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ABSTRACT

Baker, Scott Edward. M.S. Department of Earth and Environmental Sciences, Wright
State University, 2016. Power Distribution and Probabilistic Forecasting of Economic
Loss and Fatalities Due to Hurricanes, Earthquakes, Tornadoes, and Floods in the United
States.

Traditionally, the size of natural disaster events such as hurricanes, earthquakes,
tornadoes, and floods is measured in terms of wind speed (m/sec), energy released (ergs),
or discharge (m*/sec). Economic loss and fatalities from natural disasters result from the
intersection of the human infrastructure and population with the natural event. This study
investigates the size versus cumulative number distribution of individual natural disaster
events in the United States. Economic losses are adjusted for inflation to 2014 United
States Dollars (USD). The cumulative number divided by the time over which the data
ranges is the basis for making probabilistic forecasts in terms of the Number of Events
Greater Than a Given Size Per Year and it’s inverse, Return Period. Such forecasts are of
interest to insurers/re-insurers, meteorologists, seismologists, government planners, and
response agencies.

Plots of size versus cumulative number distributions per year for economic loss
and fatalities are well fit by power scaling functions of the form P(x) = Cx®; where, P(x)
is the cumulative number of events per year with size equal to and greater than size x (or

probability of occurrence), C is a constant which measures the activity level, x is the



event size, and B is the scaling exponent. Power distributions have a property referred to
as self-similar or scale free, so that any sample of the distribution at any scale is

statistically identical to the whole distribution.

Economic loss and fatalities due to hurricanes, earthquakes, tornadoes, and floods
are well fit by power functions over one to five orders of magnitude in size. Economic
losses for hurricanes and tornadoes have greater scaling exponents, 3 = 1.1 and 0.9
respectively, whereas earthquakes and floods have smaller scaling exponents, = 0.4 and
0.6 respectively. The value of the scaling exponent determines the petitioning of losses
between larger and smaller sized events. All of the data sets exhibit a roll-off for smaller
economic loss events. The roll-off below a certain size is attributed to either under
estimating the economic losses or to a transition away from a power function below
which the cumulative number is independent of size. Fatalities for tornadoes and floods
have greater scaling exponents, p = 1.5 and 1.7 respectively, whereas hurricanes and

earthquakes have smaller scaling exponents, 3 = 0.4 and 0.7 respectively.
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CHAPTER 1

INTRODUCTION
1.1 Purpose of Study

Natural disasters in the United States are of concern to national and regional
planners, the insurance industry, and the emergency response community because of the
associated economic losses and fatalities. Traditionally, the size of a natural disaster is
measured in terms of wind speed (m/sec) for hurricanes and tornadoes, energy released
(ergs) for earthquakes, and discharge (m*/sec) for floods.

Economic loss and fatalities from natural disasters result from the intersection of
the human infrastructure and population with the natural event. An important purpose of
this study is to determine whether economic loss and fatalities can be fit by a
mathematical distribution. This study investigates economic loss and fatalities due to four
natural disaster types (hurricanes, earthquakes, tornadoes, and floods) in the United States

for various windows of time.
1.2 Previous Studies

Identifying a mathematical function permits forecasting the probability of an
event of a given size and greater, during a given time window. This approach was
developed and applied in two previous studies where economic loss and fatality data

were used as measures of event size for natural disasters by Barton and Nishenko, 1994



and Nishenko and Barton, 1996. These two studies were the first to show that economic
losses and fatalities due to natural disasters are well fit by a power function. Their work
provides the basis for the present study in which the outcome and analysis of newer, more
complete data sets of the present study can be compared.

Barton and Nishenko (1994) developed a method to forecast economic losses and
fatalities for natural disasters using power functions and their scaling exponents. Plotting
size versus cumulative number, they found that for hurricanes and earthquakes,
individual event sizes are well fit by a power function over one and a quarter to three and
a half (1.25-3.5) orders of magnitude in size for economic losses (Figure 1.1 (page 4) and
Table 1.1 (page 6)). Plotting size versus cumulative number, they found that for
hurricanes, earthquakes, tornadoes, and floods, individual event sizes are well fit by a
power function over one to three and a quarter (1-3.25) orders of magnitude in size for
fatalities (Figure 1.2 (page 5)). Note that they reported economic loss distributions only
for hurricanes and earthquakes with scaling exponents, § = 1.0 and 0.4 respectively
(Figure 1.1 and Table 1.1).

Nishenko and Barton (1996) studied size versus cumulative number distributions
for fatalities due to earthquakes at locations around the world and compared the power
function scaling exponents, = 0.2-0.5. For Asia, Europe, and South America, the data
was well fit by a power function. For the Middle East, the data rolled off from a power
function at both larger and smaller losses. A roll-off of the data for larger losses and a
roll-off of the data to a slope of zero for the smallest sizes were not addressed. Nishenko
and Barton (1996) also showed fatalities distributions for hurricanes, earthquakes,
tornadoes, and floods in the United States (see Figure 1.2 (page 5) and Table 1.1 (page

6)). In addition to demonstrating power function behavior over one to three and a quarter



(1-3.25) orders of magnitude in size, the scaling exponents form two groups. Hurricanes
and earthquakes are associated with smaller scaling exponents, § = 0.6 and 0.4
respectively, while tornadoes and floods have greater scaling exponents, § = 1.4 and 1.3
respectively. The results of these two previous studies are summarized in Table 1.1.
Table 1.2 (page 7), reproduced from Barton and Nishenko (1994), presents
probability estimates of an event of a given size and greater in any given year for 10 and
1000 fatality events for each disaster type. It also provides a return period (inverse of the
probability of occurrence in any given year) based on the power functions shown on
Figure 1.2 (page 5). The return period is an estimate of the likelihood of an event based
on historical data collected, not its periodic recurrence. They noted that floods and
tornadoes have relatively shorter return periods for small events, while earthquakes and

hurricanes have relatively short return periods for large events.



Loss in dollars {1990 value)
x10° 1x10° 1x10 1x10® 1x10° 1x10'"°

CTT T TI00 T T T T T TTTB

D=0.98

I T 1T

Earthquakes J§

=0.41

—
(=]

| T

|

Cumulative number of events with loss > L

1

Figure 1.1. Plot of cumulative frequency of economic loss (in 1990 USD) due to
earthquakes and hurricanes in the United States between 1900 and 1989. Data plotted as
loss size (x-axis) versus cumulative number of events (y-axis) are well fit by power
functions with scaling exponents for earthquakes = 0.4 and hurricanes = 1.0. Note, each
point on the plot represents a single event. Number of data points for earthquakes = 49
and for hurricanes = 27. (Barton and Nishenko, 1994).
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Figure 1.2. Plot of cumulative frequency of life loss due to earthquakes, hurricanes,
tornadoes, and floods in the United States between 1900 and 1989. Data plotted as
fatality size (x-axis) versus cumulative number of events per year (y-axis) are well fit by
power functions with scaling exponents of 0.4 for earthquakes, 0.6 for hurricanes, 1.4 for
tornadoes, and 1.3 for floods. Note, each point on the plot represents a single event.
Number of data points used to fit power function for earthquakes = 28, hurricanes = 30,
tornadoes = 56, and floods = 28. Power functions range from one to three and a half
orders of size in X; the scaling exponents form two groups. Hurricanes and earthquakes
are associated with relatively flat slopes (0.4-0.6); while tornadoes and floods have
steeper slopes (1.3-1.4). Open symbols were not used in fitting power functions. (Barton
and Nishenko, 1994).
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Table 1.2. Probability estimates for the occurrence of earthquake, hurricane, flood, and
tornado disasters with 10 and 1000 fatalities per event in the United States during 1, 10,
and 20 year exposure times, and estimates of the mean return periods in years. Note the
reversal in recurrence times for small and large events. Tornadoes and floods have
relatively short return periods for small events, while hurricanes and earthquakes have
relatively short return periods for large events. (Barton and Nishenko, 1994)

Exposure 10 Tatalities per event
time [ year 10vears| 20 vears | Retum time
Disaster (inyears)
Earthguakes 0.11* 0.67 0.89 9
Hurmricanes 0.z9 0.929 =99 2
Floods 0.86 =0.99 =99 0.5
Tomadoes 0.96 =0.99 =099 0.z

*0.11 = 119 probability of occurrence

Exposure 1000 fetalifes per ewent
time 1 year 10 yeas | 20 yeas | Retun time
Disaster in years)
Earthqu akes 0.0$1 0.14 0.26 67
Hurricanes 0.06 0.4a 0.71 16
Floods 0.0o04 0.04 0.03 250
Tomadoes 0.006 0.06 0.1 167




CHAPTER 2

DATA

2.1 Introduction

Economic loss and fatality data for natural disasters (hurricanes, earthquakes,
tornadoes, and floods) in the United States are collated from public and private sources
including: United States Geological Survey (USGS), National Oceanic and Atmospheric
Administration (NOAA), and insurance companies. The data used in the present study
were downloaded from the following websites: NOAA National Center for
Environmental Information (NCEI) (earthquakes, tornadoes, and floods) and NOAA
National Hurricane Center (NHC) (hurricanes). The data are collated and presented

online, but are not edited by NOAA (https://www.ncdc.noaa.gov/stormevents/faq.jsp). As

part of the present study, the value of economic losses was adjusted to 2014 USD using
the Bureau of Labor Statistics Consumer Price Index Inflation Calculator

(http://www.bls.qov/data/inflation calculator.htm).

2.2 Sources, Time and Value Ranges of Data

The data used in this study are collated on the NOAA National Center for

Environmental Information webpage (https://www.ncei.noaa.gov/), but are generated by

several federal agencies. Tornado and flood data were generated by NOAA National

Weather Service (http://www.weather.gov/), hurricane data were generated by NOAA

8
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National Hurricane Center (http://www.nhc.noaa.gov/), and earthquake data were

generated by United States Geological Survey and collated by NOAA National

Geophysical Data Center (https://www.ngdc.noaa.gov/). A data summary for each natural

disaster type is presented below and in Table 2.1 (page 13). Procedures used to process

the data, to group it into events, and to prepare it for analysis are given in Appendix A.

2.2.1 Hurricane Data Source

Hurricane data used in the present study were downloaded from NOAA National

Hurricane Center Tropical Cyclone Reports (http://www.nhc.noaa.gov/data/#tcr). As

shown in Table 2.1, the data ranges in time from 1950 to 2014, with 94 individual events.
Of the 94 individual events, 92 have reported economic losses ranging from $610,500 to
$130,680,000,000 (2014 USD). Of the 94 individual events, 82 have reported fatalities
ranging from 1 to 1,833. In the present study, unreported losses are not interpreted to
equal zero or any other value. The data are listed in the source by event. The data were
assembled by NOAA National Hurricane Center, and incorporate insurance company
data. A second data set was assembled by the NOAA National Weather Service and
collated by NOAA National Center for Environmental Information (NCEI)

(ftp://ftp.ncdc.noaa.gov/pub/data/swdi/stormevents/csvfiles/). This second data set was

incomplete and was used in the present study to investigate the consistency in loss data

for hurricanes and by extrapolation, other loss data sets.

2.2.2 Earthquake Data Source

Earthquake data used in the present study were downloaded from NOAA National

Center for Environmental Information Significant Earthquake Database

9
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(http://ngdc.noaa.gov/nndc/struts/form?t=101650&s=1&d=1) (formerly NOAA National

Geophysical Data Center). As shown in Table 2.1, the data ranges in time from 1900 to
2014, with 196 individual events. Of the 196 individual events, 144 have reported
economic losses ranging from $75,200 to $64,000,000,000 (2014 USD). Of the 196
individual events, 58 have reported fatalities ranging from 1 to 700. In the present study,
unreported losses are not interpreted to equal zero or any other value. The data are listed
by event. The data were assembled by the United States Geologic Survey and collated by
NOAA National Center for Environmental Information

(http://www.ngdc.noaa.gov/hazard/earthgk.shtml).

2.2.3 Tornado Data Source

Tornado data used in the present study were downloaded from NOAA National
Center for Environmental Information Storm Events Database

(ftp://ftp.ncdc.noaa.gov/pub/data/swdi/stormevents/csvfiles/) (formerly NOAA National

Climatic Data Center). As shown in Table 2.1, the data set ranges in time from 1950 to
2014, with 46,402 individual events. Of the 46,402 individual events, 31,567 have
reported economic losses ranging from $14.70 to $2,217,500,000 (2014 USD). Of the
46,402 individual events, 1,282 have reported fatalities ranging from 1 to 116. In the
present study, unreported losses are not interpreted to equal zero or any other value. The
data are listed by event. The data for each event were assembled by NOAA National
Weather Service County Warning Area (CWA) offices (Figure 2.1 (page 11)) and then
collated by NOAA National Center for Environmental Information

(ftp://ftp.ncdc.noaa.gov/pub/data/swdi/stormevents/csvfiles/).
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Figure 2.1: NOAA National Weather Service County Warning Area (CWA) map. This
map shows the location of the 122 NWS filed offices throughout the country. Each label
represents the city location of the office within the CWA.
(http://innovation.srh.noaa.gov/you/officemap.php)

2.2.4 Flood Data Source

Flood data (including: floods, flash floods, marine floods, and coastal floods) used
in the present study were downloaded from NOAA National Center for Environmental
Information Storm Events Database

(ftp://ftp.ncdc.noaa.gov/pub/data/swdi/stormevents/csvfiles/) (formerly NOAA National

Climatic Data Center). As shown in Table 2.1, the data set ranges in time from 1996 to

2014, with 6,230 individual events. Of the 6,230 individual events, 4,131 have reported
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economic losses ranging from $11.70 to $134,925,353,120 (2014 USD). Of the 6,230
individual events, 601 have reported fatalities ranging from 1 to 38. In the present study,
unreported losses are not interpreted to equal zero or any other value. The data for each
event was collected by NOAA National Weather Service CWA offices and collated by
NOAA National Center for Environmental Information

(ftp://ftp.ncdc.noaa.gov/pub/data/swdi/stormevents/csvfiles/).

2.2.5 Combining Flood Data into Events

The hurricane, earthquake, and tornado data are presented as individual events in
the online NOAA databases. Flood data are not combined into individual events and this

task was done as part of the present study.

The NOAA National Weather Service is made up of 122 offices (Figure 2.1 (page
11)) around the United States and surrounding territories. These offices use storm
damage surveys (Appendix D) to estimate economic losses; while a majority of economic
loss and fatality data are reported by state and other federal agencies, public media, and

insurance companies (https://www.ncdc.noaa.gov/stormevents/faq.jsp). Compiling

information from these sources, by NOAA employees, provides the data in the NOAA
data sets. Economic loss and fatality data collected by NOAA National Weather Service
CWA:'’s are input into NOAA National Center for Environmental Information Storm
Events Database by the NOAA NWS CWA, and then aggregated at the state level. Each
event that crosses a CWA boundary is reported once for each county affected, with a
beginning and ending location. NOAA NWS CWA offices report loss numbers by county

(https://www.ncdc.noaa.gov/stormevents/pd01016005curr.pdf, 76 & 81-83).
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2.3 Preparation of the Data Before Analysis

Step-by-step directions for downloading the economic loss and fatality data sets
from the NOAA National Center for Environmental Information website in comma
delimited files and reconfiguring into Excel files for grouping the data into events using a

Matlab code are given in Appendix A.

2.3.1 Hurricanes

For hurricanes, the economic loss and fatality values in the database

(ftp://ftp.ncdc.noaa.gov/pub/data/swdi/stormevents/csvfiles/) did not agree with those in

the NOAA National Hurricane Center Tropical Cyclone Reports

(http://www.nhc.noaa.gov/data/#tcr). Fatality values varied based on indirect and direct

fatalities associated with each natural disaster. The present study summed all fatalities
(indirect and direct) from an event and incorporated them into the total value. Economic
loss values did not agree due to adjustments after the event occurred, as well as NOAA
National Weather Service CWA’s improperly reporting events. NOAA NHC Tropical

Cyclone Reports were extensively detailed, so they will be used for this study.

2.3.2 Earthquakes

Earthquake economic loss and fatality data for individual events often cited a
range of values (ex. $50-$500, or 1-10 fatalities). In the present study, the mean of the

range was the value used for analysis.

2.3.3 Tornadoes
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Tornado data were already sorted into individual events.

2.3.4 Floods

Flood data in the NOAA database

(ftp://ftp.ncdc.noaa.gov/pub/data/swdi/stormevents/csvfiles/) were compiled by NOAA

National Weather Service, and then grouped by state, which makes grouping by event a
labor-intensive process. For the present study, Federal Emergency Management Agencies

Disaster Declarations webpage (https://www.fema.gov/disasters) was used to group the

data into individual events. The Disaster Declarations pages were used to establish the

time frame and location of each event, which were then combined to form an event.

2.4 Errors in the Data

Economic loss and fatality data used in this study contain errors. Error originates
from the incomplete and erroneous collection of data. “The Storm Events Database is an
official publication of the National Oceanic and Atmospheric Administration (NOAA)
which documents the occurrence of storms and other significant weather phenomena
having sufficient intensity to cause loss of life, injuries, significant property damage,
and/or disruption to commerce. When information included in Storm Data originates
from a source outside the NWS, such as insurance losses included in the present study,
the source is cited. The data are collected using the best available information, but data
values are unverified by NOAA due to time and resource constraints,”

(https://www.ncdc.noaa.gov/stormevents/fag.jsp). A National Weather Service Directive

(https://www.ncdc.noaa.gov/stormevents/pd01016005curr.pdf, pp. 9-13) details how

economic losses and fatalities can be estimated if true values cannot be obtained. “CWA
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meteorologists are allotted sixty days to gather data from sources for each event.
Additions and corrections to the data turned in within the first sixty days may be made at
a later time, up to several years after the event,” (Stuart Hinson, NCDC, personal
communication). NWS Directives Appendix B gives CWA meteorologists a range of
values for objects frequently damaged during events. CWA meteorologists have
significant latitude in what they choose to report. This introduces an unknown error into
each loss value listed in the NOAA data sets. Therefore, no errors are reported for any of

the economic loss and fatality values analyzed in the present study.

2.4.1 Sources of Errors in Hurricane Data

NOAA National Weather Service CWA offices label many concurrent events
with a different identifier number. For example, Hurricane Katrina impacted three
National Weather Service CWA offices serving Louisiana: New Orleans, Lake Charles,
and Jackson (see Figure 2.1 (page 11)). These three offices labeled this event with three
different episode identifiers of 197919, 196079, and 196783 respectively. Summing the
economic losses and fatalities reported by each office with the Baker Event ID Number
(Appendix C Table C.1 (page 90)), did not result in economic loss and fatality values
reported in the NOAA National Hurricane Center Tropical Cyclone Report

(http://www.nhc.noaa.gov/data/tcr/AL122005 Katrina.pdf). The NOAA National

Hurricane Center Tropical Cyclone Reports are detailed. The NOAA NCEI database was
initiated in 1996, and previous events are not included. Losses and fatalities for events
prior to 1996 are contained in the Tropical Cyclone Reports of NOAA National

Hurricane Center’s Data Archive (http://www.nhc.noaa.gov/data/#tcr), which extends

back to 1950. As shown in Table 2.1 (page 13), this data set also included 2 events for
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which no economic losses are reported and 12 events for which no fatalities are reported.
The present study does not interpret a lack of economic loss or fatality values to mean 0,

or a value greater than 0.

2.4.2 Sources of Errors in Earthquake Data

The earthquake data set had errors associated with both economic loss and
fatalities, previously listed in Section 2.3. As shown in Table 2.1, this data set also
included 52 events for which no economic losses are reported and 138 events for which
no fatalities are reported. The present study does not interpret a lack of economic loss or

fatality values to mean 0O, or a value greater than 0.

2.4.3 Sources of Errors in Tornado Data

NOAA National Weather Service CWA offices conduct tornado damage surveys
as well as gather data from other institutions, not limited to governmental facilities.
Another source is when tornado paths overlap, causing economic loss and fatality values
to be incorrectly assigned. As shown in Table 2.1, this data set also included 14,835
events for which no economic losses are reported and 45,120 events for which no
fatalities are reported. The present study does not interpret a lack of economic loss or

fatality values to mean 0, or a value greater than 0.

2.4.4 Sources of Errors in Flood Data

Floods were not combined into events in the NOAA database. Combining episode
data by date and state identified events. As shown in Table 2.1, this data set also included

2,099 events for which no economic losses are reported and 5,629 events for which no
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fatalities are reported. The present study does not interpret a lack of economic loss or

fatality values to mean 0O, or a value greater than 0.

2.4.5 Estimating Errors

NOAA provides no estimate of error for any of the economic loss or fatality data.
Since the true value of these losses is not known, it is not possible to calculate or even
estimate an error for the economic loss or fatality data used in the present study.
However, consistency of the values can be quantified where there are two values of
losses for the same event. There are two databases for losses due to hurricanes. The
difference in the economic loss and fatality data, between the NOAA National Center for
Environmental Information Storm Events Database

(ftp://ftp.ncdc.noaa.gov/pub/data/swdi/stormevents/csvfiles/) and the NOAA National

Hurricane Center Tropical Cyclone Reports (http://www.nhc.noaa.gov/data/#tcr). The

difference in loss values is a measure of consistency between data sets and is used to
quantify consistency. Table 2.2 (page 19) lists the economic loss and fatalities for thirty-
two hurricane events. Without two data sets, it is not possible to quantify consistency for
earthquakes, tornadoes, and floods. Consistency of the hurricane data is calculated by
taking the absolute value of the difference in economic loss or fatalities between the two
data sets. Figures 2.2 (page 20) and 2.3 (page 21) present a graphical representation of the

consistency of economic loss and fatalities respectively.

18


ftp://ftp.ncdc.noaa.gov/pub/data/swdi/stormevents/csvfiles/
http://www.nhc.noaa.gov/data/#tcr

Table 2.2: Differences in hurricane economic loss and fatality reporting. Data includes:
event date, NOAA NCEI database economic loss (2014 USD), NOAA NHC economic
loss (2014 USD), difference in economic loss (2014 USD), NOAA NCEI fatalities,

NOAA NHC fatalities, and difference in fatalities.

ECO(Q'O?E"J%[';)OSS ECONOMIC FATALITIES
EVENT LOSS FATALITIES
DATE | AANCEI NROEAI;AO S%C DI( ggliRUESI\IIDC):E ,;,\I%AEIA NN%ACA DIFFERENCE
REPORTS

07/1996 | $474,404,250 | $407,700,000 $66,704,250 3 7 4
09/1996 | $1,885,914,500 | $4,832,000,000 | $2,946,085,500 14 34 20
07/1997 |  $99,960,000 $99,960,000 $0 1 9 8
08/1998 | $521,360,550 | $1,044,000,000 | $522,639,450 1 3 2
09/1998 |  $10,624,150 $114,550,000 $103,925,850 2 3 1
09/1998 | $1,958,151,050 | $8,700,000,000 | $6,741,848,950 1 1 0
08/1999 $4,454,540 $0 $4,454,540 0 0
09/1999 | $6,570,127,000 | $9,798,000,000 | $3,227,873,000 14 56 42
10/1999 | $926,231,920 | $1,136,000,000 | $209,768,080 1 8 7
09/2000 $6,918,500 $0 $6,918,500 0 0 0
11/2001 $67,000 $0 $67,000 0 0 0
10/2002 | $907,305,313 | $1,221,000,000 | $313,694,687 0 2 2
07/2003 | $14,035,587 $232,200,000 $218,164,413 0 3 3
09/2003 | $1,295,886,270 | $6,927,300,000 | $5,631,413,730 6 50 44
08/2004 | $7,239,518,750 | $18,891,250,000 | $11,651,731,250 9 35 26
08/2004 $0 $162,500,000 $162,500,000 0 9 9
08/2004 |  $9,437,500 $9,437,500 $0 0 1 1
09/2004 | $7,042,775,000 | $11,883,750,000 | $4,840,975,000 0 48 48
09/2004 | $8,335,582,250 | $23,525,000,000 | $15,189,417,750 14 57 43
09/2004 | $927,006,250 | $9,575,000,000 | $8,647,993,750 0 4 4
07/2005 | $2,118,649,500 | $3,466,650,000 | $1,348,000,500 2 16 14
08/2005 | $40,545,563,300 $130'688'°°°'00 $90,134,436,700 21 1,833 1,812
09/2005 |  $74,971,600 $84,700,000 $9,728,400 0 1 1
09/2005 | $7,571,109,150 | $14,564,770,000 | $6,993,660,850 6 62 56
10/2005 | $12,342,000,000 | $25,418,470,000 | $13,075,470,000 5 5 0
09/2007 $3,420,000 $3,420,000 $0 0 1 1
07/2008 $0 $1,155,000,000 | $1,155,000,000 0 1 1
09/2008 | $24,079,000 | $5,079,800,000 | $5,055,721,000 0 52 52
09/2008 | $1,482,800,000 | $32,472,000,000 | $30,989,200,000 1 85 84
08/2011 $3,675,000 | $16,590,000,000 | $16,586,325,000 0 41 41
08/2012 | $750,767,000 $4,052,000 $746,715,000 3 5 2
07/2014 $0 $4,052,000 $4,052,000 0 0 0

19




Figure 2.2 shows consistency for economic losses due to hurricanes in the United

States over the time window, 1996-2014. The smaller time window used for comparison

is due to the limitation of data through the NOAA NCEI database, dating back to 1996.

The consistency of each event shows that the values of economic loss (2014 USD) follow

a linear function, over time, in which the difference between the data sets increases at a

rate equivalent to the increase in economic loss (2014 USD).
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Figure 2.2. Economic loss consistency for United States hurricanes, 1996-2014. The x-
axis is the economic loss difference (2014 USD) between the NOAA NCEI database and
NOAA NHC Tropical Cyclone Reports. The y-axis is the larger economic loss value
(2014 USD) of the two data sets used for comparison to estimate consistency between the
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Figure 2.3 shows consistency for fatalities due to hurricanes in the United States
over the time window, 1996-2014. The smaller time window used for comparison is due
to the limitation of data through the NOAA NCEI database, dating back to 1996. The
consistency of each event shows that the values of fatalities follow a linear function, over
time, in which the difference between the data sets increases at a rate equivalent to the

increase in fatalities.
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Figure 2.3. Fatalities consistency for United States hurricanes, 1996-2014. The x-axis is
the fatalities difference between the NOAA NCEI database and NOAA NHC Tropical
Cyclone Reports. The y-axis is the larger fatalities value of the two data sets used for
comparison to estimate consistency between the data.
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CHAPTER 3

ANALYSIS OF DATA

3.1 Method of Analysis

Barton and Nishenko (1994) and Nishenko and Barton (1996) pioneered the use
of power functions to fit size-cumulative frequency plots of natural disaster economic
losses and fatalities over one to four orders of magnitude in size (Figures 1.1 (page 4) and
1.2 (page 5)). Newman (2006) cites a wide variety of natural and non-natural disaster
data sets for which cumulative frequency distributions and histograms follow a power
function over multiple orders of magnitude in size (including: 1. earthquake magnitude,
2. word frequency in the novel Moby Dick, 3. citations of scientific papers published in
1981, and cited between publication and June 1997, 4. web hits received by web sites
from users of AOL Internet, 5. population of US cities recorded by US Census Bureau in
2000, and others). These examples show that power function distributions are not limited
to natural sciences, they can occur in physical, biological, technological, and social
systems of various kinds (Newman, 2006).

The method of analysis used in the present study (following Barton and Nishenko,
1994, and Nishenko and Barton, 1996) is to plot the economic loss or fatality data for
individual events on a size versus cumulative frequency plot with log-log axes and fitting

the data (Figures 3.1-3.8 (pages 26-35)) with a power function of the form:
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p(x) = Cx?

where:

p(x) = cumulative number of events per year with size equal to and
greater than size x (probability of occurrence)

C = a constant; measure of the activity level

B = the slope value of the power function fit to the data

The probability of the occurrence for an event of a given size and greater in any
one year, left y-axis on the size-cumulative frequency plots (Figures 3.1-3.8), is
calculated by dividing the cumulative number of events by the number of years spanned
by the data set. The “return period” (in years) for any given event size and greater, is the
inverse of the probability of occurrence and is shown on the right y-axis on each plot.

Economic losses less than ~$1 million for tornadoes and floods, ~$10 million for
earthquakes, and ~$10 billion for hurricanes fall away from the power function fit to the
larger events. The economic losses roll-off for values less than ~$100,000 for tornadoes
and floods, and ~$100 million for hurricanes is attributed to either an under estimate of
smaller sized events or to a decrease in the number of events with decreasing event size,
or to a transition from a power function to a size below which the cumulative number is
independent of size, i.e. the data can be fit by a power function with a scaling exponent of
zero (a horizontal line). Hurricane data between 50 and 60 fatalities has a rapid increase
in the number of events. Fatality data below ~5 for earthquakes fall away from the power
function fit to the larger events. Tornado fatalities below 1 roll-off from the power
function fit to larger events, and include a roll-off at an upper limit. Flood fatalities are

well fit by a single power function over the entire distribution.
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For purpose of comparison, the size-cumulative frequency plots also include the
data plotted in histogram form, which is non-cumulative, with equally sized bin intervals
(Burroughs and Tebbens, 2001, and Newman, 2006). The bin interval sizes used in
Figures 3.1-3.8 (pages 26-35) are stated in the figure captions. The points shown in
Figures 3.1-3.8 are the top right corners of the histogram bars. The data sets were too
small and too scattered to permit the tops of the histogram bars to be meaningfully fit by

any function or functions.

3.2 Results of Data Analysis

Figures 3.1-3.8 show cumulative number of events per year equal to and greater
than size x (an event) for economic losses (odd numbered figures) and fatalities (even
numbered figures). The x-axis is the size of individual events, the left y-axis is the
number of events of a given size and greater divided by the time span of the data set,
which is the probability of occurrence in any one year. The probability of the largest
event is 1/(time span of the data set) and the probability of the second largest event and
greater is 2/(time span of the data set) and so on for all of the event sizes in the data set.
The right y-axis is the return period (in years) for an event of any given size and greater.
As illustrated on Figures 3.1-3.8, where there are repetitive size values, only the greatest
cumulative value is used for fitting a mathematical function to the data (Burroughs and
Tebbens, 2001). Non-fit and repetitive values for economic loss and fatalities are shown

on the plots in light gray, the black data points are fit by a power function.
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3.2.1 Hurricanes

Figure 3.1 is a size-cumulative frequency plot for economic losses in the United
States for individual hurricane events during the time window 1950-2014. Data greater
than $7 billion are well fit by a power function over one and a quarter orders of
magnitude in size. The roll-off below $100 million is attributed to an under estimate of
smaller sized events or a decrease in the number of events with decreasing event size, or
to a transition from a power function to a size below which the cumulative number is
independent of size, i.e. the data could be fit by a power function with a scaling exponent

of zero (a horizontal line).
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Figure 3.1. Size-cumulative frequency plot of hurricane economic losses for 92 of 94
individual events in the United States, 1950-2014. Data greater than $7 billion are well fit
by a power function. The x-axis is economic loss adjusted to 2014 USD. The left y-axis is
cumulative number of events per year equal to and greater than x. The right y-axis is
return period, in years, of an event equal to and greater than x. Histogram points are the
upper-right corner of histogram bars for the non-cumulative frequency distribution of
events. Histogram bin size is $7.5 million.
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Figure 3.2 is a size-cumulative frequency plot for fatalities in the United States for
individual hurricanes during the time window 1950-2014. Data greater than 60 fatalities
and the data below 50 fatalities are well fit by separate power functions over three orders
of magnitude in size. The zone of unfitted data between the two power functions is due to
a rapid increase in the number of events between 50 and 60 fatality events and no

explanation for this behavior is offered.
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Figure 3.2. Size-cumulative frequency plot of hurricane fatalities for 82 of 94 individual
events in the United States, 1950-2014. Data greater than 60 fatalities and the data below
50 fatalities are well fit by separate power functions. The x-axis is number of fatalities.
The left y-axis is cumulative number of events per year equal to and greater than x. The
right y-axis is return period, in years, of an event equal to and greater than x. Histogram
points are the upper-right corner of histogram bars for the non-cumulative frequency
distribution of events. Histogram bin size is 1 fatality.
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3.2.2 Earthquakes

Figure 3.3 is a size-cumulative frequency plot for economic losses in the United
States for individual earthquakes during the time window 1900-2014. Data greater than
$20 million are well fit by a power function over three and a half orders of magnitude in
size. The roll-off below $1 million is attributed to an under estimate of smaller sized
events or a decrease in the number of events with decreasing event size, or to a transition
from a power function to a size below which the cumulative number is independent of
size, i.e. the data could be fit by a power function with a scaling exponent of zero (a

horizontal line).
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Figure 3.3. Size-cumulative frequency plot of earthquake economic losses for 144 of 196
individual events in the United States, 1900-2014. Data greater than $20 million are well
fit by a power function. The x-axis is economic loss adjusted to 2014 USD. The left y-
axis is cumulative number of events per year equal to and greater than x. The right y-axis
is return period, in years, of an event equal to and greater than x. Histogram points are the
upper-right corner of histogram bars for the non-cumulative frequency distribution of
events. Histogram bin size is $750,000.
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Figure 3.4 is a size-cumulative frequency plot for fatalities in the United States for
individual earthquakes during the time window 1900-2014. Data greater than 5 fatalities
are well fit by a power function over two and a quarter orders of magnitude in size. The
roll-off below 5 fatalities is attributed to an under estimate of smaller sized events or a
decrease in the number of events with decreasing event size, or to a transition from a
power function to a size below which the cumulative number is independent of size, i.e.
the data could be fit by a power function with a scaling exponent of zero (a horizontal

line).
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Figure 3.4. Size-cumulative frequency plot of earthquake fatalities for 58 of 196
individual events in the United States, 1900-2014. Data greater than 5 fatalities are well
fit by a power function. The x-axis is number of fatalities. The left y-axis is cumulative
number of events per year equal to and greater than x. The right y-axis is return period, in
years, of an event equal to and greater than x. Histogram points are the upper-right corner
of histogram bars for the non-cumulative frequency distribution of events. Histogram bin
size is 1 fatality.
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3.2.3 Tornadoes

Figure 3.5 is a size-cumulative frequency plot for economic losses in the United
States for individual tornadoes during the time window 1950-2014. Data between $4
million and $2 billion are well fit by a power function over two and three quarter orders
of magnitude in size. The roll-off above $2 billion is indicative of an upper size limit to
the power function (Burroughs and Tebbens, 2001). The roll-off below $10,000 is
attributed to an under estimate of smaller sized events or a decrease in the number of
events with decreasing event size, or to a transition from a power function to a size below
which the cumulative number is independent of size, i.e. the data could be fit by a power

function with a scaling exponent of zero (a horizontal line).
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Figure 3.5. Size-cumulative frequency plot of tornado economic losses for 31,567 of
46,402 individual events in the United States, 1900-2014. Data between $4 million and
$2 billion are well fit by a power function. The x-axis is economic loss adjusted to 2014
USD. The left y-axis is cumulative number of events per year equal to and greater than x.
The right y-axis is return period, in years, of an event equal to and greater than x.
Histogram points are the upper-right corner of histogram bars for the non-cumulative
frequency distribution of events. Histogram bin size is $1,600.
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Figure 3.6 is a size-cumulative frequency plot for fatalities in the United States for
individual tornadoes during the time window 1950-2014. The data greater than 2
fatalities are well fit by a power function over two orders of magnitude in size. The data
below 2 fatalities fall away from the power function and is attributed to an under estimate
of smaller sized events or a decrease in the number of events with decreasing event size,
or to a transition from a power function to a size below which the cumulative number is
independent of size, i.e. the data could be fit by a power function with a scaling exponent

of zero (a horizontal line).
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Figure 3.6. Size-cumulative frequency plot of tornado fatalities for 1,282 of 46,402
individual events in the United States, 1900-2014. The data greater than 2 fatalities are
well fit by a power function. The x-axis is number of fatalities. The left y-axis is
cumulative number of events per year equal to and greater than x. The right y-axis is
return period, in years, of an event equal to and greater than x. Histogram points are the
upper-right corner of histogram bars for the non-cumulative frequency distribution of
events. Histogram bin size is 1 fatality.
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3.2.4 Floods

Figure 3.7 is a size-cumulative frequency plot for the economic losses in the
United States for individual floods during the time window 1996-2014. The data greater
than $2 million are well fit by a power function over five orders of magnitude in size. The
roll-off below $10,000 is attributed to an under estimate of smaller sized events or a
decrease in the number of events with decreasing event size, or to a transition from a
power function to a size below which the cumulative number is independent of size, i.e.
the data could be fit by a power function with a scaling exponent of zero (a horizontal

line).
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Figure 3.7. Size-cumulative frequency plot of flood economic losses for 4,131 of 6,230
individual events in the United States, 1996-2014. The data greater than $2 million are
well fit by a power function. The x-axis is economic loss adjusted to 2014 USD. The left
y-axis is cumulative number of events per year equal to and greater than x. The right y-
axis is return period, in years, of an event equal to and greater than x. Histogram points
are the upper-right corner of histogram bars for the non-cumulative frequency
distribution of events. Histogram bin size is $2,000.
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Figure 3.8 is a size-cumulative frequency plot for fatalities in the United States for
individual floods during the time window 1996-2014. The data greater than 1 fatality are

well fit by a power function over one and a half orders of magnitude in size.
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Figure 3.8. Size-cumulative frequency plot of flood fatalities for 601 of 6,230 individual
events in the United States, 1996-2014. The data greater than 1 fatality are well fit by a
power function. The x-axis is number of fatalities. The left y-axis is cumulative number
of events per year equal to and greater than x. The right y-axis is return period, in years,
of an event equal to and greater than x. Histogram points are the upper-right corner of
histogram bars for the non-cumulative frequency distribution of events. Histogram bin
size is 1.

35



3.3 Analysis of Drift in Data Over Time

Improved technology and improved methods of data collection may contribute to
drift in the data over time, especially when the time ranges are as long as 1900-2014
(earthquakes), 1950-2014 (hurricanes and tornadoes), and 1996-2014 (floods). It is also
possible that climate change may affect the size and number of economic losses and
fatalities for weather induced disasters. In order to test for these possible affects, and to
test the stability through time of the data, each data set is divided in half by time and each
half analyzed with the method used for the entire data set in Section 3.2. Note that when
the data was divided in half by time, P(x) was calculated using half of the time interval
spanned by the entire data set (ex. 64 year time span for entire data set becomes 32 years
for each half of the data set when calculating P(x)). The position of data sets and the
position of power functions fit to the data plotted on a size-cumulative frequency plot, is
set by the size of the largest data point in the data set. The resulting plots are shown in
Appendix E (Figures E.1-E.8 (pages 114-121)) and are summarized in Table 3.1 (page

40).

The scaling exponents for economic loss are within 0.1 of each other for each
disaster type indicating that the exponents are stable and unaffected by data collection
methodology or by factors such as climate change when the data is separated into halves
based on time. The scaling exponents for fatalities depend on disaster size for hurricanes,
earthquakes, and tornadoes when the data is separated into halves based on time with
larger events having a larger scaling exponent. The scaling exponents for flood fatalities

are within 0.1 and 0.2 of each other for each disaster type indicating that the exponents
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are stable and unaffected by factors such as climate change when the data is separated

into halves based on time.

3.4 Composite Size-Cumulative Frequency Plots

Figures 3.9 and 3.10 are composite size-cumulative frequency plots of the
economic loss and fatalities for each of the four natural disaster types. The x-axis is
economic loss or fatalities for each event. The left y-axis is cumulative number of events
per year equal to and greater than X. The right y-axis is return period (in years) of an
event of any given size and greater, and is the inverse of the value on the left y-axis. The
scaling exponents for economic loss fall into two groups (see Table 3.1 (page 40)).
Hurricanes and tornadoes have scaling exponents, p = 1.1 and 0.9, respectively.
Earthquakes and floods have scaling exponents, p = 0.4 and 0.6, respectively. The scaling
exponents for fatalities also fall into two groups. Tornadoes and floods have scaling
exponents, p = 1.5 and 1.7, respectively. Earthquakes and hurricanes have scaling

exponents, B = 0.4 and 0.7, respectively.
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CHAPTER 4

DISCUSSION OF RESULTS

4.1 Discussion

The size-cumulative frequency plots presented in Figures 3.1-3.8 (pages 26-35)
show data fit with power functions extending from one to five orders of magnitude in
size. Size-cumulative frequency composite plots of the economic losses and fatalities
data, and power functions fit, are plotted in Figures 3.9-3.10 (pages 38-39) to permit
comparison between disaster types, by visual inspection, of the extent of power function
behavior, the values of the scaling exponent, the activity level, the probability of
occurrence of any given event size in any given year, and the return period.

A roll-off of the data for larger losses was not addressed by Nishenko and Barton,
1996, but is now interpreted to indicate an upper limit to the size of the largest event
following Burroughs and Tebbens, 2001. Roll-off of the data to a slope of zero for the
smallest sizes was not addressed by Barton and Nishenko, 1996 either, but is now
interpreted to indicate that below a certain size, the number of losses is constant i.e.

independent of size.

4.2 Comparison of Results to Previous Studies

Table 1.1 (page 6) summarizes the results of Barton and Nishenko (1994) and

Nishenko and Barton (1996). Table 3.2 (page 41) summarizes the results of the present
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study. The time spanned in the present study for both economic loss and fatalities is
shorter for three of the disaster types (hurricanes: 1950-2014, tornadoes: 1950-2014, and
floods 1996-2014) than in the previous studies (1900-1989). The time spanned in the
present study, for earthquakes (1900-2014), is longer than in the previous studies (1900-
1989). The total number of all the events, from smallest to largest, in the present study is
larger (94-46,402) than in the previous studies (44-56). The size range of all economic
losses is larger in the present study ($11.70-$134,925,353,120) (2014 USD) than in the
previous studies ($1 million-$6 billion) (1990 USD). The size range of all fatalities in the
present study (1-1,833) is smaller than in the previous studies (1-5,900), perhaps due in
part to improvements in advanced warning systems for weather related disasters. The
scaling exponents for all disaster types are equal to and greater in the present study (0.4-
1.7) than in previous studies (0.4-1.4). Even though the scaling exponents have not
changed much over the past twenty years from the previous studies to this present study,
the size of total number of events and the range over which the events scale is much

larger.

Where there is more than one event of a given size plotted on a size-cumulative
frequency plot, then only the topmost repetitive event size should be used when fitting a
power function to the data (Burroughs and Tebbens, 2001). Barton and Nishenko (1994)
fit power functions to all of the data including repetitive event sizes which slightly
depressed the values they found for scaling exponents (Figures 1.1 (page 4) and 1.2 (page

5) and Table 1.1 (page 6)).

4.2.1 Economic Loss
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The time spanned for economic loss events in the present study for hurricanes is
shorter (1950-2014) than in previous studies (1900-1989). The time spanned for
economic loss events in the present study for earthquakes is longer (1900-2014) than in
previous studies (1900-1989). The number of economic loss events in the present study
for hurricanes and earthquakes is larger (92-144) than in previous studies (27-49). The
size range of economic loss values in this study for hurricanes and earthquakes is larger
($75,200-$130,680,000,000) (2014 USD) than previous studies ($1 million-$6 billion)
(1990 USD). The scaling exponent for hurricanes in the present study, p = 1.1, is greater
than in previous studies, B = 0.6. The scaling exponent for earthquakes in the present

study, B = 0.4, is the same as in previous studies, = 0.4.

4.2.2 Fatalities

The time spanned for fatality events in the present study for three disaster types is
shorter (hurricanes: 1950-2014, tornadoes 1950-2014, and floods: 1996-2014) than in
previous studies (1900-1989). The time spanned for fatality events in the present study
for earthquakes is longer (1900-2014) than in previous studies (1900-1989). The size
range of fatality values in this study (1-1,833) is smaller than previous studies (1-5,900).
Even though there have been more events (58-1,282) than the previous study (28-56), the

quality of improved warning systems (http://earthquake.usgs.gov/research/earlywarning/

and http://www.nhc.noaa.gov/prepare/wwa.php) may have contributed to smaller

fatalities for weather related disasters. The scaling exponent for hurricanes is, B = 0.4 and
0.7, which is less than and greater than in previous studies, B = 0.6. The scaling exponent
for earthquakes is, B = 0.7, greater than in previous studies, B = 0.4. The scaling exponent

for tornadoes is, B = 1.5, greater than in previous studies, B = 1.4. The scaling exponent
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for floods is, p = 1.7, greater than in previous studies, = 1.3. The grouping of floods and
tornadoes, and hurricanes and earthquakes, based on similar scaling exponents, found in

the present study was also found by Barton and Nishenko (1994).

4.3 Probabilistic Forecasting and the Return Period for Individual Natural Disaster
Events as a Function of Size of Loss

To calculate forecasts for the probability of occurrence of an event, for any of the

four natural disasters, the present study will use a Poisson distribution:
-t/
P(n>1,t1)=1 —e""

where:

n = the number of events
t = the probability of occurrence (number of years)

T = the return period of an event

This equation is given as equation 1.2 in Feller (1971), where expectation = t = a. There
are associated assumptions that must be taken into account when using a Poisson
distribution (Feller, pp.12). The occurrence of one event does not affect the probability
that a second event will occur, meaning the events are independent of previous events.
The rate at which events occur over time is constant. Two events of the same natural
disaster cannot occur at exactly the same instant.

To calculate the return period needed for computation of the Poisson distribution,
refer to the power function equations from Figures 3.1-3.8 (pages 26-35). Replacing x
with the value of the economic loss or fatalities, and taking the inverse of the result gives

the return period. The present study evaluates the probability of occurrence for economic
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losses resulting from events with $10 million and $10 billion and greater, and fatalities
resulting from events with 10 and 100 and greater. Replacing t and t with their respective
values from the equation above, a probability of occurrence value can be obtained for
each natural disaster over an infinite time window.

Determination of the return period for an event of a given size and greater
provides a basis for establishing insurance rates, building codes, and disaster relief
agencies’ response plans for natural disasters over a range of magnitudes in size. The
return period is an estimate of the likelihood of an event based on historical data
collected, not its periodic recurrence. Return period is not interpreted to mean an event
will occur within that time window, but it offers the idea that an event of a specific
magnitude in size and greater could occur (i.e. A 100-year flood is not interpreted to
occur regularly every 100 years. It might occur once, twice, or not at all in a 100- year
time window). The probabilities provided in Tables 4.1 (page 48) and 4.2 (page 49)
represent a per year percentage, within the total number of years, that an event could
occur. Economic loss data is provided in Table 4.1 for each of the four natural disaster
types with probability of occurrence for events of $10 million and $10billion and greater,
as well as their estimated return period in years. For example, in the United States, a
hurricane with an economic loss value of $10 billion and greater has the probability to
occur 0.86 times per year over a 10 year time window. So the return period for a
hurricane event with $10 billion economic losses and greater is 5 years. The probability
of the occurrence of a tornado event in any given year with economic losses of $10
million and greater is 99%, with a return period of 0.05 years. Fatality data is provided in

Table 4.2 for each of the four natural disaster types with probability of occurrence for
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events of 10 and 100 fatalities and greater, as well as their estimated return period in

years.
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CHAPTER 5

CONCLUSIONS

Size-cumulative frequency plots of economic losses and fatalities for individual
events due to hurricanes, earthquakes, tornadoes, and floods are well fit by power
functions, over one to five orders of magnitude in size, with exponents between 0.4 and
1.7. The scaling exponents for economic loss fall into two groups (see Table 3.1 (page
40)). Tornadoes and hurricanes have scaling exponents, p = 0.9 and 1.1, respectively,
while earthquakes and floods have scaling exponents, p = 0.4 and 0.6, respectively. The
scaling exponents for fatalities also fall into two groups. Floods and tornadoes have
scaling exponents, p = 1.5 and 1.7, respectively, while hurricanes and earthquakes have
scaling exponents, p = 0.4 and 0.7, respectively.

Determination of the return period for an event of a given size and greater
provides a basis for establishing insurance rates, building codes, and disaster relief
agency response plans for natural disasters over a range of magnitudes in size. The return
period, based on historical data, is not interpreted to mean an event will occur within that
time window, but it offers the idea that an event of a specific magnitude in size and
greater could occur (i.e. A 100-year flood is not interpreted to occur regularly every 100
years. It might occur once, twice, or not at all in a 100-year time window). The
probabilities provided in Tables 4.1 and 4.2 represent a per year percentage, within the

total number of years, that an event could occur. Economic loss data is provided in
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Table 4.1 for each of the four natural disaster types with probability of occurrence for
events of $10 million and $10 billion and greater, as well as the estimated return period in
years. Fatality data is provided in Table 4.2 for each of the four natural disaster types
with probability of occurrence for events of 10 and 100 fatalities and greater, as well as
their estimated return period in years. For example, in the United States, an earthquake
with a fatality value of 100 and greater has the probability to occur 0.89 times per year
over a 100-year time window. So the return period for an earthquake event with 100
fatalities and greater is 22.84 years. The probability of the occurrence of a flood event in
any given year with 100 fatalities and greater is 2% (based on extrapolation of power

function from Figure 3.8 (page 35)), with a return period of 60.97 years.
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APPENDIX A

Step-by-Step Extraction of Data from the NOAA Databases and MATLAB
Computer Code for Grouping Data into Events.

1. Download Data from
NOAA NCEI and NOAA
NHC Tropical Cyclone
Reports

2. Reconfigure CSV files
into Excel files for use in
Matlab

3-3.1. Create Matlab
program, and read in
Excel files for execution
of program

l

3.4. Adjust economic
loss values for inflation
to 2014USD.

3.3. Find all economic
loss values and correct to
numerical output.

3.2. Extract only columns
of information needed for
this study

l

3.5. Create episode id for
each event by combining
separate pieces of events.

3.6. Combine all
information extracted in
3.2 to create events with
only needed information.

3.7. Create new separate
Excel files for
hurricanes, tornadoes,
and floods.

Data files for all four natural disaster types from the national databases were

extracted in comma separated value files, and reconfigured into Excel files which were
imported to a custom Matlab computer program that sorted and grouped the data into
individual events. The step-by-step procedure for extracting the data from the national

database and reconfiguring it into Excel is given below.
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1. Gather data from NOAA National Center for Environmental Information in Comma
Separated Value files.

1.1. Go to ftp://ftp.ncdc.noaa.gov/pub/data/swdi/stormevents/csvfiles/ for

tornadoes floods;

http://www.nhc.noaa.gov/data/#tcr for hurricanes; and

http://www.ngdc.noaa.gov/nndc/struts/form?t=101650&s=1&d=1 for

earthquakes.

2. Download files for the range of years available to retrieve all weather related
incidents recorded for separate weather disasters. During the years 1950-1954, only
tornadoes were kept on record. During the years 1955-1992, tornado, thunderstorms,
wind, and hail were recorded. From 1996-present, 48 different event types are
recorded. Open each comma separated value file and then save as an Excel file for

use by the Matlab computer program.

3. The following Matlab program reads in the reconfigured Excel files from national
databases, sorts and groups the data based on specified criteria (episode id to create
individual events), and outputs new Excel files that contain the sorted and grouped
data (ex. Table C.2 (page 95)). Economic loss data was transformed from the national
database form into a monetary value form (ex. 1M = 1000000) and then multiplied by
an inflation amount, based on year, to get the monetary values to 2014USD by the
Matlab program. The program groups the data into individual events and sums the
values within each event. Fatality data is also grouped into individual events and

summed. The final step is to create an Excel file for each disaster types (hurricanes,
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ftp://ftp.ncdc.noaa.gov/pub/data/swdi/stormevents/csvfiles/
http://www.nhc.noaa.gov/data/#tcr
http://www.ngdc.noaa.gov/nndc/struts/form?t=101650&s=1&d=1

tornadoes, floods (including: floods, flash floods, marine floods, and coastal floods).
Note: Earthquake and hurricane final data comes from a different data source.

fn=dir;

MONTH_NAME-=[]; %column L

YEAR=[]; %column K

BEGIN_YEARMONTH=[]; %column A

BEGIN_DAY=[]; %column B

END_YEARMONTH=[]; %column D

END_DAY=[]; %column E

EPISODEID=[]; %column G

STATE=[]; %column |

EVENT_TYPE=[]; %column M

DIRECTINJURIES=[]; %column U

INDIRECTINJURIES=[]; %column V

DIRECTFATALITIES=[]; %column W

INDIRECTFATALITIES=[]; %column X

PROPDAMAGE-=[]; %column Y

CROPDAMAGE=[]; %column Z

NARRATIVE=[]; %column AW

NARRATIVE2=[]; %column AX

3.1 for i=(7:length(fn))
if ~fn(i).isdir
fn(i).name
[pathstr,name,ext] = fileparts(fn(i).name);
if stremp(ext,'.xlsx")==1

[num,txt,raw]=xlIsread(fn(i).name);
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3.2

MONTH_NAME=[MONTH_NAME;txt(2:end,12)];

%gives the month the event started

YEAR=[YEAR;num(l:end,11)];

%gives the year the event started/happened

BEGIN_YEARMONTH=[BEGIN_YEARMONTH;num(1:end,1)];

%gives the month and year of event start

BEGIN_DAY=[BEGIN_DAY:num(L:end,2)];

%gives the day the event started

END_YEARMONTH=[END_YEARMONTH:;num(L:end,4)];

%gives the month and year the event ended

END_DAY=[END_DAY;num(l:end,5)];

%gives the day the event ended

EPISODEID=[EPISODEID;num(1:end,7)];

%gives each individual episode

STATE=[STATE;txt(2:end,9)];

%gives the state the event happened in

EVENT_TYPE=[EVENT_TYPE;txt(2:end,13)];

%gives specific event we need before assigning damage value
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DIRECTINJURIES=[DIRECTINJURIES;num(1:end,21)];

%gives number of injuries directly from each event

INDIRECTINJURIES=[INDIRECTINJURIES;num(1:end,22)];
%gives number of injuries due to outside circumstances for each

Ooevent

DIRECTFATALITIES=[DIRECTFATALITIES;num(1:end,23)];

%gives the fatalities from each event

INDIRECTFATALITIES=[INDIRECTFATALITIES;num(1:end,24)];
%gives the number of fatalities caused by the event but

%happened after event was over.

PROPDAMAGE=[PROPDAMAGE;txt(2:end,25)];

%gives property damage from each event

CROPDAMAGE=[CROPDAMAGE:;txt(2:end,26)];

%gives crop damage from each event

NARRATIVE=[NARRATIVE;txt(2:end,49)];

NARRATIVE2=[NARRATIVE2;txt(2:end,50)];

end

end
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end

%find all different values needed to produce wanted output.
33

FindhProp=strfind(PROPDAMAGE,'h");
FindHProp=strfind(PROPDAMAGE,'H";
FindkProp=strfindPROPDAMAGE,k");
FindKProp=strfind(PROPDAMAGE,'K";
FindMProp=strfind(PROPDAMAGE,'M");
FindBProp=strfind(PROPDAMAGE, B’);
FindTProp=strfind(PROPDAMAGE,T");

FindhCrop=strfind(CROPDAMAGE,'h");
FindHCrop=strfind(CROPDAMAGE,'H");
FindkCrop=strfind(CROPDAMAGE,'k");
FindKCrop=strfind(CROPDAMAGE,'K");
FindMCrop=strfind[CROPDAMAGE,'M’);
FindBCrop=strfind(CROPDAMAGE,'B";
FindTCrop=strfind(CROPDAMAGE,'T";

%separates each of the values into the different categories that we need.

LenD=length(PROPDAMAGE);

DPROP=zeros(LenD,1);

DCROP=zeros(LenD,1);

%DPROP array of all 0 values

57



%DCRORP array of all 0 values

%take the array and find specific values to change them into the numbers
%we need to use so we can find plot them. Using a for loop, we use i
%from 1 to the length and if/else statements. If K(i) is not empty (K is
%in the string), then replace the K with a blank and multiple by

%1000...carry on though h, H, M, and B, if nothing then transfer value as is.

for I=(1:LenD)

if ~isempty(FindhProp{l})
DPROP(I)=str2num(strrep(PROPDAMAGE({I},'h',"))*100;
%replace all strings of h with the value*100

elseif ~isempty(FindHProp{l})
DPROP(l)=str2num(strrep(PROPDAMAGE{l},'H',"))*100;
%replace all strings of H with the value*100

elseif ~isempty(FindkProp{l})
DPROP(I)=str2num(strrep(PROPDAMAGE{l1},'k’,"))*1000;
%replace all strings of k with the value*1000

elseif ~isempty(FindKProp{1})
DPROP(I)=str2num(strrep(PROPDAMAGE{l},'K","))*1000;
%replace all strings of K with the value*1000

elseif ~isempty(FindMProp{l})
DPROP(l)=str2num(strrep(PROPDAMAGE{I},'M',"))*1000000;
%replace all strings of M with the value*1000000

elseif ~isempty(FindBProp{l})
DPROP(I)=str2num(strrep(PROPDAMAGE{I},'B',"))*1000000000;
%replace all strings of B with the value*1000000000
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elseif ~isempty(FindTProp{1})
DPROP(I)=str2num(strrep(PROPDAMAGE{I}, T","))*1000000000000;
%replace all strings of T with the value*1000000000000

elseif length(PROPDAMAGE{l})==0
DPROP(I)==0;
%if the cell is empty(blank), then replace with 0

else
DPROP(I)=str2num(PROPDAMAGE{1});
%carryover all other values

end

end

for j=(1:LenD)

if ~isempty(FindhCrop{j})
DCROP(j)=str2num(strrep(CROPDAMAGE{j},'h',"))*100;
%replace all strings of h with the value*100

elseif ~isempty(FindHCrop{j})
DCROP(j)=str2num(strrep(CROPDAMAGE{j},'H',"))*100;
%replace all strings of H with the value*100

elseif ~isempty(FindkCrop{j})
DCROP(j)=str2num(strrep(CROPDAMAGE{j},'k',"))*1000;
%replace all strings of k with the value*1000

elseif ~isempty(FindKCrop{j})
DCROP(j)=str2num(strrep(CROPDAMAGE{j}'K","))*1000;
%replace all strings of K with the value*1000

elseif ~isempty(FindMCrop{j})
DCROP(j)=str2num(strrep(CROPDAMAGE{j},'M',"))*1000000;
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%replace all strings of M with the value*1000000

elseif ~isempty(FindBCrop{j})
DCROP(j)=str2num(strrep(CROPDAMAGE{j},'B',"))*1000000000;
%replace all strings of B with the value*1000000000

elseif ~isempty(FindTCrop{j})
DCROP(j)=str2num(strrep(CROPDAMAGE{j}, T","))*1000000000000;
%replace all strings of T with the value*1000000000000

elseif length(CROPDAMAGE{j})==0
DCROP(j)==0;
%if the cell is empty(blank), then replace with 0

else
DCROP(j)=str2num(CROPDAMAGE{j});
%carryover all other values

end

end

%Get the total damage amount by adding the two amounts(DPROP+DCROP),
make

%sure you have the same amount of rows in the columns, otherwise it will

Ooreturn an error

DAMAGETHEN=[DCROP+DPROP];
ADJUSTEDDAMAGENOW=DAMAGETHEN;

INJURIES=DIRECTINJURIES+INDIRECTINJURIES;
FATALITIES=DIRECTFATALITIES+INDIRECTFATALITIES;
3.4
for YR=(1950:2014);
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idx=find(YEAR==YR);
if YR==1950;
ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*9.82;
elseif YR==1951;
ADJUSTEDDAMAGENOW!(idx)=ADJUSTEDDAMAGENOW(idx)*9.11;
elseif YR==1952;
ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW/(idx)*8.93;
elseif YR==1953;
ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*8.87;
elseif YR==1954;
ADJUSTEDDAMAGENOW!(idx)=ADJUSTEDDAMAGENOW(idx)*8.80;
elseif YR==1955;
ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*8.83;
elseif YR==1956;
ADJUSTEDDAMAGENOW/(idx)=ADJUSTEDDAMAGENOW(idx)*8.70;
elseif YR==1957;
ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW/(idx)*8.42;
elseif YR==1958;
ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*8.19;
elseif YR==1959;
ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*8.14;
elseif YR==1960;
ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW/(idx)*8.00;
elseif YR==1961;
ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*7.92;
elseif YR==1962;
ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*7.84;
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elseif YR==1963;
ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW/(idx)*7.74;
elseif YR==1964;
ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*7.64;
elseif YR==1965;
ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW/(idx)*7.52;
elseif YR==1966;
ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW/(idx)*7.31;
elseif YR==1967;
ADJUSTEDDAMAGENOW!(idx)=ADJUSTEDDAMAGENOW(idx)*7.09;
elseif YR==1968;
ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*6.80;
elseif YR==1969;
ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*6.45;
elseif YR==1970;
ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW/(idx)*6.10;
elseif YR==1971;
ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*5.85;
elseif YR==1972;
ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*5.66;
elseif YR==1973;
ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW/(idx)*5.33;
elseif YR==1974;
ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW/(idx)*4.80;
elseif YR==1975;
ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*4.40;
elseif YR==1976;
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ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW/(idx)*4.16;
elseif YR==1977;
ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*3.91;
elseif YR==1978;
ADJUSTEDDAMAGENOW/(idx)=ADJUSTEDDAMAGENOW(idx)*3.63;
elseif YR==1979;
ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW/(idx)*3.26;
elseif YR==1980;
ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*2.87;
elseif YR==1981;
ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*2.60;
elseif YR==1982;
ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*2.45;
elseif YR==1983;
ADJUSTEDDAMAGENOW!(idx)=ADJUSTEDDAMAGENOW(idx)*2.38;
elseif YR==1984;
ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW/(idx)*2.28;
elseif YR==1985;
ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*2.20;
elseif YR==1986;
ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*2.16;
elseif YR==1987;
ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW/(idx)*2.08;
elseif YR==1988;
ADJUSTEDDAMAGENOW/(idx)=ADJUSTEDDAMAGENOW(idx)*2.00;
elseif YR==1989;
ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*1.91;

63



elseif YR==1990;
ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW/(idx)*1.81;
elseif YR==1991;
ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*1.74;
elseif YR==1992;
ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW/(idx)*1.69;
elseif YR==1993;
ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW/(idx)*1.64;
elseif YR==1994;
ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*1.60;
elseif YR==1995;
ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*1.55;
elseif YR==1996;
ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*1.51;
elseif YR==1997;
ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*1.47;
elseif YR==1998;
ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*1.45;
elseif YR==1999;
ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*1.42;
elseif YR==2000;
ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*1.37;
elseif YR==2001;
ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW/(idx)*1.34;
elseif YR==2002,
ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*1.32;
elseif YR==2003;
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3.5

ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW/(idx)*1.29;
elseif YR==2004;
ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*1.25;
elseif YR==2005;
ADJUSTEDDAMAGENOW!(idx)=ADJUSTEDDAMAGENOW(idx)*1.21;
elseif YR==2006;
ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW/(idx)*1.17;
elseif YR==2007,;
ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*1.14;
elseif YR==2008;
ADJUSTEDDAMAGENOW!(idx)=ADJUSTEDDAMAGENOW(idx)*1.10;
elseif YR==2009;
ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*1.10;
elseif YR==2010;
ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*1.09;
elseif YR==2011;
ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW/(idx)*1.05;
elseif YR==2012;
ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*1.03;
elseif YR==2013;
ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW(idx)*1.02;
elseif YR==2014;
ADJUSTEDDAMAGENOW(idx)=ADJUSTEDDAMAGENOW/(idx)*1.00;

end

end

UEPISODEID=unique(EPISODEID);
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for k=1:length(UEPISODEID)
beginl=[1]
k
idx=find(EPISODEID==UEPISODEID(k));
%if ~fn(i).isdir
% fn(i).name

if length(idx)>1;

ADJUSTEDDAMAGENOW(idx(1))=sum(ADJUSTEDDAMAGENOW(idx));
ADJUSTEDDAMAGENOW(idx(2:end))=[];
DAMAGETHEN(idx(1))=sum(DAMAGETHEN(idx));
DAMAGETHEN(idx(2:end))=[;

%will be used when needing to look at unadjusted vs adjusted for
%plots and for report to show difference
INJURIES(idx(1))=sum(INJURIES(idx));
INJURIES(idx(2:end))=[;
FATALITIES(idx(1))=sum(FATALITIES(idx));
FATALITIES(idx(2:end))=[];
MONTH_NAME(idx(2:end))=[];
YEAR(idx(2:end))=[];
BEGIN_YEARMONTH(idx(2:end))=[1;
BEGIN_DAY (idx(2:end))=[];
END_YEARMONTH(idx(2:end))=[I;
END_DAY (idx(2:end))=[];
STATE(idx(2:end))=[];
EVENT_TYPE(idx(2:end))=[];
EPISODEID(idx(2:end))=[]:
NARRATIVE(idx(2:end))=[];
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NARRATIVE2(idx(2:end))=[];
end
%end
finish2=[2]

end

%Get individual event types output into individual matrices.
3.6&37
FindTornado=strcmpi(EVENT_TYPE, Tornado’);

T1=MONTH_NAME(FindTornado>0);
T2=YEAR(FindTornado>0);
T3=BEGIN_YEARMONTH(FindTornado>0);
T4=BEGIN_DAY (FindTornado>0);
T5=END_YEARMONTH(FindTornado>0);
T6=END_DAY (FindTornado>0);
T7=UEPISODEID(FindTornado>0);
T8=STATE(FindTornado>0);
T8=strrep(T8,"",");

T9=EVENT _TYPE(FindTornado>0);
T9=strrep(T9,"",");
T10=INJURIES(FindTornado>0);
T11=FATALITIES(FindTornado>0);
T12=DAMAGETHEN(FindTornado>0);
T13=ADJUSTEDDAMAGENOW(FindTornado>0);

%each of the different variables we want in our output
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TORNADOFILE=cell(length(T1),13);

%filename=cell(length(T#),columns)

TORNADOFILE(;,1)=T1(});
TORNADOFILE(:,2)=num2cell(T2(®));
TORNADOFILE(:,3)=num2cell(T3(®));
TORNADOFILE(:,4)=num2cell(T4(®));
TORNADOFILE(:,5)=num2cell(T5(®));
TORNADOFILE(:,6)=num2cell(T6(:));
TORNADOFILE(:, 7)=num2cell(T7(:));
TORNADOFILE(;,8)=T8());
TORNADOFILE(;,9)=T9());
TORNADOFILE(:,10)=num2cell(T10(®));
TORNADOFILE(:,11)=num2cell(T11(}));
TORNADOFILE(:,12)=num2cell(T12(:));
TORNADOFILE(;,13)=num2cell(T13(’));

%=T1 means a cell array,=num2cell means a number originally convert to cell
filelD = fopen(TORNADOFILE.dat','w");
%gives file name for output but leave .dat
formatSpec = '%s %d %d %d %d %d %d %s %s %d %d %f %f\n';
%fprintf in help to see different values

[nrows,ncols] = size(TORNADOFILE);

HformatSpec = '%s %s %s %s %s %s %s %s %s %s %s %s %s\n';
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HEADER={'MonthName',"Year','BeginYearMonth','BeginDay','EndYearMonth’,..

'EndDay','UEpisodelD’,'State’,'EventType','Injuries’,'Fatalities’,...
'‘DamageThen','Adjusted(2014)DamageNow'};
fprintf(filelD,HformatSpec,HEADER{1,:});

for row = 1:nrows

fprintf(filelD,formatSpec, TORNADOFILE{row,:});
end
fclose(filelD);

%program code to give output in a file that we can turn into excel file
FindHurricane=strcmpi(EVENT _TYPE,'Hurricane (Typhoon));

H1=MONTH_NAME(FindHurricane>0);
H2=YEAR(FindHurricane>0);
H3=BEGIN_YEARMONTH(FindHurricane>0);
H4=BEGIN_DAY (FindHurricane>0);
H5=END_YEARMONTH(FindHurricane>0);
H6=END_DAY (FindHurricane>0);
H7=UEPISODEID(FindHurricane>0);
H8=STATE(FindHurricane>0);
H8=strrep(H8,"",");

H9=EVENT _TYPE(FindHurricane>0);
H9=strrep(H9,"",");
H10=INJURIES(FindHurricane>0);
H11=FATALITIES(FindHurricane>0);
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H12=DAMAGETHEN(FindHurricane>0);
H13=ADJUSTEDDAMAGENOW!/(FindHurricane>0);

%each of the different variables we want in our output

HURRICANEFILE=cell(length(H1),13);

%filename=cell(length(H#),columns)

HURRICANEFILE(;,1)=H1());
HURRICANEFILE(:,2)=num2cell(H2(:));
HURRICANEFILE(:,3)=num2cell(H3(’));
HURRICANEFILE(:,4)=num2cell(H4(.));
HURRICANEFILE(:,5)=num2cell(H5(:));
HURRICANEFILE(:,6)=num2cell(H6(:));
HURRICANEFILE(:,7)=num2cell(H7(:));
HURRICANEFILE(:,8)=H8(.);
HURRICANEFILE(:,9)=H9(.);
HURRICANEFILE(:,10)=num2cell(H10(.));
HURRICANEFILE(:,11)=num2cell(H11(}));
HURRICANEFILE(:,12)=num2cell(H12(®));
HURRICANEFILE(:,13)=num2cell(H13(}));

%=H1 means a cell array,=num2cell means a number originally convert to cell

fileID = fopen(HURRICANEFILE.dat','w");
%gives file name for output but leave .dat
formatSpec = '%s %d %d %d %d %d %d %s %s %d %d %f %f\n’;

%fprintf in help to see different values
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[nrows,ncols] = size(HURRICANEFILE);

HformatSpec = '%s %s %s %s %s %s %s %s %s %s %s %s %s\n';
HEADER={'MonthName',"Year','BeginYearMonth','BeginDay','EndYearMonth',..

'EndDay','UEpisodelD','State’,'EventType','Injuries’,'Fatalities',...
'‘DamageThen’,'Adjusted(2014)DamageNow'};
fprintf(filelD,HformatSpec,HEADER{1,:});

for row = 1:nrows

fprintf(filelD,formatSpec, HURRICANEFILE{row,:});
end
fclose(filelD);

%program code to give output in a file that we can turn into excel file
FindFlood=strcmpi(EVENT_TYPE, Flood');

F1=MONTH_NAME(FindFlood>0);
F2=YEAR(FindFlood>0);
F3=BEGIN_YEARMONTH(FindFlood>0);
F4=BEGIN_DAY (FindFlood>0);
F5=END_YEARMONTH(FindFlood>0);
F6=END_DAY (FindFlood>0);
F7=UEPISODEID(FindFlood>0);
F8=STATE(FindFlood>0);
F8=strrep(F8,"",");

FO=EVENT _TYPE(FindFlood>0);
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F9=strrep(F9,"",");
F10=INJURIES(FindFlood>0);
F11=FATALITIES(FindFlood>0);
F12=DAMAGETHEN(FindFlood>0);
F13=ADJUSTEDDAMAGENOW!(FindFlood>0);
F14=NARRATIVE(FindFlood>0);
F15=NARRATIVE2(FindFlood>0);

%each of the different variables we want in our output

FLOODFILE=cell(length(F1),15);

%filename=cell(length(F#),columns)

FLOODFILE(;,1)=F1());
FLOODFILE(:,2)=num2cell(F2(:));
FLOODFILE(:,3)=num2cell(F3(:));
FLOODFILE(:,4)=num2cell(F4(:));
FLOODFILE(:,5)=num2cell(F5(:));
FLOODFILE(:,6)=num2cell(F6(:));
FLOODFILE(:,7)=num2cell(F7(%));
FLOODFILE(;,8)=F8());
FLOODFILE(;,9)=F9());
FLOODFILE(:,10)=num2cell(F10(:));
FLOODFILE(;, 11)=num2cell(F11());
FLOODFILE(:,12)=num2cell(F12(:));
FLOODFILE(:,13)=num2cell(F13(:));
FLOODFILE(;,14)=F14();
FLOODFILE(;,15)=F15(:);
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%=F1 means a cell array,=num2cell means a number originally convert to cell

filelD = fopen('FLOODFILE.dat','w");
%gives file name for output but leave .dat

formatSpec = '%s %d %d %d %d %d %d %s %s %d %d %f %f %s %s\n';
[nrows,ncols] = size(FLOODFILE);

HformatSpec = '%s %s %s %s %s %s %s %s %s %s %s %s %s %s %s\n';
HEADER={'MonthName',"Year','BeginYearMonth','BeginDay','EndYearMonth’,..

'EndDay','UEpisodelD','State’,'EventType','Injuries’,'Fatalities',...
'‘DamageThen','Adjusted(2014)DamageNow’,'Narrative','Narrative2'};
fprintf(filelD,HformatSpec,HEADER{1,:});

for row = 1:nrows
fprintf(filelD,formatSpec,FLOODFILE{row,:});

end

fclose(filelD);

%program code to give output in a file that we can turn into excel file
FindFlashFlood=strcmpi(EVENT _TYPE,'Flash Flood";

FF1=MONTH_NAME(FindFlashFlood>0);
FF2=YEAR(FindFlashFlood>0);
FF3=BEGIN_YEARMONTH(FindFlashFlood>0);
FF4=BEGIN_DAY (FindFlashFlood>0);
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FF5=END_YEARMONTH(FindFlashFlood>0);
FF6=END_DAY (FindFlashFlood>0);
FF7=UEPISODEID(FindFlashFlood>0);
FF8=STATE(FindFlashFlood>0);
FF8=strrep(FF8,"",");
FF9=EVENT_TYPE(FindFlashFlood>0);
FF9=strrep(FF9,"",");
FF10=INJURIES(FindFlashFlood>0);
FF11=FATALITIES(FindFlashFlood>0);
FF12=DAMAGETHEN(FindFlashFlood>0);
FF13=ADJUSTEDDAMAGENOW(FindFlashFlood>0);
FF14=NARRATIVE(FindFlashFlood>0);
FF15=NARRATIVE2(FindFlashFlood>0);

%each of the different variables we want in our output

FLASHFLOODFILE=cell(length(FF1),15);

%filename=cell(length(FF#),columns)

FLASHFLOODFILE(;,1)=FF1();
FLASHFLOODFILE(:,2)=num2cell(FF2(:));
FLASHFLOODFILE(:,3)=num2cell(FF3(:));
FLASHFLOODFILE(:,4)=num2cell(FF4(:));
FLASHFLOODFILE(:,5)=num2cell(FF5(:));
FLASHFLOODFILE(:,6)=num2cell(FF6(:));
FLASHFLOODFILE(:,7)=num2cell(FF7(®));
FLASHFLOODFILE(;,8)=FF8(:);
FLASHFLOODFILE(;,9)=FF9(:);
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FLASHFLOODFILE(:,10)=num2cel(FF10(:));
FLASHFLOODFILE(:,11)=num2cell(FF11(:));
FLASHFLOODFILE(:,12)=num2cel((FF12(:));
FLASHFLOODFILE(:,13)=num2cell(FF13(:));
FLASHFLOODFILE(:,14)=FF14();
FLASHFLOODFILE(:,15)=FF15(:);

%=FF1 means a cell array,=num2cell means a number originally convert to cell

fileID = fopen('FLASHFLOODFILE.dat','w";
%gives file name for output but leave .dat
formatSpec = '%s %d %d %d %d %d %d %s %s %d %d %f %f %s %s\n';

%fprintf in help to see different values
[nrows,ncols] = size(FLASHFLOODFILE);

HformatSpec = '%s %s %s %s %s %s %s %s %s %s %s %s %s %s %s\n';
HEADER={'"MonthName',"Year','BeginYearMonth','BeginDay','EndYearMonth’,..

'EndDay','UEpisodelD’,'State’,'EventType','Injuries’,'Fatalities',...
'‘DamageThen','’Adjusted(2014)DamageNow’,'Narrative','Narrative2'};
fprintf(filelD,HformatSpec,HEADER{1,:});

for row = 1:nrows
fprintf(filelD,formatSpec,FLASHFLOODFILE{row,:});

end

fclose(filelD);

%program code to give output in a file that we can turn into excel file
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FindCoastalFlood=strcmpi(EVENT _TYPE,'Coastal Flood");

CF1=MONTH_NAME(FindCoastalFlood>0);
CF2=YEAR(FindCoastalFlood>0);
CF3=BEGIN_YEARMONTH(FindCoastalFlood>0);
CF4=BEGIN_DAY (FindCoastalFlood>0);
CF5=END_YEARMONTH(FindCoastalFlood>0);
CF6=END_DAY (FindCoastalFlood>0);
CF7=UEPISODEID(FindCoastalFlood>0);
CF8=STATE(FindCoastalFlood>0);
CF8=strrep(CF8,"",");
CF9=EVENT_TYPE(FindCoastalFlood>0);
CF9=strrep(CF9,"'",");
CF10=INJURIES(FindCoastalFlood>0);
CF11=FATALITIES(FindCoastalFlood>0);
CF12=DAMAGETHEN(FindCoastalFlood>0);
CF13=ADJUSTEDDAMAGENOW(FindCoastalFlood>0);
CF14=NARRATIVE(FindCoastalFlood>0);
CF15=NARRATIVE2(FindCoastalFlood>0);

%each of the different variables we want in our output

COASTALFLOODFILE=cell(length(CF1),15);

%filename=cell(length(CF#),columns)

COASTALFLOODFILE(;,1)=CF1();
COASTALFLOODFILE(;,2)=num2cell(CF2(:)):

76



COASTALFLOODFILE(:,3)=num2cell(CF3(:));
COASTALFLOODFILE(:,4)=num2cell(CF4(:));
COASTALFLOODFILE(:,5)=num2cell(CF5(:));
COASTALFLOODFILE(:,6)=num2cell(CF6(:));
COASTALFLOODFILE(:,7)=num2cell(CF7(:));
COASTALFLOODFILE(:,8)=CF8(:);
COASTALFLOODFILE(:,9)=CF9(:);
COASTALFLOODFILE(:,10)=num2cell(CF10(.));
COASTALFLOODFILE(:,11)=num2cell(CF11(.));
COASTALFLOODFILE(:,12)=num2cell(CF12(.));
COASTALFLOODFILE(:,13)=num2cell(CF13(.));
COASTALFLOODFILE(:,14)=CF14());
COASTALFLOODFILE(:,15)=CF15());

%=CF1 means a cell array,=num2cell means a number originally convert to cell

fileID = fopen(COASTALFLOODFILE.dat','w");
%gives file name for output but leave .dat
formatSpec = '%s %d %d %d %d %d %d %s %s %d %d %f %f %s %s\n';

%fprintf in help to see different values
[nrows,ncols] = size(COASTALFLOODFILE);

HformatSpec = '%s %s %s %s %s %s %s %s %s %s %s %s %s %s %s\n';
HEADER={'"MonthName',"Year','BeginYearMonth','BeginDay','EndYearMonth’,..

'EndDay’,'UEpisodelD','State','EventType','Injuries’,'Fatalities',...

'‘DamageThen','Adjusted(2014)DamageNow’,'Narrative','Narrative2'};
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fprintf(filelD,HformatSpec,HEADER{1,:});

for row = 1:nrows

fprintf(fileID,formatSpec, COASTALFLOODFILE{row,:});
end
fclose(filelD);

%program code to give output in a file that we can turn into excel file

FindMarineFlood=strcmpi(EVENT_TYPE,'Marine Flood');

MF1=MONTH_NAME(FindMarineFlood>0);
MF2=YEAR(FindMarineFlood>0);
MF3=BEGIN_YEARMONTH(FindMarineFlood>0);
MF4=BEGIN_DAY (FindMarineFlood>0);
MF5=END_YEARMONTH(FindMarineFlood>0);
MF6=END_DAY (FindMarineFlood>0);
MF7=UEPISODEID(FindMarineFlood>0);
MF8=STATE(FindMarineFlood>0);
MF8=strrep(MF8,"',");

MF9=EVENT _TYPE(FindMarineFlood>0);
MF9=strrep(MF9,"',");
MF10=INJURIES(FindMarineFlood>0);
MF11=FATALITIES(FindMarineFlood>0);
MF12=DAMAGETHEN(FindMarineFlood>0);
MF13=ADJUSTEDDAMAGENOW(FindMarineFlood>0);
MF14=NARRATIVE(FindMarineFlood>0);
MF15=NARRATIVE2(FindMarineFlood>0);
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%each of the different variables we want in our output

MARINEFLOODFILE=cell(length(MF1),15);

%filename=cell(length(MF#),columns)

MARINEFLOODFILE(;,1)=MF1(:);
MARINEFLOODFILE(:,2)=num2cell(MF2(:));
MARINEFLOODFILE(:,3)=num2cell(MF3(:));
MARINEFLOODFILE(:,4)=num2cell(MF4(:));
MARINEFLOODFILE(;,5)=num2cell(MF5(:));
MARINEFLOODFILE(;,6)=num2cel((MF6(:));
MARINEFLOODFILE(:,7)=num2cell(MF7(:));
MARINEFLOODFILE(;,8)=MF8(:);
MARINEFLOODFILE(;,9)=MF9(:);
MARINEFLOODFILE(:;,10)=num2cell(MF10(:));
MARINEFLOODFILE(:,11)=num2cel(MF11(.));
MARINEFLOODFILE(:,12)=num2cel(MF12(.));
MARINEFLOODFILE(;,13)=num2cel(MF13());
MARINEFLOODFILE(;,14)=MF14());
MARINEFLOODFILE(;,15)=MF15(});

%=MF1 means a cell array,=num2cell means a number originally convert to cell

fileID = fopen(MARINEFLOODFILE.dat','w");
%gives file name for output but leave .dat
formatSpec = '%s %d %d %d %d %d %d %s %s %d %d %f %f %s %s\n';

%fprintf in help to see different values
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[nrows,ncols] = size(MARINEFLOODFILE);

HformatSpec = '%s %s %s %s %s %s %s %s %s %s %s %s %s %s %s\n';
HEADER={'MonthName',"Year','BeginYearMonth','BeginDay','EndYearMonth',..

'EndDay','UEpisodelD','State’,'EventType','Injuries’,'Fatalities',...
'‘DamageThen','’Adjusted(2014)DamageNow’,'Narrative','Narrative2'};
fprintf(filelD,HformatSpec,HEADER{1,:});

for row = 1:nrows

fprintf(filelD,formatSpec, MARINEFLOODFILE{row,:});
end
fclose(filelD);

%program code to give output in a file that we can turn into excel file

finish3=[3]

Output of Matlab code is data sorted into individual disaster types for tornadoes,
hurricanes, and floods. Other disater types (tsunamis, blizzards, hail, high winds,
avalanches, and others) are removed by the MATLAB program. Earthquake data is
already separated into individual events through NOAA National Center for

Environmental Information database.

Hurricanes: Combine separate listings to create each event using NOAA National
Hurricane Center Tropical Cyclone Reports, as well as information (month, begin and

end day, year) from NOAA National Center for Environmental Information Storm Events
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Database-Bulk Data Download files. Compare monetary and fatality values to ensure
quality data; when needed, edit data based on information provided from both sets of
reports. Example: Hurricane Katrina in 2005 is listed multiple times, this is for the reason
that it struck many counties and states, so this data needed to be combined and values

cross-referenced to ensure accuracy.

Earthquakes: Already grouped by event, adjust the monetary values to equate
them to 2014 USD. For data that is a general value (Example: $50-$500 economic loss or

1-10 fatalities), the middle value ($225 or 5) is used, to not skew the output data.

Tornadoes: Already grouped by event, but adjustments to monetary values must

be done to equate them to 2014USD.

Floods: This data set was the most difficult to group into individual events, due to
the lack of labeling data byevent by NOAA National Weather Service (cited by the
County Warning Area, then by the county and state policy, which leaves many events
missing critical pieces of information). Example: If there is a flood that occurs in Ohio,
then trickles down to the Mississippi River; it is reported as separate events (in each
County Warning Area) due to the lack of communication and identification by NOAA
National Weather Service. There are many none combined events that need to be
combined to form an event. This study found that using the FEMA Disaster Declarations
website would help with this effort, but it still left many pieces of an event out. In this
case, it was agreed to combine the data by state and then by month to get the best result

for floods.
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APPENDIX B
Step-by-Step Process followed to Analyze Data

This appendix will take the resultant Excel files that were created at the end of
Appendix A, and turn them into graphical representations for analysis. Each natural
disaster workbook will expand to contain all the data and graphs needed to complete this
study. The different worksheets and graphs will show cumulative and non-cumulative
techniques in order to determine the best possible outcome, as well as if they follow
power function distributions allowing for probabilistic forecasting of new larger events.
Then, this study will combine the data sets into one composite graph for each, economic
loss and fatalities, to understand which natural disasters are related in terms of their
frequency and return period.

1. Using combined results and Excel, create new worksheets to graph results.

1.1.  Sort the Adjusted (2014) Damage Now or Fatalities column from largest
to smallest.

1.2.  Open a new worksheet (label Economic Loss Values or Fatalities VValues)
in the Excel file for each of the hazards (tornadoes, floods, hurricanes, and
earthquakes).

1.3.  Paste the Adjusted (2014) Damage Now or Fatalities column into column
D (label Multiples) of the Economic Loss Values or Fatalities Values

worksheet.
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1.4.

1.5.

1.6.

1.7.

1.8.

1.9.

1.10.

1.11.

Rank the values in column E (label Rank) from 1 (being the largest) to X
(being the smallest). If using formulas to compute the entire column, make
sure to copy and use paste special values only.

Copy and paste the Multiples values only in a new worksheet in order to
remove multiples, since this study only looks at the cumulative number of
events => X.

In the new sheet, choose the sort function once again. Sort the values in
column A from smallest to largest, and the values in column B from
largest to smallest.

Select all of column A, and then choose the filter (advanced) function.

In the filter function box, select the check box next to unique records only.
Copy and paste the values returned back into the Economic Loss Values or
Fatalities Values worksheet into column A (label Singles) and the rank
will be copied into column B (label Rank).

Using the sort function, sort Singles column from largest to smallest and
Rank column from smallest to largest.

Remove any 0 values in the Rank column, since those do not pertain to

this study and check the remaining values for accuracy.

Using the Multiples values, plot the data points on a marked scatter plot for

visualization of where points are plotted.

2.1.

Copy and paste the Multiples values and Rank into a new worksheet (label
Economic Loss Rank Per Year or Fatalities Rank Per Year) in columns G

(label Economic Loss or Fatalities) and H (label Rank).

83



2.2.

2.3.

For column F (label Multiples Date Range), the date range will need to be
computed. Using the starting date and ending date calculate the range for
each of the hazards.

Column I (label Rank Per Year = Rank/# Years), is the computation of
column H/column F (Rank/Multiples Date Range). If using a formula to
compute this step, copy and use paste special values at the end in order the

correct values needed to make the graphs.

Using the Singles values, obtain the rank per year values needed for graphs.

3.1.

3.2.

3.3.

Copy and paste the Singles values and Rank into the Economic Loss Rank
Per Year or Fatalities Rank Per Year worksheet in columns B (label
Economic Loss or Fatalities) and C (label Rank).

For column A (label Single Date Range), the date range will need to be
computed. Using the starting date and ending date calculate the range for
each of the hazards.

Column D (label Rank Per Year = Rank/# Years), is the computation of
column C/column A (Rank/Single Date Range). If using a formula to
compute this step, copy and use paste special values at the end in order the

correct values needed to make the graphs.

. Create graphs of cumulative number of events => X and cumulative number of

events/year => X, using cumulative frequency techniques.

4.1.

Using Excel, create marked scatter plots (move the actual chart to a new

chart for better viewing) for separate analysis of data values.

84



4.2.

4.3.

4.4,

4.5.

Multiples: Add data from columns G (Economic Loss or Fatalities) and H
(Rank) to a blank graph for cumulative number of events => X plot (label
Economic Loss Plot or Fatalities Plot) and columns G (Economic Loss or
Fatalities) and | (Rank Per Year = Rank/# Years) to another blank graph
for the cumulative number of events/year => X plot (label Economic Loss
Rank Per Year Plot or Fatalities Rank Per Year Plot).

Change the x-axis and y-axis to log scale to show the correct output for
use with power law relationships.

Singles: Add (overlay) data from columns B (Economic Loss or Fatalities)
and C (Rank) to the Economic Loss or Fatalities Plot for cumulative
number of events => X plot and columns B (Economic Loss or Fatalities)
and D (Rank Per Year = Rank/# Years) to the Economic Loss Rank Per
Year Plot/Fatalities Rank Per Year Plot for the cumulative number of
events/year => X plot.

Add a power function trendline to the overlay points and show the
equation on the graph to see how the slope changes when values are added
or removed to find the best-fit line or multiple lines if an inflection point

exists.

Create graphs of cumulative number of events => X and cumulative number of

events/year => X, using non-cumulative frequency techniques.

5.1.

Open a new worksheet (label Economic Loss Histogram Values or

Fatalities Histogram Values).
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5.2.

5.3.

5.4.

Copy the Multiples column of Economic Loss or Fatalities (column G)
from the Economic Loss Rank Per Year or Fatalities Rank Per Year
worksheet and paste into column A (label Economic Loss or Fatalities) of
the Economic Loss Histogram Values or Fatalities Histogram Values
worksheet.

For Binning purposes, use the Series function under the Fill option on the

Excel workbook Home tab.

5.3.1. Column B will be your Series (label Economic Loss or Fatalities),
enter 0 into the second row.

5.3.2. Select the Series function and enter a step value and the stop value
for your data set. This will automatically generate a series for use
with the histogram.

To create a histogram, select the Data Tab and then the Data Analysis

function.

5.4.1. Select the Histogram feature from the Analysis Tools menu and
click OK.

5.4.2. Input box: Input Range will be column A and Bin Range will be
column B.

5.4.3. Select the Labels box since the worksheet has labels to start the
columns.

5.4.4. Output options: Output Range select column D and check the box
next to Chart Output.

5.4.5. Click OK.
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5.5.

5.6.

5.7.

5.8.

5.4.6. Move the chart to a New Sheet (label Economic Loss Histogram or
Fatalities Histogram).

5.4.7. If the histogram needs to be edited for a better outcome, repeat this
process starting at Part ¢ of this section using a different step value
in the binning process.

Copy and paste the Economic Loss or Frequency values from columns D

and E into columns G and H. Then create a Frequency/Year column in

column | by taking the Frequency values and dividing them by the number
of Years in column A of the Economic Loss Rank Per Year or Fatalities

Rank Per Year worksheet.

Add columns G (Economic Loss or Fatalities) and H (Frequency) from the

Economic Loss Histogram Values or Fatalities Histogram Values to the

Economic Loss Plot or Fatalities Plot. Add a Power function trendline to

the data set and show the equation on the graph.

Add columns G (Economic Loss or Fatalities) and | (Frequency/Year)

from the Economic Loss Histogram Values or Fatalities Histogram Values

to the Economic Loss Plot Per Year or Fatalities Plot Per Year. Add a

Power function trendline to the data set and show the equation on the

graph.

Pick the largest data points from column H (Frequency) and copy columns

G, H, and I for that point to paste into columns K, L, and M respectively;

add the same column headers in the first row.
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5.9.

Overlay these points onto the Economic Loss Plot Per Year or Fatalities
Plot Per Year. Add a Power function trendline to the data set and show the

equation on the graph.

Create graphs of cumulative number of events per year => X, with return period.

6.1.

6.2.

6.3.

6.4.

Repeat steps 2 through 4 in a new Excel workbook, creating separate
worksheets for each of the individual disaster types.

Create an empty set of economic/fatality values and rank per year values
in another worksheet (label empty set) in order to create the return period
axis (secondary axis).

Add all of the data sets (hurricanes, tornadoes, floods, and earthquakes) to
a new marked scatterplot graph following the process of step 4. The empty
set data set will be added to the scatterplot, but will need to be edited to
the secondary axis and then represented by no marker so they do not show
in the final graphical output.

When the secondary axis is shown it will need to be formatted to the

inverse of the primary axis to show the proper return period.
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APPENDIX C:

Hurricane and Earthquake Data Sets

The following tables provide detailed information for events related to hurricanes
and earthquakes. Hurricane tables show the differences between the data obtained from
NOAA National Center for Environmental Information website (C.1 (page 90)) and the
combined data once processed through the Matlab computer program (C.2 (page 95)).
Hurricane data set required combining events based on time of occurrence but did not
complete the data. In this case, NOAA National Hurricane Center Tropical Cyclone
Reports were used for all data. Earthquake tables show data obtained from NOAA
National Center for Environmental Information website (C.3 (page 98)) and the hand-
edited final version (C.4 (page 104)) for use with Appendix B. Table C.4 provides results
of economic loss and fatalities with the incorporated description/generic values from
table C.3. Referring back to Section 2.3, the generic values will be represented by using

the middle value as to not skew the output plots.
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Table C.1: Hurricane data (sorted by date) after processing by Matlab computer program.
Output data includes: year, date, episode id (main event id), state, event type, fatalities,

economic loss at time of event, economic loss adjusted to 2014USD.

Begin Begin | UEpisode Esgﬁ: Event Damage Agjouls;{sd
Year Da D D State Tvoe Fatalities (dollars of Damage
Month | O P the day) ’
Number Now
199607 10 1049285 1 FLORIDA Hurricane(Typhoon) 0 0 0
199607 10 1049286 1 FLORIDA Hurricane(Typhoon) 0 0 0
199607 10 1049287 1 FLORIDA Hurricane(Typhoon) 2 0 0
199607 11 1033180 1 GEORGIA Hurricane(Typhoon) 0 0 0
199607 11 1055886 1 SOUTHCAROLINA | Hurricane(Typhoon) 0 0 0
199607 12 1044586 1 NORTHCAROLINA | Hurricane(Typhoon) 1 267250000 403547500
199607 12 1045250 1 NORTHCAROLINA | Hurricane(Typhoon) 0 230000 347300
199607 12 1046244 1 NORTHCAROLINA | Hurricane(Typhoon) 0 0 0
199607 12 1057163 1 NORTHCAROLINA | Hurricane(Typhoon) 0 19000000 28690000
199607 12 1057164 1 NORTHCAROLINA | Hurricane(Typhoon) 0 14500000 21895000
199607 12 1402892 1 NORTHCAROLINA | Hurricane(Typhoon) 0 11000000 16610000
199607 12 1039943 1 SOUTHCAROLINA | Hurricane(Typhoon) 0 0 0
199607 12 1055887 1 SOUTHCAROLINA | Hurricane(Typhoon) 0 780000 1177800
199607 12 1055888 1 SOUTHCAROLINA | Hurricane(Typhoon) 0 1300000 1963000
199607 12 1055789 1 VIRGINIA Hurricane(Typhoon) 0 0 0
199607 13 1054465 1 MARYLAND Hurricane(Typhoon) 0 115000 173650
199608 29 1056102 NORTHCAROLINA | Hurricane(Typhoon) 0 0 0
199608 31 1055256 SOUTHCAROLINA | Hurricane(Typhoon) 0 0 0
199609 2 1403446 FLORIDA Hurricane(Typhoon) 0 0 0
199609 2 1044845 MAINE Hurricane(Typhoon) 0 0 0
199609 2 1048803 NEWHAMPSHIRE | Hurricane(Typhoon) 0 0 0
199609 4 1045259 2 NORTHCAROLINA | Hurricane(Typhoon) 4 792150000 1196146500
199609 5 1045440 2 NORTHCAROLINA | Hurricane(Typhoon) 7 0 0
199609 5 1046467 2 NORTHCAROLINA | Hurricane(Typhoon) 0 1000000 1510000
199609 5 1048167 2 NORTHCAROLINA | Hurricane(Typhoon) 2 226000000 341260000
199609 5 1048176 2 NORTHCAROLINA | Hurricane(Typhoon) 0 201000000 303510000
199609 5 1048254 2 NORTHCAROLINA | Hurricane(Typhoon) 0 7000000 10570000
199609 5 1047271 2 SOUTHCAROLINA | Hurricane(Typhoon) 0 0 0
199609 5 1048994 2 SOUTHCAROLINA | Hurricane(Typhoon) 1 20800000 31408000
199609 5 1057010 2 SOUTHCAROLINA | Hurricane(Typhoon) 0 0 0
199609 5 1048707 2 VIRGINIA Hurricane(Typhoon) 0 0 0
199609 6 1045721 2 MARYLAND Hurricane(Typhoon) 0 1000000 1510000
199707 17 38549 3 LOUISIANA Hurricane(Typhoon) 0 5000000 7350000
199707 17 49809 3 MISSISSIPPI Hurricane(Typhoon) 0 0 0




199707 21 1057729 3 ALABAMA Hurricane(Typhoon) 1 63000000 92610000
199808 26 55939 4 NORTHCAROLINA | Hurricane(Typhoon) 1 13400000 19430000
199808 26 67944 4 NORTHCAROLINA | Hurricane(Typhoon) 0 99000000 143550000
199808 26 1077715 4 NORTHCAROLINA | Hurricane(Typhoon) 0 123400000 178930000
199808 26 1082856 4 NORTHCAROLINA | Hurricane(Typhoon) 0 17100000 24795000
199808 26 1082857 4 NORTHCAROLINA | Hurricane(Typhoon) 0 26200000 37990000
199808 26 1081841 4 SOUTHCAROLINA | Hurricane(Typhoon) 0 0 0
199808 26 1149000 4 SOUTHCAROLINA | Hurricane(Typhoon) 0 3800000 5510000
199808 26 65274 4 VIRGINIA Hurricane(Typhoon) 0 26659000 38655550
199808 27 1079545 4 NORTHCAROLINA | Hurricane(Typhoon) 0 50000000 72500000
199809 1 1083868 5 ALABAMA Hurricane(Typhoon) 0 10000 14500
199809 1 1150649 5 FLORIDA Hurricane(Typhoon) 0 150000 217500
199809 1 65261 5 LOUISIANA Hurricane(Typhoon) 0 32000 46400
199809 1 1072977 TEXAS Hurricane(Typhoon) 0 10000 14500
199809 2 60747 5 FLORIDA Hurricane(Typhoon) 0 1130000 1638500
199809 2 61197 5 FLORIDA Hurricane(Typhoon) 2 5995000 8692750
199809 25 1149148 6 ALABAMA Hurricane(Typhoon) 1 179164000 259787800
199809 25 61980 6 FLORIDA Hurricane(Typhoon) 0 270000000 391500000
199809 25 64390 6 FLORIDA Hurricane(Typhoon) 0 250000 362500
199809 25 1149147 6 FLORIDA Hurricane(Typhoon) 0 135000000 195750000
199809 25 1150605 6 FLORIDA Hurricane(Typhoon) 0 0 0
199809 25 1073878 6 MISSISSIPPI Hurricane(Typhoon) 0 72000000 104400000
199809 26 1072033 6 LOUISIANA Hurricane(Typhoon) 0 0 0
199809 27 65438 6 LOUISIANA Hurricane(Typhoon) 0 30060000 43587000
199809 27 65477 6 MISSISSIPPI Hurricane(Typhoon) 0 602000000 872900000
199809 28 68612 6 FLORIDA Hurricane(Typhoon) 0 61975000 89863750
199908 29 1406826 6 FLORIDA Hurricane(Typhoon) 1 100000 142000
199908 30 1405652 7 NORTHCAROLINA | Hurricane(Typhoon) 0 0 0
199908 30 1406733 7 NORTHCAROLINA | Hurricane(Typhoon) 0 75000 106500
199908 30 1406332 7 SOUTHCAROLINA | Hurricane(Typhoon) 0 0 0
199909 1 1408227 7 NORTHCAROLINA | Hurricane(Typhoon) 0 35000 49700
199909 1408221 7 VIRGINIA Hurricane(Typhoon) 0 27000 38340
199909 4 77641 7 NORTHCAROLINA | Hurricane(Typhoon) 0 3000000 4260000
199909 13 1405397 8 FLORIDA Hurricane(Typhoon) 0 100000 142000
199909 14 501382 8 FLORIDA Hurricane(Typhoon) 0 20000 28400
199909 14 502888 8 NORTHCAROLINA | Hurricane(Typhoon) 13 824224000 1170398080
199909 15 77998 8 FLORIDA Hurricane(Typhoon) 0 2500000 3550000
199909 15 79215 8 FLORIDA Hurricane(Typhoon) 1000000 1420000
199909 15 1405090 8 FLORIDA Hurricane(Typhoon) 61000000 86620000
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199909 15 1406050 FLORIDA Hurricane(Typhoon) 0 3000000 4260000
199909 15 1413083 8 FLORIDA Hurricane(Typhoon) 0 60000 85200
199909 15 502540 GEORGIA Hurricane(Typhoon) 0 0 0
199909 15 1408884 9 MARYLAND Hurricane(Typhoon) 0 853000 1211260
199909 15 77757 9 NORTHCAROLINA | Hurricane(Typhoon) 0 3500000000 | 4970000000
199909 15 1408624 9 NORTHCAROLINA | Hurricane(Typhoon) 0 75395000 107060900
199909 15 502707 9 SOUTHCAROLINA | Hurricane(Typhoon) 0 17000000 24140000
199909 15 1407890 9 VIRGINIA Hurricane(Typhoon) 1 141698000 201211160
199910 14 77474 10 FLORIDA Hurricane(Typhoon) 0 600000000 852000000
199910 15 1405611 10 FLORIDA Hurricane(Typhoon) 0 51000000 72420000
199910 15 1410013 10 FLORIDA Hurricane(Typhoon) 0 0 0
199910 16 1406478 10 FLORIDA Hurricane(Typhoon) 0 600000 852000
199910 16 1406479 10 FLORIDA Hurricane(Typhoon) 0 300000 426000
199910 16 1415740 10 FLORIDA Hurricane(Typhoon) 0 300000 426000
199910 16 1409248 10 NORTHCAROLINA | Hurricane(Typhoon) 1 0 0
199910 17 1408011 10 NORTHCAROLINA | Hurricane(Typhoon) 0 31000 44020
199910 17 77866 10 VIRGINIA Hurricane(Typhoon) 0 45000 63900
200009 17 98208 11 FLORIDA Hurricane(Typhoon) 0 0 0
200009 17 101916 11 FLORIDA Hurricane(Typhoon) 0 5050000 6918500
200111 5 124577 12 FLORIDA Hurricane(Typhoon) 0 50000 67000
200111 5 124776 12 FLORIDA Hurricane(Typhoon) 0 0 0
200210 2 145212 13 ALABAMA Hurricane(Typhoon) 0 175000 231000
200210 2 132025 13 LOUISIANA Hurricane(Typhoon) 0 149655000 197544600
200210 3 131105 13 LOUISIANA Hurricane(Typhoon) 0 1000000 1320000
200210 3 145529 13 LOUISIANA Hurricane(Typhoon) 0 536000000 707520000
200210 3 131080 13 MISSISSIPPI Hurricane(Typhoon) 0 522510 689713.2
200307 14 163783 14 TEXAS Hurricane(Typhoon) 0 10880300 14035587
200307 15 161365 14 TEXAS Hurricane(Typhoon) 0 0 0
200309 17 150474 15 NORTHCAROLINA | Hurricane(Typhoon) 0 449850000 580306500
200309 18 150642 15 NORTHCAROLINA | Hurricane(Typhoon) 1 7293000 9407970
200309 18 161857 15 NORTHCAROLINA | Hurricane(Typhoon) 0 3900000 5031000
200309 18 162575 15 NORTHCAROLINA | Hurricane(Typhoon) 1 16899000 21799710
200309 18 162959 15 VIRGINIA Hurricane(Typhoon) 2 9700000 12513000
200309 18 162984 15 VIRGINIA Hurricane(Typhoon) 2 516921000 666828090
200408 3 179939 16 NORTHCAROLINA | Hurricane(Typhoon) 0 7550000 9437500
200408 11 180401 17 FLORIDA Hurricane(Typhoon) 0 160000 200000
200408 13 176754 17 FLORIDA Hurricane(Typhoon) 0 20000 25000
200408 13 177442 17 FLORIDA Hurricane(Typhoon) 0 2575000 3218750
200408 13 179346 17 FLORIDA Hurricane(Typhoon) 7 5707600000 | 7134500000
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200408 13 180244 17 FLORIDA Hurricane(Typhoon) 0 0 0
200408 13 181737 17 FLORIDA Hurricane(Typhoon) 2 52000000 65000000
200408 14 178910 17 NORTHCAROLINA | Hurricane(Typhoon) 0 9835000 12293750
200408 14 179094 17 NORTHCAROLINA | Hurricane(Typhoon) 0 12925000 16156250
200408 14 178378 17 SOUTHCAROLINA | Hurricane(Typhoon) 0 6500000 8125000
200408 14 180685 17 SOUTHCAROLINA | Hurricane(Typhoon) 0 0 0
200409 179618 18 FLORIDA Hurricane(Typhoon) 0 20000 25000
200409 180898 18 FLORIDA Hurricane(Typhoon) 0 711000000 888750000
200409 182297 18 FLORIDA Hurricane(Typhoon) 0 4923200000 | 6154000000
200409 12 180993 FLORIDA Hurricane(Typhoon) 0 0 0
200409 13 180715 19 ALABAMA Hurricane(Typhoon) 0 2525000000 | 3156250000
200409 13 180430 19 FLORIDA Hurricane(Typhoon) 7 4025000000 | 5031250000
200409 14 179870 19 MISSISSIPPI Hurricane(Typhoon) 0 200000 250000
200409 15 180860 19 FLORIDA Hurricane(Typhoon) 6 90425000 113031250
200409 15 164633 19 LOUISIANA Hurricane(Typhoon) 0 15840000 19800000
200409 15 165398 19 MISSISSIPPI Hurricane(Typhoon) 0 10000000 12500000
200409 16 179404 19 MISSISSIPPI Hurricane(Typhoon) 1 2000800 2501000
200409 24 179336 20 FLORIDA Hurricane(Typhoon) 0 5000 6250
200409 25 181099 20 FLORIDA Hurricane(Typhoon) 0 353000000 441250000
200409 25 181902 20 FLORIDA Hurricane(Typhoon) 0 388600000 485750000
200507 5 195219 21 LOUISIANA Hurricane(Typhoon) 0 47500000 57475000
200507 8 189802 21 FLORIDA Hurricane(Typhoon) 1 0 0
200507 8 198227 21 FLORIDA Hurricane(Typhoon) 1 7150000 8651500
200507 9 193751 21 ALABAMA Hurricane(Typhoon) 0 120100000 145321000
200507 9 194470 21 ALABAMA Hurricane(Typhoon) 0 1500000 1815000
200507 9 192507 21 FLORIDA Hurricane(Typhoon) 0 62000000 75020000
200507 9 194727 21 FLORIDA Hurricane(Typhoon) 0 1500300000 | 1815363000
200507 9 193150 21 GEORGIA Hurricane(Typhoon) 0 7700000 9317000
200507 10 194726 21 ALABAMA Hurricane(Typhoon) 0 0 0
200507 10 194781 21 ALABAMA Hurricane(Typhoon) 0 0 0
200507 10 194782 21 ALABAMA Hurricane(Typhoon) 0 0 0
200507 10 193672 21 FLORIDA Hurricane(Typhoon) 0 0 0
200507 10 195570 21 FLORIDA Hurricane(Typhoon) 0 0 0
200507 10 194219 21 GEORGIA Hurricane(Typhoon) 0 0 0
200507 10 194167 21 MISSISSIPPI Hurricane(Typhoon) 0 4700000 5687000
200508 25 197140 22 FLORIDA Hurricane(Typhoon) 6 523000000 632830000
200508 26 198895 22 FLORIDA Hurricane(Typhoon) 0 6900000 8349000
200508 27 196557 22 ALABAMA Hurricane(Typhoon) 0 1000000000 | 1210000000
200508 27 196558 22 MISSISSIPPI Hurricane(Typhoon) 0 250000000 302500000
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200508 28 197162 22 FLORIDA Hurricane(Typhoon) 0 1700000 2057000
200508 28 197919 22 LOUISIANA Hurricane(Typhoon) 0 16929400000 | 20484574000
200508 28 197962 22 MISSISSIPPI Hurricane(Typhoon) 0 7347400000 | 8890354000
200508 29 196782 22 ARKANSAS Hurricane(Typhoon) 0 7400000 8954000
200508 29 197878 22 GEORGIA Hurricane(Typhoon) 0 0 0
200508 29 196079 22 LOUISIANA Hurricane(Typhoon) 0 30000 36300
200508 29 196783 22 LOUISIANA Hurricane(Typhoon) 0 52600000 63646000
200508 29 196674 22 MISSISSIPPI Hurricane(Typhoon) 15 7390300000 | 8942263000
200508 29 198064 22 MISSISSIPPI Hurricane(Typhoon) 0 0 0
200508 29 198119 22 MISSISSIPPI Hurricane(Typhoon) 0 0 0
200508 29 198762 22 MISSISSIPPI Hurricane(Typhoon) 0 0 0
200509 13 199692 23 NORTHCAROLINA | Hurricane(Typhoon) 0 53660000 64928600
200509 14 202516 23 NORTHCAROLINA | Hurricane(Typhoon) 0 8300000 10043000
200509 20 198740 24 FLORIDA Hurricane(Typhoon) 0 0 0
200509 23 197953 24 LOUISIANA Hurricane(Typhoon) 1 3995000000 | 4833950000
200509 23 197860 24 TEXAS Hurricane(Typhoon) 1 2090000000 | 2528900000
200509 23 202518 24 TEXAS Hurricane(Typhoon) 3 159500000 192995000
200509 24 202338 24 ARKANSAS Hurricane(Typhoon) 0 1050000 1270500
200509 24 200034 24 LOUISIANA Hurricane(Typhoon) 0 0 0
200509 24 202337 24 LOUISIANA Hurricane(Typhoon) 0 8750000 10587500
200509 24 202508 24 MISSISSIPPI Hurricane(Typhoon) 0 2815000 3406150
200509 24 200236 24 TEXAS Hurricane(Typhoon) 1 0 0
200510 23 200716 25 FLORIDA Hurricane(Typhoon) 0 99000000 119790000
200510 24 199545 25 FLORIDA Hurricane(Typhoon) 0 101000000 122210000
200510 24 202552 25 FLORIDA Hurricane(Typhoon) 5 10000000000 | 12100000000
200709 12 11848 26 TEXAS Hurricane(Typhoon) 0 3000000 3420000
200709 14 11335 26 GEORGIA Hurricane(Typhoon) 0 0 0
200809 1 24573 27 MISSISSIPPI Hurricane(Typhoon) 0 21890000 24079000
200809 12 24718 28 TEXAS Hurricane(Typhoon) 1 1348000000 | 1482800000
201108 27 55738 29 NORTHCAROLINA | Hurricane(Typhoon) 0 3500000 3675000
201208 28 66547 30 LOUISIANA Hurricane(Typhoon) 3 728900000 750767000
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Table C.2: Hurricane data after combination of pieces of each event into the individual
events. Output data provides important information including: year, date, episode id,
state, event type, fatalities, economic loss at time of event, economic loss adjusted to
2014USD.

Begin Begin UEpisode Event Damage A(gjgff‘gd

Year State Fatalities

Month Day ID Type Then Damage

Now

195008 | 30 ALABAMA Hurricane(Typhoon) 1 2550000 25041000
195009 5 FLORIDA Hurricane(Typhoon) 2 3300000 32406000
195010 | 17 FLORIDA Hurricane(Typhoon) 4 28000000 274960000
195208 | 30 SOUTHCAROLINA | Hurricane(Typhoon) 3 2750000 24557500
195308 | 13 NORTHCAROLINA | Hurricane(Typhoon) 1 1000000 8870000
195309 | 26 FLORIDA Hurricane(Typhoon) 0 200000 1774000
195408 | 26 NEWYORK Hurricane(Typhoon) 60 461000000 4056800000
195409 11 MASSACHUSETTS | Hurricane(Typhoon) 20 40000000 352000000
195410 | 15 NORTHCAROLINA | Hurricane(Typhoon) 95 281000000 2472800000
195508 | 17 NORTHCAROLINA | Hurricane(Typhoon) 184 832000000 7346560000
195508 | 12 NORTHCAROLINA | Hurricane(Typhoon) 0 40000000 353200000
195509 19 NORTHCAROLINA | Hurricane(Typhoon) 7 88035000 777349050
195609 | 24 LOUISIANA Hurricane(Typhoon) 15 24874000 216403800
195706 | 27 TEXAS Hurricane(Typhoon) 455 150000000 1263000000
195907 8 SOUTHCAROLINA | Hurricane(Typhoon) 1 75000 610500
195907 | 24 TEXAS Hurricane(Typhoon) 0 7000000 56980000
195909 | 29 SOUTHCAROLINA | Hurricane(Typhoon) 22 14000000 113960000
196009 10 FLORIDA Hurricane(Typhoon) 50 386500000 3092000000
196009 14 MISSISSIPPI Hurricane(Typhoon) 0 1060000 8480000
196109 | 11 TEXAS Hurricane(Typhoon) 46 325000000 2574000000
196309 | 17 TEXAS Hurricane(Typhoon) 12560000 97214400
196408 | 27 FLORIDA Hurricane(Typhoon) 128500000 981740000
196409 | 10 FLORIDA Hurricane(Typhoon) 5 250000000 1910000000
196410 3 LOUISIANA Hurricane(Typhoon) 38 125000000 955000000
196410 | 14 FLORIDA Hurricane(Typhoon) 3 10000000 76400000
196509 FLORIDA Hurricane(Typhoon) 75 1419800000 10676896000
196606 FLORIDA Hurricane(Typhoon) 6 10050000 73465500
196709 | 20 TEXAS Hurricane(Typhoon) 15 200000000 1418000000
196810 | 19 FLORIDA Hurricane(Typhoon) 3 6700000 45560000
196908 | 17 MISSISSIPPI Hurricane(Typhoon) 256 1420750000 9163837500
196909 9 MAINE Hurricane(Typhoon) 0 0 0
197008 TEXAS Hurricane(Typhoon) 11 453700000 2767570000
197109 10 TEXAS Hurricane(Typhoon) 2 30230000 176845500
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197109 16 LOUISIANA Hurricane(Typhoon) 0 25000000 146250000
197109 | 30 NORTHCAROLINA | Hurricane(Typhoon) 0 10000000 58500000
197206 | 19 FLORIDA Hurricane(Typhoon) 120 3100000000 17546000000
197409 8 LOUISIANA Hurricane(Typhoon) 1 150000000 720000000
197509 | 23 FLORIDA Hurricane(Typhoon) 21 500000000 2200000000
197608 | 10 NEWYORK Hurricane(Typhoon) 100000000 416000000
197709 5 LOUISIANA Hurricane(Typhoon) 0 10000000 39100000
197907 | 11 LOUISIANA Hurricane(Typhoon) 20000000 65200000
197909 3 FLORIDA Hurricane(Typhoon) 15 320000000 1043200000
197909 13 ALABAMA Hurricane(Typhoon) 5 2300000000 7498000000
198008 | 10 TEXAS Hurricane(Typhoon) 2 300000000 861000000
198408 | 17 TEXAS Hurricane(Typhoon) 21 2000000000 4560000000
198409 13 NORTHCAROLINA | Hurricane(Typhoon) 3 65000000 148200000
198507 | 24 SOUTHCAROLINA | Hurricane(Typhoon) 1 0 0
198508 | 15 LOUISIANA Hurricane(Typhoon) 1 100000000 220000000
198509 | 27 NORTHCAROLINA | Hurricane(Typhoon) 8 900000000 1980000000
198509 1 MISSISSIPPI Hurricane(Typhoon) 4 1250000000 2750000000
198510 | 29 LOUISIANA Hurricane(Typhoon) 12 1500000000 3300000000
198511 | 21 FLORIDA Hurricane(Typhoon) 5 300000000 660000000
198606 | 26 TEXAS Hurricane(Typhoon) 4 2000000 4320000
198608 | 17 NORTHCAROLINA | Hurricane(Typhoon) 0 400000 864000
198710 | 12 FLORIDA Hurricane(Typhoon) 0 500000 1040000
198809 9 LOUISIANA Hurricane(Typhoon) 1 2500000 5000000
198908 TEXAS Hurricane(Typhoon) 13 100000000 191000000
198909 | 22 SOUTHCAROLINA | Hurricane(Typhoon) 21 10000000000 | 19100000000
198910 | 15 TEXAS Hurricane(Typhoon) 3 70000000 133700000
199108 | 19 RHODEISLAND Hurricane(Typhoon) 680000000 1183200000
199208 | 23 FLORIDA Hurricane(Typhoon) 61 26001000000 | 43941690000
199508 FLORIDA Hurricane(Typhoon) 3 700000000 1085000000
199510 4 FLORIDA Hurricane(Typhoon) 13 5142000000 7970100000
199607 | 12 NORTHCAROLINA | Hurricane(Typhoon) 7 270000000 407700000
199609 6 1403446 NORTHCAROLINA | Hurricane(Typhoon) 34 3200000000 4832000000
199707 17 38549 LOUISIANA Hurricane(Typhoon) 9 68000000 99960000
199808 | 26 55939 NORTHCAROLINA | Hurricane(Typhoon) 3 720000000 1044000000
199809 1 1083868 ALABAMA Hurricane(Typhoon) 3 79000000 114550000
199809 | 25 1149148 ALABAMA Hurricane(Typhoon) 1 6000000000 8700000000
199908 | 23 TEXAS Hurricane(Typhoon) 0 60000000 85200000
199909 | 13 1405397 NORTHCAROLINA | Hurricane(Typhoon) 56 6900000000 9798000000
199910 | 15 77474 FLORIDA Hurricane(Typhoon) 8 800000000 1136000000
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200210 2 145212 ALABAMA Hurricane(Typhoon) 925000000 1221000000
200307 14 163783 TEXAS Hurricane(Typhoon) 3 180000000 232200000
200309 17 150474 NORTHCAROLINA | Hurricane(Typhoon) 50 5370000000 6927300000
200408 | 11 180401 FLORIDA Hurricane(Typhoon) 35 15113000000 | 18891250000
200408 | 29 SOUTHCAROLINA | Hurricane(Typhoon) 9 130000000 162500000
200408 3 179939 NORTHCAROLINA | Hurricane(Typhoon) 7550000 9437500
200409 | 12 180993 FLORIDA Hurricane(Typhoon) 57 18820000000 | 23525000000
200409 1 179618 FLORIDA Hurricane(Typhoon) 48 9507000000 | 11883750000
200409 | 24 179336 FLORIDA Hurricane(Typhoon) 4 7660000000 9575000000
200507 5 195219 LOUISIANA Hurricane(Typhoon) 15 2545000000 3079450000
200507 LOUISIANA Hurricane(Typhoon) 1 320000000 387200000
200508 | 29 198762 MISSISSIPPI Hurricane(Typhoon) 1833 108000000000 | 130680000000
200509 | 20 198740 FLORIDA Hurricane(Typhoon) 62 12037000000 | 14564770000
200509 | 13 199692 NORTHCAROLINA | Hurricane(Typhoon) 1 70000000 84700000
200510 | 23 200716 FLORIDA Hurricane(Typhoon) 5 21007000000 | 25418470000
200709 12 11848 TEXAS Hurricane(Typhoon) 1 3000000 3420000
200807 | 24 TEXAS Hurricane(Typhoon) 1 1050000000 1155000000
200809 | 12 24718 TEXAS Hurricane(Typhoon) 85 29520000000 | 32472000000
200809 1 24573 MISSISSIPPI Hurricane(Typhoon) 52 4618000000 5079800000
201108 | 27 55738 NORTHCAROLINA | Hurricane(Typhoon) 41 15800000000 | 16590000000
201208 | 28 66547 LOUISIANA Hurricane(Typhoon) 2350000000 2420500000
201407 3 NORTHCAROLINA | Hurricane(Typhoon) 4052000 4052000
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Table C.3: Earthquake data by individual events. Output data provides important
information including: year, month, day, hour, minute, second, magnitude, name, number
of deaths, description of deaths, economic loss in millions, and description of economic
loss (at time of event).

YEAR | MO | DY | HR | MIN | SEC | MAG LOCATION_NAME DTH | DES | DAM_MILL | DES
1900 10 9 12 25 8.3 ALASKA: KODIAK ISLAND 1
1900 8 11 4 40 SE. ALASKA

1901 12 31 9 2 30 78 ALASKA: ALEllsJI'_I'X?\II\IlDISSLANDS: FOX 1
1901 3 3 7 45 6.4 CALIFORNIA: SAN DIEGO 1
1902 4 29 6 57 CALIFORNIA: SOUTHERN 2
1902 1 1 5 20 78 ALASKA: ALElgl'_l'k?\\ll\llDISSLANDS: FOX

1903 6 2 13 17 8.3 ALASKA: SOUTHWEST

1904 8 27 | 21 56 8.3 ALASKA: RAMPART

1905 2 14 8 46 7.9 ALASKA: ANDREANOF ISLANDS

1906 4 18 | 13 12 21 7.9 CALIFORNIA: SAN FRANCISCO 700 3 400 4
1906 8 17 0 10 4 78 ALASKA: ALEI;JI'_I"L;?\\II\IIDISSLANDS: RAT

1906 12 23 | 17 22 7.6 ALASKA: ALEUTIAN ISLANDS

1907 9 2 16 1 7.8 ALASKA: ALEUTIAN ISLANDS

1907 9 24 | 12 59 55 ALASKA: SKAGWAY

1908 2 14 | 11 25 6 ALASKA GULF

1908 9 21 6 31 6.8 HAWAII

1909 4 10 | 19 36 7.8 ALASKA: ALEUTIAN ISLANDS

1911 9 22 5 1 24 6.9 PRINCE WILLIAM SOUND

1912 11 7 7 40 75 ALASKA: ALASKA PENINSULA

1915 6 23 4 56 6.2 CALIFORNIA: EL CENTRO 6 1 0.9 1
1915 10 3 6 52 48 7.6 NEVADA: PLEASANT VALLEY 1
1916 2 6 21 51 7.7 ALASKA: ALEUTIAN ISLANDS

1916 4 18 4 1 75 ALASKA: ALEgEX?\nl)ISSLANDS: FOX

1917 5 31 8 47 7.9 ALASKA: ALASKA PENINSULA

1918 4 21 | 22 32 6.8 CALIFORNIA 0.2 1
1922 1 31 | 13 17 7.6 CALIFORNIA: NORTHERN 1
1923 1 22 9 4 18 7.2 CALIFORNIA: NORTHERN 1
1925 6 28 1 21 5 6.7 MONTANA: CLARKSTON VALLEY 0.15 1
1925 6 29 | 14 42 6.2 CALIFORNIA: SANTA BARBARA 13 1 8 3
1925 2 23 | 23 54 6.8 GULF OF ALASKA

1926 3 20 9 3 HAWAII

1927 10 24 | 15 59 | 4438 7.1 ALASKA: SE ALASKA 1
1927 1 1 8 16 5.8 CALIFORNIA, MEXICO 1 2
1927 11 4 13 50 43 7.3 CALIFORNIA: S: OFF COAST 2
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ALASKA: ALEUTIAN ISLANDS: FOX

1929 3 7 1 34 7.8 ISLANDS

1929 12 17 | 10 58 78 ALASKA: ALE%‘E:,L\ISSLANDS: NEAR

1929 8 12 | 11 24 NEW YORK: ATTICA

1930 8 31 0 40 38 5.2 CALIFORNIA: SOUTHERN 1
1932 12 20 7.2 NEVADA: CEDAR MOUNTAIN

1932 11 10 NEW YORK: WILLETTS POINT

1933 3 11 1 54 7.8 6.3 CALIFORNIA: LONG BEACH 120 40 4
1934 12 31 71 CALIFORNI\//AALBL,‘]\EJYA,IMPERIAL

1935 10 31 | 18 37 47 6 MONTANA: HELENA 2 6 3
1935 10 19 4 48 2 6.2 MONTANA: HELENA 2 19 3
1935 10 31 | 18 37 47 ALASKA 15 284

1935 10 19 4 48 2 WASHINGTOI\_II_.AOCLOY'\I/\I/I:IA, SEATTLE, 1 2000

1938 11 10 | 20 18 41.2 8.2 ALASKA

1940 5 19 4 36 40.9 7.2 CALIFORNIA; MEXICO 9 33 4
1940 5 19 4 36 40.9 CALIFORNIA: WHITTIER 8 358

1940 7 14 5 52 535 74 ALASKA: ALEIgI'_I'X?\II\llDISSLANDS: RAT

1941 2 9 9 44 4 6.6 CALIFORNIA: NORTHERN 1
1944 9 5 4 38 45.7 5.6 NEW YORK: MASSENA 2 2
1946 4 1 12 29 1.3 8.6 ALASKA: UNIMAK ISLAND

1946 11 1 11 14 ALASKA: EAST ALEUTIAN ISLANDS

1947 4 10 | 15 58 6.4 CALIFORNIA 2
1948 5 14 | 22 31 7.5 ALASKA: ALASKA PENINSULA

1949 11 17 1 19 52 CALIFORNIA: SOUTHERN 9 3
1949 4 13 | 19 55 42 7 WASHINGTON 8 25

1949 4 13 | 19 55 42 CALIFORNIA; MEXICO 9 33

1951 8 21 | 10 57 6.9 HAWAII 2
1951 8 15 7 23 CALIFORNIA: TERMINAL ISLAND 3 2
1952 8 22 | 22 41 24 58 CALIFORNIA: KERN COUNTY 2 10 3
1952 7 21 | 11 52 14 7.7 CALIFORNIA: KERN COUNTY 12 60 4
w92 | 8 |2 2| 4| A ROBLES TEMPLETONATASCADERD | 00

1952 3 17 3 58 HAWAII

1954 7 6 11 13 6.8 NEVADA: FALLON 2
1954 8 23 6.8 NEVADA: STILLWATER RANGE

1954 12 16 | 11 7 7 NEVADA: DIXIE VALLEY

1955 1 25 | 12 23 CALIFORNIA: TERMINAL ISLAND 3 2
1957 3 9 14 22 31.9 8.6 ALASKA 1
1957 3 20 | 14 21 75 ALASKA: ALEI;JI'_I'X?\II\llDISSLANDS: FOX

1958 7 10 6 15 59.9 7.8 ALASKA: LITUYABAY 1
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1959 8 18 6 37 135 7.7 MONTANA: HEBGEN LAKE 28 11 3
1959 8 18 6 37 135 MONTANA: HELENA 2 19

1961 4 4 21 32 CALIFORNIA: TERMINAL ISLAND 45 2
1962 8 30 | 13 35 5.8 UTAH 2 2
1962 12 21 8 42 43 65 ALASKA: ALEILSJEIA,?\II\llDISSLANDS. FOX

1964 3 28 3 36 9.2 ALASKA 15 284 4
1964 3 28 3 36 WASHINGTON 8 25

1965 2 4 5 1 216 8.7 ALASKA: ALEllsJEX?\II\IlDISSLANDS. RAT 1
1965 7 5 20 58 381 65 ALASKA: ALEIgEIA,‘;\\II\lIDISSLANDS: FOX 1
1965 4 29 | 15 28 43.7 6.6 WASHINGTON: SEATTLE 7 28 4
1965 4 29 | 15 28 43.7 WASHINGTON: SEATTLE 7 28

1965 3 30 5 27 34 76 ALASKA: ALEIgEX?\II\IlDISSLANDS. RAT

1969 10 2 4 56 46.5 4.8 CALIFORNIA: SANTA ROSA 1 8.35 3
1969 10 2 4 56 465 CALIFORNIP\\/:A_I;_ALI\IIE?(ERS, YUCCA 3 92

1970 3 11 | 22 38 34.6 6 ALASKA: ANDREANOF ISLANDS 1
1971 2 9 14 0 41.8 SOUTH CAROLINA: CHARLESTON 60 5

1971 2 9 14 0 41.8 6.5 CALIFORNIA: SAN FERNANDO 65 505 4
1971 5 2 6 8 27.3 7.1 ALASKA: ANDREANOF ISLANDS

1971 11 6 22 0 01 57 ALASKA: ALEI;JE"L;?\II\IIDISSLANDS. RAT

1972 7 30 | 21 45 14.1 7.6 ALASKA: SITKA, JUNEAU 1
1973 2 21 | 14 45 57.3 5.7 CALIFORNIA: OXNARD 1 2
1973 4 26 | 20 26 28.6 6.5 HAWAII: HILO 5.75 3
1975 3 28 2 31 5.7 6 IDAHO: POCATELLO VALLEY 1 2
1975 2 5 8 43 39.1 76 ALASKA: ALE%T_I:[ZBELANDS: NEAR 2
1975 8 1 20 20 12.9 5.6 CALIFORNIA: OROVILLE 3 2
1975 11 29 | 14 47 40.9 7.7 HAWAII 4 2
1978 8 13 | 22 54 53.5 5.6 CALIFORNIA: SOUTHERN 15 3
1979 2 28 | 21 27 8.1 7.5 ALASKA 1
1979 10 15 | 23 16 541 6.9 CALIFORNIA: IM'\IjIIIEER)’(IéI/_A\L/IALLEY; MEXICO: 30 4
1980 7 27 | 18 52 21.8 51 KENTUCKY: MAYSVILLE 1 2
1980 5 25 | 16 33 44.7 6.1 CALIFORNIA: MAMMOTH LAKES 2 2
1980 11 8 10 27 34 7.2 CALIFORNIA: NORTH COAST 5 2.75 2
1980 1 24 | 19 0 9.5 5.9 CALIFORNIA: LIVERMORE 115 3
1980 5 18 | 15 32 114 5.2 WASHINGTON: MT ST HELENS

1981 4 % | 12 ° 284 6 WESTMC():F?I}AT\IODF?’C\Z{IAAI::IPATRIA 15 2
1983 7 12 | 15 10 34 6.1 ALASKA: PRINCE WILLIAM SOUND 1 2
1983 10 28 | 14 6 6.5 MONTANA: HELENA 2 6

1983 11 16 | 16 13 6.7 HAWAII: KAPAPALA 6.5 3
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IDAHO: BORAH PEAK, CHALLIS,

1983 10 28 | 14 6 6.5 7.3 MACKAY 2 1 12.5
1983 5 2 23 42 37.7 6.2 CALIFORNIA: CENTRAL, COALINGA 31
1984 10 18 | 15 30 23 51 WYOMING: DOBUO(\BI:I_AS, MEDICINE
1984 4 2 | 2 15 19 6.1 CALIFORNIA: CENTRAL: MORGAN 8
HILL

1986 7 13 | 13 47 8.2 5.8 CALIFORNIA: SAN DIEGO, NEWPORT BEACH 0.7

CALIFORNIA-NEVADA: CHALFANT
1986 7 21 | 14 42 26.6 6.2 VALLEY 1
1986 7 8 9 20 | 445 6 CALIFORNIA: PALM SPRINGS 45
1986 5 7 22 47 10.8 8 ALASKA: ALEUTIAN ISLANDS: ADAK
1986 5 17 | 16 20 22.2 6.4 ALASKA: ANDREANOF ISLANDS
1987 11 30 | 19 23 19.5 7.9 ALASKA: YAKUTAT
1987 11 24 1 54 14.5 6.2 CALIFORNIA: SUPERSTITION HILLS 2 1 3
1987 10 4 10 59 38.1 4.8 CALIFORNIA: WHITTIER, PASADENA 1 1
1987 11 24 1 54 14.5 CALIFORNIA: KERN COUNTY 2 1 10
1987 10 1 14 42 20 MONTANA: HEBGEN LAKE 28 1 11
1987 10 1 14 42 20 5.7 CALIFORNIA: WHITTIER 8 1 358
1987 11 17 8 46 53.3 7.2 GULF OF ALASKA

ALASKA: GULF OF ALASKA:

1988 3 6 22 35 36.9 7.8 ANCHORAGE
1989 6 26 3 27 3.9 6.1 HAWAIIAN ISLANDS: PUNA DISTRICT

CALIFORNIA: ARCADIA, GLENDALE,
1989 10 18 0 4 15.2 LOS ANGELES 2 1 33.5
1989 10 18 0 4 15.2 6.9 CALIFORNIA: LOMA PRIETA 62 2 5600
1989 9 4 13 14 58.2 6.9 ALASKA

CALIFORNIA: S, CLAREMONT,

1990 2 28 | 23 43 36.6 55 COVINA 12.7
1991 8 17 | 19 29 40 6.2 CALIFORNIA: HONEYDEW, WHITETHORN, PETROLIA
1991 6 28 | 14 43 54.5 CALIFORNIA: SANTA ROSA 1 1 8.35

CALIFORNIA: ARCADIA, GLENDALE,
1991 6 28 | 14 43 54.5 51 LOS ANGELES 2 1 335
1992 4 23 4 50 23.2 6.3 CALIFORNIA: JOSHUA TREE, ANGELUS OAKS
1992 6 28 | 15 5 30.7 6.7 CALIFORNIA: BIG BEAR LAKE, BIG BEAR CITY
1992 6 29 | 10 14 22.2 54 NEVADA-CALIFORNIA BORDER: NEVADA TEST SITE

IDAHO: BORAH PEAK, CHALLIS,
1992 6 28 | 11 57 341 MACKAY 2 1 12,5
CALIFORNIA: HUMBOLDT COUNTY: FERNDALE,
1992 4 25 | 18 6 4.2 7.1 PETROLIA 75
CALIFORNIA: LANDERS, YUCCA
1992 6 28 | 11 57 34.1 7.6 VALLEY 3 1 92
1993 9 21 3 28 55.4 6 OREGON: KLAMATH FALLS 2 1 75
1993 3 25 | 13 34 354 5.6 WASHINGTON-OREGON BORDER 28.4
CALIFORNIA: HAYWARD,SAN

1994 1 17 | 12 30 55.3 FRANCISCO 30 1 0.35
1994 1 16 1 49 16.2 4.6 PENNSYLVANIA: READING, FELT TO CANADA
1994 2 3 9 5 4.2 5.8 WYOMING: AFTON
1994 9 1 15 15 53 7 CALIFORNIA: NORTH: HONEYDEW
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CALIFORNIA: EUREKA, SAMOA, ARCATA, BLUE

1994 | 12 [ 26 | 14| 10 |201] 55 A o 21
1904 | 1 |17 ] 12| 30 |s53] 67 CALIFORNIA: NORTHRIDGE 60 | 2 40000
1995 | 10 | 6 | 5 | 25 |185| 6 | AASKA FAIRBANKSNORTHSTAR
196 | 6 | 10| 4 | 3 [354] 709 ALASKA: ANDREANOF ISLANDS
1996 | 6 | 10| 15| 24 | 56 | 7.3 ALASKA: ANDREANOF ISLANDS
1999 | 10 | 16 | o | 46 |441| 72 CALIFORNIA: LUDLOW, LANDERS, TWENTYNINE PALMS
200 | 9 | 3|8 ] 3 | 30| 5 CALIFORNIA: NAPA 50
2000 | 9 | 9 | 23] 59 | 18| 42 CALIFORNIA: LOS ANGELES
2000 | 2 | 28| 18| 54 | 328 CALIFORNIA: SUPERSTITION HILLS 2 | 1 3
2000 | 2 | 28 | 18 | 54 |328 | eg | WASHINGTON: OUVMPIASEATTLE | 4 | 2000
002 | 2 12 1 50 |ars | o2 NEW YORK: CLINTON, ESSEX, AU SABLE
2002 | 10 | 25 | 11 | 27 | 194 | 67 | ACASKAY CANTWELL DENALTNATL
20020 | 11| 3 | 2| 12 | 41| 79 ALASKA: LA eI ASTA LAKE, 56
2003 | 12 | 22| 19] 15 | 56 CALIFORNIA: OWENS VALLEY 27 | 1 0.25
2003 | 2 | 22| 12| 19 |105] 52 CALIFORNIA: BIG BEAR CITY
2003 | 6 | 6 | 12| 20 | 34 | 4 KENTUCKY: BARDWELL
003 | 2 1 20 | 8 | 5 | 3 | 26 | ALABAMA: FORT PAYNEGAYLESVILLEVALLEY
HEAD
w2 [ || 5 [ | o | it T [ w
200 | 11| 17 | 6 | 43 | 68 | 76 | ALASKA'ALEUTIAN ISLANDS: RAT
woor | o 1m0 15 |2zl o CALIFORNIA: CENTRAL: PARKFIELD, SAN
2005 | 7 | 26| 4| 8 |371] 56 | MONTANA: DILLON, SILVER STAR, TWIN BRIDGES
2005 | 6 | 15| 2 | 50 |531| 72 | CALIFORNIA: OFF COAST NORTHERN
2006 | 10 | 15 | 17 | 7 | 492 67 HAWAIIAN ISLANDS 73
2007 | 5 | 8 | 15| 46 |491]| 45 MONTANA: SHERIDAN
2007 20 |11 ] a2 | 23] 42 CALIFORNIA: MONTCLAIR
2007 | 10 | 31| 3| 4 |548]| 56 CALIFORNIA: SAN JOSE
2007 | 8 | 2 | 3] 21 |428] 67 ALASKA: ALEUTIAN ISLANDS
2007 | 8 | 6 | 8 | 48 | 40 | 42 UTAH: HUNTINGTON 9o | 1
2007 | 8 | 17| o | 38 | 56 | 16 UTAH 3 | 1
2008 | 4 | 18| 9 | 3 [501] 53 ILLINOIS: WEST SALEM
2008 | 4 | 26| 6 | 40 |106] 5 NEVADA: FALLON
2008 | 7 | 20| 18] 42 157 54 CALIFORNIA: LOS ANGELES
2008 | 2 |21 |14] 16 | 27| NEVADA: WELLS
2010 15| 4 | 26 |584] 58 CALIFORNIA: OCOTILLO
2000 | 12 |19 5] 5 | 30| 37 OKLAHOMA: LUTHER
2000 | 1 | 10| 0| 27 |393] 65 | CALIFORNIA: OFF COAST NORTHERN 218
2011 | 2 |17 | 2| 47 | 215 31 COLORADO: PAONIA
2001 | 11| 8| 2] 4 | 57| s OKLAHOMA: SPARKS, PRAGUE
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2011 11 6 3 53 10 5.7 OKLAHOMA: SPARKS | ‘ |

2011 8 23 | 17 51 45 5.8 VIRGINIA: LOUISA COUNTY, MARYLAND, WASHINGTON D.C.
2011 8 23 5 46 18.2 54 COLORADO: SEGUNDO

2011 6 24 3 9 394 73 ALASKA: ALEIgE'/IA,‘;\\II\IIDISSLANDS. FOX

2011 9 5 10 55 535 68 ALASKA: ALEILSJE'/L,?\II\IIDISSLANDS: FOX

2013 4 18 0 50 385 2.1 TEXAS: WEST 14 100
2013 1 5 8 58 19.3 7.5 ALASKA: SOUTHEASTERN

2014 3 29 4 9 42 51 CALIFORNIA: LAHABRA, BREA, FULLERTON 10.8
2014 8 24 | 10 20 44 6 CALIFORNIA: NAPA, VALLEJO 1 362
2014 6 23 | 20 53 10 7.9 ALASKA: ALEUTIAN ISLANDS

2014 7 25 | 10 54 49 6.1 ALASKA
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Table C.4: Earthquake data by individual events with description values from Table C.3

(page 98) included in the values of fatalities (Total Deaths) and economic loss (Total

Damage). Output data provides important information including: year, month, day, hour,
minute, second, magnitude, name, number of deaths, and economic loss in millions (at
time of event).

YEAR | MO | DY | HR | MIN | SEC | MAG LOCATION_NAME TOT_DTH | TOT_DAM
1900 10 9 12 25 8.3 ALASKA: KODIAK ISLAND 905000
1900 8 11 4 40 SE. ALASKA 25
1901 12 31 9 2 30 7.8 ALASKA: ALEUTIAN ISLANDS: FOX ISLANDS 500000
1901 3 3 7 45 6.4 CALIFORNIA: SAN DIEGO 905000
1902 4 29 6 57 CALIFORNIA: SOUTHERN 2500000
1902 1 1 5 20 7.8 ALASKA: ALEUTIAN ISLANDS: FOX ISLANDS
1903 6 2 13 17 8.3 ALASKA: SOUTHWEST
1904 8 27 | 21 56 8.3 ALASKA: RAMPART
1905 2 14 8 46 7.9 ALASKA: ANDREANOF ISLANDS
1906 4 18 | 13 12 21 7.9 CALIFORNIA: SAN FRANCISCO 700 400000000
1906 8 17 0 10 42 7.8 ALASKA: ALEUTIAN ISLANDS: RAT ISLANDS
1906 12 23 | 17 22 7.6 ALASKA: ALEUTIAN ISLANDS
1907 9 2 16 1 7.8 ALASKA: ALEUTIAN ISLANDS
1907 24 | 12 59 55 ALASKA: SKAGWAY
1908 2 14 | 11 25 6 ALASKA GULF
1908 9 21 6 31 6.8 HAWAII
1909 4 10 | 19 36 7.8 ALASKA: ALEUTIAN ISLANDS
1911 9 22 5 1 24 6.9 PRINCE WILLIAM SOUND 905000
1912 11 7 7 40 7.5 ALASKA: ALASKA PENINSULA
1915 6 23 4 56 6.2 CALIFORNIA: EL CENTRO 6 900000
1915 10 3 6 52 48 7.6 NEVADA: PLEASANT VALLEY 905000
1916 2 6 21 51 7.7 ALASKA: ALEUTIAN ISLANDS
1916 4 18 4 1 75 ALASKA: ALEUTIAN ISLANDS: FOX ISLANDS
1917 5 31 8 47 7.9 ALASKA: ALASKA PENINSULA
1918 4 21 | 22 32 6.8 CALIFORNIA 200000
1922 1 31 | 13 17 7.6 CALIFORNIA: NORTHERN 500000
1923 1 22 9 4 18 7.2 CALIFORNIA: NORTHERN 905000
1925 6 28 1 21 5 6.7 MONTANA: CLARKSTON VALLEY 150000
1925 6 29 | 14 42 6.2 CALIFORNIA: SANTA BARBARA 13 8000000
1925 2 23 | 23 54 6.8 GULF OF ALASKA
1926 3 20 9 3 HAWAII
1927 10 24 | 15 59 44.8 7.1 ALASKA: SE ALASKA 500000
1927 1 1 8 16 5.8 CALIFORNIA, MEXICO 25 3000000
1927 11 4 13 50 43 7.3 CALIFORNIA: S: OFF COAST 4525000
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1929 3 7 1 34 7.8 ALASKA: ALEUTIAN ISLANDS: FOX ISLANDS

1929 12 17 | 10 58 7.8 ALASKA: ALEUTIAN ISLANDS: NEAR ISLANDS

1929 8 12 | 11 24 NEW YORK: ATTICA

1930 8 31 0 40 38 5.2 CALIFORNIA: SOUTHERN 25 905000
1932 12 20 7.2 NEVADA: CEDAR MOUNTAIN

1932 11 10 NEW YORK: WILLETTS POINT

1933 3 11 1 54 7.8 6.3 CALIFORNIA: LONG BEACH 120 40000000
1934 12 31 7.1 CALIFORNIA: BAJA,IMPERIAL VALLEY

1935 10 31 | 18 37 47 6 MONTANA: HELENA 2 6000000
1935 10 19 4 48 2 6.2 MONTANA: HELENA 2 19000000
1935 10 31 | 18 37 47 ALASKA 15 284000000
1935 10 19 4 48 2 WASHINGTON: OLYMPIA, SEATTLE, TACOMA 1 2000000000
1938 11 10 | 20 18 41.2 8.2 ALASKA

1940 5 19 4 36 40.9 7.2 CALIFORNIA; MEXICO 9 33000000
1940 5 19 4 36 40.9 CALIFORNIA: WHITTIER 8 358000000
1940 7 14 5 52 53.5 7.4 ALASKA: ALEUTIAN ISLANDS: RAT ISLANDS

1941 2 9 9 44 4 6.6 CALIFORNIA: NORTHERN 905000
1944 9 5 4 38 45.7 5.6 NEW YORK: MASSENA 2000000
1946 4 1 12 29 13 8.6 ALASKA: UNIMAK ISLAND 500 26046000
1946 11 1 11 14 ALASKA: EAST ALEUTIAN ISLANDS

1947 4 10 | 15 58 6.4 CALIFORNIA 2500000
1948 5 14 | 22 31 75 ALASKA: ALASKA PENINSULA

1949 11 17 1 19 52 CALIFORNIA: SOUTHERN 9000000
1949 4 13 | 19 55 42 7 WASHINGTON 8 25000000
1949 4 13 | 19 55 42 CALIFORNIA; MEXICO 9 33000000
1951 8 21 | 10 57 6.9 HAWAII 2500000
1951 8 15 7 23 CALIFORNIA: TERMINAL ISLAND 3000000
1952 8 22 | 22 41 24 58 CALIFORNIA: KERN COUNTY 2 10000000
1952 7 21 | 11 52 14 7.7 CALIFORNIA: KERN COUNTY 12 60000000
1952 8 22 | 22 4 24 ROBLES,?I'QII\_/IIESERTI\SQ:,:'IAESCADERO 2 300000000
1952 3 17 3 58 HAWAII

1954 7 6 11 13 6.8 NEVADA: FALLON 2500000
1954 8 23 6.8 NEVADA: STILLWATER RANGE

1954 12 16 | 11 7 7 NEVADA: DIXIE VALLEY

1955 1 25 | 12 23 CALIFORNIA: TERMINAL ISLAND 3000000
1957 3 9 14 22 31.9 8.6 ALASKA 25 22625000
1957 3 22 | 14 21 7.5 ALASKA: ALEUTIAN ISLANDS: FOX ISLANDS

1958 7 10 6 15 59.9 7.8 ALASKA: LITUYA BAY 25 100000
1959 8 18 6 37 135 7.7 MONTANA: HEBGEN LAKE 28 11000000
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1959 8 18 6 37 135 MONTANA: HELENA 2 19000000
1961 4 4 21 32 CALIFORNIA: TERMINAL ISLAND 4500000
1962 8 30 | 13 35 5.8 UTAH 2000000
1962 12 21 8 42 43 6.5 ALASKA: ALEUTIAN ISLANDS: FOX ISLANDS

1964 3 28 3 36 9.2 ALASKA 15 400000000
1964 3 28 3 36 WASHINGTON 8

1965 2 4 5 1 21.6 8.7 ALASKA: ALEUTIAN ISLANDS: RAT ISLANDS 10000
1965 7 2 20 58 38.1 6.5 ALASKA: ALEUTIAN ISLANDS: FOX ISLANDS 905000
1965 4 29 | 15 28 43.7 6.6 WASHINGTON: SEATTLE 7 28000000
1965 4 29 | 15 28 43.7 WASHINGTON: SEATTLE 7 28000000
1965 3 30 2 27 3.4 7.6 ALASKA: ALEUTIAN ISLANDS: RAT ISLANDS

1969 10 2 4 56 46.5 4.8 CALIFORNIA: SANTA ROSA 1 8350000
1969 10 2 4 56 46.5 CALIFORNIA: LANDERS, YUCCA VALLEY 3 92000000
1970 3 11 | 22 38 34.6 6 ALASKA: ANDREANOF ISLANDS 905000
1971 2 9 14 0 41.8 SOUTH CAROLINA: CHARLESTON 60 5000000
1971 2 9 14 0 41.8 6.5 CALIFORNIA: SAN FERNANDO 65 505000000
1971 5 2 6 8 27.3 7.1 ALASKA: ANDREANOF ISLANDS

1971 11 6 22 0 0.1 5.7 ALASKA: ALEUTIAN ISLANDS: RAT ISLANDS

1972 7 30 | 21 45 14.1 7.6 ALASKA: SITKA, JUNEAU 905000
1973 2 21 | 14 45 57.3 5.7 CALIFORNIA: OXNARD 1000000
1973 4 26 | 20 26 28.6 6.5 HAWAII: HILO 5750000
1975 3 28 2 31 5.7 6 IDAHO: POCATELLO VALLEY 1000000
1975 2 2 8 43 39.1 7.6 ALASKA: ALEUTIAN ISLANDS: NEAR ISLANDS 2500000
1975 8 1 20 20 12.9 5.6 CALIFORNIA: OROVILLE 3000000
1975 11 29 | 14 47 40.9 7.7 HAWAII 25 4000000
1978 8 13 | 22 54 53.5 5.6 CALIFORNIA: SOUTHERN 15000000
1979 2 28 | 21 27 8.1 7.5 ALASKA 905000
1979 10 15 | 23 16 54.1 6.9 CALIFORNIA: IMPERIAL VALLEY; MEXICO: MEXICALI 30000000
1980 7 27 | 18 52 21.8 51 KENTUCKY: MAYSVILLE 1000000
1980 5 25 | 16 33 44.7 6.1 CALIFORNIA: MAMMOTH LAKES 2000000
1980 11 8 10 27 34 7.2 CALIFORNIA: NORTH COAST 5 2750000
1980 1 24 | 19 0 9.5 5.9 CALIFORNIA: LIVERMORE 11500000
1980 5 18 | 15 32 114 5.2 WASHINGTON: MT ST HELENS 75 2000000000
1981 4 26 | 12 9 28.4 6 CALIFORNIA: WESTMORLAND,CALIPATRIA 1500000
1983 7 12 | 15 10 3.4 6.1 ALASKA: PRINCE WILLIAM SOUND 1000000
1983 10 28 | 14 6 6.5 MONTANA: HELENA 2 6000000
1983 11 16 | 16 13 6.7 HAWAII: KAPAPALA 6500000
1983 10 28 | 14 6 6.5 7.3 IDAHO: BORAH PEAK, CHALLIS, MACKAY 2 22625000
1983 5 2 23 42 37.7 6.2 CALIFORNIA: CENTRAL, COALINGA 31000000
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1984 | 10 [ 18] 15| 30 | 23 | 51 WYOMING: DOUGLAS, MEDICINE BOW 905000
1984 | 4 |24 | 22| 15 | 19| 621 CALIFORNIA: CENTRAL: MORGAN HILL 8000000
1986 | 7 | 13 | 13| 47 | 82 | 58 CALIFORNIA: SAN DIEGO, NEWPORT BEACH 700000
1986 | 7 | 21| 14| 42 | 266 | 62 | CALIFORNIA-NEVADA: CHALFANT VALLEY 1000000
1986 | 7 | 8 | 9| 20 |445] 6 CALIFORNIA: PALM SPRINGS 4500000
1086 | 5 | 7 | 22| 47 |108] @ ALASKA: ALEUTIAN ISLANDS: ADAK 4525000
1986 | 5 | 17 | 16 | 20 | 222 | 64 ALASKA: ANDREANOF ISLANDS

1087 | 11 [ 30 |19 | 23 [195]| 709 ALASKA: YAKUTAT 905000
1087 | 11 |24 | 1 | 54 |145] 62 CALIFORNIA: SUPERSTITION HILLS 2 3000000
1987 | 10 | 4 | 10| 50 |381] 48 CALIFORNIA: WHITTIER, PASADENA 1 4525000
1987 | 11 |24 | 1 | 54 | 145 CALIFORNIA: KERN COUNTY 2 10000000
1987 | 10 | 1|14 a2 | 20 MONTANA: HEBGEN LAKE 28 11000000
1987 | 10| 1 |1a] a2 | 20 57 CALIFORNIA: WHITTIER 8 358000000
1987 | 11 | 17| 8 | 46 | 533 72 GULF OF ALASKA

1988 | 3 | 6 | 22| 35 |369]| 78 ALASKA: GULF OF ALASKA: ANCHORAGE 905000
1989 | 6 |26 | 3 | 27 | 39 | 61 HAWAIIAN ISLANDS: PUNA DISTRICT 4525000
1989 | 10 | 18| 0 | 4 |152 CALIFORNIA: ARCADIAL SLENDALE, LOS 2 33500000
1989 | 10 |18 0| 4 |152] 69 CALIFORNIA: LOMA PRIETA 62 5600000000
1989 | 9 | 4 | 13| 14 [s82] 609 ALASKA

1990 | 2 |28 | 23| 43 | 366/ 55 CALIFORNIA: S, CLAREMONT, COVINA 12700000
1991 | 8 |17 | 19| 29 | 40 | 62 CALIFORNIA: HONEYDEW, WHITETHORN, PETROLIA 4525000
1991 28 | 14 | 43 | 545 CALIFORNIA: SANTA ROSA 1 8350000
1991 | 6 | 28 | 14 | 43 | 545 | 51 CALIFORNIA: Aiﬁé'g'LAE'SGLENDALE' LOS 2 33500000
1902 | 4 | 23| 4| 50 |232] 63 CALIFORNIA: JOSHUA TREE, ANGELUS OAKS 4525000
1992 | 6 | 28| 15| 5 [307] 67 CALIFORNIA: BIG BEAR LAKE, BIG BEAR CITY 4525000
1992 | 6 |20 | 10| 14 [ 222] 54 NEVADA-CALIFORNIA BORDER: NEVADA TEST SITE 4525000
1992 | 6 |28 | 11| 57 | 341 IDAHO: BORAH PEAK, CHALLIS, MACKAY 2 12500000
1992 | 4 | 25| 18| 6 | 42 | 71 | CALIFORNIA: HUMBOLDT COUNTY: FERNDALE, PETROLIA | 75000000
192 | 6 |28 | 12| 57 [3s1] 76 CALIFORNIA: LANDERS, YUCCA VALLEY 3 92000000
1003 | 9 |21 3| 28 [s54] 6 OREGON: KLAMATH FALLS 2 7500000
1003 | 3 |25 | 13| 34 [354] 56 WASHINGTON-OREGON BORDER 28400000
1994 | 1 |17 | 12] 30 |553 CALIFORNIA: HAYWARD,SAN FRANCISCO 30 350000
1904 | 1 |16 | 1 | 49 [162] 46 PENNSYLVANIA: READING, FELT TO CANADA 905000
1904 | 2 | 3| o] 5 |42] 58 WYOMING: AFTON 905000
1904 | o |1 |15] 15 s3] 7 CALIFORNIA: NORTH: HONEYDEW 905000
1994 | 12 [ 26 | 14 | 10 [201] 55 CALIFORNIA: EUREKA, SAMOA, ARCATA, BLUE LAKE 2100000
1904 | 1 |17 | 12| 30 |ss3] 67 CALIFORNIA: NORTHRIDGE 60 40000000000
1965 | 10| 6 | 5| 23 [185] 6 | ALASKA: FAIRBANKS NORTH STAR COUNTY 905000
1996 | 6 | 10| 4 | 3 |354] 709 ALASKA: ANDREANOF ISLANDS
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196 | 6 | 10| 15| 24 | 56 | 73 ALASKA: ANDREANOF ISLANDS
1009 | 10 | 16 | 9 | 46 441 | 72 | CALIFORNIA: LUDLOW, LANDERS, TWENTYNINE PALMS 905000
2000 | 9 | 3|8 ] 3 | 30| s CALIFORNIA: NAPA 50000000
2000 | 9 | 9 | 23] 50 | 18| 42 CALIFORNIA: LOS ANGELES 905000
2000 | 2 | 28 | 18| 54 | 328 CALIFORNIA: SUPERSTITION HILLS 2 3000000
2000 | 2 | 28| 18| 54 |328| 68 | WASHINGTON: OLYMPIA, SEATTLE, TACOMA 1 2000000000
2002 | 4 | 20 | 10| 50 |475] 52 NEW YORK: CLINTON, ESSEX, AU SABLE FORKS 905000
2002 | 10 | 23 | 11| 27 [ 104 ] 67 ALASKA: CANTWELL, DENALI NATL PARK 4525000
2002 | 11| 3 | 2] 12| 4] 70 ALASKA: SLANA, MENTASTA LAKE, FAIRBANKS 56000000
2003 | 12 | 22 | 19| 15 | 56 CALIFORNIA: OWENS VALLEY 27 250000
2008 | 2 | 22| 12] 19 [105] 52 CALIFORNIA: BIG BEAR CITY 905000
2003 | 6 | 6 | 12| 20 | 34 | 4 KENTUCKY: BARDWELL 905000
2003 | 4 | 20| 8| 59 | 39 | 46 ALABAMA: FORT PAYNE,GAYLESVILLE,VALLEY HEAD 905000
2003 | 12 | 22 | 19| 15 | 56 | 66 ROBLES,(;I'IEIK/IIEEE'PCI)?\I:, e ADERG 2 300000000
2003 | 11 | 17 | 6 | 43 | 68 | 78 | ALASKA: ALEUTIAN ISLANDS: RAT ISLANDS

2004 | 9 |28 |17 ] 15 [242] 6 CALIFORNIA: CENTRAL: PARKFIELD, SAN MIGUEL 905000
2005 | 7 | 26| 4| 8 |371] 56 MONTANA: DILLON, SILVER STAR, TWIN BRIDGES 905000
2005 | 6 | 15 | 2 | 50 | 531 7.2 CALIFORNIA: OFF COAST NORTHERN

2006 | 10 | 15 | 17 | 7 | 492 67 HAWAIIAN ISLANDS 73000000
2007 | 5 | 8 | 15| 46 | 491 45 MONTANA: SHERIDAN 905000
2007 | 7 |20 | 11| a2 |223] 42 CALIFORNIA: MONTCLAIR 905000
2007 | 10 | 31| 3| 4 |s548]| 56 CALIFORNIA: SAN JOSE 905000
2007 | 8 | 2 | 3] 21 |428] 67 ALASKA: ALEUTIAN ISLANDS

2007 | 8 | 6| 8| a8 | a0 | 42 UTAH: HUNTINGTON 9

2007 | 8 | 17| 0o | 38 | 56 | 16 UTAH 3

2008 | 4 | 18| 9 | 3 |501]| 53 ILLINOIS; WEST SALEM 905000
2008 | 4 | 26| 6| 40 |106] 5 NEVADA: FALLON 905000
2008 | 7 |20 | 18| 42 | 157 54 CALIFORNIA: LOS ANGELES 905000
2008 | 2 |21 |14] 16 | 27 ] 6 NEVADA: WELLS 4525000
2000 | 6 | 15| 4 | 26 |584]| 58 CALIFORNIA: OCOTILLO 905000
2010 | 12 |19 5] 5 |30 ] 37 OKLAHOMA: LUTHER 905000
2000 | 1 | 10| 0 | 27 |303] 65 CALIFORNIA: OFF COAST NORTHERN 21800000
2011 | 2 |17 | 2| 47 | 215 31 COLORADO: PAONIA 905000
2011 | 11| 8 | 2] 4 |57 ] s OKLAHOMA: SPARKS, PRAGUE 905000
2011 | 11| 6| 3]s | 10] 57 OKLAHOMA: SPARKS 4525000
2011 | 6 | 23| 17| 51 | 45 | 56 | VIRGINIA LOUISACOUNTY. MARYLAND, WASHINGTON 1525000
201 | 8 | 23| 5 | 46 | 182 54 COLORADO: SEGUNDO 4525000
2011 | 6 | 24| 3| o [304] 73 | ALASKA: ALEUTIAN ISLANDS: FOX ISLANDS

2011 | 9 | 2 | 10| 55 | 535| 68 | ALASKA: ALEUTIAN ISLANDS: FOX ISLANDS
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2013 4 18 0 50 | 385 21 TEXAS: WEST 14 100000000
2013 1 5 8 58 19.3 7.5 ALASKA: SOUTHEASTERN

2014 3 29 4 9 42 51 CALIFORNIA: LAHABRA, BREA, FULLERTON 10800000
2014 8 24 | 10 20 44 6 CALIFORNIA: NAPA, VALLEJO 1 362000000
2014 6 23 | 20 53 10 7.9 ALASKA: ALEUTIAN ISLANDS

2014 7 25 | 10 54 49 6.1 ALASKA
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APPENDIX D

National Weather Service Storm Damage Survey

Highly publicized damaging and historic tornado outbreaks in April and June of this
year (2011) have led to a substantial increase in public interest in National Weather
Service storm surveys. When tornadoes occur, National Weather Service meteorologists
are assigned the task of completing a thorough damage survey. A survey team’s mission
is to gather data in order to reconstruct a tornado’s life cycle, including where it
occurred, when and where it initially touched down and lifted (path length), its width,
and its size. It should also be mentioned that survey teams are occasionally tasked with
determining whether damage may have been caused by straight line winds or a tornado
and assessing the size of straight line winds. With respect to tornado damage surveys,

one of the most difficult tasks is assigning a rating to a tornado.

Before February 2007, tornado strength was rated based on the Fujita Scale. However,
there were some flaws with the original Fujita Scale. For instance, it did not account for
the quality of building construction. Beginning in 2001, it was determined that the
Fujita Scale needed to be modified, and a committee of meteorologists, engineers, and
academia was formed to begin developing a new scale. In February 2007, the new
Enhanced Fujita Scale (Table D.1) became operational and is still the scale used to rate

the size of tornadoes.
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EF Number 3-Second Wind Gust (mph)
65 - 85

86 - 110

111-135

136 - 165

166 - 200

Over 200

Table D.1. Enhanced Fujita Scale for
rating tornado size.

g~ W N~ O

Before a survey team is deployed, they will be equipped with a variety of technology to
complete the survey. Typically, a damage survey kit will contain a GPS unit, a cell
phone, a laptop with damage survey software, a digital camera, an atlas or gazetteer, and
a notebook (Image D.1). After a survey team is assigned and the survey kit is prepared,
the team then drives to the reported tornado damage location(s). Most commonly, a
survey team will conduct a full ground survey in order to assess tornado damage, but
occasionally, a team may also conduct an aerial survey if the spatial extent of the

damage is large enough.

Figure D.1. Damage survey kit
includes maps, camera, and a GPS.
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http://www.srh.noaa.gov/images/ama/surveys/kit.JPG

Depending on the survey team, the starting and ending point of the tornado may be
determined first followed by the width of the tornado. The time of the tornado’s life
cycle may be confirmed through eyewitness accounts and/or radar data. To determine
the size of the tornado, the survey team will attempt to find the worst damage since this
is how the tornado will ultimately be rated. Once the worst damage is identified, the
survey team will assign a damage indicator to the structure or object. There are 28
damage indicators, including one- or two-family residences, manufactured homes,
motels, warehouses, schools, small retail buildings (e.g. fast food restaurants), and even
trees. Each one of the damage indicators has a description of the typical construction for
that category of indicator. For example, typical construction for one- and two-family
residences includes asphalt shingles, tile, slate or metal roofing, attached single car

garage, and brick veneer, wood panels, stucco, vinyl or metal siding.

Once the structure or object has been assigned a damage indicator, the team will begin a
thorough analysis of the building structure and construction. The survey team will then
assign a degree of damage to the structure or object. The degree of damage has several
different categories, and each category has an expected wind speed and a lower and
upper bound wind speed. For one- and two-family residences, if a tornado breaks glass
in windows and doors, the expected wind speed is 96 mph, the lower bound wind speed
is 79 mph, and the upper bound wind speed is 114 mph. If a tornado produces damage
that results in the collapse of all interior and exterior walls, the expected wind speed is
170 mph, the lower bound wind speed is 142 mph, and the upper bound wind speed is

198 mph. This is where the job becomes difficult for the survey team because the team
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must know some basics about construction. If the quality of construction meets strict
building code, the survey team will likely assign an expected wind speed to the
damage. If the construction fails to meet code, a lower bound wind speed may be
assigned, but if the construction exceeds code and/or is well-engineered, it may be
assigned an upper bound wind speed. Once the expected, lower bound, or upper bound

wind speed is determined, it is applied to the EF Scale to assign a rating.

Let’s look at an example to help tie everything together. For an interactive

demonstration, this link will be very helpful: http://www.spc.noaa.gov/efscale/ef-

scale.html. A tornado strikes a house, causing the entire roof to be blown off, but all the
walls remain standing. The survey team will first assign a damage indicator of 2 since
this is a one- or two-family residence. The description of the damage corresponds best

to a degree of damage of 6 (http://www.spc.noaa.gov/efscale/2.html). After careful

inspection of the construction quality, it is observed that the ceiling joust was fastened
with rafter clips to exterior walls, which meets code. Therefore, the survey team assigns
an expected wind speed of 122 mph. Based on this wind speed, the team assigns the

tornado a rating of EF-2 with winds between 111-135 mph.

For more information about the EF Scale, please visit http://www.spc.noaa.gov/efscale
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APPENDIX E

PLOTS OF DRIFT IN DATA OVER TIME

Data divided into two time intervals and plotted on same plots as Figures 3.1-3.8

(pages 26-35).
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Figure E.1: Size-cumulative frequency plot of hurricane economic losses for 92 of 94
individual events in the United States, 1950-2014. Data greater than $7 billion are well fit
by a power function. The x-axis is economic loss adjusted to 2014 USD. The left y-axis is
cumulative number of events per year equal to and greater than x. The right y-axis is
return period, in years, of an event equal to and greater than x. Separate halves of the
data, 1950-1982 and 1983-2014, are each well fit by a power function. Histogram points
are the upper-right corner of histogram bars for the non-cumulative frequency
distribution of events. Histogram bin size is $7.5 million.
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Figure E.2. Size-cumulative frequency plot of hurricane fatalities for 82 of 94 individual
events in the United States, 1950-2014. Data greater than 60 fatalities and the data below
50 fatalities are well fit by separate power functions. The x-axis is number of fatalities.
The left y-axis is cumulative number of events per year equal to and greater than x. The
right y-axis is return period, in years, of an event equal to and greater than x. Separate
halves of the data, 1950-1982 and 1983-2014, are each well fit by a power function.
Histogram points are the upper-right corner of histogram bars for the non-cumulative
frequency distribution of events. Histogram bin size is 1 fatality.
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Figure E.3. Size-cumulative frequency plot of earthquake economic losses for 144 of 196
individual events in the United States, 1900-2014. Data greater than $20 million are well
fit by a power function. The x-axis is economic loss adjusted to 2014 USD. The left y-
axis is cumulative number of events per year equal to and greater than x. The right y-axis
is return period, in years, of an event equal to and greater than x. Separate halves of the
data, 1900-1957 and 1958-2014, are each well fit by a power function. Histogram points
are the upper-right corner of histogram bars for the non-cumulative frequency
distribution of events. Histogram bin size is $750,000.

116




\ 58 FATALITY EVENTS (1300-2014)
: 0.6718x04 @ 1900-2014: 20 FITTED

= y=0.6718x"
\ﬂ - 1500-1957: 12FITTED

» 1958-2014: 17 FITTED

o X « HISTOGRAM

HISTOGRAMBIN =1

0.1 4

y =0.4953x % |

(SHWIA) AOIMAd NHNLAY = LA

0.01 - I 100

CUMULATIVE NUMBER OF EVENTS/YEAR 2 X

=y=

P(x)

0.001 ; ‘ [ 1000
1 10 100 1000

X = FATALITIES

Figure E.4. Size-cumulative frequency plot of earthquake fatalities for 58 of 196
individual events in the United States, 1900-2014. Data greater than 5 fatalities are well
fit by a power function. The x-axis is number of fatalities. The left y-axis is cumulative
number of events per year equal to and greater than x. The right y-axis is return period, in
years, of an event equal to and greater than x. Separate halves of the data, 1900-1957 and
1958-2014, are each well fit by a power function. Histogram points are the upper-right
corner of histogram bars for the non-cumulative frequency distribution of events.
Histogram bin size is 1 fatality.
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Figure E.5. Size-cumulative frequency plot of tornado economic losses for 31,567 of
46,402 individual events in the United States, 1900-2014. Data between $4 million and
$2 billion are well fit by a power function. The x-axis is economic loss adjusted to 2014
USD. The left y-axis is cumulative number of events per year equal to and greater than x.
The right y-axis is return period, in years, of an event equal to and greater than x.
Separate halves of the data, 1950-1982 and 1983-2014, are each well fit by a power
function. Histogram points are the upper-right corner of histogram bars for the non-
cumulative frequency distribution of events. Histogram bin size is $1,600.
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Figure E.6. Size-cumulative frequency plot of tornado fatalities for 1,282 of 46,402
individual events in the United States, 1900-2014. The data greater than 2 fatalities are
well fit by a power function. The x-axis is number of fatalities. The left y-axis is
cumulative number of events per year equal to and greater than x. The right y-axis is
return period, in years, of an event equal to and greater than x. Separate halves of the
data, 1950-1982 and 1983-2014, are each well fit by a power function. Histogram points
are the upper-right corner of histogram bars for the non-cumulative frequency
distribution of events. Histogram bin size is 1 fatality.
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Figure E.7. Size-cumulative frequency plot of flood economic losses for 4,131 of 6,230
individual events in the United States, 1996-2014. The data greater than $2 million are
well fit by a power function. The x-axis is economic loss adjusted to 2014 USD. The left
y-axis is cumulative number of events per year equal to and greater than x. The right y-
axis is return period, in years, of an event equal to and greater than x. Separate halves of
the data, 1996-2005 and 2006-2014, are each well fit by a power function. Histogram
points are the upper-right corner of histogram bars for the non-cumulative frequency
distribution of events. Histogram bin size is $2,000.
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Figure E.8. Size-cumulative frequency plot of flood fatalities for 601 of 6,230 individual
events in the United States, 1996-2014. The data greater than 1 fatality are well fit by a
power function. The x-axis is number of fatalities. The left y-axis is cumulative number
of events per year equal to and greater than x. The right y-axis is return period, in years,
of an event equal to and greater than x. Separate halves of the data, 1996-2005 and 2006-
2014, are each well fit by a power function. Histogram points are the upper-right corner
of histogram bars for the non-cumulative frequency distribution of events. Histogram bin
sizeis 1.
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