Grouping Data into Events. 

 

 

 

 

 

 

 

 

 

 

 Data files for all four natural disaster types from the national databases were 

extracted in comma separated value files, and reconfigured into Excel files which were 

imported to a custom Matlab computer program that sorted and grouped the data into 

individual events. The step-by-step procedure for extracting the data from the national 

database and reconfiguring it into Excel is given below.

 

1. Download Data from 

NOAA NCEI and NOAA 

NHC Tropical Cyclone 

Reports 

2. Reconfigure CSV files 

into Excel files for use in 

Matlab 

3-3.1. Create Matlab 

program, and read in 

Excel files for execution 

of program 

3.2. Extract only columns 

of information needed for 

this study 

3.3. Find all economic 

loss values and correct to 

numerical output. 

3.4. Adjust economic 

loss values for inflation 

to 2014USD. 

3.5. Create episode id for 

each event by combining 

separate pieces of events. 

3.6. Combine all 

information extracted in 

3.2 to create events with 

only needed information. 

3.7. Create new separate 

Excel files for 

hurricanes, tornadoes, 

and floods. 
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1. Gather data from NOAA National Center for Environmental Information in Comma 

Separated Value files. 

1.1. Go to ftp://ftp.ncdc.noaa.gov/pub/data/swdi/stormevents/csvfiles/ for 

tornadoes floods;  

http://www.nhc.noaa.gov/data/#tcr for hurricanes; and 

http://www.ngdc.noaa.gov/nndc/struts/form?t=101650&s=1&d=1 for 

earthquakes. 

2. Download files for the range of years available to retrieve all weather related 

incidents recorded for separate weather disasters. During the years 1950-1954, only 

tornadoes were kept on record. During the years 1955-1992, tornado, thunderstorms, 

wind, and hail were recorded. From 1996-present, 48 different event types are 

recorded. Open each comma separated value file and then save as an Excel file for 

use by the Matlab computer program. 

3. The following Matlab program reads in the reconfigured Excel files from national 

databases, sorts and groups the data based on specified criteria (episode id to create 

individual events), and outputs new Excel files that contain the sorted and grouped 

data (ex. Table C.2 (page 95)). Economic loss data was transformed from the national 

database form into a monetary value form (ex. 1M = 1000000) and then multiplied by 

an inflation amount, based on year, to get the monetary values to 2014USD by the 

Matlab program. The program groups the data into individual events and sums the 

values within each event. Fatality data is also grouped into individual events and 

summed. The final step is to create an Excel file for each disaster types (hurricanes, 

ftp://ftp.ncdc.noaa.gov/pub/data/swdi/stormevents/csvfiles/
http://www.nhc.noaa.gov/data/#tcr
http://www.ngdc.noaa.gov/nndc/struts/form?t=101650&s=1&d=1
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tornadoes, floods (including: floods, flash floods, marine floods, and coastal floods). 

Note: Earthquake and hurricane final data comes from a different data source. 

fn=dir; 

MONTH_NAME=[]; %column L 

YEAR=[]; %column K 

BEGIN_YEARMONTH=[]; %column A 

BEGIN_DAY=[]; %column B 

END_YEARMONTH=[]; %column D 

END_DAY=[]; %column E 

EPISODEID=[]; %column G 

STATE=[]; %column I 

EVENT_TYPE=[]; %column M 

DIRECTINJURIES=[]; %column U 

INDIRECTINJURIES=[]; %column V 

DIRECTFATALITIES=[]; %column W 

INDIRECTFATALITIES=[]; %column X 

PROPDAMAGE=[]; %column Y 

CROPDAMAGE=[]; %column Z 

NARRATIVE=[]; %column AW 

NARRATIVE2=[]; %column AX 

 

3.1 for i=(7:length(fn)) 

    if ~fn(i).isdir 

        fn(i).name 

        [pathstr,name,ext] = fileparts(fn(i).name); 

        if strcmp(ext,'.xlsx')==1 

            [num,txt,raw]=xlsread(fn(i).name); 
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3.2 

            MONTH_NAME=[MONTH_NAME;txt(2:end,12)]; 

            %gives the month the event started 

 

            YEAR=[YEAR;num(1:end,11)]; 

            %gives the year the event started/happened 

 

            BEGIN_YEARMONTH=[BEGIN_YEARMONTH;num(1:end,1)]; 

            %gives the month and year of event start 

 

            BEGIN_DAY=[BEGIN_DAY;num(1:end,2)]; 

            %gives the day the event started 

 

            END_YEARMONTH=[END_YEARMONTH;num(1:end,4)]; 

            %gives the month and year the event ended 

 

            END_DAY=[END_DAY;num(1:end,5)]; 

            %gives the day the event ended 

 

            EPISODEID=[EPISODEID;num(1:end,7)]; 

            %gives each individual episode 

 

            STATE=[STATE;txt(2:end,9)]; 

            %gives the state the event happened in 

 

            EVENT_TYPE=[EVENT_TYPE;txt(2:end,13)]; 

            %gives specific event we need before assigning damage value 



56 
 

 

            DIRECTINJURIES=[DIRECTINJURIES;num(1:end,21)]; 

            %gives number of injuries directly from each event 

 

            INDIRECTINJURIES=[INDIRECTINJURIES;num(1:end,22)]; 

            %gives number of injuries due to outside circumstances for each 

            %event 

 

            DIRECTFATALITIES=[DIRECTFATALITIES;num(1:end,23)]; 

            %gives the fatalities from each event 

 

            INDIRECTFATALITIES=[INDIRECTFATALITIES;num(1:end,24)]; 

            %gives the number of fatalities caused by the event but 

            %happened after event was over. 

 

            PROPDAMAGE=[PROPDAMAGE;txt(2:end,25)]; 

            %gives property damage from each event 

 

            CROPDAMAGE=[CROPDAMAGE;txt(2:end,26)]; 

            %gives crop damage from each event 

 

            NARRATIVE=[NARRATIVE;txt(2:end,49)]; 

 

            NARRATIVE2=[NARRATIVE2;txt(2:end,50)]; 

 

        end 

    end 
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end 

 

%find all different values needed to produce wanted output. 

3.3 

FindhProp=strfind(PROPDAMAGE,'h'); 

FindHProp=strfind(PROPDAMAGE,'H'); 

FindkProp=strfind(PROPDAMAGE,'k'); 

FindKProp=strfind(PROPDAMAGE,'K'); 

FindMProp=strfind(PROPDAMAGE,'M'); 

FindBProp=strfind(PROPDAMAGE,'B'); 

FindTProp=strfind(PROPDAMAGE,'T'); 

 

FindhCrop=strfind(CROPDAMAGE,'h'); 

FindHCrop=strfind(CROPDAMAGE,'H'); 

FindkCrop=strfind(CROPDAMAGE,'k'); 

FindKCrop=strfind(CROPDAMAGE,'K'); 

FindMCrop=strfind(CROPDAMAGE,'M'); 

FindBCrop=strfind(CROPDAMAGE,'B'); 

FindTCrop=strfind(CROPDAMAGE,'T'); 

 

%separates each of the values into the different categories that we need. 

 

LenD=length(PROPDAMAGE); 

DPROP=zeros(LenD,1); 

DCROP=zeros(LenD,1); 

 

%DPROP array of all 0 values 
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%DCROP array of all 0 values 

 

%take the array and find specific values to change them into the numbers 

%we need to use so we can find plot them.  Using a for loop, we use i 

%from 1 to the length and if/else statements. If K(i) is not empty (K is 

%in the string), then replace the K with a blank and multiple by 

%1000...carry on though h, H, M, and B, if nothing then transfer value as is. 

 

for l=(1:LenD) 

    if ~isempty(FindhProp{l}) 

        DPROP(l)=str2num(strrep(PROPDAMAGE{l},'h',''))*100; 

        %replace all strings of h with the value*100 

    elseif ~isempty(FindHProp{l}) 

        DPROP(l)=str2num(strrep(PROPDAMAGE{l},'H',''))*100; 

        %replace all strings of H with the value*100 

    elseif ~isempty(FindkProp{l}) 

        DPROP(l)=str2num(strrep(PROPDAMAGE{l},'k',''))*1000; 

        %replace all strings of k with the value*1000 

    elseif ~isempty(FindKProp{l}) 

        DPROP(l)=str2num(strrep(PROPDAMAGE{l},'K',''))*1000; 

        %replace all strings of K with the value*1000 

    elseif ~isempty(FindMProp{l}) 

        DPROP(l)=str2num(strrep(PROPDAMAGE{l},'M',''))*1000000; 

        %replace all strings of M with the value*1000000 

    elseif ~isempty(FindBProp{l}) 

        DPROP(l)=str2num(strrep(PROPDAMAGE{l},'B',''))*1000000000; 

        %replace all strings of B with the value*1000000000 
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    elseif ~isempty(FindTProp{l}) 

        DPROP(l)=str2num(strrep(PROPDAMAGE{l},'T',''))*1000000000000; 

        %replace all strings of T with the value*1000000000000 

    elseif length(PROPDAMAGE{l})==0 

        DPROP(l)==0; 

        %if the cell is empty(blank), then replace with 0 

    else 

        DPROP(l)=str2num(PROPDAMAGE{l}); 

        %carryover all other values 

    end 

end 

 

for j=(1:LenD) 

    if ~isempty(FindhCrop{j}) 

        DCROP(j)=str2num(strrep(CROPDAMAGE{j},'h',''))*100; 

        %replace all strings of h with the value*100 

    elseif ~isempty(FindHCrop{j}) 

        DCROP(j)=str2num(strrep(CROPDAMAGE{j},'H',''))*100; 

        %replace all strings of H with the value*100 

    elseif ~isempty(FindkCrop{j}) 

        DCROP(j)=str2num(strrep(CROPDAMAGE{j},'k',''))*1000; 

        %replace all strings of k with the value*1000 

    elseif ~isempty(FindKCrop{j}) 

        DCROP(j)=str2num(strrep(CROPDAMAGE{j},'K',''))*1000; 

        %replace all strings of K with the value*1000 

    elseif ~isempty(FindMCrop{j}) 

        DCROP(j)=str2num(strrep(CROPDAMAGE{j},'M',''))*1000000; 
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        %replace all strings of M with the value*1000000 

    elseif ~isempty(FindBCrop{j}) 

        DCROP(j)=str2num(strrep(CROPDAMAGE{j},'B',''))*1000000000; 

        %replace all strings of B with the value*1000000000 

    elseif ~isempty(FindTCrop{j}) 

        DCROP(j)=str2num(strrep(CROPDAMAGE{j},'T',''))*1000000000000; 

        %replace all strings of T with the value*1000000000000 

    elseif length(CROPDAMAGE{j})==0 

        DCROP(j)==0; 

        %if the cell is empty(blank), then replace with 0 

    else 

        DCROP(j)=str2num(CROPDAMAGE{j}); 

        %carryover all other values 

    end 

end 

 

%Get the total damage amount by adding the two amounts(DPROP+DCROP), 

make 

%sure you have the same amount of rows in the columns, otherwise it will 

%return an error 

 

DAMAGETHEN=[DCROP+DPROP]; 

ADJUSTEDDAMAGENOW=DAMAGETHEN; 

 

INJURIES=DIRECTINJURIES+INDIRECTINJURIES; 

FATALITIES=DIRECTFATALITIES+INDIRECTFATALITIES; 

3.4 

for YR=(1950:2014); 
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    idx=find(YEAR==YR); 

    if YR==1950; 

        ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*9.82; 

    elseif YR==1951; 

        ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*9.11; 

    elseif YR==1952; 

        ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*8.93; 

    elseif YR==1953; 

        ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*8.87; 

    elseif YR==1954; 

        ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*8.80; 

    elseif YR==1955; 

        ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*8.83; 

    elseif YR==1956; 

        ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*8.70; 

    elseif YR==1957; 

        ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*8.42; 

    elseif YR==1958; 

        ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*8.19; 

    elseif YR==1959; 

        ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*8.14; 

    elseif YR==1960; 

        ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*8.00; 

    elseif YR==1961; 

        ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*7.92; 

    elseif YR==1962; 

        ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*7.84; 
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    elseif YR==1963; 

        ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*7.74; 

    elseif YR==1964; 

        ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*7.64; 

    elseif YR==1965; 

        ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*7.52; 

    elseif YR==1966; 

        ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*7.31; 

    elseif YR==1967; 

        ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*7.09; 

    elseif YR==1968; 

        ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*6.80; 

    elseif YR==1969; 

        ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*6.45; 

    elseif YR==1970; 

        ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*6.10; 

    elseif YR==1971; 

        ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*5.85; 

    elseif YR==1972; 

        ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*5.66; 

    elseif YR==1973; 

        ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*5.33; 

    elseif YR==1974; 

        ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*4.80; 

    elseif YR==1975; 

        ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*4.40; 

    elseif YR==1976; 
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        ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*4.16; 

    elseif YR==1977; 

        ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*3.91; 

    elseif YR==1978; 

        ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*3.63; 

    elseif YR==1979; 

        ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*3.26; 

    elseif YR==1980; 

        ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*2.87; 

    elseif YR==1981; 

        ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*2.60; 

    elseif YR==1982; 

        ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*2.45; 

    elseif YR==1983; 

        ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*2.38; 

    elseif YR==1984; 

        ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*2.28; 

    elseif YR==1985; 

        ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*2.20; 

    elseif YR==1986; 

        ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*2.16; 

    elseif YR==1987; 

        ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*2.08; 

    elseif YR==1988; 

        ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*2.00; 

    elseif YR==1989; 

        ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*1.91; 
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    elseif YR==1990; 

        ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*1.81; 

    elseif YR==1991; 

        ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*1.74; 

    elseif YR==1992; 

        ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*1.69; 

    elseif YR==1993; 

        ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*1.64; 

    elseif YR==1994; 

        ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*1.60; 

    elseif YR==1995; 

        ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*1.55; 

    elseif YR==1996; 

        ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*1.51; 

    elseif YR==1997; 

        ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*1.47; 

    elseif YR==1998; 

        ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*1.45; 

    elseif YR==1999; 

        ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*1.42; 

    elseif YR==2000; 

        ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*1.37; 

    elseif YR==2001; 

        ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*1.34; 

    elseif YR==2002; 

        ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*1.32; 

    elseif YR==2003; 
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        ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*1.29; 

    elseif YR==2004; 

        ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*1.25; 

    elseif YR==2005; 

        ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*1.21; 

    elseif YR==2006; 

        ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*1.17; 

    elseif YR==2007; 

        ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*1.14; 

    elseif YR==2008; 

        ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*1.10; 

    elseif YR==2009; 

        ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*1.10; 

    elseif YR==2010; 

        ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*1.09; 

    elseif YR==2011; 

        ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*1.05; 

    elseif YR==2012; 

        ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*1.03; 

    elseif YR==2013; 

        ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*1.02; 

    elseif YR==2014; 

        ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*1.00; 

    end 

end 

3.5 

UEPISODEID=unique(EPISODEID); 
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for k=1:length(UEPISODEID) 

    begin1=[1] 

    k 

    idx=find(EPISODEID==UEPISODEID(k)); 

    %if ~fn(i).isdir 

    %    fn(i).name 

        if length(idx)>1; 

            

ADJUSTEDDAMAGENOW(idx(1))=sum(ADJUSTEDDAMAGENOW(idx)); 

            ADJUSTEDDAMAGENOW(idx(2:end))=[]; 

            DAMAGETHEN(idx(1))=sum(DAMAGETHEN(idx)); 

            DAMAGETHEN(idx(2:end))=[]; 

            %will be used when needing to look at unadjusted vs adjusted for 

            %plots and for report to show difference 

            INJURIES(idx(1))=sum(INJURIES(idx)); 

            INJURIES(idx(2:end))=[]; 

            FATALITIES(idx(1))=sum(FATALITIES(idx)); 

            FATALITIES(idx(2:end))=[]; 

            MONTH_NAME(idx(2:end))=[]; 

            YEAR(idx(2:end))=[]; 

            BEGIN_YEARMONTH(idx(2:end))=[]; 

            BEGIN_DAY(idx(2:end))=[]; 

            END_YEARMONTH(idx(2:end))=[]; 

            END_DAY(idx(2:end))=[]; 

            STATE(idx(2:end))=[]; 

            EVENT_TYPE(idx(2:end))=[]; 

            EPISODEID(idx(2:end))=[]; 

            NARRATIVE(idx(2:end))=[]; 
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            NARRATIVE2(idx(2:end))=[]; 

        end 

    %end 

    finish2=[2] 

end 

 

%Get individual event types output into individual matrices. 

3.6 & 3.7 

FindTornado=strcmpi(EVENT_TYPE,'Tornado'); 

 

T1=MONTH_NAME(FindTornado>0); 

T2=YEAR(FindTornado>0); 

T3=BEGIN_YEARMONTH(FindTornado>0); 

T4=BEGIN_DAY(FindTornado>0); 

T5=END_YEARMONTH(FindTornado>0); 

T6=END_DAY(FindTornado>0); 

T7=UEPISODEID(FindTornado>0); 

T8=STATE(FindTornado>0); 

T8=strrep(T8,' ',''); 

T9=EVENT_TYPE(FindTornado>0); 

T9=strrep(T9,' ',''); 

T10=INJURIES(FindTornado>0); 

T11=FATALITIES(FindTornado>0); 

T12=DAMAGETHEN(FindTornado>0); 

T13=ADJUSTEDDAMAGENOW(FindTornado>0); 

%each of the different variables we want in our output 
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TORNADOFILE=cell(length(T1),13); 

%filename=cell(length(T#),columns) 

 

TORNADOFILE(:,1)=T1(:); 

TORNADOFILE(:,2)=num2cell(T2(:)); 

TORNADOFILE(:,3)=num2cell(T3(:)); 

TORNADOFILE(:,4)=num2cell(T4(:)); 

TORNADOFILE(:,5)=num2cell(T5(:)); 

TORNADOFILE(:,6)=num2cell(T6(:)); 

TORNADOFILE(:,7)=num2cell(T7(:)); 

TORNADOFILE(:,8)=T8(:); 

TORNADOFILE(:,9)=T9(:); 

TORNADOFILE(:,10)=num2cell(T10(:)); 

TORNADOFILE(:,11)=num2cell(T11(:)); 

TORNADOFILE(:,12)=num2cell(T12(:)); 

TORNADOFILE(:,13)=num2cell(T13(:)); 

%=T1 means a cell array,=num2cell means a number originally convert to cell 

 

    fileID = fopen('TORNADOFILE.dat','w'); 

    %gives file name for output but leave .dat 

    formatSpec = '%s %d %d %d %d %d %d %s %s %d %d %f %f\n'; 

    %fprintf in help to see different values 

 

    [nrows,ncols] = size(TORNADOFILE); 

 

    HformatSpec = '%s %s %s %s %s %s %s %s %s %s %s %s %s\n'; 
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HEADER={'MonthName','Year','BeginYearMonth','BeginDay','EndYearMonth',..

. 

        'EndDay','UEpisodeID','State','EventType','Injuries','Fatalities',... 

        'DamageThen','Adjusted(2014)DamageNow'}; 

    fprintf(fileID,HformatSpec,HEADER{1,:}); 

 

for row = 1:nrows 

    fprintf(fileID,formatSpec,TORNADOFILE{row,:}); 

end 

fclose(fileID); 

%program code to give output in a file that we can turn into excel file 

 

FindHurricane=strcmpi(EVENT_TYPE,'Hurricane (Typhoon)'); 

 

H1=MONTH_NAME(FindHurricane>0); 

H2=YEAR(FindHurricane>0); 

H3=BEGIN_YEARMONTH(FindHurricane>0); 

H4=BEGIN_DAY(FindHurricane>0); 

H5=END_YEARMONTH(FindHurricane>0); 

H6=END_DAY(FindHurricane>0); 

H7=UEPISODEID(FindHurricane>0); 

H8=STATE(FindHurricane>0); 

H8=strrep(H8,' ',''); 

H9=EVENT_TYPE(FindHurricane>0); 

H9=strrep(H9,' ',''); 

H10=INJURIES(FindHurricane>0); 

H11=FATALITIES(FindHurricane>0); 



70 
 

H12=DAMAGETHEN(FindHurricane>0); 

H13=ADJUSTEDDAMAGENOW(FindHurricane>0); 

%each of the different variables we want in our output 

 

HURRICANEFILE=cell(length(H1),13); 

%filename=cell(length(H#),columns) 

 

HURRICANEFILE(:,1)=H1(:); 

HURRICANEFILE(:,2)=num2cell(H2(:)); 

HURRICANEFILE(:,3)=num2cell(H3(:)); 

HURRICANEFILE(:,4)=num2cell(H4(:)); 

HURRICANEFILE(:,5)=num2cell(H5(:)); 

HURRICANEFILE(:,6)=num2cell(H6(:)); 

HURRICANEFILE(:,7)=num2cell(H7(:)); 

HURRICANEFILE(:,8)=H8(:); 

HURRICANEFILE(:,9)=H9(:); 

HURRICANEFILE(:,10)=num2cell(H10(:)); 

HURRICANEFILE(:,11)=num2cell(H11(:)); 

HURRICANEFILE(:,12)=num2cell(H12(:)); 

HURRICANEFILE(:,13)=num2cell(H13(:)); 

%=H1 means a cell array,=num2cell means a number originally convert to cell 

 

    fileID = fopen('HURRICANEFILE.dat','w'); 

    %gives file name for output but leave .dat 

    formatSpec = '%s %d %d %d %d %d %d %s %s %d %d %f %f\n'; 

    %fprintf in help to see different values 
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    [nrows,ncols] = size(HURRICANEFILE); 

 

    HformatSpec = '%s %s %s %s %s %s %s %s %s %s %s %s %s\n'; 

    

HEADER={'MonthName','Year','BeginYearMonth','BeginDay','EndYearMonth',..

. 

        'EndDay','UEpisodeID','State','EventType','Injuries','Fatalities',... 

        'DamageThen','Adjusted(2014)DamageNow'}; 

    fprintf(fileID,HformatSpec,HEADER{1,:}); 

 

for row = 1:nrows 

    fprintf(fileID,formatSpec,HURRICANEFILE{row,:}); 

end 

fclose(fileID); 

%program code to give output in a file that we can turn into excel file 

 

FindFlood=strcmpi(EVENT_TYPE,'Flood'); 

 

F1=MONTH_NAME(FindFlood>0); 

F2=YEAR(FindFlood>0); 

F3=BEGIN_YEARMONTH(FindFlood>0); 

F4=BEGIN_DAY(FindFlood>0); 

F5=END_YEARMONTH(FindFlood>0); 

F6=END_DAY(FindFlood>0); 

F7=UEPISODEID(FindFlood>0); 

F8=STATE(FindFlood>0); 

F8=strrep(F8,' ',''); 

F9=EVENT_TYPE(FindFlood>0); 
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F9=strrep(F9,' ',''); 

F10=INJURIES(FindFlood>0); 

F11=FATALITIES(FindFlood>0); 

F12=DAMAGETHEN(FindFlood>0); 

F13=ADJUSTEDDAMAGENOW(FindFlood>0); 

F14=NARRATIVE(FindFlood>0); 

F15=NARRATIVE2(FindFlood>0); 

%each of the different variables we want in our output 

 

FLOODFILE=cell(length(F1),15); 

%filename=cell(length(F#),columns) 

 

FLOODFILE(:,1)=F1(:); 

FLOODFILE(:,2)=num2cell(F2(:)); 

FLOODFILE(:,3)=num2cell(F3(:)); 

FLOODFILE(:,4)=num2cell(F4(:)); 

FLOODFILE(:,5)=num2cell(F5(:)); 

FLOODFILE(:,6)=num2cell(F6(:)); 

FLOODFILE(:,7)=num2cell(F7(:)); 

FLOODFILE(:,8)=F8(:); 

FLOODFILE(:,9)=F9(:); 

FLOODFILE(:,10)=num2cell(F10(:)); 

FLOODFILE(:,11)=num2cell(F11(:)); 

FLOODFILE(:,12)=num2cell(F12(:)); 

FLOODFILE(:,13)=num2cell(F13(:)); 

FLOODFILE(:,14)=F14(:); 

FLOODFILE(:,15)=F15(:); 
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%=F1 means a cell array,=num2cell means a number originally convert to cell 

 

    fileID = fopen('FLOODFILE.dat','w'); 

    %gives file name for output but leave .dat 

    formatSpec = '%s %d %d %d %d %d %d %s %s %d %d %f %f %s %s\n'; 

 

    [nrows,ncols] = size(FLOODFILE); 

 

    HformatSpec = '%s %s %s %s %s %s %s %s %s %s %s %s %s %s %s\n'; 

    

HEADER={'MonthName','Year','BeginYearMonth','BeginDay','EndYearMonth',..

. 

        'EndDay','UEpisodeID','State','EventType','Injuries','Fatalities',... 

        'DamageThen','Adjusted(2014)DamageNow','Narrative','Narrative2'}; 

    fprintf(fileID,HformatSpec,HEADER{1,:}); 

 

for row = 1:nrows 

    fprintf(fileID,formatSpec,FLOODFILE{row,:}); 

end 

fclose(fileID); 

%program code to give output in a file that we can turn into excel file 

 

FindFlashFlood=strcmpi(EVENT_TYPE,'Flash Flood'); 

 

FF1=MONTH_NAME(FindFlashFlood>0); 

FF2=YEAR(FindFlashFlood>0); 

FF3=BEGIN_YEARMONTH(FindFlashFlood>0); 

FF4=BEGIN_DAY(FindFlashFlood>0); 
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FF5=END_YEARMONTH(FindFlashFlood>0); 

FF6=END_DAY(FindFlashFlood>0); 

FF7=UEPISODEID(FindFlashFlood>0); 

FF8=STATE(FindFlashFlood>0); 

FF8=strrep(FF8,' ',''); 

FF9=EVENT_TYPE(FindFlashFlood>0); 

FF9=strrep(FF9,' ',''); 

FF10=INJURIES(FindFlashFlood>0); 

FF11=FATALITIES(FindFlashFlood>0); 

FF12=DAMAGETHEN(FindFlashFlood>0); 

FF13=ADJUSTEDDAMAGENOW(FindFlashFlood>0); 

FF14=NARRATIVE(FindFlashFlood>0); 

FF15=NARRATIVE2(FindFlashFlood>0); 

%each of the different variables we want in our output 

 

FLASHFLOODFILE=cell(length(FF1),15); 

%filename=cell(length(FF#),columns) 

 

FLASHFLOODFILE(:,1)=FF1(:); 

FLASHFLOODFILE(:,2)=num2cell(FF2(:)); 

FLASHFLOODFILE(:,3)=num2cell(FF3(:)); 

FLASHFLOODFILE(:,4)=num2cell(FF4(:)); 

FLASHFLOODFILE(:,5)=num2cell(FF5(:)); 

FLASHFLOODFILE(:,6)=num2cell(FF6(:)); 

FLASHFLOODFILE(:,7)=num2cell(FF7(:)); 

FLASHFLOODFILE(:,8)=FF8(:); 

FLASHFLOODFILE(:,9)=FF9(:); 
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FLASHFLOODFILE(:,10)=num2cell(FF10(:)); 

FLASHFLOODFILE(:,11)=num2cell(FF11(:)); 

FLASHFLOODFILE(:,12)=num2cell(FF12(:)); 

FLASHFLOODFILE(:,13)=num2cell(FF13(:)); 

FLASHFLOODFILE(:,14)=FF14(:); 

FLASHFLOODFILE(:,15)=FF15(:); 

%=FF1 means a cell array,=num2cell means a number originally convert to cell 

 

    fileID = fopen('FLASHFLOODFILE.dat','w'); 

    %gives file name for output but leave .dat 

    formatSpec = '%s %d %d %d %d %d %d %s %s %d %d %f %f %s %s\n'; 

    %fprintf in help to see different values 

 

    [nrows,ncols] = size(FLASHFLOODFILE); 

 

    HformatSpec = '%s %s %s %s %s %s %s %s %s %s %s %s %s %s %s\n'; 

    

HEADER={'MonthName','Year','BeginYearMonth','BeginDay','EndYearMonth',..

. 

        'EndDay','UEpisodeID','State','EventType','Injuries','Fatalities',... 

        'DamageThen','Adjusted(2014)DamageNow','Narrative','Narrative2'}; 

    fprintf(fileID,HformatSpec,HEADER{1,:}); 

 

for row = 1:nrows 

    fprintf(fileID,formatSpec,FLASHFLOODFILE{row,:}); 

end 

fclose(fileID); 

%program code to give output in a file that we can turn into excel file 
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FindCoastalFlood=strcmpi(EVENT_TYPE,'Coastal Flood'); 

 

CF1=MONTH_NAME(FindCoastalFlood>0); 

CF2=YEAR(FindCoastalFlood>0); 

CF3=BEGIN_YEARMONTH(FindCoastalFlood>0); 

CF4=BEGIN_DAY(FindCoastalFlood>0); 

CF5=END_YEARMONTH(FindCoastalFlood>0); 

CF6=END_DAY(FindCoastalFlood>0); 

CF7=UEPISODEID(FindCoastalFlood>0); 

CF8=STATE(FindCoastalFlood>0); 

CF8=strrep(CF8,' ',''); 

CF9=EVENT_TYPE(FindCoastalFlood>0); 

CF9=strrep(CF9,' ',''); 

CF10=INJURIES(FindCoastalFlood>0); 

CF11=FATALITIES(FindCoastalFlood>0); 

CF12=DAMAGETHEN(FindCoastalFlood>0); 

CF13=ADJUSTEDDAMAGENOW(FindCoastalFlood>0); 

CF14=NARRATIVE(FindCoastalFlood>0); 

CF15=NARRATIVE2(FindCoastalFlood>0); 

%each of the different variables we want in our output 

 

COASTALFLOODFILE=cell(length(CF1),15); 

%filename=cell(length(CF#),columns) 

 

COASTALFLOODFILE(:,1)=CF1(:); 

COASTALFLOODFILE(:,2)=num2cell(CF2(:)); 
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COASTALFLOODFILE(:,3)=num2cell(CF3(:)); 

COASTALFLOODFILE(:,4)=num2cell(CF4(:)); 

COASTALFLOODFILE(:,5)=num2cell(CF5(:)); 

COASTALFLOODFILE(:,6)=num2cell(CF6(:)); 

COASTALFLOODFILE(:,7)=num2cell(CF7(:)); 

COASTALFLOODFILE(:,8)=CF8(:); 

COASTALFLOODFILE(:,9)=CF9(:); 

COASTALFLOODFILE(:,10)=num2cell(CF10(:)); 

COASTALFLOODFILE(:,11)=num2cell(CF11(:)); 

COASTALFLOODFILE(:,12)=num2cell(CF12(:)); 

COASTALFLOODFILE(:,13)=num2cell(CF13(:)); 

COASTALFLOODFILE(:,14)=CF14(:); 

COASTALFLOODFILE(:,15)=CF15(:); 

%=CF1 means a cell array,=num2cell means a number originally convert to cell 

 

    fileID = fopen('COASTALFLOODFILE.dat','w'); 

    %gives file name for output but leave .dat 

    formatSpec = '%s %d %d %d %d %d %d %s %s %d %d %f %f %s %s\n'; 

    %fprintf in help to see different values 

 

    [nrows,ncols] = size(COASTALFLOODFILE); 

 

    HformatSpec = '%s %s %s %s %s %s %s %s %s %s %s %s %s %s %s\n'; 

    

HEADER={'MonthName','Year','BeginYearMonth','BeginDay','EndYearMonth',..

. 

        'EndDay','UEpisodeID','State','EventType','Injuries','Fatalities',... 

        'DamageThen','Adjusted(2014)DamageNow','Narrative','Narrative2'}; 
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    fprintf(fileID,HformatSpec,HEADER{1,:}); 

 

for row = 1:nrows 

    fprintf(fileID,formatSpec,COASTALFLOODFILE{row,:}); 

end 

fclose(fileID); 

%program code to give output in a file that we can turn into excel file 

 

FindMarineFlood=strcmpi(EVENT_TYPE,'Marine Flood'); 

 

MF1=MONTH_NAME(FindMarineFlood>0); 

MF2=YEAR(FindMarineFlood>0); 

MF3=BEGIN_YEARMONTH(FindMarineFlood>0); 

MF4=BEGIN_DAY(FindMarineFlood>0); 

MF5=END_YEARMONTH(FindMarineFlood>0); 

MF6=END_DAY(FindMarineFlood>0); 

MF7=UEPISODEID(FindMarineFlood>0); 

MF8=STATE(FindMarineFlood>0); 

MF8=strrep(MF8,' ',''); 

MF9=EVENT_TYPE(FindMarineFlood>0); 

MF9=strrep(MF9,' ',''); 

MF10=INJURIES(FindMarineFlood>0); 

MF11=FATALITIES(FindMarineFlood>0); 

MF12=DAMAGETHEN(FindMarineFlood>0); 

MF13=ADJUSTEDDAMAGENOW(FindMarineFlood>0); 

MF14=NARRATIVE(FindMarineFlood>0); 

MF15=NARRATIVE2(FindMarineFlood>0); 



79 
 

%each of the different variables we want in our output 

 

MARINEFLOODFILE=cell(length(MF1),15); 

%filename=cell(length(MF#),columns) 

 

MARINEFLOODFILE(:,1)=MF1(:); 

MARINEFLOODFILE(:,2)=num2cell(MF2(:)); 

MARINEFLOODFILE(:,3)=num2cell(MF3(:)); 

MARINEFLOODFILE(:,4)=num2cell(MF4(:)); 

MARINEFLOODFILE(:,5)=num2cell(MF5(:)); 

MARINEFLOODFILE(:,6)=num2cell(MF6(:)); 

MARINEFLOODFILE(:,7)=num2cell(MF7(:)); 

MARINEFLOODFILE(:,8)=MF8(:); 

MARINEFLOODFILE(:,9)=MF9(:); 

MARINEFLOODFILE(:,10)=num2cell(MF10(:)); 

MARINEFLOODFILE(:,11)=num2cell(MF11(:)); 

MARINEFLOODFILE(:,12)=num2cell(MF12(:)); 

MARINEFLOODFILE(:,13)=num2cell(MF13(:)); 

MARINEFLOODFILE(:,14)=MF14(:); 

MARINEFLOODFILE(:,15)=MF15(:); 

%=MF1 means a cell array,=num2cell means a number originally convert to cell 

 

    fileID = fopen('MARINEFLOODFILE.dat','w'); 

    %gives file name for output but leave .dat 

    formatSpec = '%s %d %d %d %d %d %d %s %s %d %d %f %f %s %s\n'; 

    %fprintf in help to see different values 
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    [nrows,ncols] = size(MARINEFLOODFILE); 

 

    HformatSpec = '%s %s %s %s %s %s %s %s %s %s %s %s %s %s %s\n'; 

    

HEADER={'MonthName','Year','BeginYearMonth','BeginDay','EndYearMonth',..

. 

        'EndDay','UEpisodeID','State','EventType','Injuries','Fatalities',... 

        'DamageThen','Adjusted(2014)DamageNow','Narrative','Narrative2'}; 

    fprintf(fileID,HformatSpec,HEADER{1,:}); 

 

for row = 1:nrows 

    fprintf(fileID,formatSpec,MARINEFLOODFILE{row,:}); 

end 

fclose(fileID); 

%program code to give output in a file that we can turn into excel file 

 

finish3=[3] 

 

Output of Matlab code is data sorted into individual disaster types for tornadoes, 

hurricanes, and floods. Other disater types (tsunamis, blizzards, hail, high winds, 

avalanches, and others) are removed by the MATLAB program. Earthquake data is 

already separated into individual events through NOAA National Center for 

Environmental Information database. 

Hurricanes: Combine separate listings to create each event using NOAA National 

Hurricane Center Tropical Cyclone Reports, as well as information (month, begin and 

end day, year) from NOAA National Center for Environmental Information Storm Events 
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Database-Bulk Data Download files. Compare monetary and fatality values to ensure 

quality data; when needed, edit data based on information provided from both sets of 

reports. Example: Hurricane Katrina in 2005 is listed multiple times, this is for the reason 

that it struck many counties and states, so this data needed to be combined and values 

cross-referenced to ensure accuracy. 

Earthquakes: Already grouped by event, adjust the monetary values to equate 

them to 2014 USD. For data that is a general value (Example: $50-$500 economic loss or 

1-10 fatalities), the middle value ($225 or 5) is used, to not skew the output data. 

Tornadoes: Already grouped by event, but adjustments to monetary values must 

be done to equate them to 2014USD. 

Floods: This data set was the most difficult to group into individual events, due to 

the lack of labeling data byevent by NOAA National Weather Service (cited by the 

County Warning Area, then by the county and state policy, which leaves many events 

missing critical pieces of information). Example: If there is a flood that occurs in Ohio, 

then trickles down to the Mississippi River; it is reported as separate events (in each 

County Warning Area) due to the lack of communication and identification by NOAA 

National Weather Service. There are many none combined events that need to be 

combined to form an event. This study found that using the FEMA Disaster Declarations 

website would help with this effort, but it still left many pieces of an event out. In this 

case, it was agreed to combine the data by state and then by month to get the best result 

for floods. 
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APPENDIX B 

Step-by-Step Process followed to Analyze Data 

 This appendix will take the resultant Excel files that were created at the end of 

Appendix A, and turn them into graphical representations for analysis. Each natural 

disaster workbook will expand to contain all the data and graphs needed to complete this 

study. The different worksheets and graphs will show cumulative and non-cumulative 

techniques in order to determine the best possible outcome, as well as if they follow 

power function distributions allowing for probabilistic forecasting of new larger events. 

Then, this study will combine the data sets into one composite graph for each, economic 

loss and fatalities, to understand which natural disasters are related in terms of their 

frequency and return period. 

1. Using combined results and Excel, create new worksheets to graph results. 

1.1. Sort the Adjusted (2014) Damage Now or Fatalities column from largest 

to smallest. 

1.2. Open a new worksheet (label Economic Loss Values or Fatalities Values) 

in the Excel file for each of the hazards (tornadoes, floods, hurricanes, and 

earthquakes). 

1.3. Paste the Adjusted (2014) Damage Now or Fatalities column into column 

D (label Multiples) of the Economic Loss Values or Fatalities Values 

worksheet.
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1.4. Rank the values in column E (label Rank) from 1 (being the largest) to X 

(being the smallest). If using formulas to compute the entire column, make 

sure to copy and use paste special values only.  

1.5. Copy and paste the Multiples values only in a new worksheet in order to 

remove multiples, since this study only looks at the cumulative number of 

events => X. 

1.6. In the new sheet, choose the sort function once again. Sort the values in 

column A from smallest to largest, and the values in column B from 

largest to smallest. 

1.7. Select all of column A, and then choose the filter (advanced) function. 

1.8. In the filter function box, select the check box next to unique records only. 

1.9. Copy and paste the values returned back into the Economic Loss Values or 

Fatalities Values worksheet into column A (label Singles) and the rank 

will be copied into column B (label Rank). 

1.10. Using the sort function, sort Singles column from largest to smallest and 

Rank column from smallest to largest. 

1.11. Remove any 0 values in the Rank column, since those do not pertain to 

this study and check the remaining values for accuracy. 

2. Using the Multiples values, plot the data points on a marked scatter plot for 

visualization of where points are plotted. 

2.1. Copy and paste the Multiples values and Rank into a new worksheet (label 

Economic Loss Rank Per Year or Fatalities Rank Per Year) in columns G 

(label Economic Loss or Fatalities) and H (label Rank). 
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2.2. For column F (label Multiples Date Range), the date range will need to be 

computed. Using the starting date and ending date calculate the range for 

each of the hazards. 

2.3. Column I (label Rank Per Year = Rank/# Years), is the computation of 

column H/column F (Rank/Multiples Date Range). If using a formula to 

compute this step, copy and use paste special values at the end in order the 

correct values needed to make the graphs. 

3. Using the Singles values, obtain the rank per year values needed for graphs. 

3.1. Copy and paste the Singles values and Rank into the Economic Loss Rank 

Per Year or Fatalities Rank Per Year worksheet in columns B (label 

Economic Loss or Fatalities) and C (label Rank). 

3.2. For column A (label Single Date Range), the date range will need to be 

computed. Using the starting date and ending date calculate the range for 

each of the hazards. 

3.3. Column D (label Rank Per Year = Rank/# Years), is the computation of 

column C/column A (Rank/Single Date Range). If using a formula to 

compute this step, copy and use paste special values at the end in order the 

correct values needed to make the graphs. 

4. Create graphs of cumulative number of events => X and cumulative number of 

events/year => X, using cumulative frequency techniques. 

4.1. Using Excel, create marked scatter plots (move the actual chart to a new 

chart for better viewing) for separate analysis of data values. 
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4.2. Multiples: Add data from columns G (Economic Loss or Fatalities) and H 

(Rank) to a blank graph for cumulative number of events => X plot (label 

Economic Loss Plot or Fatalities Plot) and columns G (Economic Loss or 

Fatalities) and I (Rank Per Year = Rank/# Years) to another blank graph 

for the cumulative number of events/year => X plot (label Economic Loss 

Rank Per Year Plot or Fatalities Rank Per Year Plot). 

4.3. Change the x-axis and y-axis to log scale to show the correct output for 

use with power law relationships. 

4.4. Singles: Add (overlay) data from columns B (Economic Loss or Fatalities) 

and C (Rank) to the Economic Loss or Fatalities Plot for cumulative 

number of events => X plot and columns B (Economic Loss or Fatalities) 

and D (Rank Per Year = Rank/# Years) to the Economic Loss Rank Per 

Year Plot/Fatalities Rank Per Year Plot for the cumulative number of 

events/year => X plot. 

4.5. Add a power function trendline to the overlay points and show the 

equation on the graph to see how the slope changes when values are added 

or removed to find the best-fit line or multiple lines if an inflection point 

exists. 

5. Create graphs of cumulative number of events => X and cumulative number of 

events/year => X, using non-cumulative frequency techniques. 

5.1. Open a new worksheet (label Economic Loss Histogram Values or 

Fatalities Histogram Values). 
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5.2. Copy the Multiples column of Economic Loss or Fatalities (column G) 

from the Economic Loss Rank Per Year or Fatalities Rank Per Year 

worksheet and paste into column A (label Economic Loss or Fatalities) of 

the Economic Loss Histogram Values or Fatalities Histogram Values 

worksheet. 

5.3. For Binning purposes, use the Series function under the Fill option on the 

Excel workbook Home tab. 

5.3.1. Column B will be your Series (label Economic Loss or Fatalities), 

enter 0 into the second row.  

5.3.2. Select the Series function and enter a step value and the stop value 

for your data set. This will automatically generate a series for use 

with the histogram. 

5.4. To create a histogram, select the Data Tab and then the Data Analysis 

function. 

5.4.1. Select the Histogram feature from the Analysis Tools menu and 

click OK. 

5.4.2. Input box: Input Range will be column A and Bin Range will be 

column B. 

5.4.3. Select the Labels box since the worksheet has labels to start the 

columns. 

5.4.4. Output options: Output Range select column D and check the box 

next to Chart Output. 

5.4.5. Click OK. 
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5.4.6. Move the chart to a New Sheet (label Economic Loss Histogram or 

Fatalities Histogram). 

5.4.7. If the histogram needs to be edited for a better outcome, repeat this 

process starting at Part c of this section using a different step value 

in the binning process. 

5.5. Copy and paste the Economic Loss or Frequency values from columns D 

and E into columns G and H. Then create a Frequency/Year column in 

column I by taking the Frequency values and dividing them by the number 

of Years in column A of the Economic Loss Rank Per Year or Fatalities 

Rank Per Year worksheet. 

5.6. Add columns G (Economic Loss or Fatalities) and H (Frequency) from the 

Economic Loss Histogram Values or Fatalities Histogram Values to the 

Economic Loss Plot or Fatalities Plot. Add a Power function trendline to 

the data set and show the equation on the graph. 

5.7. Add columns G (Economic Loss or Fatalities) and I (Frequency/Year) 

from the Economic Loss Histogram Values or Fatalities Histogram Values 

to the Economic Loss Plot Per Year or Fatalities Plot Per Year. Add a 

Power function trendline to the data set and show the equation on the 

graph. 

5.8. Pick the largest data points from column H (Frequency) and copy columns 

G, H, and I for that point to paste into columns K, L, and M respectively; 

add the same column headers in the first row. 
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5.9. Overlay these points onto the Economic Loss Plot Per Year or Fatalities 

Plot Per Year. Add a Power function trendline to the data set and show the 

equation on the graph. 

6. Create graphs of cumulative number of events per year => X, with return period. 

6.1. Repeat steps 2 through 4 in a new Excel workbook, creating separate 

worksheets for each of the individual disaster types. 

6.2. Create an empty set of economic/fatality values and rank per year values 

in another worksheet (label empty set) in order to create the return period 

axis (secondary axis). 

6.3. Add all of the data sets (hurricanes, tornadoes, floods, and earthquakes) to 

a new marked scatterplot graph following the process of step 4. The empty 

set data set will be added to the scatterplot, but will need to be edited to 

the secondary axis and then represented by no marker so they do not show 

in the final graphical output. 

6.4. When the secondary axis is shown it will need to be formatted to the 

inverse of the primary axis to show the proper return period. 
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APPENDIX C: 

Hurricane and Earthquake Data Sets 

 The following tables provide detailed information for events related to hurricanes 

and earthquakes. Hurricane tables show the differences between the data obtained from 

NOAA National Center for Environmental Information website (C.1 (page 90)) and the 

combined data once processed through the Matlab computer program (C.2 (page 95)). 

Hurricane data set required combining events based on time of occurrence but did not 

complete the data. In this case, NOAA National Hurricane Center Tropical Cyclone 

Reports were used for all data. Earthquake tables show data obtained from NOAA 

National Center for Environmental Information website (C.3 (page 98)) and the hand-

edited final version (C.4 (page 104)) for use with Appendix B. Table C.4 provides results 

of economic loss and fatalities with the incorporated description/generic values from 

table C.3. Referring back to Section 2.3, the generic values will be represented by using 

the middle value as to not skew the output plots. 
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Table C.1: Hurricane data (sorted by date) after processing by Matlab computer program. 

Output data includes: year, date, episode id (main event id), state, event type, fatalities, 

economic loss at time of event, economic loss adjusted to 2014USD. 

Begin 

Year 

Month 

Begin 

Day 

UEpisode 

ID 

Baker 

Event 

ID 

Number 

State 
Event 

Type 
Fatalities 

Damage 

(dollars of 

the day) 

Adjusted 

(2014) 

Damage 

Now 

199607 10 1049285 1 FLORIDA Hurricane(Typhoon) 0 0 0 

199607 10 1049286 1 FLORIDA Hurricane(Typhoon) 0 0 0 

199607 10 1049287 1 FLORIDA Hurricane(Typhoon) 2 0 0 

199607 11 1033180 1 GEORGIA Hurricane(Typhoon) 0 0 0 

199607 11 1055886 1 SOUTHCAROLINA Hurricane(Typhoon) 0 0 0 

199607 12 1044586 1 NORTHCAROLINA Hurricane(Typhoon) 1 267250000 403547500 

199607 12 1045250 1 NORTHCAROLINA Hurricane(Typhoon) 0 230000 347300 

199607 12 1046244 1 NORTHCAROLINA Hurricane(Typhoon) 0 0 0 

199607 12 1057163 1 NORTHCAROLINA Hurricane(Typhoon) 0 19000000 28690000 

199607 12 1057164 1 NORTHCAROLINA Hurricane(Typhoon) 0 14500000 21895000 

199607 12 1402892 1 NORTHCAROLINA Hurricane(Typhoon) 0 11000000 16610000 

199607 12 1039943 1 SOUTHCAROLINA Hurricane(Typhoon) 0 0 0 

199607 12 1055887 1 SOUTHCAROLINA Hurricane(Typhoon) 0 780000 1177800 

199607 12 1055888 1 SOUTHCAROLINA Hurricane(Typhoon) 0 1300000 1963000 

199607 12 1055789 1 VIRGINIA Hurricane(Typhoon) 0 0 0 

199607 13 1054465 1 MARYLAND Hurricane(Typhoon) 0 115000 173650 

199608 29 1056102 
 

NORTHCAROLINA Hurricane(Typhoon) 0 0 0 

199608 31 1055256 
 

SOUTHCAROLINA Hurricane(Typhoon) 0 0 0 

199609 2 1403446 
 

FLORIDA Hurricane(Typhoon) 0 0 0 

199609 2 1044845 
 

MAINE Hurricane(Typhoon) 0 0 0 

199609 2 1048803 
 

NEWHAMPSHIRE Hurricane(Typhoon) 0 0 0 

199609 4 1045259 2 NORTHCAROLINA Hurricane(Typhoon) 4 792150000 1196146500 

199609 5 1045440 2 NORTHCAROLINA Hurricane(Typhoon) 7 0 0 

199609 5 1046467 2 NORTHCAROLINA Hurricane(Typhoon) 0 1000000 1510000 

199609 5 1048167 2 NORTHCAROLINA Hurricane(Typhoon) 2 226000000 341260000 

199609 5 1048176 2 NORTHCAROLINA Hurricane(Typhoon) 0 201000000 303510000 

199609 5 1048254 2 NORTHCAROLINA Hurricane(Typhoon) 0 7000000 10570000 

199609 5 1047271 2 SOUTHCAROLINA Hurricane(Typhoon) 0 0 0 

199609 5 1048994 2 SOUTHCAROLINA Hurricane(Typhoon) 1 20800000 31408000 

199609 5 1057010 2 SOUTHCAROLINA Hurricane(Typhoon) 0 0 0 

199609 5 1048707 2 VIRGINIA Hurricane(Typhoon) 0 0 0 

199609 6 1045721 2 MARYLAND Hurricane(Typhoon) 0 1000000 1510000 

199707 17 38549 3 LOUISIANA Hurricane(Typhoon) 0 5000000 7350000 

199707 17 49809 3 MISSISSIPPI Hurricane(Typhoon) 0 0 0 
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199707 21 1057729 3 ALABAMA Hurricane(Typhoon) 1 63000000 92610000 

199808 26 55939 4 NORTHCAROLINA Hurricane(Typhoon) 1 13400000 19430000 

199808 26 67944 4 NORTHCAROLINA Hurricane(Typhoon) 0 99000000 143550000 

199808 26 1077715 4 NORTHCAROLINA Hurricane(Typhoon) 0 123400000 178930000 

199808 26 1082856 4 NORTHCAROLINA Hurricane(Typhoon) 0 17100000 24795000 

199808 26 1082857 4 NORTHCAROLINA Hurricane(Typhoon) 0 26200000 37990000 

199808 26 1081841 4 SOUTHCAROLINA Hurricane(Typhoon) 0 0 0 

199808 26 1149000 4 SOUTHCAROLINA Hurricane(Typhoon) 0 3800000 5510000 

199808 26 65274 4 VIRGINIA Hurricane(Typhoon) 0 26659000 38655550 

199808 27 1079545 4 NORTHCAROLINA Hurricane(Typhoon) 0 50000000 72500000 

199809 1 1083868 5 ALABAMA Hurricane(Typhoon) 0 10000 14500 

199809 1 1150649 5 FLORIDA Hurricane(Typhoon) 0 150000 217500 

199809 1 65261 5 LOUISIANA Hurricane(Typhoon) 0 32000 46400 

199809 1 1072977 
 

TEXAS Hurricane(Typhoon) 0 10000 14500 

199809 2 60747 5 FLORIDA Hurricane(Typhoon) 0 1130000 1638500 

199809 2 61197 5 FLORIDA Hurricane(Typhoon) 2 5995000 8692750 

199809 25 1149148 6 ALABAMA Hurricane(Typhoon) 1 179164000 259787800 

199809 25 61980 6 FLORIDA Hurricane(Typhoon) 0 270000000 391500000 

199809 25 64390 6 FLORIDA Hurricane(Typhoon) 0 250000 362500 

199809 25 1149147 6 FLORIDA Hurricane(Typhoon) 0 135000000 195750000 

199809 25 1150605 6 FLORIDA Hurricane(Typhoon) 0 0 0 

199809 25 1073878 6 MISSISSIPPI Hurricane(Typhoon) 0 72000000 104400000 

199809 26 1072033 6 LOUISIANA Hurricane(Typhoon) 0 0 0 

199809 27 65438 6 LOUISIANA Hurricane(Typhoon) 0 30060000 43587000 

199809 27 65477 6 MISSISSIPPI Hurricane(Typhoon) 0 602000000 872900000 

199809 28 68612 6 FLORIDA Hurricane(Typhoon) 0 61975000 89863750 

199908 29 1406826 6 FLORIDA Hurricane(Typhoon) 1 100000 142000 

199908 30 1405652 7 NORTHCAROLINA Hurricane(Typhoon) 0 0 0 

199908 30 1406733 7 NORTHCAROLINA Hurricane(Typhoon) 0 75000 106500 

199908 30 1406332 7 SOUTHCAROLINA Hurricane(Typhoon) 0 0 0 

199909 1 1408227 7 NORTHCAROLINA Hurricane(Typhoon) 0 35000 49700 

199909 1 1408221 7 VIRGINIA Hurricane(Typhoon) 0 27000 38340 

199909 4 77641 7 NORTHCAROLINA Hurricane(Typhoon) 0 3000000 4260000 

199909 13 1405397 8 FLORIDA Hurricane(Typhoon) 0 100000 142000 

199909 14 501382 8 FLORIDA Hurricane(Typhoon) 0 20000 28400 

199909 14 502888 8 NORTHCAROLINA Hurricane(Typhoon) 13 824224000 1170398080 

199909 15 77998 8 FLORIDA Hurricane(Typhoon) 0 2500000 3550000 

199909 15 79215 8 FLORIDA Hurricane(Typhoon) 0 1000000 1420000 

199909 15 1405090 8 FLORIDA Hurricane(Typhoon) 0 61000000 86620000 
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199909 15 1406050 8 FLORIDA Hurricane(Typhoon) 0 3000000 4260000 

199909 15 1413083 8 FLORIDA Hurricane(Typhoon) 0 60000 85200 

199909 15 502540 
 

GEORGIA Hurricane(Typhoon) 0 0 0 

199909 15 1408884 9 MARYLAND Hurricane(Typhoon) 0 853000 1211260 

199909 15 77757 9 NORTHCAROLINA Hurricane(Typhoon) 0 3500000000 4970000000 

199909 15 1408624 9 NORTHCAROLINA Hurricane(Typhoon) 0 75395000 107060900 

199909 15 502707 9 SOUTHCAROLINA Hurricane(Typhoon) 0 17000000 24140000 

199909 15 1407890 9 VIRGINIA Hurricane(Typhoon) 1 141698000 201211160 

199910 14 77474 10 FLORIDA Hurricane(Typhoon) 0 600000000 852000000 

199910 15 1405611 10 FLORIDA Hurricane(Typhoon) 0 51000000 72420000 

199910 15 1410013 10 FLORIDA Hurricane(Typhoon) 0 0 0 

199910 16 1406478 10 FLORIDA Hurricane(Typhoon) 0 600000 852000 

199910 16 1406479 10 FLORIDA Hurricane(Typhoon) 0 300000 426000 

199910 16 1415740 10 FLORIDA Hurricane(Typhoon) 0 300000 426000 

199910 16 1409248 10 NORTHCAROLINA Hurricane(Typhoon) 1 0 0 

199910 17 1408011 10 NORTHCAROLINA Hurricane(Typhoon) 0 31000 44020 

199910 17 77866 10 VIRGINIA Hurricane(Typhoon) 0 45000 63900 

200009 17 98208 11 FLORIDA Hurricane(Typhoon) 0 0 0 

200009 17 101916 11 FLORIDA Hurricane(Typhoon) 0 5050000 6918500 

200111 5 124577 12 FLORIDA Hurricane(Typhoon) 0 50000 67000 

200111 5 124776 12 FLORIDA Hurricane(Typhoon) 0 0 0 

200210 2 145212 13 ALABAMA Hurricane(Typhoon) 0 175000 231000 

200210 2 132025 13 LOUISIANA Hurricane(Typhoon) 0 149655000 197544600 

200210 3 131105 13 LOUISIANA Hurricane(Typhoon) 0 1000000 1320000 

200210 3 145529 13 LOUISIANA Hurricane(Typhoon) 0 536000000 707520000 

200210 3 131080 13 MISSISSIPPI Hurricane(Typhoon) 0 522510 689713.2 

200307 14 163783 14 TEXAS Hurricane(Typhoon) 0 10880300 14035587 

200307 15 161365 14 TEXAS Hurricane(Typhoon) 0 0 0 

200309 17 150474 15 NORTHCAROLINA Hurricane(Typhoon) 0 449850000 580306500 

200309 18 150642 15 NORTHCAROLINA Hurricane(Typhoon) 1 7293000 9407970 

200309 18 161857 15 NORTHCAROLINA Hurricane(Typhoon) 0 3900000 5031000 

200309 18 162575 15 NORTHCAROLINA Hurricane(Typhoon) 1 16899000 21799710 

200309 18 162959 15 VIRGINIA Hurricane(Typhoon) 2 9700000 12513000 

200309 18 162984 15 VIRGINIA Hurricane(Typhoon) 2 516921000 666828090 

200408 3 179939 16 NORTHCAROLINA Hurricane(Typhoon) 0 7550000 9437500 

200408 11 180401 17 FLORIDA Hurricane(Typhoon) 0 160000 200000 

200408 13 176754 17 FLORIDA Hurricane(Typhoon) 0 20000 25000 

200408 13 177442 17 FLORIDA Hurricane(Typhoon) 0 2575000 3218750 

200408 13 179346 17 FLORIDA Hurricane(Typhoon) 7 5707600000 7134500000 
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200408 13 180244 17 FLORIDA Hurricane(Typhoon) 0 0 0 

200408 13 181737 17 FLORIDA Hurricane(Typhoon) 2 52000000 65000000 

200408 14 178910 17 NORTHCAROLINA Hurricane(Typhoon) 0 9835000 12293750 

200408 14 179094 17 NORTHCAROLINA Hurricane(Typhoon) 0 12925000 16156250 

200408 14 178378 17 SOUTHCAROLINA Hurricane(Typhoon) 0 6500000 8125000 

200408 14 180685 17 SOUTHCAROLINA Hurricane(Typhoon) 0 0 0 

200409 1 179618 18 FLORIDA Hurricane(Typhoon) 0 20000 25000 

200409 4 180898 18 FLORIDA Hurricane(Typhoon) 0 711000000 888750000 

200409 4 182297 18 FLORIDA Hurricane(Typhoon) 0 4923200000 6154000000 

200409 12 180993 
 

FLORIDA Hurricane(Typhoon) 0 0 0 

200409 13 180715 19 ALABAMA Hurricane(Typhoon) 0 2525000000 3156250000 

200409 13 180430 19 FLORIDA Hurricane(Typhoon) 7 4025000000 5031250000 

200409 14 179870 19 MISSISSIPPI Hurricane(Typhoon) 0 200000 250000 

200409 15 180860 19 FLORIDA Hurricane(Typhoon) 6 90425000 113031250 

200409 15 164633 19 LOUISIANA Hurricane(Typhoon) 0 15840000 19800000 

200409 15 165398 19 MISSISSIPPI Hurricane(Typhoon) 0 10000000 12500000 

200409 16 179404 19 MISSISSIPPI Hurricane(Typhoon) 1 2000800 2501000 

200409 24 179336 20 FLORIDA Hurricane(Typhoon) 0 5000 6250 

200409 25 181099 20 FLORIDA Hurricane(Typhoon) 0 353000000 441250000 

200409 25 181902 20 FLORIDA Hurricane(Typhoon) 0 388600000 485750000 

200507 5 195219 21 LOUISIANA Hurricane(Typhoon) 0 47500000 57475000 

200507 8 189802 21 FLORIDA Hurricane(Typhoon) 1 0 0 

200507 8 198227 21 FLORIDA Hurricane(Typhoon) 1 7150000 8651500 

200507 9 193751 21 ALABAMA Hurricane(Typhoon) 0 120100000 145321000 

200507 9 194470 21 ALABAMA Hurricane(Typhoon) 0 1500000 1815000 

200507 9 192507 21 FLORIDA Hurricane(Typhoon) 0 62000000 75020000 

200507 9 194727 21 FLORIDA Hurricane(Typhoon) 0 1500300000 1815363000 

200507 9 193150 21 GEORGIA Hurricane(Typhoon) 0 7700000 9317000 

200507 10 194726 21 ALABAMA Hurricane(Typhoon) 0 0 0 

200507 10 194781 21 ALABAMA Hurricane(Typhoon) 0 0 0 

200507 10 194782 21 ALABAMA Hurricane(Typhoon) 0 0 0 

200507 10 193672 21 FLORIDA Hurricane(Typhoon) 0 0 0 

200507 10 195570 21 FLORIDA Hurricane(Typhoon) 0 0 0 

200507 10 194219 21 GEORGIA Hurricane(Typhoon) 0 0 0 

200507 10 194167 21 MISSISSIPPI Hurricane(Typhoon) 0 4700000 5687000 

200508 25 197140 22 FLORIDA Hurricane(Typhoon) 6 523000000 632830000 

200508 26 198895 22 FLORIDA Hurricane(Typhoon) 0 6900000 8349000 

200508 27 196557 22 ALABAMA Hurricane(Typhoon) 0 1000000000 1210000000 

200508 27 196558 22 MISSISSIPPI Hurricane(Typhoon) 0 250000000 302500000 
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200508 28 197162 22 FLORIDA Hurricane(Typhoon) 0 1700000 2057000 

200508 28 197919 22 LOUISIANA Hurricane(Typhoon) 0 16929400000 20484574000 

200508 28 197962 22 MISSISSIPPI Hurricane(Typhoon) 0 7347400000 8890354000 

200508 29 196782 22 ARKANSAS Hurricane(Typhoon) 0 7400000 8954000 

200508 29 197878 22 GEORGIA Hurricane(Typhoon) 0 0 0 

200508 29 196079 22 LOUISIANA Hurricane(Typhoon) 0 30000 36300 

200508 29 196783 22 LOUISIANA Hurricane(Typhoon) 0 52600000 63646000 

200508 29 196674 22 MISSISSIPPI Hurricane(Typhoon) 15 7390300000 8942263000 

200508 29 198064 22 MISSISSIPPI Hurricane(Typhoon) 0 0 0 

200508 29 198119 22 MISSISSIPPI Hurricane(Typhoon) 0 0 0 

200508 29 198762 22 MISSISSIPPI Hurricane(Typhoon) 0 0 0 

200509 13 199692 23 NORTHCAROLINA Hurricane(Typhoon) 0 53660000 64928600 

200509 14 202516 23 NORTHCAROLINA Hurricane(Typhoon) 0 8300000 10043000 

200509 20 198740 24 FLORIDA Hurricane(Typhoon) 0 0 0 

200509 23 197953 24 LOUISIANA Hurricane(Typhoon) 1 3995000000 4833950000 

200509 23 197860 24 TEXAS Hurricane(Typhoon) 1 2090000000 2528900000 

200509 23 202518 24 TEXAS Hurricane(Typhoon) 3 159500000 192995000 

200509 24 202338 24 ARKANSAS Hurricane(Typhoon) 0 1050000 1270500 

200509 24 200034 24 LOUISIANA Hurricane(Typhoon) 0 0 0 

200509 24 202337 24 LOUISIANA Hurricane(Typhoon) 0 8750000 10587500 

200509 24 202508 24 MISSISSIPPI Hurricane(Typhoon) 0 2815000 3406150 

200509 24 200236 24 TEXAS Hurricane(Typhoon) 1 0 0 

200510 23 200716 25 FLORIDA Hurricane(Typhoon) 0 99000000 119790000 

200510 24 199545 25 FLORIDA Hurricane(Typhoon) 0 101000000 122210000 

200510 24 202552 25 FLORIDA Hurricane(Typhoon) 5 10000000000 12100000000 

200709 12 11848 26 TEXAS Hurricane(Typhoon) 0 3000000 3420000 

200709 14 11335 26 GEORGIA Hurricane(Typhoon) 0 0 0 

200809 1 24573 27 MISSISSIPPI Hurricane(Typhoon) 0 21890000 24079000 

200809 12 24718 28 TEXAS Hurricane(Typhoon) 1 1348000000 1482800000 

201108 27 55738 29 NORTHCAROLINA Hurricane(Typhoon) 0 3500000 3675000 

201208 28 66547 30 LOUISIANA Hurricane(Typhoon) 3 728900000 750767000 
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Table C.2: Hurricane data after combination of pieces of each event into the individual 

events. Output data provides important information including: year, date, episode id, 

state, event type, fatalities, economic loss at time of event, economic loss adjusted to 

2014USD. 

Begin 

Year 

Month 

Begin 

Day 

UEpisode 

ID 
State 

Event 

Type 
Fatalities 

Damage 

Then 

Adjusted 

(2014) 

Damage 

Now 

195008 30 
 

ALABAMA Hurricane(Typhoon) 1 2550000 25041000 

195009 5 
 

FLORIDA Hurricane(Typhoon) 2 3300000 32406000 

195010 17 
 

FLORIDA Hurricane(Typhoon) 4 28000000 274960000 

195208 30 
 

SOUTHCAROLINA Hurricane(Typhoon) 3 2750000 24557500 

195308 13 
 

NORTHCAROLINA Hurricane(Typhoon) 1 1000000 8870000 

195309 26 
 

FLORIDA Hurricane(Typhoon) 0 200000 1774000 

195408 26 
 

NEWYORK Hurricane(Typhoon) 60 461000000 4056800000 

195409 11 
 

MASSACHUSETTS Hurricane(Typhoon) 20 40000000 352000000 

195410 15 
 

NORTHCAROLINA Hurricane(Typhoon) 95 281000000 2472800000 

195508 17 
 

NORTHCAROLINA Hurricane(Typhoon) 184 832000000 7346560000 

195508 12 
 

NORTHCAROLINA Hurricane(Typhoon) 0 40000000 353200000 

195509 19 
 

NORTHCAROLINA Hurricane(Typhoon) 7 88035000 777349050 

195609 24 
 

LOUISIANA Hurricane(Typhoon) 15 24874000 216403800 

195706 27 
 

TEXAS Hurricane(Typhoon) 455 150000000 1263000000 

195907 8 
 

SOUTHCAROLINA Hurricane(Typhoon) 1 75000 610500 

195907 24 
 

TEXAS Hurricane(Typhoon) 0 7000000 56980000 

195909 29 
 

SOUTHCAROLINA Hurricane(Typhoon) 22 14000000 113960000 

196009 10 
 

FLORIDA Hurricane(Typhoon) 50 386500000 3092000000 

196009 14 
 

MISSISSIPPI Hurricane(Typhoon) 0 1060000 8480000 

196109 11 
 

TEXAS Hurricane(Typhoon) 46 325000000 2574000000 

196309 17 
 

TEXAS Hurricane(Typhoon) 3 12560000 97214400 

196408 27 
 

FLORIDA Hurricane(Typhoon) 3 128500000 981740000 

196409 10 
 

FLORIDA Hurricane(Typhoon) 5 250000000 1910000000 

196410 3 
 

LOUISIANA Hurricane(Typhoon) 38 125000000 955000000 

196410 14 
 

FLORIDA Hurricane(Typhoon) 3 10000000 76400000 

196509 6 
 

FLORIDA Hurricane(Typhoon) 75 1419800000 10676896000 

196606 8 
 

FLORIDA Hurricane(Typhoon) 6 10050000 73465500 

196709 20 
 

TEXAS Hurricane(Typhoon) 15 200000000 1418000000 

196810 19 
 

FLORIDA Hurricane(Typhoon) 3 6700000 45560000 

196908 17 
 

MISSISSIPPI Hurricane(Typhoon) 256 1420750000 9163837500 

196909 9 
 

MAINE Hurricane(Typhoon) 0 0 0 

197008 3 
 

TEXAS Hurricane(Typhoon) 11 453700000 2767570000 

197109 10 
 

TEXAS Hurricane(Typhoon) 2 30230000 176845500 
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197109 16 
 

LOUISIANA Hurricane(Typhoon) 0 25000000 146250000 

197109 30 
 

NORTHCAROLINA Hurricane(Typhoon) 0 10000000 58500000 

197206 19 
 

FLORIDA Hurricane(Typhoon) 120 3100000000 17546000000 

197409 8 
 

LOUISIANA Hurricane(Typhoon) 1 150000000 720000000 

197509 23 
 

FLORIDA Hurricane(Typhoon) 21 500000000 2200000000 

197608 10 
 

NEWYORK Hurricane(Typhoon) 5 100000000 416000000 

197709 5 
 

LOUISIANA Hurricane(Typhoon) 0 10000000 39100000 

197907 11 
 

LOUISIANA Hurricane(Typhoon) 1 20000000 65200000 

197909 3 
 

FLORIDA Hurricane(Typhoon) 15 320000000 1043200000 

197909 13 
 

ALABAMA Hurricane(Typhoon) 5 2300000000 7498000000 

198008 10 
 

TEXAS Hurricane(Typhoon) 2 300000000 861000000 

198408 17 
 

TEXAS Hurricane(Typhoon) 21 2000000000 4560000000 

198409 13 
 

NORTHCAROLINA Hurricane(Typhoon) 3 65000000 148200000 

198507 24 
 

SOUTHCAROLINA Hurricane(Typhoon) 1 0 0 

198508 15 
 

LOUISIANA Hurricane(Typhoon) 1 100000000 220000000 

198509 27 
 

NORTHCAROLINA Hurricane(Typhoon) 8 900000000 1980000000 

198509 1 
 

MISSISSIPPI Hurricane(Typhoon) 4 1250000000 2750000000 

198510 29 
 

LOUISIANA Hurricane(Typhoon) 12 1500000000 3300000000 

198511 21 
 

FLORIDA Hurricane(Typhoon) 5 300000000 660000000 

198606 26 
 

TEXAS Hurricane(Typhoon) 4 2000000 4320000 

198608 17 
 

NORTHCAROLINA Hurricane(Typhoon) 0 400000 864000 

198710 12 
 

FLORIDA Hurricane(Typhoon) 0 500000 1040000 

198809 9 
 

LOUISIANA Hurricane(Typhoon) 1 2500000 5000000 

198908 1 
 

TEXAS Hurricane(Typhoon) 13 100000000 191000000 

198909 22 
 

SOUTHCAROLINA Hurricane(Typhoon) 21 10000000000 19100000000 

198910 15 
 

TEXAS Hurricane(Typhoon) 3 70000000 133700000 

199108 19 
 

RHODEISLAND Hurricane(Typhoon) 6 680000000 1183200000 

199208 23 
 

FLORIDA Hurricane(Typhoon) 61 26001000000 43941690000 

199508 2 
 

FLORIDA Hurricane(Typhoon) 3 700000000 1085000000 

199510 4 
 

FLORIDA Hurricane(Typhoon) 13 5142000000 7970100000 

199607 12 
 

NORTHCAROLINA Hurricane(Typhoon) 7 270000000 407700000 

199609 6 1403446 NORTHCAROLINA Hurricane(Typhoon) 34 3200000000 4832000000 

199707 17 38549 LOUISIANA Hurricane(Typhoon) 9 68000000 99960000 

199808 26 55939 NORTHCAROLINA Hurricane(Typhoon) 3 720000000 1044000000 

199809 1 1083868 ALABAMA Hurricane(Typhoon) 3 79000000 114550000 

199809 25 1149148 ALABAMA Hurricane(Typhoon) 1 6000000000 8700000000 

199908 23 
 

TEXAS Hurricane(Typhoon) 0 60000000 85200000 

199909 13 1405397 NORTHCAROLINA Hurricane(Typhoon) 56 6900000000 9798000000 

199910 15 77474 FLORIDA Hurricane(Typhoon) 8 800000000 1136000000 
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200210 2 145212 ALABAMA Hurricane(Typhoon) 2 925000000 1221000000 

200307 14 163783 TEXAS Hurricane(Typhoon) 3 180000000 232200000 

200309 17 150474 NORTHCAROLINA Hurricane(Typhoon) 50 5370000000 6927300000 

200408 11 180401 FLORIDA Hurricane(Typhoon) 35 15113000000 18891250000 

200408 29 
 

SOUTHCAROLINA Hurricane(Typhoon) 9 130000000 162500000 

200408 3 179939 NORTHCAROLINA Hurricane(Typhoon) 1 7550000 9437500 

200409 12 180993 FLORIDA Hurricane(Typhoon) 57 18820000000 23525000000 

200409 1 179618 FLORIDA Hurricane(Typhoon) 48 9507000000 11883750000 

200409 24 179336 FLORIDA Hurricane(Typhoon) 4 7660000000 9575000000 

200507 5 195219 LOUISIANA Hurricane(Typhoon) 15 2545000000 3079450000 

200507 5 
 

LOUISIANA Hurricane(Typhoon) 1 320000000 387200000 

200508 29 198762 MISSISSIPPI Hurricane(Typhoon) 1833 108000000000 130680000000 

200509 20 198740 FLORIDA Hurricane(Typhoon) 62 12037000000 14564770000 

200509 13 199692 NORTHCAROLINA Hurricane(Typhoon) 1 70000000 84700000 

200510 23 200716 FLORIDA Hurricane(Typhoon) 5 21007000000 25418470000 

200709 12 11848 TEXAS Hurricane(Typhoon) 1 3000000 3420000 

200807 24 
 

TEXAS Hurricane(Typhoon) 1 1050000000 1155000000 

200809 12 24718 TEXAS Hurricane(Typhoon) 85 29520000000 32472000000 

200809 1 24573 MISSISSIPPI Hurricane(Typhoon) 52 4618000000 5079800000 

201108 27 55738 NORTHCAROLINA Hurricane(Typhoon) 41 15800000000 16590000000 

201208 28 66547 LOUISIANA Hurricane(Typhoon) 5 2350000000 2420500000 

201407 3 
 

NORTHCAROLINA Hurricane(Typhoon) 0 4052000 4052000 
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Table C.3: Earthquake data by individual events. Output data provides important 

information including: year, month, day, hour, minute, second, magnitude, name, number 

of deaths, description of deaths, economic loss in millions, and description of economic 

loss (at time of event). 

YEAR MO DY HR MIN SEC MAG LOCATION_NAME DTH DES DAM_MILL DES 

1900 10 9 12 25 
 

8.3 ALASKA:  KODIAK ISLAND 
   

1 

1900 8 11 4 40 
  

SE. ALASKA 
    

1901 12 31 9 2 30 7.8 
ALASKA:  ALEUTIAN ISLANDS:  FOX 

ISLANDS    
1 

1901 3 3 7 45 
 

6.4 CALIFORNIA:  SAN DIEGO 
   

1 

1902 4 29 6 57 
  

CALIFORNIA:  SOUTHERN 
   

2 

1902 1 1 5 20 
 

7.8 
ALASKA:  ALEUTIAN ISLANDS:  FOX 

ISLANDS     

1903 6 2 13 17 
 

8.3 ALASKA:  SOUTHWEST 
    

1904 8 27 21 56 
 

8.3 ALASKA:  RAMPART 
    

1905 2 14 8 46 
 

7.9 ALASKA:  ANDREANOF ISLANDS 
    

1906 4 18 13 12 21 7.9 CALIFORNIA:  SAN FRANCISCO 700 3 400 4 

1906 8 17 0 10 42 7.8 
ALASKA:  ALEUTIAN ISLANDS:  RAT 

ISLANDS     

1906 12 23 17 22 
 

7.6 ALASKA:  ALEUTIAN ISLANDS 
    

1907 9 2 16 1 
 

7.8 ALASKA:  ALEUTIAN ISLANDS 
    

1907 9 24 12 59 
 

5.5 ALASKA:  SKAGWAY 
    

1908 2 14 11 25 
 

6 ALASKA GULF 
    

1908 9 21 6 31 
 

6.8 HAWAII 
    

1909 4 10 19 36 
 

7.8 ALASKA: ALEUTIAN ISLANDS 
    

1911 9 22 5 1 24 6.9 PRINCE WILLIAM SOUND 
    

1912 11 7 7 40 
 

7.5 ALASKA:  ALASKA PENINSULA 
    

1915 6 23 4 56 
 

6.2 CALIFORNIA:  EL CENTRO 6 1 0.9 1 

1915 10 3 6 52 48 7.6 NEVADA:  PLEASANT VALLEY 
   

1 

1916 2 6 21 51 
 

7.7 ALASKA:  ALEUTIAN ISLANDS 
    

1916 4 18 4 1 
 

7.5 
ALASKA:  ALEUTIAN ISLANDS:  FOX 

ISLANDS     

1917 5 31 8 47 
 

7.9 ALASKA:  ALASKA PENINSULA 
    

1918 4 21 22 32 
 

6.8 CALIFORNIA 
  

0.2 1 

1922 1 31 13 17 
 

7.6 CALIFORNIA:  NORTHERN 
   

1 

1923 1 22 9 4 18 7.2 CALIFORNIA:  NORTHERN 
   

1 

1925 6 28 1 21 5 6.7 MONTANA:  CLARKSTON VALLEY 
  

0.15 1 

1925 6 29 14 42 
 

6.2 CALIFORNIA:  SANTA BARBARA 13 1 8 3 

1925 2 23 23 54 
 

6.8 GULF OF ALASKA 
    

1926 3 20 9 3 
  

HAWAII 
    

1927 10 24 15 59 44.8 7.1 ALASKA:  SE ALASKA 
   

1 

1927 1 1 8 16 
 

5.8 CALIFORNIA, MEXICO 
  

1 2 

1927 11 4 13 50 43 7.3 CALIFORNIA:  S:  OFF COAST 
   

2 
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1929 3 7 1 34 
 

7.8 
ALASKA:  ALEUTIAN ISLANDS:  FOX 

ISLANDS     

1929 12 17 10 58 
 

7.8 
ALASKA:  ALEUTIAN ISLANDS:  NEAR 

ISLANDS    

1929 8 12 11 24 
  

NEW YORK:  ATTICA 
    

1930 8 31 0 40 38 5.2 CALIFORNIA:  SOUTHERN 
   

1 

1932 12 20 
   

7.2 NEVADA:  CEDAR MOUNTAIN 
    

1932 11 10 
    

NEW YORK:  WILLETTS POINT 
    

1933 3 11 1 54 7.8 6.3 CALIFORNIA:  LONG BEACH 120 3 40 4 

1934 12 31 
   

7.1 
CALIFORNIA:  BAJA,IMPERIAL 

VALLEY     

1935 10 31 18 37 47 6 MONTANA:  HELENA 2 1 6 3 

1935 10 19 4 48 2 6.2 MONTANA:  HELENA 2 1 19 3 

1935 10 31 18 37 47 
 

ALASKA 15 1 284 
 

1935 10 19 4 48 2 
 

WASHINGTON: OLYMPIA, SEATTLE, 

TACOMA 
1 1 2000 

 

1938 11 10 20 18 41.2 8.2 ALASKA 
    

1940 5 19 4 36 40.9 7.2 CALIFORNIA; MEXICO 9 1 33 4 

1940 5 19 4 36 40.9 
 

CALIFORNIA: WHITTIER 8 1 358 
 

1940 7 14 5 52 53.5 7.4 
ALASKA:  ALEUTIAN ISLANDS:  RAT 

ISLANDS     

1941 2 9 9 44 4 6.6 CALIFORNIA:  NORTHERN 
   

1 

1944 9 5 4 38 45.7 5.6 NEW YORK:  MASSENA 
  

2 2 

1946 4 1 12 29 1.3 8.6 ALASKA:  UNIMAK ISLAND 
    

1946 11 1 11 14 
  

ALASKA:  EAST ALEUTIAN ISLANDS 
    

1947 4 10 15 58 
 

6.4 CALIFORNIA 
   

2 

1948 5 14 22 31 
 

7.5 ALASKA:  ALASKA PENINSULA 
    

1949 11 17 1 19 52 
 

CALIFORNIA:  SOUTHERN 
  

9 3 

1949 4 13 19 55 42 7 WASHINGTON 8 1 25 4 

1949 4 13 19 55 42 
 

CALIFORNIA; MEXICO 9 1 33 
 

1951 8 21 10 57 
 

6.9 HAWAII 
   

2 

1951 8 15 7 23 
  

CALIFORNIA:  TERMINAL ISLAND 
  

3 2 

1952 8 22 22 41 24 5.8 CALIFORNIA:  KERN COUNTY 2 1 10 3 

1952 7 21 11 52 14 7.7 CALIFORNIA:  KERN COUNTY 12 1 60 4 

1952 8 22 22 41 24 
 

CALIFORNIA: PASO 
ROBLES,TEMPLETON,ATASCADERO 

2 1 300 
 

1952 3 17 3 58 
  

HAWAII 
    

1954 7 6 11 13 
 

6.8 NEVADA:  FALLON 
   

2 

1954 8 23 
   

6.8 NEVADA:  STILLWATER RANGE 
    

1954 12 16 11 7 
 

7 NEVADA:  DIXIE VALLEY 
    

1955 1 25 12 23 
  

CALIFORNIA:  TERMINAL ISLAND 
  

3 2 

1957 3 9 14 22 31.9 8.6 ALASKA 
   

1 

1957 3 22 14 21 
 

7.5 
ALASKA:  ALEUTIAN ISLANDS:  FOX 

ISLANDS     

1958 7 10 6 15 59.9 7.8 ALASKA:  LITUYA BAY 
   

1 
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1959 8 18 6 37 13.5 7.7 MONTANA:  HEBGEN LAKE 28 1 11 3 

1959 8 18 6 37 13.5 
 

MONTANA: HELENA 2 1 19 
 

1961 4 4 21 32 
  

CALIFORNIA:  TERMINAL ISLAND 
  

4.5 2 

1962 8 30 13 35 
 

5.8 UTAH 
  

2 2 

1962 12 21 8 42 43 6.5 
ALASKA:  ALEUTIAN ISLANDS:  FOX 

ISLANDS     

1964 3 28 3 36 
 

9.2 ALASKA 15 1 284 4 

1964 3 28 3 36 
  

WASHINGTON 8 1 25 
 

1965 2 4 5 1 21.6 8.7 
ALASKA:  ALEUTIAN ISLANDS:  RAT 

ISLANDS    
1 

1965 7 2 20 58 38.1 6.5 
ALASKA: ALEUTIAN ISLANDS: FOX 

ISLANDS    
1 

1965 4 29 15 28 43.7 6.6 WASHINGTON:  SEATTLE 7 1 28 4 

1965 4 29 15 28 43.7 
 

WASHINGTON: SEATTLE 7 1 28 
 

1965 3 30 2 27 3.4 7.6 
ALASKA:  ALEUTIAN ISLANDS:  RAT 

ISLANDS     

1969 10 2 4 56 46.5 4.8 CALIFORNIA:  SANTA ROSA 1 1 8.35 3 

1969 10 2 4 56 46.5 
 

CALIFORNIA: LANDERS, YUCCA 

VALLEY 
3 1 92 

 

1970 3 11 22 38 34.6 6 ALASKA:  ANDREANOF ISLANDS 
   

1 

1971 2 9 14 0 41.8 
 

SOUTH CAROLINA: CHARLESTON 60 2 5 
 

1971 2 9 14 0 41.8 6.5 CALIFORNIA:  SAN FERNANDO 65 2 505 4 

1971 5 2 6 8 27.3 7.1 ALASKA:  ANDREANOF ISLANDS 
    

1971 11 6 22 0 0.1 5.7 
ALASKA:  ALEUTIAN ISLANDS:  RAT 

ISLANDS     

1972 7 30 21 45 14.1 7.6 ALASKA:  SITKA, JUNEAU 
   

1 

1973 2 21 14 45 57.3 5.7 CALIFORNIA:  OXNARD 
  

1 2 

1973 4 26 20 26 28.6 6.5 HAWAII: HILO 
  

5.75 3 

1975 3 28 2 31 5.7 6 IDAHO:  POCATELLO VALLEY 
  

1 2 

1975 2 2 8 43 39.1 7.6 
ALASKA:  ALEUTIAN ISLANDS:  NEAR 

ISLANDS   
2 

1975 8 1 20 20 12.9 5.6 CALIFORNIA:  OROVILLE 
  

3 2 

1975 11 29 14 47 40.9 7.7 HAWAII 
  

4 2 

1978 8 13 22 54 53.5 5.6 CALIFORNIA:  SOUTHERN 
  

15 3 

1979 2 28 21 27 8.1 7.5 ALASKA 
   

1 

1979 10 15 23 16 54.1 6.9 
CALIFORNIA:  IMPERIAL VALLEY; MEXICO: 

MEXICALI 
30 4 

1980 7 27 18 52 21.8 5.1 KENTUCKY:  MAYSVILLE 
  

1 2 

1980 5 25 16 33 44.7 6.1 CALIFORNIA:  MAMMOTH LAKES 
  

2 2 

1980 11 8 10 27 34 7.2 CALIFORNIA:  NORTH COAST 5 1 2.75 2 

1980 1 24 19 0 9.5 5.9 CALIFORNIA:  LIVERMORE 
  

11.5 3 

1980 5 18 15 32 11.4 5.2 WASHINGTON:  MT ST HELENS 
    

1981 4 26 12 9 28.4 6 
CALIFORNIA:  

WESTMORLAND,CALIPATRIA   
1.5 2 

1983 7 12 15 10 3.4 6.1 ALASKA:  PRINCE WILLIAM SOUND 
  

1 2 

1983 10 28 14 6 6.5 
 

MONTANA: HELENA 2 1 6 
 

1983 11 16 16 13 
 

6.7 HAWAII: KAPAPALA 
  

6.5 3 
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1983 10 28 14 6 6.5 7.3 
IDAHO:  BORAH PEAK, CHALLIS, 

MACKAY 
2 1 12.5 3 

1983 5 2 23 42 37.7 6.2 CALIFORNIA:  CENTRAL, COALINGA 
  

31 4 

1984 10 18 15 30 23 5.1 
WYOMING:  DOUGLAS, MEDICINE 

BOW    
1 

1984 4 24 21 15 19 6.1 
CALIFORNIA:  CENTRAL:  MORGAN 

HILL   
8 3 

1986 7 13 13 47 8.2 5.8 CALIFORNIA:  SAN DIEGO, NEWPORT BEACH 
 

0.7 1 

1986 7 21 14 42 26.6 6.2 
CALIFORNIA-NEVADA:  CHALFANT 

VALLEY   
1 2 

1986 7 8 9 20 44.5 6 CALIFORNIA:  PALM SPRINGS 
  

4.5 2 

1986 5 7 22 47 10.8 8 ALASKA:  ALEUTIAN ISLANDS:  ADAK 
   

2 

1986 5 17 16 20 22.2 6.4 ALASKA:  ANDREANOF ISLANDS 
    

1987 11 30 19 23 19.5 7.9 ALASKA:  YAKUTAT 
   

1 

1987 11 24 1 54 14.5 6.2 CALIFORNIA:  SUPERSTITION HILLS 2 1 3 2 

1987 10 4 10 59 38.1 4.8 CALIFORNIA:  WHITTIER, PASADENA 1 1 
 

2 

1987 11 24 1 54 14.5 
 

CALIFORNIA: KERN COUNTY 2 1 10 
 

1987 10 1 14 42 20 
 

MONTANA: HEBGEN LAKE 28 1 11 
 

1987 10 1 14 42 20 5.7 CALIFORNIA:  WHITTIER 8 1 358 4 

1987 11 17 8 46 53.3 7.2 GULF OF ALASKA 
    

1988 3 6 22 35 36.9 7.8 
ALASKA:  GULF OF ALASKA:  

ANCHORAGE    
1 

1989 6 26 3 27 3.9 6.1 HAWAIIAN ISLANDS:  PUNA DISTRICT 
   

2 

1989 10 18 0 4 15.2 
 

CALIFORNIA: ARCADIA, GLENDALE, 

LOS ANGELES 
2 1 33.5 

 

1989 10 18 0 4 15.2 6.9 CALIFORNIA:  LOMA PRIETA 62 2 5600 4 

1989 9 4 13 14 58.2 6.9 ALASKA 
    

1990 2 28 23 43 36.6 5.5 
CALIFORNIA:  S,  CLAREMONT,  

COVINA   
12.7 3 

1991 8 17 19 29 40 6.2 CALIFORNIA:  HONEYDEW, WHITETHORN, PETROLIA 
 

2 

1991 6 28 14 43 54.5 
 

CALIFORNIA: SANTA ROSA 1 1 8.35 
 

1991 6 28 14 43 54.5 5.1 
CALIFORNIA:  ARCADIA, GLENDALE, 

LOS ANGELES 
2 1 33.5 4 

1992 4 23 4 50 23.2 6.3 CALIFORNIA:  JOSHUA TREE, ANGELUS OAKS 
  

2 

1992 6 28 15 5 30.7 6.7 CALIFORNIA: BIG BEAR LAKE, BIG BEAR CITY 
  

2 

1992 6 29 10 14 22.2 5.4 NEVADA-CALIFORNIA BORDER:  NEVADA TEST SITE 
 

2 

1992 6 28 11 57 34.1 
 

IDAHO: BORAH PEAK, CHALLIS, 

MACKAY 
2 1 12.5 

 

1992 4 25 18 6 4.2 7.1 
CALIFORNIA: HUMBOLDT COUNTY: FERNDALE, 

PETROLIA 
75 4 

1992 6 28 11 57 34.1 7.6 
CALIFORNIA: LANDERS, YUCCA  

VALLEY 
3 1 92 4 

1993 9 21 3 28 55.4 6 OREGON:  KLAMATH FALLS 2 1 7.5 3 

1993 3 25 13 34 35.4 5.6 WASHINGTON-OREGON BORDER 
  

28.4 4 

1994 1 17 12 30 55.3 
 

CALIFORNIA: HAYWARD,SAN 
FRANCISCO 

30 1 0.35 
 

1994 1 16 1 49 16.2 4.6 PENNSYLVANIA: READING, FELT TO CANADA 
  

1 

1994 2 3 9 5 4.2 5.8 WYOMING:  AFTON 
   

1 

1994 9 1 15 15 53 7 CALIFORNIA:  NORTH:  HONEYDEW 
   

1 
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1994 12 26 14 10 29.1 5.5 
CALIFORNIA:  EUREKA, SAMOA, ARCATA, BLUE 

LAKE 
2.1 2 

1994 1 17 12 30 55.3 6.7 CALIFORNIA:  NORTHRIDGE 60 2 40000 4 

1995 10 6 5 23 18.5 6 
ALASKA:  FAIRBANKS NORTH STAR 

COUNTY    
1 

1996 6 10 4 3 35.4 7.9 ALASKA:  ANDREANOF ISLANDS 
    

1996 6 10 15 24 56 7.3 ALASKA:  ANDREANOF ISLANDS 
    

1999 10 16 9 46 44.1 7.2 CALIFORNIA:  LUDLOW, LANDERS, TWENTYNINE PALMS 1 

2000 9 3 8 36 30 5 CALIFORNIA:  NAPA 
  

50 4 

2001 9 9 23 59 18 4.2 CALIFORNIA:  LOS ANGELES 
   

1 

2001 2 28 18 54 32.8 
 

CALIFORNIA: SUPERSTITION HILLS 2 1 3 
 

2001 2 28 18 54 32.8 6.8 
WASHINGTON:  OLYMPIA, SEATTLE, 

TACOMA 
1 1 2000 4 

2002 4 20 10 50 47.5 5.2 
NEW YORK:  CLINTON, ESSEX, AU SABLE 

FORKS   
1 

2002 10 23 11 27 19.4 6.7 
ALASKA:  CANTWELL, DENALI NATL 

PARK    
2 

2002 11 3 22 12 41 7.9 
ALASKA:  SLANA, MENTASTA LAKE, 

FAIRBANKS  
56 4 

2003 12 22 19 15 56 
 

CALIFORNIA: OWENS VALLEY 27 1 0.25 
 

2003 2 22 12 19 10.5 5.2 CALIFORNIA:  BIG BEAR CITY 
   

1 

2003 6 6 12 29 34 4 KENTUCKY:  BARDWELL 
   

1 

2003 4 29 8 59 39 4.6 
ALABAMA:  FORT PAYNE,GAYLESVILLE,VALLEY 

HEAD  
1 

2003 12 22 19 15 56 6.6 
CALIFORNIA:  PASO 

ROBLES,TEMPLETON,ATASCADERO 
2 1 300 4 

2003 11 17 6 43 6.8 7.8 
ALASKA:  ALEUTIAN ISLANDS:  RAT 

ISLANDS     

2004 9 28 17 15 24.2 6 
CALIFORNIA:  CENTRAL: PARKFIELD, SAN 

MIGUEL   
1 

2005 7 26 4 8 37.1 5.6 MONTANA:  DILLON, SILVER STAR, TWIN BRIDGES 
 

1 

2005 6 15 2 50 53.1 7.2 CALIFORNIA:  OFF COAST NORTHERN 
    

2006 10 15 17 7 49.2 6.7 HAWAIIAN ISLANDS 
  

73 4 

2007 5 8 15 46 49.1 4.5 MONTANA:  SHERIDAN 
   

1 

2007 7 20 11 42 22.3 4.2 CALIFORNIA:  MONTCLAIR 
   

1 

2007 10 31 3 4 54.8 5.6 CALIFORNIA:  SAN JOSE 
   

1 

2007 8 2 3 21 42.8 6.7 ALASKA:  ALEUTIAN ISLANDS 
    

2007 8 6 8 48 40 4.2 UTAH:  HUNTINGTON 9 1 
  

2007 8 17 0 38 56 1.6 UTAH 3 1 
  

2008 4 18 9 36 59.1 5.3 ILLINOIS:  WEST SALEM 
   

1 

2008 4 26 6 40 10.6 5 NEVADA:  FALLON 
   

1 

2008 7 29 18 42 15.7 5.4 CALIFORNIA:  LOS ANGELES 
   

1 

2008 2 21 14 16 2.7 6 NEVADA:  WELLS 
   

2 

2010 6 15 4 26 58.4 5.8 CALIFORNIA:  OCOTILLO 
   

1 

2010 12 19 5 5 30 3.7 OKLAHOMA:  LUTHER 
   

1 

2010 1 10 0 27 39.3 6.5 CALIFORNIA:  OFF COAST NORTHERN 
  

21.8 3 

2011 2 17 22 47 21.5 3.1 COLORADO:  PAONIA 
   

1 

2011 11 8 2 46 57 5 OKLAHOMA:  SPARKS, PRAGUE 
   

1 
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2011 11 6 3 53 10 5.7 OKLAHOMA:  SPARKS 
   

2 

2011 8 23 17 51 4.5 5.8 VIRGINIA:  LOUISA COUNTY, MARYLAND, WASHINGTON D.C. 2 

2011 8 23 5 46 18.2 5.4 COLORADO:  SEGUNDO 
   

2 

2011 6 24 3 9 39.4 7.3 
ALASKA: ALEUTIAN ISLANDS: FOX 

ISLANDS     

2011 9 2 10 55 53.5 6.8 
ALASKA:  ALEUTIAN ISLANDS:  FOX 

ISLANDS     

2013 4 18 0 50 38.5 2.1 TEXAS:  WEST 14 1 100 4 

2013 1 5 8 58 19.3 7.5 ALASKA:  SOUTHEASTERN 
    

2014 3 29 4 9 42 5.1 CALIFORNIA:  LA HABRA, BREA, FULLERTON 
 

10.8 3 

2014 8 24 10 20 44 6 CALIFORNIA:  NAPA, VALLEJO 1 1 362 4 

2014 6 23 20 53 10 7.9 ALASKA:  ALEUTIAN ISLANDS 
    

2014 7 25 10 54 49 6.1 ALASKA 
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Table C.4: Earthquake data by individual events with description values from Table C.3 

(page 98) included in the values of fatalities (Total Deaths) and economic loss (Total 

Damage). Output data provides important information including: year, month, day, hour, 

minute, second, magnitude, name, number of deaths, and economic loss in millions (at 

time of event). 

YEAR MO DY HR MIN SEC MAG LOCATION_NAME TOT_DTH TOT_DAM 

1900 10 9 12 25 
 

8.3 ALASKA:  KODIAK ISLAND 
 

905000 

1900 8 11 4 40 
  

SE. ALASKA 25 
 

1901 12 31 9 2 30 7.8 ALASKA:  ALEUTIAN ISLANDS:  FOX ISLANDS 
 

500000 

1901 3 3 7 45 
 

6.4 CALIFORNIA:  SAN DIEGO 
 

905000 

1902 4 29 6 57 
  

CALIFORNIA:  SOUTHERN 
 

2500000 

1902 1 1 5 20 
 

7.8 ALASKA:  ALEUTIAN ISLANDS:  FOX ISLANDS 
  

1903 6 2 13 17 
 

8.3 ALASKA:  SOUTHWEST 
  

1904 8 27 21 56 
 

8.3 ALASKA:  RAMPART 
  

1905 2 14 8 46 
 

7.9 ALASKA:  ANDREANOF ISLANDS 
  

1906 4 18 13 12 21 7.9 CALIFORNIA:  SAN FRANCISCO 700 400000000 

1906 8 17 0 10 42 7.8 ALASKA:  ALEUTIAN ISLANDS:  RAT ISLANDS 
  

1906 12 23 17 22 
 

7.6 ALASKA:  ALEUTIAN ISLANDS 
  

1907 9 2 16 1 
 

7.8 ALASKA:  ALEUTIAN ISLANDS 
  

1907 9 24 12 59 
 

5.5 ALASKA:  SKAGWAY 
  

1908 2 14 11 25 
 

6 ALASKA GULF 
  

1908 9 21 6 31 
 

6.8 HAWAII 
  

1909 4 10 19 36 
 

7.8 ALASKA: ALEUTIAN ISLANDS 
  

1911 9 22 5 1 24 6.9 PRINCE WILLIAM SOUND 
 

905000 

1912 11 7 7 40 
 

7.5 ALASKA:  ALASKA PENINSULA 
  

1915 6 23 4 56 
 

6.2 CALIFORNIA:  EL CENTRO 6 900000 

1915 10 3 6 52 48 7.6 NEVADA:  PLEASANT VALLEY 
 

905000 

1916 2 6 21 51 
 

7.7 ALASKA:  ALEUTIAN ISLANDS 
  

1916 4 18 4 1 
 

7.5 ALASKA:  ALEUTIAN ISLANDS:  FOX ISLANDS 
  

1917 5 31 8 47 
 

7.9 ALASKA:  ALASKA PENINSULA 
  

1918 4 21 22 32 
 

6.8 CALIFORNIA 
 

200000 

1922 1 31 13 17 
 

7.6 CALIFORNIA:  NORTHERN 
 

500000 

1923 1 22 9 4 18 7.2 CALIFORNIA:  NORTHERN 
 

905000 

1925 6 28 1 21 5 6.7 MONTANA:  CLARKSTON VALLEY 
 

150000 

1925 6 29 14 42 
 

6.2 CALIFORNIA:  SANTA BARBARA 13 8000000 

1925 2 23 23 54 
 

6.8 GULF OF ALASKA 
  

1926 3 20 9 3 
  

HAWAII 
  

1927 10 24 15 59 44.8 7.1 ALASKA:  SE ALASKA 
 

500000 

1927 1 1 8 16 
 

5.8 CALIFORNIA, MEXICO 25 3000000 

1927 11 4 13 50 43 7.3 CALIFORNIA:  S:  OFF COAST 
 

4525000 
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1929 3 7 1 34 
 

7.8 ALASKA:  ALEUTIAN ISLANDS:  FOX ISLANDS 
  

1929 12 17 10 58 
 

7.8 ALASKA:  ALEUTIAN ISLANDS:  NEAR ISLANDS 
 

1929 8 12 11 24 
  

NEW YORK:  ATTICA 
  

1930 8 31 0 40 38 5.2 CALIFORNIA:  SOUTHERN 25 905000 

1932 12 20 
   

7.2 NEVADA:  CEDAR MOUNTAIN 
  

1932 11 10 
    

NEW YORK:  WILLETTS POINT 
  

1933 3 11 1 54 7.8 6.3 CALIFORNIA:  LONG BEACH 120 40000000 

1934 12 31 
   

7.1 CALIFORNIA:  BAJA,IMPERIAL VALLEY 
  

1935 10 31 18 37 47 6 MONTANA:  HELENA 2 6000000 

1935 10 19 4 48 2 6.2 MONTANA:  HELENA 2 19000000 

1935 10 31 18 37 47 
 

ALASKA 15 284000000 

1935 10 19 4 48 2 
 

WASHINGTON: OLYMPIA, SEATTLE, TACOMA 1 2000000000 

1938 11 10 20 18 41.2 8.2 ALASKA 
  

1940 5 19 4 36 40.9 7.2 CALIFORNIA; MEXICO 9 33000000 

1940 5 19 4 36 40.9 
 

CALIFORNIA: WHITTIER 8 358000000 

1940 7 14 5 52 53.5 7.4 ALASKA:  ALEUTIAN ISLANDS:  RAT ISLANDS 
  

1941 2 9 9 44 4 6.6 CALIFORNIA:  NORTHERN 
 

905000 

1944 9 5 4 38 45.7 5.6 NEW YORK:  MASSENA 
 

2000000 

1946 4 1 12 29 1.3 8.6 ALASKA:  UNIMAK ISLAND 500 26046000 

1946 11 1 11 14 
  

ALASKA:  EAST ALEUTIAN ISLANDS 
  

1947 4 10 15 58 
 

6.4 CALIFORNIA 
 

2500000 

1948 5 14 22 31 
 

7.5 ALASKA:  ALASKA PENINSULA 
  

1949 11 17 1 19 52 
 

CALIFORNIA:  SOUTHERN 
 

9000000 

1949 4 13 19 55 42 7 WASHINGTON 8 25000000 

1949 4 13 19 55 42 
 

CALIFORNIA; MEXICO 9 33000000 

1951 8 21 10 57 
 

6.9 HAWAII 
 

2500000 

1951 8 15 7 23 
  

CALIFORNIA:  TERMINAL ISLAND 
 

3000000 

1952 8 22 22 41 24 5.8 CALIFORNIA:  KERN COUNTY 2 10000000 

1952 7 21 11 52 14 7.7 CALIFORNIA:  KERN COUNTY 12 60000000 

1952 8 22 22 41 24 
 

CALIFORNIA: PASO 

ROBLES,TEMPLETON,ATASCADERO 
2 300000000 

1952 3 17 3 58 
  

HAWAII 
  

1954 7 6 11 13 
 

6.8 NEVADA:  FALLON 
 

2500000 

1954 8 23 
   

6.8 NEVADA:  STILLWATER RANGE 
  

1954 12 16 11 7 
 

7 NEVADA:  DIXIE VALLEY 
  

1955 1 25 12 23 
  

CALIFORNIA:  TERMINAL ISLAND 
 

3000000 

1957 3 9 14 22 31.9 8.6 ALASKA 25 22625000 

1957 3 22 14 21 
 

7.5 ALASKA:  ALEUTIAN ISLANDS:  FOX ISLANDS 
  

1958 7 10 6 15 59.9 7.8 ALASKA:  LITUYA BAY 25 100000 

1959 8 18 6 37 13.5 7.7 MONTANA:  HEBGEN LAKE 28 11000000 
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1959 8 18 6 37 13.5 
 

MONTANA: HELENA 2 19000000 

1961 4 4 21 32 
  

CALIFORNIA:  TERMINAL ISLAND 
 

4500000 

1962 8 30 13 35 
 

5.8 UTAH 
 

2000000 

1962 12 21 8 42 43 6.5 ALASKA:  ALEUTIAN ISLANDS:  FOX ISLANDS 
  

1964 3 28 3 36 
 

9.2 ALASKA 15 400000000 

1964 3 28 3 36 
  

WASHINGTON 8 
 

1965 2 4 5 1 21.6 8.7 ALASKA:  ALEUTIAN ISLANDS:  RAT ISLANDS 
 

10000 

1965 7 2 20 58 38.1 6.5 ALASKA: ALEUTIAN ISLANDS: FOX ISLANDS 
 

905000 

1965 4 29 15 28 43.7 6.6 WASHINGTON:  SEATTLE 7 28000000 

1965 4 29 15 28 43.7 
 

WASHINGTON: SEATTLE 7 28000000 

1965 3 30 2 27 3.4 7.6 ALASKA:  ALEUTIAN ISLANDS:  RAT ISLANDS 
  

1969 10 2 4 56 46.5 4.8 CALIFORNIA:  SANTA ROSA 1 8350000 

1969 10 2 4 56 46.5 
 

CALIFORNIA: LANDERS, YUCCA VALLEY 3 92000000 

1970 3 11 22 38 34.6 6 ALASKA:  ANDREANOF ISLANDS 
 

905000 

1971 2 9 14 0 41.8 
 

SOUTH CAROLINA: CHARLESTON 60 5000000 

1971 2 9 14 0 41.8 6.5 CALIFORNIA:  SAN FERNANDO 65 505000000 

1971 5 2 6 8 27.3 7.1 ALASKA:  ANDREANOF ISLANDS 
  

1971 11 6 22 0 0.1 5.7 ALASKA:  ALEUTIAN ISLANDS:  RAT ISLANDS 
  

1972 7 30 21 45 14.1 7.6 ALASKA:  SITKA, JUNEAU 
 

905000 

1973 2 21 14 45 57.3 5.7 CALIFORNIA:  OXNARD 
 

1000000 

1973 4 26 20 26 28.6 6.5 HAWAII: HILO 
 

5750000 

1975 3 28 2 31 5.7 6 IDAHO:  POCATELLO VALLEY 
 

1000000 

1975 2 2 8 43 39.1 7.6 ALASKA:  ALEUTIAN ISLANDS:  NEAR ISLANDS 2500000 

1975 8 1 20 20 12.9 5.6 CALIFORNIA:  OROVILLE 
 

3000000 

1975 11 29 14 47 40.9 7.7 HAWAII 25 4000000 

1978 8 13 22 54 53.5 5.6 CALIFORNIA:  SOUTHERN 
 

15000000 

1979 2 28 21 27 8.1 7.5 ALASKA 
 

905000 

1979 10 15 23 16 54.1 6.9 CALIFORNIA:  IMPERIAL VALLEY; MEXICO: MEXICALI 30000000 

1980 7 27 18 52 21.8 5.1 KENTUCKY:  MAYSVILLE 
 

1000000 

1980 5 25 16 33 44.7 6.1 CALIFORNIA:  MAMMOTH LAKES 
 

2000000 

1980 11 8 10 27 34 7.2 CALIFORNIA:  NORTH COAST 5 2750000 

1980 1 24 19 0 9.5 5.9 CALIFORNIA:  LIVERMORE 
 

11500000 

1980 5 18 15 32 11.4 5.2 WASHINGTON:  MT ST HELENS 75 2000000000 

1981 4 26 12 9 28.4 6 CALIFORNIA:  WESTMORLAND,CALIPATRIA 
 

1500000 

1983 7 12 15 10 3.4 6.1 ALASKA:  PRINCE WILLIAM SOUND 
 

1000000 

1983 10 28 14 6 6.5 
 

MONTANA: HELENA 2 6000000 

1983 11 16 16 13 
 

6.7 HAWAII: KAPAPALA 
 

6500000 

1983 10 28 14 6 6.5 7.3 IDAHO:  BORAH PEAK, CHALLIS, MACKAY 2 22625000 

1983 5 2 23 42 37.7 6.2 CALIFORNIA:  CENTRAL, COALINGA 
 

31000000 
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1984 10 18 15 30 23 5.1 WYOMING:  DOUGLAS, MEDICINE BOW 
 

905000 

1984 4 24 21 15 19 6.1 CALIFORNIA:  CENTRAL:  MORGAN HILL 
 

8000000 

1986 7 13 13 47 8.2 5.8 CALIFORNIA:  SAN DIEGO, NEWPORT BEACH 700000 

1986 7 21 14 42 26.6 6.2 CALIFORNIA-NEVADA:  CHALFANT VALLEY 
 

1000000 

1986 7 8 9 20 44.5 6 CALIFORNIA:  PALM SPRINGS 
 

4500000 

1986 5 7 22 47 10.8 8 ALASKA:  ALEUTIAN ISLANDS:  ADAK 
 

4525000 

1986 5 17 16 20 22.2 6.4 ALASKA:  ANDREANOF ISLANDS 
  

1987 11 30 19 23 19.5 7.9 ALASKA:  YAKUTAT 
 

905000 

1987 11 24 1 54 14.5 6.2 CALIFORNIA:  SUPERSTITION HILLS 2 3000000 

1987 10 4 10 59 38.1 4.8 CALIFORNIA:  WHITTIER, PASADENA 1 4525000 

1987 11 24 1 54 14.5 
 

CALIFORNIA: KERN COUNTY 2 10000000 

1987 10 1 14 42 20 
 

MONTANA: HEBGEN LAKE 28 11000000 

1987 10 1 14 42 20 5.7 CALIFORNIA:  WHITTIER 8 358000000 

1987 11 17 8 46 53.3 7.2 GULF OF ALASKA 
  

1988 3 6 22 35 36.9 7.8 ALASKA:  GULF OF ALASKA:  ANCHORAGE 
 

905000 

1989 6 26 3 27 3.9 6.1 HAWAIIAN ISLANDS:  PUNA DISTRICT 
 

4525000 

1989 10 18 0 4 15.2 
 

CALIFORNIA: ARCADIA, GLENDALE, LOS 
ANGELES 

2 33500000 

1989 10 18 0 4 15.2 6.9 CALIFORNIA:  LOMA PRIETA 62 5600000000 

1989 9 4 13 14 58.2 6.9 ALASKA 
  

1990 2 28 23 43 36.6 5.5 CALIFORNIA:  S,  CLAREMONT,  COVINA 
 

12700000 

1991 8 17 19 29 40 6.2 CALIFORNIA:  HONEYDEW, WHITETHORN, PETROLIA 4525000 

1991 6 28 14 43 54.5 
 

CALIFORNIA: SANTA ROSA 1 8350000 

1991 6 28 14 43 54.5 5.1 
CALIFORNIA:  ARCADIA, GLENDALE, LOS 

ANGELES 
2 33500000 

1992 4 23 4 50 23.2 6.3 CALIFORNIA:  JOSHUA TREE, ANGELUS OAKS 4525000 

1992 6 28 15 5 30.7 6.7 CALIFORNIA: BIG BEAR LAKE, BIG BEAR CITY 4525000 

1992 6 29 10 14 22.2 5.4 NEVADA-CALIFORNIA BORDER:  NEVADA TEST SITE 4525000 

1992 6 28 11 57 34.1 
 

IDAHO: BORAH PEAK, CHALLIS, MACKAY 2 12500000 

1992 4 25 18 6 4.2 7.1 CALIFORNIA: HUMBOLDT COUNTY: FERNDALE, PETROLIA 75000000 

1992 6 28 11 57 34.1 7.6 CALIFORNIA: LANDERS, YUCCA  VALLEY 3 92000000 

1993 9 21 3 28 55.4 6 OREGON:  KLAMATH FALLS 2 7500000 

1993 3 25 13 34 35.4 5.6 WASHINGTON-OREGON BORDER 
 

28400000 

1994 1 17 12 30 55.3 
 

CALIFORNIA: HAYWARD,SAN FRANCISCO 30 350000 

1994 1 16 1 49 16.2 4.6 PENNSYLVANIA: READING, FELT TO CANADA 905000 

1994 2 3 9 5 4.2 5.8 WYOMING:  AFTON 
 

905000 

1994 9 1 15 15 53 7 CALIFORNIA:  NORTH:  HONEYDEW 
 

905000 

1994 12 26 14 10 29.1 5.5 CALIFORNIA:  EUREKA, SAMOA, ARCATA, BLUE LAKE 2100000 

1994 1 17 12 30 55.3 6.7 CALIFORNIA:  NORTHRIDGE 60 40000000000 

1995 10 6 5 23 18.5 6 ALASKA:  FAIRBANKS NORTH STAR COUNTY 
 

905000 

1996 6 10 4 3 35.4 7.9 ALASKA:  ANDREANOF ISLANDS 
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1996 6 10 15 24 56 7.3 ALASKA:  ANDREANOF ISLANDS 
  

1999 10 16 9 46 44.1 7.2 CALIFORNIA:  LUDLOW, LANDERS, TWENTYNINE PALMS 905000 

2000 9 3 8 36 30 5 CALIFORNIA:  NAPA 
 

50000000 

2001 9 9 23 59 18 4.2 CALIFORNIA:  LOS ANGELES 
 

905000 

2001 2 28 18 54 32.8 
 

CALIFORNIA: SUPERSTITION HILLS 2 3000000 

2001 2 28 18 54 32.8 6.8 WASHINGTON:  OLYMPIA, SEATTLE, TACOMA 1 2000000000 

2002 4 20 10 50 47.5 5.2 NEW YORK:  CLINTON, ESSEX, AU SABLE FORKS 905000 

2002 10 23 11 27 19.4 6.7 ALASKA:  CANTWELL, DENALI NATL PARK 
 

4525000 

2002 11 3 22 12 41 7.9 ALASKA:  SLANA, MENTASTA LAKE, FAIRBANKS 56000000 

2003 12 22 19 15 56 
 

CALIFORNIA: OWENS VALLEY 27 250000 

2003 2 22 12 19 10.5 5.2 CALIFORNIA:  BIG BEAR CITY 
 

905000 

2003 6 6 12 29 34 4 KENTUCKY:  BARDWELL 
 

905000 

2003 4 29 8 59 39 4.6 ALABAMA:  FORT PAYNE,GAYLESVILLE,VALLEY HEAD 905000 

2003 12 22 19 15 56 6.6 
CALIFORNIA:  PASO 

ROBLES,TEMPLETON,ATASCADERO 
2 300000000 

2003 11 17 6 43 6.8 7.8 ALASKA:  ALEUTIAN ISLANDS:  RAT ISLANDS 
  

2004 9 28 17 15 24.2 6 CALIFORNIA:  CENTRAL: PARKFIELD, SAN MIGUEL 905000 

2005 7 26 4 8 37.1 5.6 MONTANA:  DILLON, SILVER STAR, TWIN BRIDGES 905000 

2005 6 15 2 50 53.1 7.2 CALIFORNIA:  OFF COAST NORTHERN 
  

2006 10 15 17 7 49.2 6.7 HAWAIIAN ISLANDS 
 

73000000 

2007 5 8 15 46 49.1 4.5 MONTANA:  SHERIDAN 
 

905000 

2007 7 20 11 42 22.3 4.2 CALIFORNIA:  MONTCLAIR 
 

905000 

2007 10 31 3 4 54.8 5.6 CALIFORNIA:  SAN JOSE 
 

905000 

2007 8 2 3 21 42.8 6.7 ALASKA:  ALEUTIAN ISLANDS 
  

2007 8 6 8 48 40 4.2 UTAH:  HUNTINGTON 9 
 

2007 8 17 0 38 56 1.6 UTAH 3 
 

2008 4 18 9 36 59.1 5.3 ILLINOIS:  WEST SALEM 
 

905000 

2008 4 26 6 40 10.6 5 NEVADA:  FALLON 
 

905000 

2008 7 29 18 42 15.7 5.4 CALIFORNIA:  LOS ANGELES 
 

905000 

2008 2 21 14 16 2.7 6 NEVADA:  WELLS 
 

4525000 

2010 6 15 4 26 58.4 5.8 CALIFORNIA:  OCOTILLO 
 

905000 

2010 12 19 5 5 30 3.7 OKLAHOMA:  LUTHER 
 

905000 

2010 1 10 0 27 39.3 6.5 CALIFORNIA:  OFF COAST NORTHERN 
 

21800000 

2011 2 17 22 47 21.5 3.1 COLORADO:  PAONIA 
 

905000 

2011 11 8 2 46 57 5 OKLAHOMA:  SPARKS, PRAGUE 
 

905000 

2011 11 6 3 53 10 5.7 OKLAHOMA:  SPARKS 
 

4525000 

2011 8 23 17 51 4.5 5.8 
VIRGINIA:  LOUISA COUNTY, MARYLAND, WASHINGTON 

D.C. 
4525000 

2011 8 23 5 46 18.2 5.4 COLORADO:  SEGUNDO 
 

4525000 

2011 6 24 3 9 39.4 7.3 ALASKA: ALEUTIAN ISLANDS: FOX ISLANDS 
  

2011 9 2 10 55 53.5 6.8 ALASKA:  ALEUTIAN ISLANDS:  FOX ISLANDS 
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2013 4 18 0 50 38.5 2.1 TEXAS:  WEST 14 100000000 

2013 1 5 8 58 19.3 7.5 ALASKA:  SOUTHEASTERN 
  

2014 3 29 4 9 42 5.1 CALIFORNIA:  LA HABRA, BREA, FULLERTON 10800000 

2014 8 24 10 20 44 6 CALIFORNIA:  NAPA, VALLEJO 1 362000000 

2014 6 23 20 53 10 7.9 ALASKA:  ALEUTIAN ISLANDS 
  

2014 7 25 10 54 49 6.1 ALASKA 
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APPENDIX D 

National Weather Service Storm Damage Survey 

Highly publicized damaging and historic tornado outbreaks in April and June of this 

year (2011) have led to a substantial increase in public interest in National Weather 

Service storm surveys.  When tornadoes occur, National Weather Service meteorologists 

are assigned the task of completing a thorough damage survey.  A survey team’s mission 

is to gather data in order to reconstruct a tornado’s life cycle, including where it 

occurred, when and where it initially touched down and lifted (path length), its width, 

and its size.  It should also be mentioned that survey teams are occasionally tasked with 

determining whether damage may have been caused by straight line winds or a tornado 

and assessing the size of straight line winds.  With respect to tornado damage surveys, 

one of the most difficult tasks is assigning a rating to a tornado. 

Before February 2007, tornado strength was rated based on the Fujita Scale.  However, 

there were some flaws with the original Fujita Scale.  For instance, it did not account for 

the quality of building construction.  Beginning in 2001, it was determined that the 

Fujita Scale needed to be modified, and a committee of meteorologists, engineers, and 

academia was formed to begin developing a new scale.  In February 2007, the new 

Enhanced Fujita Scale (Table D.1) became operational and is still the scale used to rate 

the size of tornadoes. 
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EF Number 3-Second Wind Gust (mph) 

0 65 - 85 

1 86 - 110 

2 111 - 135 

3 136 - 165 

4 166 - 200 

5 Over 200 

Table D.1.  Enhanced Fujita Scale for 

rating tornado size. 
 

Before a survey team is deployed, they will be equipped with a variety of technology to 

complete the survey.  Typically, a damage survey kit will contain a GPS unit, a cell 

phone, a laptop with damage survey software, a digital camera, an atlas or gazetteer, and 

a notebook (Image D.1).  After a survey team is assigned and the survey kit is prepared, 

the team then drives to the reported tornado damage location(s).  Most commonly, a 

survey team will conduct a full ground survey in order to assess tornado damage, but 

occasionally, a team may also conduct an aerial survey if the spatial extent of the 

damage is large enough. 

 

Figure D.1.  Damage survey kit 

includes maps, camera, and a GPS. 

 

http://www.srh.noaa.gov/images/ama/surveys/kit.JPG
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Depending on the survey team, the starting and ending point of the tornado may be 

determined first followed by the width of the tornado.  The time of the tornado’s life 

cycle may be confirmed through eyewitness accounts and/or radar data.  To determine 

the size of the tornado, the survey team will attempt to find the worst damage since this 

is how the tornado will ultimately be rated.  Once the worst damage is identified, the 

survey team will assign a damage indicator to the structure or object.  There are 28 

damage indicators, including one- or two-family residences, manufactured homes, 

motels, warehouses, schools, small retail buildings (e.g. fast food restaurants), and even 

trees.  Each one of the damage indicators has a description of the typical construction for 

that category of indicator. For example, typical construction for one- and two-family 

residences includes asphalt shingles, tile, slate or metal roofing, attached single car 

garage, and brick veneer, wood panels, stucco, vinyl or metal siding. 

Once the structure or object has been assigned a damage indicator, the team will begin a 

thorough analysis of the building structure and construction.  The survey team will then 

assign a degree of damage to the structure or object.  The degree of damage has several 

different categories, and each category has an expected wind speed and a lower and 

upper bound wind speed.  For one- and two-family residences, if a tornado breaks glass 

in windows and doors, the expected wind speed is 96 mph, the lower bound wind speed 

is 79 mph, and the upper bound wind speed is 114 mph.  If a tornado produces damage 

that results in the collapse of all interior and exterior walls, the expected wind speed is 

170 mph, the lower bound wind speed is 142 mph, and the upper bound wind speed is 

198 mph.  This is where the job becomes difficult for the survey team because the team 
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must know some basics about construction.  If the quality of construction meets strict 

building code, the survey team will likely assign an expected wind speed to the 

damage.  If the construction fails to meet code, a lower bound wind speed may be 

assigned, but if the construction exceeds code and/or is well-engineered, it may be 

assigned an upper bound wind speed.  Once the expected, lower bound, or upper bound 

wind speed is determined, it is applied to the EF Scale to assign a rating. 

 

Let’s look at an example to help tie everything together.  For an interactive 

demonstration, this link will be very helpful: http://www.spc.noaa.gov/efscale/ef-

scale.html.  A tornado strikes a house, causing the entire roof to be blown off, but all the 

walls remain standing.  The survey team will first assign a damage indicator of 2 since 

this is a one- or two-family residence.  The description of the damage corresponds best 

to a degree of damage of 6 (http://www.spc.noaa.gov/efscale/2.html).  After careful 

inspection of the construction quality, it is observed that the ceiling joust was fastened 

with rafter clips to exterior walls, which meets code.  Therefore, the survey team assigns 

an expected wind speed of 122 mph.  Based on this wind speed, the team assigns the 

tornado a rating of EF-2 with winds between 111-135 mph. 

For more information about the EF Scale, please visit http://www.spc.noaa.gov/efscale 

 

http://www.spc.noaa.gov/efscale/ef-scale.html
http://www.spc.noaa.gov/efscale/ef-scale.html
http://www.spc.noaa.gov/efscale/2.html
http://www.spc.noaa.gov/efscale
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APPENDIX E 

PLOTS OF DRIFT IN DATA OVER TIME 

 Data divided into two time intervals and plotted on same plots as Figures 3.1-3.8 

(pages 26-35). 

 
Figure E.1: Size-cumulative frequency plot of hurricane economic losses for 92 of 94 

individual events in the United States, 1950-2014. Data greater than $7 billion are well fit 

by a power function. The x-axis is economic loss adjusted to 2014 USD. The left y-axis is 

cumulative number of events per year equal to and greater than x. The right y-axis is 

return period, in years, of an event equal to and greater than x. Separate halves of the 

data, 1950-1982 and 1983-2014, are each well fit by a power function. Histogram points 

are the upper-right corner of histogram bars for the non-cumulative frequency 

distribution of events. Histogram bin size is $7.5 million. 
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Figure E.2. Size-cumulative frequency plot of hurricane fatalities for 82 of 94 individual 

events in the United States, 1950-2014. Data greater than 60 fatalities and the data below 

50 fatalities are well fit by separate power functions. The x-axis is number of fatalities. 

The left y-axis is cumulative number of events per year equal to and greater than x. The 

right y-axis is return period, in years, of an event equal to and greater than x. Separate 

halves of the data, 1950-1982 and 1983-2014, are each well fit by a power function. 

Histogram points are the upper-right corner of histogram bars for the non-cumulative 

frequency distribution of events. Histogram bin size is 1 fatality. 
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Figure E.3. Size-cumulative frequency plot of earthquake economic losses for 144 of 196 

individual events in the United States, 1900-2014. Data greater than $20 million are well 

fit by a power function. The x-axis is economic loss adjusted to 2014 USD. The left y-

axis is cumulative number of events per year equal to and greater than x. The right y-axis 

is return period, in years, of an event equal to and greater than x. Separate halves of the 

data, 1900-1957 and 1958-2014, are each well fit by a power function. Histogram points 

are the upper-right corner of histogram bars for the non-cumulative frequency 

distribution of events. Histogram bin size is $750,000. 
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Figure E.4. Size-cumulative frequency plot of earthquake fatalities for 58 of 196 

individual events in the United States, 1900-2014. Data greater than 5 fatalities are well 

fit by a power function. The x-axis is number of fatalities. The left y-axis is cumulative 

number of events per year equal to and greater than x. The right y-axis is return period, in 

years, of an event equal to and greater than x. Separate halves of the data, 1900-1957 and 

1958-2014, are each well fit by a power function. Histogram points are the upper-right 

corner of histogram bars for the non-cumulative frequency distribution of events. 

Histogram bin size is 1 fatality. 



118 
 

 
Figure E.5. Size-cumulative frequency plot of tornado economic losses for 31,567 of 

46,402 individual events in the United States, 1900-2014. Data between $4 million and 

$2 billion are well fit by a power function. The x-axis is economic loss adjusted to 2014 

USD. The left y-axis is cumulative number of events per year equal to and greater than x. 

The right y-axis is return period, in years, of an event equal to and greater than x. 

Separate halves of the data, 1950-1982 and 1983-2014, are each well fit by a power 

function. Histogram points are the upper-right corner of histogram bars for the non-

cumulative frequency distribution of events. Histogram bin size is $1,600. 
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Figure E.6. Size-cumulative frequency plot of tornado fatalities for 1,282 of 46,402 

individual events in the United States, 1900-2014. The data greater than 2 fatalities are 

well fit by a power function. The x-axis is number of fatalities. The left y-axis is 

cumulative number of events per year equal to and greater than x. The right y-axis is 

return period, in years, of an event equal to and greater than x. Separate halves of the 

data, 1950-1982 and 1983-2014, are each well fit by a power function. Histogram points 

are the upper-right corner of histogram bars for the non-cumulative frequency 

distribution of events. Histogram bin size is 1 fatality. 
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Figure E.7. Size-cumulative frequency plot of flood economic losses for 4,131 of 6,230 

individual events in the United States, 1996-2014. The data greater than $2 million are 

well fit by a power function. The x-axis is economic loss adjusted to 2014 USD. The left 

y-axis is cumulative number of events per year equal to and greater than x. The right y-

axis is return period, in years, of an event equal to and greater than x. Separate halves of 

the data, 1996-2005 and 2006-2014, are each well fit by a power function. Histogram 

points are the upper-right corner of histogram bars for the non-cumulative frequency 

distribution of events. Histogram bin size is $2,000. 
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Figure E.8. Size-cumulative frequency plot of flood fatalities for 601 of 6,230 individual 

events in the United States, 1996-2014. The data greater than 1 fatality are well fit by a 

power function. The x-axis is number of fatalities. The left y-axis is cumulative number 

of events per year equal to and greater than x. The right y-axis is return period, in years, 

of an event equal to and greater than x. Separate halves of the data, 1996-2005 and 2006-

2014, are each well fit by a power function. Histogram points are the upper-right corner 

of histogram bars for the non-cumulative frequency distribution of events. Histogram bin 

size is 1. 
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