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ABSTRACT 

 

Shewhart, Lauren E. M.S., Department of Biological Sciences, Wright State University, 

2016. How Specialist and Generalist Herbivores are Responding to Invasive Plant 

Threats. 

 

 

 

The purpose of this study was to investigate novel interactions of native 

herbivores (Abia inflata, Abia americana, Zaschizonyx montana, and Hyphantria cunea) 

with non-native plants in Ohio. No-choice and choice bioassays were conducted with 

adults and larvae to examine life history traits, performance, and preference of these 

herbivores feeding exclusively on native and non-native species and damaged and 

undamaged foliage. It was found that all organisms in this study can perform well and 

complete their whole life cycle on L. maackii. Adult A. americana will oviposit in non-

native hosts however newly emerged larvae have 100% larval mortality on L. japonica. 

A. inflata had a reduction in larval mass on herbivore damaged foliage but not artificially 

damaged foliage. Some non-native species (L. maackii, L. tatarica and P. calleryana) 

appear to be suitable host for H. cunea, whereas other non-native species (L. japonica, E. 

alatus, and E. umbellata) are unsuitable hosts for early larval development. When given a 

choice H. cunea caterpillars preferred native foliage. These studies could benefit efforts 

at using these native insects as biocontrol agents for L. maackii or other non-native, 

invaders.  
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1.   INTRODUCTION 

1.1 INVASIVE SPECIES 

Invasive species are exotic species introduced into a novel region that spread 

beyond their initial introduction area with the potential to cause environmental and 

economic harm. Exotic species are brought to the United States accidentally or 

purposefully for various reasons from ornamental landscaping to erosion control (Luken 

and Thieret 1996; Williamson and Fitter 1996; Hayes and Holzmueller 2012). However, 

only about one out of every one thousand exotic plant species becomes invasive due to 

the physiological, ecological, and evolutionary filters present when a species tries to 

establish in a new habitat (Williamson and Fitter 1996; Mack et al. 2000). Although only 

1% of exotic plant species become invasive, the species that do become invasive cause 

major disruptions in the environments in which they invade. In order to be successful, 

invasive plants often have novel characteristics that allow them to outcompete native 

plants for resources such as light, nutrients, and pollinators; and even reduce native plant 

growth by disrupting biogeochemical cycles (Luken and McKnight 1993; Gordon 1998). 

Some invasive plants can create virtual monocultures in the forest floor displacing or 

eliminating many native plant species (Luken and McKnight 1993; McNeish et al. 2015).

Invasive species cause major environmental and economic harm, and are the 

second major threat to biodiversity after habitat destruction (Vitousek et al. 1997). 

Approximately 42 percent of threatened and endangered species in the United States are 
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at risk from invasive species (Sadler 2006). Not only are invasive species threatening our 

endangered organisms, they also cost the United States an estimated $120 billion in 

damages to agriculture and the environment (Pimentel et al. 2005). Invasive species are 

not only a problem in the United States, but they are a global problem with increasing 

costs to biodiversity and the economy worldwide (Pimentel et al. 2005). Better 

understanding of how native species interact with non-native, invasive species is very 

important to fully understand the impact of biological invasions and potential find native 

biological control agents.  

 

1.2 NOVEL PLANT INSECT INTERACTIONS 

Insects are very important for the health of native ecosystems, because they 

perform many services such as decomposing material, cycling nutrients, pollinating 

flowers, and providing a food source to other organisms (Saul 1999). Insects are 

responsible for keeping many plant populations in check by negatively affecting their 

growth and reproduction by reducing bud production, flower production, fruit production, 

and seed production; increasing seed and seedling mortality; and defoliating plants 

(Crawley 1989). 

Many invasive plant species in their native ranges are often poor competitors with 

limited distribution (Keane and Crawley 2002; Lieurance 2012).  However, in non-native 

ranges, these invasive plants become dominant due to an increased competitive ability 

(Keane and Crawley 2002; Lieurance 2012). One of many hypotheses to explain this 

phenomenon is known as the Enemy Release Hypothesis (Keane and Crawley 2002; 

Lieurance 2012). Invasive plant species in novel environments experience a release from 
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natural enemies, especially from co-evolved specialist herbivores not found in the novel 

environment,  which results in the rapid increase in abundance, distribution, and vigor of 

invasive plant species (Keane and Crawley 2002; Colautti et al. 2004; Lieurance 2012).   

As invasive plant species enter a new habitat, they interact with native fauna, 

especially insect communities. There are three types of interactions herbivores can have 

with invasive plants. First, a positive interaction could occur in which an insect benefits 

by successfully recognizing and using the invasive plant (Davis and Cipollini 2014). 

Second, nothing happens because the insect does not recognize the invasive as a food 

source and does not use it (Davis and Cipollini 2014). Lastly, insects can be negatively 

affected, because one or all life stages cannot use or have a lower fitness on the invasive 

species (Davis and Cipollini 2014). The type of novel plant insect interaction may depend 

on the type of herbivore interacting with the novel host.   

Specialist herbivores vary widely in their host specificity, some consumes one 

host (monophagous) or a few closely related hosts (oligophagous). Over 90% of all 

herbivores are considered specialists (Price et al. 2011; Murphy and Loewy 2015). Many 

specialist herbivores have evolved mechanisms to tolerate the defensive chemicals of the 

native plant species they feed upon (Barbosa and Saunders 1985; Ali and Agrawal 2012). 

Some specialists can even incorporate plant toxins into their bodies to deter predators 

from eating them (Rhoades and Cates 1976; Ali and Agrawal 2012). Since specialist 

herbivores feed on relatively few, closely related species, they are particularly vulnerable 

to non-native plant invasions (Ali and Agrawal 2012). Invasive plants can outcompete 

and greatly reduce native plant populations used by specialists. Monophagous herbivores 

and specialist herbivores on rarer plants are especially threatened because if the herbivore 
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consumes all of its host plant it may not be able to find another. Along with this, adults 

may have to spend extra time searching for a rare hosts for oviposition, making her more 

vulnerable to predators (Murphy and Loewy 2015). Specialist herbivores may not be able 

to utilize invasive hosts due to novel defenses, elevated chemical defenses, or the lack of 

specific oviposition cues (Callaway and Ridenour 2004; Cappuccino and Arnason 2006; 

Jahner et al. 2011). Through time, specialists will need to evolve mechanisms to utilize or 

avoid new invasive plant species if they are to persist in extremely invaded habitats.  

Generalist or polyphagous herbivores can consume a wide range of plant species 

that are not closely related to one another. Generalist herbivores can tolerate a wide 

variety of toxins, but are not specialized to deal with any particular plant defense 

(Bernays and Minkenberg 1997; Ali and Agrawal 2012). Being able to consume a wide 

range of host reduces the herbivores’ exposure to high levels of allelochemicals, but 

producing a wide range of detoxification enzymes can be metabolically costly (Bernays 

and Minkenberg 1997; Ali and Agrawal 2012). Generalist herbivores, just like specialists, 

can be threatened by invasive plant invasions. Invasive plants often outcompete native 

plants and could potentially reduce the abundance of ideal foliage for the generalist 

herbivore. Generalists may be left eating lower quality food, which reduces the overall 

fitness and health of the organism. Generalists may be able to consume the invasive host 

but may not choose to consume it because they do not recognize the new host as a food 

source (Lankau et al. 2004). However, being able to eat a large range of species ensures 

that generalists will not become stranded if they run out of food on their original host, as 

they can just move onto the next native or even invasive species (Bernays and 

Minkenberg 1997). Also, females that can oviposit on non-native host will benefit from a 
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reduction in search time for and oviposition site, which decreases her vulnerability to 

predators (Murphy and Loewy 2015). 

 

1.3 PLANT DEFENSES 

Herbivory can greatly impact a plant’s growth, survival, competitive success, and 

reproductive success (Crawley 1989; Lieurance 2012). The amount of herbivore damage 

needed to reduce the fitness of a plant varies by taxon, but research has shown that as 

little as 6-12% herbivory can reduce the growth and reproductive success of woody trees 

(Warrington and Whittaker 1985; Crawley 1989). Both native and non-native plants have 

many resistance mechanisms to deter herbivory such as mechanical defenses (thorns, 

high leaf toughness, etc.) and chemical defenses (Barbosa and Saunders 1985; Strauss 

and Agrawal 1999; Cappuccino and Arnason 2006). There are two main types of plant 

chemical defenses constitutive defenses which are always present in a plant and induced 

defenses that are only present after herbivory damage to the plant (Gurevitch et al. 2006). 

Plants often produce constitutive defenses to defend their most valuable tissues that are 

most likely to be attacked (Cates 1980; Barbosa and Saunders 1985; McCall and Fordyce 

2010). Producing defensive chemicals is costly and energy taxing for a plant, so many 

plants will produce low levels of constitutive defenses if herbivory rates are low and put 

more energy into growth and reproduction (Gurevitch et al. 2006; McCall and Fordyce 

2010).   

Constitutive defenses are often not enough to prevent herbivores from eating a 

plant, so many plants must produce secondary inducible defenses. Plants have many 

inducible defenses to deter, slow down, or even kill herbivores (Barbosa and Saunders 

1985). Plants can produce a wide range of secondary metabolites to protect against 
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herbivores and microbes by reducing the quality of the damaged leaves (Haukioja 1980; 

Gurevitch et al. 2006; Ali and Agrawal 2012). Damaged leaves are often a deterrent for 

herbivores because they have a lower leaf area, lower water and nutrient content, higher 

toughness, an increase in defensive chemicals, (Feeny 1970; Myers and Post 1981; 

Rhoades 1983) and are a visual and odor cue for predators (Anthony 1998; 

VanLaerhoven et al. 2000). 

 

1.4 PLANT SPECIES 

 The overall goal of this experiment was to rear specialist and generalist herbivores 

on native and non-native plants found in Ohio. Below are listed all of the native and non-

native species used in this study. Included in the description are the family and general 

characteristics of each species, known herbivores, and any other relevant information. 

 

Native Plants: 

Lonicera reticulata (Grape Honeysuckle) Family: Caprifoliaceae 

Lonicera reticulata is a woody vine native to North America which can grow up 

to 15 feet tall (Hilty 2015). It often uses other vegetation around it for support. This plant 

is a host to many insects such as the Hemaris diffinis (Snowberry Clearwing), Hemaris 

thysbe (Hummingbird Clearwing), Ypsolopha dentella (Honeysuckle Moth); aphids such 

as the Hyadaphis foeniculi (Honeysuckle Aphid); and the sawfly Abia americana 

(Honeysuckle Sawfly) (Hilty 2015). Deer and birds also feed on L. reticulata (Hilty 

2015).  
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Prunus serotina (Wild Black Cherry) Family: Rosaceae 

 Prunus serotina is a fast-growing, aggressive native tree that can grow up to 80 

feet (Hilty 2015). Prunus serotina is a pioneer species that does very well in disturbed 

habitats. Many insects use P. serotina as a food source. Over 30 species of Lepidoptera 

feed on the leaves of P. serotina, along with many beetle and sawfly species (Hilty 2015). 

The fruit of P. serotina is eaten by many birds and small mammals (Hilty 2015).  

 

Symphoricarpos albus (Common Snowberry) Family: Caprifoliaceae 

 Symphoricarpos albus is a small native shrub that can reach 20 feet in height and 

has characteristic white fruit later in the year (Favorite and Moore 2008). The caterpillars 

of the snowberry clearwing, hummingbird clearwing, and the larvae of the sawfly A. 

americana are known to feed on the leaves of S. albus (Favorite and Moore 2008). Some 

bird species and small mammals use S. albus for food and shelter (Favorite and Moore 

2008).   

 

Non-native plants: 

 All of the following plants have been introduced into the United States for various 

reasons. Most of them are considered invasive plant species and some are extremely 

invasive in Ohio. They all are threatening native vegetation, especially endangered native 

flora. 

 

Elaeagnus umbellata (Autumn Olive) Family: Elaeagnaceae 

 This shrub is native to East Asia and can grow up to 20 feet tall (Hilty 2015). It 

was introduced into the North America for many reasons from beautifying highways to 

providing food for wildlife (Hilty 2015). Since its introduction E. umbellata has spread 
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into many states, often invading meadows and prairies. The flowers and fruit of E. 

umbellata provide food for many pollinators and gamebirds (Hilty 2015). Many 

mammals also eat the fruits from this invasive shrub (Hilty 2015).  

 

Lonicera japonica (Japanese Honeysuckle) Family: Caprifoliaceae 

 Lonicera japonica is a non-native woody vine that was introduced into the United 

States from Eastern Asia for horticultural purposes (Munger 2002). This vine can grow 

up to 18 feet long. Lonicera japonica outcompetes native plants for light and nutrients 

(Munger 2002). This invasive vine can also kill native trees by climbing them, restricting 

light, and breaking limbs due to its weight. In some areas, L. japonica is evergreen or 

nearly evergreen. Many birds and small mammals feed on the berries of L. japonica and 

use the vine as shelter (Munger 2002).  

 

Lonicera maackii (Amur Honeysuckle) Family: Caprifoliaceae 

Lonicera maackii, is an invasive shrub from China that can grow up to 20 feet 

tall. Lonicera maackii has many invasive characteristics which allow it to outcompete 

native plants and negatively impact herbivores (Gorchov and Trisel 2003; McEwan et al. 

2009b; Lieurance and Cipollini 2013a; Lieurance and Cipollini 2013b). Lonicera maackii 

has an extremely long growing season, it emerges from dormancy in spring before most 

native plants and does not lose its leaves until late fall to early winter (McEwan et al. 

2009a). Many pollinators take advantage of the nectar produced by this shrub. Some 

aphids such as Alphitoaphis lonicericola suck plant juices from this honeysuckle species 

(Luken and Thieret 1996; Hilty 2015). Even with all these potential herbivores, Lieurance 

and Cipollini (2012) found that L. maackii receives little to no herbivore damage from 
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generalists and specialists in the field. In the laboratory, caterpillars of the generalist 

gypsy moth, which can clear entire tree canopies, cannot survive when only feeding on 

honeysuckle leaves (McEwan et al. 2009b). Another generalist, the army worm 

caterpillar, performs poorly when fed Amur honeysuckle (Lieurance and Cipollini 

2013a). 

 

Pyrus calleryana (Callery Pear) Family: Rosaceae 

 This tree was introduced to the United States from East Asia. Pyrus calleryana 

can grow up to 50 feet tall (Hilty 2015). This tree spreads into degraded woodlands and 

other disturbed habitats. There are about 20 cultivars of P. calleryana which are self-

sterile, but when crossed with another cultivar can produce fertile fruit (Hilty 2015). The 

fruit of P. calleryana can be eaten by many birds (Hilty 2015).  

 

1.5 HERBIVORE SPECIES 

 

Specialist Herbivores: 

 

Abia americana (Honeysuckle Sawfly) Family: Cimbicidae 

Abia americana is a specialist sawfly native to North America that feeds on native 

honeysuckle and its relatives. Adult Abia americana emerge in late April to early May 

(Figure 2.1). The female uses her ovipositor to insert eggs into the edges of leaves. The 

larvae will hatch from the egg in 5-8 days and begin feeding on the edges of leaves. After 

about 3-4 weeks of development, the larvae pre-pupate in a fibrous cocoon in the soil and 

leaf litter. Abia americana overwinter in this pre-pupal form until emerging the next 

spring.  
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Abia inflata (Honeysuckle Sawfly) Family: Cimbicidae 

Abia inflata is a specialist sawfly native to North America that feeds on native 

honeysuckle and its relatives (Lieurance and Cipollini 2013a). Adult A. inflata emerge in 

late April to early May (Figure 2.2). The female uses her ovipositor to insert eggs into the 

edges of leaves. The larvae will hatch from the egg in 5-8 days and begin feeding on the 

edges of leaves. After about 3-4 weeks of development, the larvae pre-pupate in a fibrous 

cocoon in the soil and leaf litter. Abia inflata overwinter in this pre-pupal form until 

emerging the next spring. In the laboratory, A. inflata larvae can also feed and survive on 

non-native L. maackii relatively well, but are very rarely found feeding on them in the 

field (Lieurance and Cipollini 2012; Lieurance and Cipollini 2013a; Lieurance and 

Cipollini 2013b; Stireman personal observation).  

 

Zaschizonyx montana (Snowberry Sawfly) Family: Tenthredinidae 

Zaschizonyx montana is a specialist sawfly native to North America and is only 

known to feed on native Symphoricarpos species (Smith and Gibson 1984). Adult Z. 

montana emerge in late April to early May (Fig 3.1). Adult Z. montana feed on the 

Symphoricarpos leaves before females oviposit eggs into the edges of leaves. The larvae 

will hatch from eggs in 5-8 days and begin feeding on the edges of leaves. After about 2-

3 weeks of development, the larvae start to pre-pupate and turn lime green. Once the 

larvae hit this stage they do not feed anymore and remained curled underneath foliage. It 

is still not known if the larvae overwinter in their larval stage, pre-pupal stage, or pupal 

stage.  
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Generalist Herbivore: 

Hyphantria cunea (Fall Webworm) Family: Arctiidae 

Hyphantria cunea is a generalist herbivore native to North America that can feed on 

over 630 different plant species (Warren and Tadic 1970). Hyphantria cunea has become 

an invasive pest in Europe, China, and North Korea (Sourakov and Paris 2014).There are 

two races of fall webworm, the black and the red race (Loewy et al. 2013). The red race 

is more common in southern areas, whereas the black race is more common in more 

northern areas including Ohio (Loewy et al. 2013). In Ohio, adults emerge in late May to 

early July (Fig 4.1). Females lay egg masses of 400-1000 eggs on the underside of leaves 

(Sourakov and Paris 2014). Fall webworm caterpillars have 5-8 instars. The caterpillars 

of H. cunea stay in large groups and build webs on the outer branches of their host 

(Mason et al. 2011). Hyphantria cunea is known to feed on honeysuckle, and we have 

found it feeding on invasive Lonicera maackii and native Lonicera reticulata locally in 

the field (personal observation). Caterpillars of H. cunea have also been seen on other 

invasive hosts such as L. japonica and P. calleryana (personal observations). The red 

race caterpillars feed together their entire lives, the black race feed together for most of 

their lives until they reach later instars (Loewy et al. 2013). Then the caterpillars will 

disperse, mature, and pupate in the soil. Fall webworms in more northern areas, like 

Ohio, only have one to two generation per year, but more southern areas can have as 

many as four generations in one year (Gordon 1976).  
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1.6 GOALS AND IMPORTANCE 

The goal of this project was to examine the performance and preference of all life 

stages of A. americana, A. inflata, Z. montana, and H. cunea on non-native, invasive 

species in relation to native congeners and other ecologically relevant species. Along 

with this, the cost of consuming damaged, native and non-native foliage was evaluated 

with the specialists A. inflata and Z. montana. The negative and positive aspects of group 

feeding were investigated with the generalist H. cunea.  

This research is important in two ways. First, invasive species, especially L. 

maackii, L. japonica, P. calleryana, E. umbellata and L. tatarica, are quickly becoming a 

large part of the native ecosystems and outcompeting native plants. It is important to 

understand what happens to native herbivores, like A. americana, A. inflata, Z. montana, 

and H. cunea, when they attempt to consume these invasive plants. Understanding the 

consequences of an invasive plant species on the flora and fauna of ecosystems in which 

it invades is very important, before the ecosystems are altered beyond repair. Second, if 

all stages of A. americana, A. inflata, Z. montana, and H. cunea can utilize these invasive 

species and can be influenced to consume them, then these organisms could potentially 

be used as biological control agents to help reduce and control invasive species. 

Controlling non-native plant populations with native organisms instead of chemical or 

mechanical methods would be a great benefit to the economy and the environment. 

 

  



13 
 

1.7 REFERENCES 

 

Ali JG, Agrawal AA (2012) Review: Specialist versus generalist insect herbivores and  

plant defense. Trends Plant Sci 17:293-302 

Anthony R (1998) The third trophic level of plant defence: Neotropical social wasps' use  

of odours of freshly damaged leaves when hunting. Rev Bras Zool :1075 

Barbosa P, Saunders JA (1985) Plant allelochemicals: Linkages between herbivores and  

their natural enemies. Recent advances in phytochemistry 19:107-137 

Bernays EA, Minkenberg OPJM (1997) Insect herbivores: Different reasons for being a  

generalist. Ecology :1157 

Callaway RM, Ridenour WM (2004) Novel weapons: Invasive success and the evolution  

of increased competitive ability. Frontiers in Ecology and the Environment :436-

443 

Cappuccino N, Arnason JT (2006) Novel chemistry of invasive exotic plants. Biol Lett  

2:189-193 

Cates RG (1980) Feeding patterns of monophagous, oligophagous, and polyphagous  

Insect herbivores: The effect of resource abundance and plant chemistry. 

Oecologia :22 

Colautti RI, Ricciardi A, Grigorovich IA, MacIsaac HJ, Rejmanek M (2004) Is invasion  

success explained by the enemy release hypothesis? Ecol Lett 7:721-733 

Crawley MJ (1989) Insect herbivores and plant-population dynamics. Annu Rev Entomol  

34:531-564 

Davis S, Cipollini D (2014) Do mothers always know best? Oviposition mistakes and  



14 
 

resulting larval failure of Pieris virginiensis on Alliaria petiolata, a novel, toxic 

host. Biol Invasions 16:1941-1950 

Favorite J, Moore L (2008) Plant fact sheet for snowberry [Symphoricarpos albus (L.)  

Blake.].  

Feeny P (1970) Seasonal changes in oak leaf tannins and nutrients as a cause of spring  

feeding by winter moth caterpillars. Ecology :565 

Gorchov DL, Trisel DE (2003) Competitive effects of the invasive shrub, Lonicera  

maackii (Rupr.) Herder (Caprifoliaceae), on the growth and survival of native tree 

seedlings. Plant Ecol :13 

Gordon DR (1998) Effects of invasive, non-indigenous plant species on ecosystem  

processes: lessons from Florida. Ecol Appl :975 

Gordon SW (1976) Population studies of the fall webworm in Ohio with the development  

of life tables in relation to temperature. Dissertation Master, Ohio State University 

Gurevitch J, Scheiner SM, Fox GA (2006) The ecology of plants. Sinauer associates  

incorporated, Sunderland, MA 

Haukioja E (1980) On the role of plant defences in the fluctuation of herbivore  

populations. Oikos :202 

Hayes SJ, Holzmueller EJ (2012) Relationship between invasive plant species and forest  

fauna in Eastern North America. Forests 3:840-852.  

Hilty J (2015) Trees, shrubs, and woody vines of Illinois. In: Anonymous .  

http://www.illinoiswildflowers.info/trees/tree_index.htm. Accessed January/7 

2016 

Jahner JP, Bonilla MM, Badik KJ, Shapiro AM, Forister ML (2011) Use of exotic hosts  



15 
 

by Lepidoptera: Widespread species colonize more novel hosts. Evolution :2719 

Keane RM, Crawley MJ (2002) Exotic plant invasions and the enemy release hypothesis.  

Trends in Ecology & Evolution 17:164 

Lankau RA, Rogers WE, Siemann E (2004) Constraints on the utilisation of the invasive  

Chinese tallow tree Sapium sebiferum by generalist native herbivores in coastal 

prairies. Ecol Entomol 29:66-75 

Lieurance D, Cipollini D (2013a) Exotic Lonicera species both escape and resist  

specialist and generalist herbivores in the introduced range in North America. 

Biol Invasions 15:1713-1724.  

Lieurance D, Cipollini D (2013b) Environmental influences on growth and defence  

responses of the invasive shrub, Lonicera maackii, to simulated and real 

herbivory in the juvenile stage. Annals of Botany 112:741-749 

Lieurance D (2012) Mechanisms of success: plant-herbivore interactions and the invasion  

of non-native Lonicera species in North America. , Wright State University / 

OhioLINK 

Loewy KJ, Flansburg AL, Grenis K, Kjeldgaard MK, McCarty J, Montesano L, Vernick  

J, Murphy SM (2013a) Life history traits and rearing techniques for fall 

webworms (Hyphantria cunea Drury) in Colorado. J Lepid Soc 67:196-205 

Luken JO, McKnight B (1993) Prioritizing patches for control of invasive plant species: a  

case study with Amur honeysuckle. Biological pollution: the control and impact 

of invasive exotic species.Indiana Academy of Sciences, Indianapolis :211-214 

Luken JO, Thieret JW (1996) Amur honeysuckle, its fall from grace. Bioscience :18 



16 
 

Mack RN, Simberloff D, Lonsdale WM, Evans H, Clout M, Bazzaz FA (2000) 

Biotic invasions: causes, epidemiology, global consequences, and control. Ecol 

Appl :689 

Mason PA, Wilkes SR, Lill JT, Singer MS (2011) Abundance trumps quality: bi-trophic  

performance and parasitism risk fail to explain host use in the fall webworm. 

Oikos 120:1509-1518 

McCall AC, Fordyce JA (2010) Can optimal defence theory be used to predict the  

distribution of plant chemical defences? J Ecol :985 

McEwan RW, Birchfield MK, Schoergendorfer A, Arthur MA (2009a) Leaf phenology  

and freeze tolerance of the invasive shrub Amur honeysuckle and potential native 

competitors. Journal of the Torrey Botanical Society 2: 212 

McEwan RW, Rieske LK, Arthur MA (2009b) Potential interactions between invasive  

woody shrubs and the gypsy moth (Lymantria dispar), an invasive insect 

herbivore. Biol Invasions 11:1053-1058 

McNeish RE, Moore EM, Benbow ME, McEwan RW (2015) Removal of the invasive  

shrub, Lonicera maackii, from riparian forests influences headwater stream biota 

and ecosystem function. River Research & Applications 31:1131-1139 

Munger GT (2002) Lonicera japonica. In: Anonymous . U.S. Department of Agriculture,  

Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory. 

http://www.fs.fed.us/database/feis/.  

Murphy SM, Loewy KJ (2015) Trade-offs in host choice of an herbivorous insect based  

on parasitism and larval performance. Oecologia 179: 741-751 

Myers JH, Post BJ (1981) Plant nitrogen and fluctuations of insect populations: a test  



17 
 

with the cinnabar moth: tansy ragwort system. Oecologia 48:151-156 

Pimentel D, Zuniga R, Morrison D (2005) Update on the environmental and economic  

costs associated with alien-invasive species in the United States. Ecol Econ 

52:273-288 

Price, PW, Denno RF, Eubancks MD, Finke DL, Kaplan I (2011) Insect ecology:  

behavior, populations and communities. Cambridge University Press, New York 

Rhoades DF (1983) Responses of alder and willow to attack by tent caterpillars and  

webworms: evidence for pheromonal sensitivity of willows. In: Hedin P (ed) 

Plant resistance to insects. American Chemical Society, Washington DC, 55-68 

Rhoades DF, Cates RG (1976) Toward a general theory of plant antiherbivore chemistry.  

Recent advances in phytochemistry 10:168-213 

Sadler KC (2006) Exotic invasive species: The guests that won't go home. Green Teacher  

:6-9 

Saul L (1999) Importance of insects and their arthropod relatives.  

Smith DR, Gibson GA (1984) Filacus, a new genus for four species of sawflies  

previously placed in Macrophya or Zaschizonyx (Hymenoptera: Tenthredinidae). 

Pan-Pac Entomol 60:101-113 

Sourakov A, Paris T (2014) Fall webworm, Hyphantria cunea (Drury) (Insecta:  

Lepiodoptera: Arctiidae: Arctiinae). In: Anonymous . IFAS Extension University 

of Florida.  

Strauss SY, Agrawal AA (1999) Review: The ecology and evolution of plant tolerance to  

herbivory. Trends in Ecology & Evolution 14:179-185. 

VanLaerhoven S, McGregor RR, Gillespie DR (2000) Leaf damage and prey type  



18 
 

determine search effort in Orius tristicolor. Entomol Exp Appl 97:167-174 

Vitousek PM, DAntonio CM, Loope LL, Rejmanek M, Westbrooks R (1997) Introduced  

species: A significant component of human-caused global change. N Z J Ecol 

21:1-16 

Warrington S, Whittaker JB (1985) An experimental field study of different levels of  

insect herbivory induced by Formica rufa predation on sycamore (Acer 

pseudoplatanus) II. J Appl Ecol :787 

Warren O, Tadic M (1970) The fall webworm, Hyphantria cunea (Durry). Ark Agr Exp  

Sta Bull: 106 

Williamson M, Fitter A (1996) The varying success of invaders. Ecology :1661 

  



19 
 

2. PERFORMANCE OF THE SPECIALIST HONEYSUCKLE SAWFLIES (ABIA 

AMERICANA AND ABIA AMERICANA) ON NATIVE AND NON-NATIVE 

LONICERA SPECIES WITH VARYING DEGREES OF DAMAGE 

 

2.1 INTRODUCTION 

Many invasive plant species in their native ranges are often poor competitors with 

limited distribution (Keane and Crawley 2002; Lieurance 2012).  However, in non-native 

ranges, these non-native plants can become dominant and extremely invasive (Keane and 

Crawley 2002; Lieurance 2012). The Enemy Release Hypothesis is one of the leading 

hypotheses to explain this phenomenon. This hypothesis suggests that release from 

natural enemies, especially from co-evolved specialist herbivores, is one major reason 

invasive plants are so successful in their novel environments (Keane and Crawley 

2002;Colautti et al. 2004; Lieurance 2012). This release results in the rapid increase in 

abundance, distribution, and vigor of invasive plant species (Keane and Crawley 2002; 

Colautti et al. 2004; Lieurance 2012). Without enemies to keep non-native plants “in 

check” the plants can easily outcompete native plants and start spreading rapidly. 

As invasive plant species enter a new habitat, they interact with native fauna, 

especially insect communities. These novel-plant insect interactions can be positive, 

negative, or neutral. A positive interaction could occur in which an insect benefits by 

successfully recognizing and using the invasive plant to increase in population size 
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(Davis and Cipollini 2014). A negative interaction could occur in which insects have 

lower fitness and reproductive success on the novel plant because one or all life stages 

cannot utilize the host (Davis and Cipollini 2014). Lastly, a neutral interaction could 

occur because the native insect does not recognize the novel plant as a food source and 

does not use it (Davis and Cipollini 2014).  

Since specialist herbivores feed on relatively few, closely related species, they are 

particularly vulnerable to non-native plant invasions (Ali and Agrawal 2012). Invasive 

plants can outcompete and greatly reduce native plant populations used by the specialists. 

Monophagous herbivores and specialist herbivores on rarer plants are especially 

threatened because if the herbivore consumes all of its host plant it may not be able to 

find another. Adult specialist herbivores may be more vulnerable to enemy attack due to 

increased time searching for an oviposition site in a rare host. Specialist herbivores may 

not be able to utilize invasive hosts due to novel defenses, elevated chemical defenses, or 

the lack of specific oviposition cues (Callaway and Ridenour 2004; Cappuccino and 

Arnason 2006; Jahner et al. 2011). Through time, specialists will need to evolve 

mechanisms to utilize or avoid new invasive plant species if they are to persist in heavily 

invaded habitats.  

There are approximately 200 species in the genus Lonicera (Caprifoliaceae), with 

18 native and 16 introduced in North America (Zheng et al. 2005; Lieurance and 

Cipollini 2013a). The three most invasive Lonicera species in North America are 

Lonicera maackii, Lonicera japonica, and Lonicera tatarica (Schierenbeck et al. 1994; 

Luken and Thieret 1996; Hutchinson and Vankat 1997). These three invasive species 

have established themselves and become dominant in some habitats, especially in the 
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eastern United States. One of the most prevalent non-native plant species in southwestern 

Ohio, L. maackii, has many invasive traits such as a long growing season (McEwan et al. 

2009), allelopathic suppression of other plants (Dorning and Cipollini 2006; Cipollini et 

al. 2008b), high fruit production (Ingold and Craycraft 1983), and anti-herbivore defenses 

(Cipollini et al. 2008a). In the field, L. maackii receives about 3% herbivory damage, 

which is significantly lower than herbivory rates on native congeners (Lieurance and 

Cipollini 2012; Lieurance and Cipollini 2013a). Native Lonicera species, such as L. 

reticulata, are not very abundant or common in their native ranges 

(http://plants.usda.gov).  

In this study, the specialist honeysuckle sawflies (Abia americana (Cimbicidae) 

and Abia inflata (Cimbicidae)) were used to investigate the impact of non-native 

honeysuckle species and quality of foliage on the performance and life history traits of 

native specialist insects. Both Abia species are native to North America and are one of a 

few specialists that feed on native honeysuckle and its relatives (Lieurance and Cipollini 

2013a). Adult Abia emerge in late April to early May (Figure 2.1, 2.2). The female uses 

her ovipositor to insert eggs into the edges of leaves. The larvae will hatch from the egg 

in 5-8 days and begin feeding on the edges of leaves. After about 3-4 weeks of 

development, the larvae pre-pupate in a fibrous cocoon in the soil and leaf litter. Abia 

americana overwinter in this pre-pupal form until emerging the next spring.  

The larvae of both A. americana and A. inflata commonly feed on the leaves of 

native honeysuckle, causing significant defoliation. We have found A. americana feeding 

on snowberry (Symphoricarpos albus) leaves, a close relative to native honeysuckle 

(personal observation). In the laboratory, A. inflata larvae can also feed and survive on 
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non-native L. maackii relatively well, but are very rarely found feeding on them in the 

field (Lieurance and Cipollini 2012; Lieurance and Cipollini 2013a; Stireman personal 

observation). These larvae often cause significant foliage damage on L. reticulata. Since 

native L. reticulata is not very abundant, the larvae may be forced to eat damaged foliage 

or switch to a new host such as the non-native L. maackii which has invaded habitats with 

L. reticulata. Damaged leaves are typically not an ideal food source for A. inflata because 

they have a lower leaf area, lower water and nutrient content, higher toughness, an 

increase in defensive chemicals, (Feeny 1970; Myers and Post 1981; Rhoades 1983) and 

are a visual and odor cue for predators (Anthony 1998; VanLaerhoven et al. 2000). The 

cost of switching to a non-native host or consuming damaged leaves were determined in 

this study. Oviposition and eggs survival were examined on native (L. reticulata and S. 

albus) and non-native (L. maackii and L. japonica) plant species. Very little is known 

about the specialist honeysuckle sawfly and very little research has been done with them. 

The primary objective of these experiments were to determine if all stages of A. 

americana could utilize non-native, invasive honeysuckle species. The secondary goal 

was to compare the performance of A. americana larvae on those non-native species to 

native honeysuckle species. The final objective was to determine the potential costs to A. 

inflata larvae consuming damaged leaves of a native host or switching to an alternative 

host. 

In our oviposition studies with A. americana, we predicted that A. americana 

adults not given a choice will oviposit more eggs in native honeysuckle plants compared 

to non-native honeysuckle plants due to a lack of oviposition cues in non-native hosts. 

The eggs laid in these native honeysuckle species will have higher egg survival and take 
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less time to hatch because non-native plants can have novel defenses that may lower egg 

survival. We predicted that newly emerged A. americana larvae will be able to consume 

and complete their lifecycle on native (L. reticulata and S. albus) and non-native (L. 

maackii and L. japonica) foliage because all species are closely related. However, we 

believed A. americana larvae will grow faster, grow larger, have higher survivorship, and 

reach pre-pupation faster if the larvae consume native L. reticulata foliage due to A. 

americana larvae being adapted to consume and develop on native foliage. 

In our no-choice feeding bioassays with newly emerged A. inflata larvae given 

damaged and undamaged native L. reticulata and non-native L. maackii foliage, we 

predicted larvae will grow faster, grow larger, have higher survivorship, and reach pre-

pupation faster if larvae consume undamaged, native honeysuckle leaves. Damaged 

foliage have higher secondary defenses which may lead to lower performance and A. 

inflata larvae have evolved to deal with defenses found in native foliage. We hypothesize 

that a reduction in larval mass and relative growth rate will also be seen if we switch two 

week old A. inflata from undamaged L. reticulata to damaged L. reticulata.   
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2.2 METHODS 

2.2.1 Abia americana Oviposition 2015 

No-choice oviposition bioassays were conducted with adult A. americana 

collected from S. albus with sweep nets outside of the library located on Wright State 

University campus in Dayton, OH. Collection began April 13, 2015 and ended April 18 

2015. A total of 26 adults were collected. All adults were placed separately into clear 

plastic deli container (4 x 6 x 6 cm). Each container contained a twig (10-15 cm) placed 

in a 7.6 cm water pick filled with DI water to keep the twig fresh [S. albus (N=2), L. 

reticulata (N=8), L. maackii (N=6), and L. japonica (N=6)]. Twigs of L. reticulata, L. 

maackii, and L. japonica were collected from a common garden located on Wright State 

University’s campus. Symphoricarpos albus twigs were collected outside the library at 

Wright State University.  Twigs were cut at an angle and immediately placed in DI water 

for transport to the laboratory on the days adult sawflies were collected. A cotton ball 

moistened with a 10% sucrose solution was placed at the bottom of each container as 

food for the adults. The containers were placed into an incubator at 25°C (16:8 L:D).  

For approximately three hours every day the oviposition containers were placed 

under a 150 watt soft white incandescent lamp mounted 1 meter above the containers. 

The lamp simulated natural light which seemed to induce some oviposition behavior. 

Before being placed under the lamp, each twig was checked for eggs. If an egg was 

found, it was recorded and given a label with a unique number. Twigs with eggs were 

moved into their own deli container with a new water pick. Twigs were replaced in the 

oviposition containers as needed. All adults were kept on their original host for the 

entirety of the experiment. The total number of eggs for each female was determined.  



25 
 

 

2.2.2 Abia americana Egg Survival 2015 

 Twigs with A. americana eggs collected from the oviposition studies were kept 

individually in deli containers in an incubator at 25°C (16:8 L:D).  Each egg was checked 

daily for hatching or changes in egg appearance. Percentage hatched and average number 

of days to hatch were determined for eggs in each host. 

 

2.2.3 Feeding Bioassays with Newly Emerged Abia americana Larvae on Native and 

Non-native Hosts 2015 

 Newly hatched larvae from the oviposition trials were used in no-choice 

bioassays. Once a larva hatched, it was weighed and transferred to a fresh twig of the host 

plant from which it hatched. Larvae were placed individually into deli containers. Larvae 

were placed on S. albus (N=1), L. reticulata (N=2), L. maackii (N=3), or L. japonica 

(N=14). (Note: many eggs did not hatch which lead to small sample sizes) Larvae were 

haphazardly placed in an incubator at 25°C (16:8 L:D). The larvae were weighed and 

checked for survivorship and pupation every 2-4 days. New leaves and water were added 

as needed. Leaves remained in containers for no longer than a week. Once a week, the 

containers were cleaned of frass. The experiment ended after all larvae reached the pre-

pupal stage or died. 

 

2.2.4 Abia inflata Feeding Bioassays on Damaged and Undamaged Leaves 

      (A) Newly Emerged Abia inflata Larvae on Native and Non-native Lonicera 2015 
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 No-choice bioassays were set-up the same way as the host treatment above. 

Newly hatched A. inflata larvae were collected from L. reticulata leaves at Kiser Lake 

State Park in Conover, Ohio on May 4, 2015. The larvae were transferred to the lab in a 

deli container containing L. reticulata leaves. A week prior to collecting larvae, L. 

reticulata and L. maackii leaves were damaged in the common garden on Wright State 

University. Leaves were cut in half with a pair of scissors to simulate herbivory. The 

leaves were left for a week to give the plant time to react to the damage. Once in the 

laboratory, larvae were weighed and placed individually into new deli containers. Larvae 

were reared on undamaged L. reticulata (N=15), damaged L. reticulata (N=15), 

undamaged L. maackii (N=15), or damaged L. maackii (N=15).  

 

       (B) Early Instar Abia inflata Larvae on L. reticulata 2014 

Two-three week old A. inflata larvae were collected from L. reticulata leaves 

from Kiser Lake State Park on May 22, 2014. Larvae were pooled into a container with 

L. reticulata leaves for transport. Extra L. reticulata leaves were collected for the 

bioassays. We collected undamaged L. reticulata leaves that had no herbivore damage 

and we also collected damaged L. reticulata leaves that had approximately 50% 

herbivore damage. Leaves were transported in a gallon size Ziploc bag. Leaves were kept 

in a refrigerator during the experiment. Larvae were initially weighed before being placed 

individually in a deli container with a few leaves placed in a moistened kim wipe to keep 

them fresh. (The very smallest and very largest larvae were not used, because our goal 

was to get larvae close in starting size and age.) The deli containers were placed 

haphazardly in an incubator at 25°C (16:8 L:D). Larvae were weighed every 2-3 days and 
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leaves were added as needed. Once a week new kim wipes were added and frass was 

removed. The bioassay ended after 9 days due to limited supply of damaged L. reticulata 

leaves. 

 

2.2.5 Data Analysis 

Repeated measures ANOVA were used to compare larval masses with plant 

species as the between subjects effect and time as the within subjects effect. Eggs per 

female, days to eclosion, pupal mass, days to pre-pupation, and relative growth rates were 

compared among plant species using ANOVA. Comparisons of means were made using 

Tukey post-hoc tests. Percent hatching, percent survival, and percent pre-pupating 

compared using chi-square tests. All percentages were converted to arcsine values. 

Survivorship was compared among plant species using the non-parametric Mantel-Cox 

test. All statistical analyses were performed using GraphPad Prism (Version 6.07, 

GraphPad Software, Inc., La Jolla, California). 

 

2.2.6 Calculations  

     Relative Growth Rate 

 Relative growth rate is calculated by subtracting the natural logarithm of initial 

mass from the natural logarithm of mass at the second time point and dividing by 

difference in time between weighing.  

Relative Growth Rate (RGR) = ln(W2)- ln(W1) 

              T2 – T1 

T1 = time of initial weight (days) 

T2 = time of second weight (days) 

W1 = initial mass (grams) 

W2 = second mass (grams)
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2.3 RESULTS 

2.3.1 Abia americana Oviposition 2015 

In the no-choice oviposition assays, adult A. americana laid eggs in native (S. 

albus and L. reticulata) and non-native (L. maackii and L. japonica) species. The mean 

number of eggs per female was not significantly different between native and non-native 

species (Table 2.1, Fig 2.3a). All females offered S. albus and 63% of females offered L. 

reticulata oviposited (Fig 2.3b). Whereas, 43% and 33% of females offered L. maackii 

and L. japonica, respectively, oviposited (Fig 2.3b). 

 

2.3.2 Abia americana Egg Survival 2015 

 Eggs successfully hatched on all native and non-native species. Eggs laid in L. 

japonica (non-native) had the very highest hatching success at 94% (Fig 2.4a). Eggs 

oviposited in L. reticulata (native) and L. maackii (non-native) had the lowest percentage 

hatching at 9% and 29%, respectively (Fig 2.4a). Eggs laid in S. albus had intermediate 

hatching success and 57% (Fig 2.4a). All A. americana larvae hatched in 5-8 days.  Eggs 

took significantly longer to hatch when laid in S. albus compared to L. maackii (non-

native) (Table 2.2, Fig 2.4b). The average time to hatch for eggs laid in L. reticulata 

(native) and L. japonica (non-native) did not differ significantly from the other two 

species. 

 

2.3.3 Feeding Bioassays with Newly Emerged Abia americana Larvae on Native and 

Non-native Hosts 2015 

 In the no-choice bioassays with Abia americana reared from eggs, repeated 

measures ANOVA only showed differences in larval mass changes through time (Table 
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2.3, Figure 2.5a). There was no difference in larval mass by species or an interaction of 

time and species (Table 2.3, Figure 2.5a). Abia americana larvae feeding on L. japonica 

had 100% mortality by day 2.  There was no difference in relative growth rate between S. 

albus, L. reticulata, and L. maackii (Figure 2.5b). There were significant differences in 

survivorship (X=264.00, df =3,  P<0.0001) of larvae reared on the four different species. 

Larvae reared on L. reticulata and L. maackii had 100% survival (Figure 2.5c). Larvae 

reared on S. albus had 50% survival, whereas no larvae survived on L. japonica (Figure 

2.5c). Larvae on all species except for L. japonica successfully reach the pre-pupal stage, 

and days to pupation did not differ between species (Table 2.4, Figure 2.5d). 

 

2.3.4 Abia inflata Feeding Bioassays on Damaged and Undamaged Leaves 

     (A) Newly Emerged Larvae on Native and Non-native Lonicera 2015 

 In the no-choice bioassays with newly hatched Abia inflata collected from Kiser 

Lake State Park, repeated measures ANOVA revealed differences in changes in larval 

mass through time (Table 2.5, Figure 2.6a). However, there was no significant difference 

found between species nor an interaction between time and species (Table. 2.5). All 

larvae pupated on L. reticulata by day 18. There was no difference in relative growth rate 

and larval survival between native and non-native species or damaged and undamaged 

treatments (Figure 2.6 b-d). Larvae reared on undamaged L. reticulata pupated faster than 

A. americana larvae reared on damaged L. maackii (Figure 2.7a). However, the time it 

took larvae feeding on damaged L. reticulata and undamaged L. maackii to pupate was 

not different than the other two treatments. Larvae successfully reached pre-pupation on 

native and non-native honeysuckle as well as on damaged leaves. The percentage 
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reaching pre-pupation on all species and damage level did not differ significantly (Figure 

2.7b). 

 

    (B) Early Instar Abia inflata Larvae on L. reticulata 2014 

 In the no-choice bioassays with two week old Abia americana collected from L. 

reticulata from Kiser Lake State Park, repeated measures ANOVA revealed differences 

in changes in larval mass through time and an interaction between time and damage level 

(Table 2.7, Figure 2.8a). There was no significant difference in larval mass found 

between damaged and undamaged L. reticulata (Table. 2.7). The repeated measures 

ANOVA for relative growth rate over the 7 days found differences in RGR through time, 

but no interaction or treatment effect was found (Table 2.8). On day 5, larvae feeding on 

undamaged L. reticulata had a significantly higher relative growth rate compared to 

damaged foliage (Figure 2.8b).  
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2.4 DISCUSSION 

2.4.1 Abia americana Oviposition 2015 

In the no-choice oviposition studies, A. americana, females successfully 

oviposited in native (S. albus and L. reticulata) and non-native (L. maackii and L. 

japonica) hosts. Contrary to our prediction, A. americana females did not oviposit more 

eggs in native hosts compared to non-native hosts. When looking at the percentage of 

females laying eggs on each host, higher percentages of females laid eggs on the native 

hosts compared to the non-native hosts. This oviposition study was very important, 

because in the face of invasion by L. maackii and L. japonica, adult A. americana 

sawflies are able to oviposit in non-native L. maackii and L. japonica.  

 

2.4.2 Abia americana Egg Survival 2015 

 Although we did not find a difference between the average number of eggs laid in 

each host, we did find a significant difference in the percentage of eggs hatching and the 

time to eclosion. Eggs laid in non-native L. japonica had very high egg survival 

compared to all other native and non-native hosts. Eggs laid in S. albus, a close relative to 

native honeysuckle, had over 50% of eggs hatch, but eggs took significantly longer to 

hatch on this host compared to non-native L. maackii. Both non-native L. maackii and 

native L. reticulata had very low hatching success. Our results did not support our 

hypothesis that eggs laid in native hosts will have higher egg survival and faster time to 

eclosion. Native L. reticulata had the lowest egg survivorship of all hosts. This was 

surprising because we often find A. americana using L. reticulata in the field.  The low 

egg survival in both L. reticulata (Figure 2.10) and L. maackii (Figure 2.11) was due to 

the production of secondary chemicals in theses leaves attacking the eggs (Hilker and 
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Fatouros 2015). After 24 hours, small brown circles started to form around the eggs, after 

a week many of the eggs turned black and were surrounded by a large ring of dead leaf 

tissue. This defensive response was not seen in the S. albus or L. japonica leaves, which 

lead to much higher hatching rates in these two hosts.  

In the field, we also observed this defensive response on native L. reticulata 

leaves at attempted oviposition sites and around eggs, but not nearly as great as some of 

the responses we saw in the lab. The females in our study were only given a few leaves to 

oviposit, this often lead to multiple eggs being laid in each leaf. In the most extreme 

example, we had 7 eggs oviposited in one L. reticulata leaf (Figure 2.10). The defensive 

response in the leaf was amplified by how many eggs are laid in the leaf. The more eggs 

laid in a leaf, the stronger the defensive response, and the higher the egg mortality. As L. 

maackii is slowly taking over and outcompeting native L. reticulata, adult A. americana 

may be forced to oviposit multiple eggs in L. reticulata leaves. This may greatly reduce 

the number of eggs hatching due to this defensive response. Alternatively, reduction in L. 

reticulata populations may lead to a host shift of A. americana to L. maackii in habitats 

with both honeysuckle species. Even though L. maackii has a similar defensive response 

to A. americana eggs, it is much more abundant than L. reticulata leading to greater 

dispersal of eggs throughout the plant and possible higher egg survival due to this 

dispersal. In the most extreme case where L. maackii is all that remains in a habitat, A. 

americana females will be able to use L. maackii as an alternative host if they can 

recognize it in the field. The native A. americana may be able to capitalize on the 

abundant early foliage of L. maackii and maybe help keep the early foliage in check. 
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2.4.3 Feeding Bioassays with Newly Emerged Abia americana Larvae on Native and 

Non-native Hosts 2015 

 Newly emerged A. americana larvae on native L. reticulata, native S. albus, and 

non-native L. maackii had similar larval mass through time, relative growth rates, 

survival, and time to pre-pupation. Although hatching rates on non-native L. japonica 

were the highest, no larvae survived more than 2 days on the L. japonica foliage. Some 

larvae refused to eat the foliage and starved to death, others died while feeding on the 

foliage. This was not surprising because previous studies done with these honeysuckle 

sawflies found that early instar larvae switched onto L. japonica could not survive due to 

the leaves being highly toxic to this species (Lieurance and Cipollini 2013a).  Our 

predictions were partially correct, newly emerged larvae were able to consume non-

native L. maackii foliage but were not able to consume non-native foliage of L. japonica. 

Also, A. americana larvae did not have higher performance on all native hosts compared 

to non-native hosts as predicted.  

This study was important to determine if A. americana larvae can reach pre-

pupation when reared from eggs on native and non-native hosts. It was found that A. 

americana larvae can survive and perform just as well on non-native L. maackii as on 

native host they are found on in the field. However, Lieurance and Cipollini (2013) found 

that larvae given a choice between L. reticulata and L. maackii strongly preferred to 

consume the native host. Even though honeysuckle sawfly larvae can perform well on 

both native and non-native hosts, they may consume all the native host before switching 

to a novel host.  
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2.4.4 Abia inflata Feeding Bioassays on Damaged and Undamaged Leaves 

 Both native L. reticulata and S. albus have relatively low abundances in the field 

compared to non-native, invasive species like L. maackii and L. japonica. These 

invasives continue to spread and outcompete native species preferred by A. inflata, 

greatly reducing the populations of L. reticulata and S. albus. Since we have only found 

A. inflata feeding on native L. reticulata and S. albus in the field, these native plants may 

receive greater herbivore damage from A. inflata in invaded areas. Larvae may be forced 

to consume damaged leaves which have lower quality due to lower water and nutrient 

content, higher toughness, and higher quantities of defensive chemicals (Feeny 1970; 

Myers and Post 1981; Rhoades 1983). Damaged leaves are not only a lower quality food 

source they are also a visual and odor cue for predators (Anthony 1998; VanLaerhoven et 

al. 2000). An alternative to consuming damaged leaves is to switch to a novel host.  

 

    (A) Newly Emerged Abia inflata Larvae on Native and Non-native Lonicera 2015 

 Abia inflata larvae reared for the entirety of their life cycle on damaged and 

undamaged L. reticulata and L. maackii had no difference in larval mass through time, 

relative growth rate, or larval survivorship. These results did not support our prediction 

that honeysuckle larvae would grow larger, grow faster, and have higher survivorship on 

undamaged foliage. However, larvae reared on undamaged L. reticulata foliage reached 

pre-pupation significantly faster than larvae reared on damaged, non-native L. maackii. 

This did support our hypothesis that larvae reared on undamaged, native foliage would 

reach pre-pupation faster than larvae on damaged, non-native foliage.  
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Although our results did not show a cost to consuming damaged leaves in the 

laboratory setting, there are many other factors we did not include in our study. First, our 

larvae were not exposed to any predators. Predators often use damaged leaves as a visual 

and odor cue to find herbivores (Anthony 1998; VanLaerhoven et al. 2000). Second, our 

larvae were fed artificially damaged leaves, cut a week prior with scissors in the field. 

Simulated herbivory and natural herbivory can evoke different plant response in the 

leaves, and often simulated herbivory is a poor substitute for actual damage done by an 

herbivore (Strauss and Agrawal 1999). When a herbivore consumes foliage, their saliva 

and the chewing of the leaf can trigger different plant response compared to the clipping 

of foliage with relatively clean scissors (Strauss and Agrawal 1999; Musser et al. 2005). 

However, Lieurance and Cipollini (2013) found the plant chemistry did not differ 

between simulated and real herbivory in L. maackii. 

 

  (B) Early Instar Abia inflata Larvae on L. reticulata 2014 

 Abia inflata larvae switched onto damaged L. reticulata foliage had significantly 

lower larval mass after 7 days and a lower relative growth rate at day 5 compared to 

larvae feeding on undamaged foliage. This supported our hypothesis that larvae switched 

onto foliage damaged by A. inflata will have lower larval weight and relative growth 

rates. As L. maackii and L. japonica spread into native habitats, L. reticulata populations 

are likely to decline. These honeysuckle sawflies cause high levels of defoliation early in 

the season on native L. reticulata, which may cause a reduction in the growth and 

reproductive success of L. reticulata later in the season (Warrington and Whittaker 1985; 

Crawley 1989; Lieurance and Cipollini 2013b). This may lead to the further decline of 
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this native species. Not only will damaged foliage reduce L. reticulata’s growth and 

reproductive success, but could also reduce the fitness of adult sawflies due to lower 

larval mass and growth of larvae feeding on damaged foliage. If there are large 

populations of A. inflata, damaged L. reticulata foliage may be the only foliage left for 

these specialists to consume. This is especially true in the face of invasions by non-

natives such as L. maackii and L. japonica into native habitats. This specialist may need 

to evolve to recognize and utilize other native or non-native hosts in order to persist.  



37 
 

2.5 CONCLUSION 

 In the field, the interaction of A. americana with novel, non-native L. maackii and 

L. japonica appears to be neutral, where A. americana does not recognize these novel 

hosts as a suitable host and does not use it. However, from our laboratory studies, A. 

americana and L. japonica have a clearly negative relationship. Adult sawflies can 

oviposit successfully on L. japonica but all larvae quickly die from eating L. japonica 

foliage. If A. americana are ovipositing on L. japonica in the field, this could be a 

potential egg sink for this sawfly species, which could lead to its decline. An 

investigation into oviposition preference is key to fully determine this interaction. On the 

other hand, our studies show A. americana and L. maackii have a positive interaction, in 

which A. americana adults and larvae can utilize this novel host and potentially increase 

in population size. Adult A. americana can successfully oviposit in L. maackii and newly 

emerged larvae can perform just as well on L. maackii as its native host.  

In the field, A. inflata has not been found utilizing L. maackii and L. japonica. 

This suggests A. inflata adults do not recognize these hosts as suitable and do not use 

them, a neutral interaction. Lieurance and Cipollini (2013a) found A. inflata larvae have a 

negative relationship with L. japonica, because all larvae switched onto this host cannot 

survive. On the other hand, they found A. inflata larvae can perform on non-native L. 

maackii just as well as their native host L. reticulata, indicating a potential positive 

interaction with this novel host (Lieurance and Cipollini 2013a). Abia inflata can utilize 

novel hosts when no other options are available, but when given a choice, A. inflata 

larvae strongly prefer to consume native L. reticulata, suggesting a neutral interaction 

(Lieurance and Cipollini 2013a). During the early growing season, larvae cause 
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significant defoliation of their native host, which leads many larvae faced to choose 

between consuming damaged leaves or switching to a novel host. Abia inflata that remain 

on the damaged foliage have lower larval mass and growth rates, which may reduce A. 

inflata populations if they do not utilize the abundant novel hosts around them, in 

particular L. maackii.  

In the face of L. maackii invasion, A. americana and A. inflata may be forced 

utilize this very abundant novel host, especially if there are few native honeysuckles 

remaining in a habitat. Adult sawflies that recognize L. maackii as a suitable hosts will 

have reduced searching time to find an oviposition site due to the high abundance of this 

non-native plant. This reduced searching time will increase adult sawfly survivorship and 

potential reproductive fitness.  As time passes, A. americana and A. inflata may be able 

to fully utilize novel hosts, especially L. maackii. Both of these Abia species could 

potentially become native specialists that can help keep L. maackii populations “in-

check” especially early on in the growing season.  
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Table 2.1 ANOVA tables for average number of A. americana eggs laid per female 

on native (S. albus and L. reticulata) and non-native (L. maackii and L. japonica) 

hosts in 2015.  

 

 

 

 

Table 2.2 ANOVA table for mean number of days for A. americana larvae to hatch 

on native (S. albus and L. reticulata) and non-native (L. maackii and L. japonica) 

hosts in 2015. 

 

 

 

 

  

 DF MS F  P value Significant 

Treatment 4 12.8800 0.65 P = 0.6317 No 

Error 24 19.7400    

 DF MS F  P value Significant 

Treatment 3 1.1310 4.06 P = 0.0209 Yes 

Error 20 0.2783    
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Table 2.3 ANOVA table for newly emerged A. americana larval mass through time 

when reared on 2 native (S. albus and L. reticulata) and 1 non-native (L. maackii) in 

2015. 

 

 

 

 

Table 2.4 ANOVA table for mean number of days for newly emerged A. americana 

larvae to reach pre-pupation on 2 native (S. albus and L. reticulata) and 1 non-native 

(L. maackii) species in 2015. 

 

 

 

  

 DF MS F  P value Significant 

Time 4 0.0814 24.42 P < 0.0001 Yes 

Treatment 2 0.0098 4.67 P = 0.1198 No 

Time x Treatment 8 0.0041 1.22 P = 0.3650 No 

Error 12 0.0033    

 DF MS F  P value Significant 

Treatment 2 5.095 3.06 P = 0.1564 No 

Error 4 1.6670    
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Table 2.5 ANOVA table for A. inflata larval mass through time when reared on 

damaged or undamaged L. reticulata and L. maackii leaves collected from Kiser 

Lake State Park in 2015. 

 

 

 

 

 

Table 2.6 ANOVA table for mean number of days for A. inflata to reach the pre-

pupal stage on native L. reticulata and non-native L. maackii with varying degrees of 

damage. 

 

 

 

  

 DF MS F  P value Significant 

Time 4 0.4540 97.46 P < 0.0001 Yes 

Treatment 3 0.0129 2.71 P = 0.0623 No 

Time x Treatment 12 0.0052 1.12 P = 0.3469 No 

Error 124 0.0047    

 DF MS F  P value Significant 

Treatment 3 19.2500 4.37 P = 0.0112 Yes 

Error 31 4.4080    
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Table 2.7 ANOVA table for A. inflata larval mass through time when reared on 

damaged or undamaged L. reticulata leaves collected from Kiser Lake State Park in 

2014. 

 

 

 

 

Table 2.8 ANOVA table for the relative growth rate (RGR) of A. inflata larvae 

reared on damaged or undamaged L. reticulata leaves collected from Kiser Lake 

State Park in 2014. 

 

 

 

  

 DF MS F  P value Significant 

Time 3 0.3266 336.20 P < 0.0001 Yes 

Treatment 1 0.0171 2.03 P = 0.1685 No 

Time x Treatment 3 0.0035 3.61 P = 0.0180 Yes 

Error 63 0.0010    

 DF MS F  P value Significant 

Time 2 0.0674 89.83 P < 0.0001 Yes 

Treatment 1 0.0190 3.05 P = 0.0953 No 

Time x Treatment 2 0.0003 0.42 P = 0.6574 No 

Error 42 0.0007    
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Figure 2.1 Life cycle of Abia americana.  Adult females lay eggs in leaves using her 

saw-like ovipositor. The eggs hatch in 5-8 days. The larvae start off with few spots 

and markings and as they get older, the larvae get darker with more distinct 

markings. After 18-25 days, the larvae spin a protective cocoon and pre-pupate. 

Abia americana overwinters as a pre-pupa and in early April, pupates and emerges. 
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Figure 2.2 Life cycle of Abia inflata.  Adult females lay eggs in leaves using her saw-

like ovipositor. The eggs hatch in 5-8 days. The larvae start off with few spots and 

markings and as they get older, the larvae get darker with more distinct markings. 

After 18-25 days, the larvae spin a protective cocoon and pre-pupate. Abia inflata 

overwinters as a pre-pupa and in early April, pupates and emerges.  
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Figure 2.3  Mean number of eggs per female A. americana (A) and 

percentage of A. americana females laying eggs (B)  in a no-choice bioassay with two 

native (S. albus and L. reticulata)  and two non-native (L. maackii and L. japonica) 

species.  

  

P = 0.6424 P < 0.0001 

 = 187.3 
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Figure 2.4 Percentage of A. americana larvae hatching from oviposition trials in 

native (S. albus and L. reticulata) and non-native (L. maackii and L. japonica) species 

(A), and the average time to hatch (B). Letters represent a difference in means 

determined through Tukey post hoc tests (P < 0.05). 
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Figure 2.5 Mean larval mass of the specialist Abia americana feeding on the foliage 

of two native and two non-native species (A), relative growth rate (RGR) measured 

at peak larval weight on day 15 (B), final larval survivorship (C), and time to pre-

pupation (D) in 2015. Species not included in the statistical analysis are denoted as 

“n.a.”.  

  

P < 0.0001 
 = 264.00 
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Figure 2.6 Mean larval mass of the specialist Abia inflata feeding on damaged and 

undamaged foliage of one native and one non-native Lonicera species  (A), relative 

growth rate (RGR) measured at peak larval weight on day 16 (B), larval 

survivorship to pre-pupation (C), and larval survival up to the pre-pupal stage (D). 

Letters represent a difference in means determined through Tukey post hoc tests (P 

< 0.05).  

P = 0.6634 

 

P = 0.4340 

P = 0.5449 

 = 0.91 
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Figure 2.7 Mean days for Abia inflata larvae to reach pre-pupation feeding on 

damaged and undamaged foliage of one native and one non-native Lonicera species  

(A), and percentage reaching pre-pupation (B). Letters represent a difference in 

means determined through Tukey post hoc tests (P < 0.05). 

 

  

P = 0.0112 P = 0.1950 
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Figure 2.8 Mean larval mass of the specialist Abia inflata feeding on damaged and 

undamaged foliage of native L. reticulata for 7 days  (A), and relative growth rate 

(RGR) through time (B) in 2014.  
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Figure 2.9 Larval comparison between A. inflata (A) and A. americana (B) after 12-

14 days of development. Both have very similar markings and coloration. However, 

A. americana has white dots between markings.   

A 
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Figure 2.10 Lonicera reticulata leaf response to seven Abia americana eggs laid by 

Female I on April 18, 2015. The plant response is shown above 1 day (A), 3 days (B), 

and 6 days (C) following oviposition. As you can see, the L. reticulata leaves were 

responding to the eggs laid by the A. americana females and this response led to the 

death of the eggs. 
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Figure 2.11  Abia americana egg oviposited into non-native L. maackii leaf 0 days 

(A), 1 day (B), and 8 days (C) after oviposition. As you can see the L. maackii leaves 

were responding to the eggs laid by the A. americana females and this response led 

to the death of some of the eggs. 
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3. PERFORMANCE OF THE SPECIALIST SNOWBERRY SAWFLY 

(ZASCHIZONYX MONTANA) ON NATIVE AND NON-NATIVE SPECIES WITH 

VARYING DEGREES OF DAMAGE 

 

3.1 INTRODUCTION 

3.1.1 Background 

Many invasive plant species in their native ranges are often poor competitors with 

limited distribution (Keane and Crawley 2002; Lieurance 2012).  However, in non-native 

ranges, these non-native plants can become dominant and extremely invasive (Keane and 

Crawley 2002; Lieurance 2012). The Enemy Release Hypothesis is one of the leading 

hypotheses to explain this phenomenon. This hypothesis suggests that release from 

natural enemies, especially from co-evolved specialist herbivores, is one major reason 

invasive plants are so successful in their novel environments (Keane and Crawley 2002; 

Colautti et al. 2004;Lieurance 2012). This release results in the rapid increase in 

abundance, distribution, and vigor of invasive plant species (Keane and Crawley 2002; 

Colautti et al. 2004; Lieurance 2012). Without enemies to keep the non-native host “in 

check” the plant can easily outcompete native plants and spread rapidly. 

As invasive plant species enter a new habitat, they start interact with native fauna, 

especially insect communities. These novel-plant insect interactions can be positive, 
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negative, or neutral. A positive interaction could occur in which an insect benefits by 

successfully recognizing and using the invasive plant to increase in population size 

(Davis and Cipollini 2014). A negative interaction could occur in which insects have 

lower fitness and reproductive success on the novel plant because one or all life stages 

cannot utilize the host (Davis and Cipollini 2014). Lastly, a neutral interaction could 

occur because the native insect does not recognize the novel plant as a food source and 

does not use it (Davis and Cipollini 2014).  

Since specialist herbivores feed on relatively few, closely related species, they are 

particularly vulnerable to and threatened by invasive plant invasions (Ali and Agrawal 

2012). Invasive plants can outcompete and greatly reduce native plant populations used 

by the specialists. Monophagous herbivores and specialist herbivores on rarer plants are 

especially threatened because if the herbivore consumes all of its host plant it may not be 

able to find another. Specialist herbivores may not be able to utilize invasive hosts due to 

novel defenses, elevated chemical defenses, or the lack of specific oviposition cues 

(Callaway and Ridenour 2004; Cappuccino and Arnason 2006; Jahner et al. 2011). 

Through time, specialists will need to evolve mechanisms to utilize or avoid new invasive 

plant species if they are to persist in extremely invaded habitats.  

There are approximately 200 species in the genus Lonicera (Caprifoliaceae), with 

18 native and 16 introduced in North America (Zheng et al. 2005; Lieurance and 

Cipollini 2013). The three most invasive Lonicera species in North America are Lonicera 

maackii, Lonicera japonica, and Lonicera tatarica (Schierenbeck et al. 1994; Luken and 

Thieret 1996; Hutchinson and Vankat 1997). The most important invader in southwestern 

Ohio, L. maackii, has many invasive traits such as a long growing season (McEwan et al. 
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2009), allelopathic suppression of other plants (Dorning and Cipollini 2006; Cipollini et 

al. 2008b), high fruit production (Ingold and Craycraft 1983), and anti-herbivore defenses 

(Cipollini et al. 2008a). In the field, L. maackii receives about 3% herbivory damage, 

which is significantly lower than herbivory rates on native congeners (Lieurance and 

Cipollini 2012; Lieurance and Cipollini 2013). Along with this, native Lonicera species, 

such as L. reticulata, are not very abundant or common in their native ranges 

(http://plants.usda.gov). In Kentucky and Tennessee, L. reticulata is on the endangered or 

“possibly” endangered species lists (http://plants.usda.gov).  

There are 13 native species in the genus Symphoricarpos (Caprifoliaceae) in 

North America. Symphoricarpos is a close relative to the genus Lonicera. Most of these 

species are only found in a few states, most in western states. Symphoricarpos albus, 

common snowberry, is found throughout most of the United States and Canada. In 

Kentucky, S. albus is considered endangered and it is on the threatened species list in 

Maryland. Most S. albus is planted ornamentally but it can be found along moist 

clearings, along stream banks, in swamp thickets, and in open forests (Makarevich et al. 

2009; http://plants.usda.gov). 

In this study, the specialist snowberry sawfly (Zaschizonyx montana 

(Tenthredinidae)) was used to investigate the impact of non-native honeysuckle species 

and quality of foliage on the performance and life history traits of this native insect. 

Zaschizonyx montana is native to North America and is only known to feed on native 

Symphoricarpos species (Smith and Gibson 1984). Adult Z. montana emerge in late April 

to early May (Fig 3.1). Adult Z. montana feed on the Symphoricarpos leaves. Female Z. 

montana will oviposit eggs with her ovipositor into the edges of leaves. The larvae will 
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hatch from eggs in 5-8 days and begin feeding on the edges of leaves. After about 2-3 

weeks of development, the larvae start to pre-pupate and turn lime green. Once the larvae 

hit this stage they do not feed anymore and remained curled underneath foliage. It is still 

not known if the larvae overwinter in their larval stage, pre-pupal stage, or pupal stage.  

The larvae and adults of Z. montana commonly feed on the leaves of native 

snowberry, Symphoricarpos albus, causing significant defoliation (personal observation). 

Since native S. albus is not very abundant, areas with large populations of Z. montana 

larvae may lead to depletion of native S. albus. If all undamaged foliage is consumed, 

sawfly larvae may be forced to eat damaged foliage or switch to a new host such as the 

non-native L. maackii which has invaded habitats with S. albus. Damaged leaves may not 

be an ideal for Z. montana because they have a lower leaf area, lower water and nutrient 

content, higher toughness, an increase in defensive chemicals, (Feeny 1970; Myers and 

Post 1981; Rhoades 1983) and are a visual and odor cue for predators (Anthony 1998; 

VanLaerhoven et al. 2000). The cost of switching to a non-native (L. tatarica, L. maackii, 

and L. sempervirens) host, native host (L. reticulata), or consuming damaged S. albus 

leaves will be determined in this study. Larval performance of newly emerged Z. 

montana larvae on native (L. reticulata and S. albus) and non-native (L. maackii and L. 

japonica) will be evaluated. Lastly, larval performance will be compared between larvae 

reared on damaged and undamaged L. maackii and L. reticulata. This study is important 

because little is known about the specialist snowberry sawfly and no research has been 

done with them. 

The main objective of these experiments were to determine if larvae of Z. montana 

could utilize native and non-native honeysuckle species. The secondary goal was to 
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compare the performance of Z. montana larvae on native and non-native honeysuckle 

species compared to its preferred host, S. albus. The final objective was to determine the 

potential costs of consuming damaged S. albus, L. reticulata, and L. maackii leaves or 

switching to an alternative host. 

We predicted Z. montana larvae will be able to complete their life cycle on native 

(S. albus and L. reticulata) and non-native (L. maackii and L. japonica) because all these 

species are closely related. However, we predicted Z. montana larvae will grow faster, 

grow larger, have higher survivorship, and reach pre-pupation faster if the larvae 

consume their preferred host, S. albus, because they have evolved to use this native host. 

Lastly, we predicted that two week old Z. montana larvae switched from S. albus to a 

new native or non-native honeysuckle species, then the larvae switched to the non-native 

foliage will grow more slowly, have smaller mass, lower survival, and take longer to 

reach pre-pupation compared to larvae that remain on their preferred host, S. albus due to 

increased defensive or novel leaf chemistry in non-native hosts. 

We predicted Z. montana larvae will grow faster, grow larger, have higher 

survivorship, and reach pre-pupation faster if the larvae consume undamaged, native 

foliage compared to larvae reared on damaged, non-native foliage. We predicted that two 

week old Z. montana switched from undamaged S. albus to damaged foliage will 

decrease will grow more slowly, have smaller mass, lower survival, and take longer to 

reach pre-pupation compared to larvae that remain on undamaged S. albus foliage. 

Damaged foliage has higher secondary defenses which may lead to lower Z. montana 

larval performance. 
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3.2 METHODS 

3.2.1 Feeding Bioassays on Native and Non-native Hosts 

     (A) Newly Emerged Larvae 2015 

Stems of S. albus were collected outside of the Dunbar Library on the campus of 

Wright State University in Dayton, OH from April 15, 2015- April 28, 2015. Stems were 

cut at an angle and placed immediately into DI water. The stems were transported into the 

laboratory and checked for eggs. Once an egg was found, it was given a unique label. The 

stems with eggs were then placed individually in a water pick with DI water and placed 

into a clear plastic deli container (4 x 6 x 6 cm). The deli container had air holes poked 

into the lid. Each deli container contained 1-3 stems. The deli containers were placed 

upright in an incubator at 25°C (16:8 L:D).  Eggs were checked daily for newly hatched 

larvae.  

Once a larva hatched, it was weighed and transferred with a paintbrush to a fresh 

stem. [See section 3.2.3 Leaf Collection below for more details on how the stems were 

obtained.] Larvae were placed on S. albus (N=16), L. reticulata (N=15), L. maackii 

(N=18), or L. japonica (N=9). Larvae were placed individually into deli containers.  

Larvae were haphazardly placed in an incubator at 25°C (16:8 L:D). The larvae were 

weighed, checked for survivorship and pre-pupation every 2-4 days. New leaves and 

water were added as needed. Leaves remained in containers for no longer than a week. 

Once a week, the containers were cleaned of frass. The experiment ended after all larvae 

reached the pre-pupal stage or died. 
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     (B) Early Instar Larvae 2014 

No-choice bioassays were set-up with approximately 1-2 week old larvae 

collected directly off of S. albus plants on April 15, 2014. The largest and smallest larvae 

were excluded from the study. Larvae were weighed and placed individually into deli 

containers with leaves of S. albus (N=10), L. reticulata (N=10), L. sempervirens (N=10), 

L. maackii (N=9), or L. tatarica (N=7). Instead of stems, larvae were given multiple 

leaves placed on moistened kim wipes. Extra leaves were stored in Ziploc gallon bags in 

a fridge at 4 ᵒC. The larvae were weighed, checked for survivorship and pre-pupation 

every 2-4 days. The experiment ended after all larvae reached the pre-pupal stage or died. 

 

3.2.2 Feeding Bioassays on Damaged and Undamaged Leaves 

     (A) Newly Emerged Larvae on Damaged L. reticulata and L. maackii 2015 

 No-choice bioassays were set-up as described above in section 3.2.1 (A). The 

only change was newly emerged Z. montana larvae were placed on 50% damaged foliage 

of L. reticulata (native) and L. maackii (non-native). A week prior to larvae hatching, L. 

reticulata and L. maackii leaves were damaged in the common garden on Wright State 

University. Leaves were cut in half with a pair of scissors to simulate herbivory. The 

branches with damaged leaves were marked and left for a week to give the plant time to 

react to the damage. After a week, the stems were collected for the no-choice bioassay. 

Larvae were placed on one of the following: undamaged L. reticulata (N=15), damaged 

L. reticulata (N=14), undamaged L. maackii (N=18), or damaged L. maackii (N=19). The 

larvae were weighed, checked for survivorship and pre-pupation every 2-4 days. The 



65 
 

experiment ended after all larvae reached the pre-pupal stage or died. [Note: the larvae 

reared on the undamaged foliage are the same larvae for the host bioassay] 

 

      (B) Early Instar Larvae on Damaged S. albus 2014 

No-choice bioassays were set-up as described above in section 3.2.1 (B). The only 

modification was using 50% damaged S. albus leaves. Leaves of S. albus with 

approximately 50% herbivore damage from Z. montana larvae were collected outside of 

the Dunbar Library on the campus of Wright State University in Dayton, OH. Two week-

old larvae were reared individually on undamaged S. albus (N=10) or damaged S. albus 

(N=10). The larvae were weighed, checked for survivorship and pre-pupation every 2-4 

days. The experiment ended after all larvae reached the pre-pupal stage or died. [Note: 

the larvae reared on the undamaged foliage are the same larvae for the host bioassay] 

 

3.2.3 Leaf Collection 

All Lonicera species were collected from a common garden on the campus of 

Wright State University. The Lonicera plants in this garden were grown 1.5 m apart, in 

full sunlight, and received a high fertilizer treatment. Symphoricarpos albus leaves were 

collected on Wright State University campus. 

Small twigs were taken from the outer 15-20 cm of the branch. The twigs were 

cut at an angle and immediately placed into a beaker of DI water. The twigs were 

transferred quickly back to the laboratory and kept at room temperature and in ambient 

light for no more than a week.  
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3.2.4 Statistical Analysis 

Repeated measures ANOVA were used to compare larval masses with time as the 

within subjects effect and plant species as the between subjects effect. Pupal mass, days 

to pupation, and relative growth rates were compared among plant species using one-way 

ANOVA. Comparisons of means were made using Tukey post-hoc tests. Survivorship 

was compared among plant species using the non-parametric Mantel-Cox test. Percent 

larval survival and percent pre-pupating were compared using chi-square tests. All 

percentages were converted to arcsine values. All statistical analyses were performed 

using GraphPad Prism (Version 6.07, GraphPad Software, Inc., La Jolla, California). 

 

3.2.5 Calculations  

Relative Growth Rate 

 Relative growth rate is calculated by subtracting the natural logarithm of initial 

mass from the natural logarithm of mass at the second time point and dividing by 

difference in time between weighing.  

Relative Growth Rate (RGR) = ln(W2)- ln(W1) 

              T2 – T1 

T1 = time of initial weight (days) 

T2 = time of second weight (days) 

W1 = initial mass (grams) 

W2 = second mass (grams)
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3.3 RESULTS 

3.3.1 Feeding Bioassays on Native and Non-native Hosts 

     (A) Newly Emerged Larvae 2015 

 In the no-choice bioassays with Z. montana reared from eggs, repeated measures 

ANOVA revealed differences in larval mass by species, through time, and an interaction 

between time and species (Table 3.1, Figure 3.2a). By day 3, all larvae feeding on L. 

japonica died. At peak larval weight, there was no difference between relative growth 

rate of larvae reared on S. albus, L. reticulata, and L. maackii (Table 3.2, Figure 3.2b). 

There was a significant difference in larval survival among the different species (Figure 

3.2c). Larvae fed L. reticulata had the lowest final larval survival at 21%, those on L. 

maackii had intermediate larval survival at 65%, and larval survival on S. albus was the 

highest at 86% (Figure 3.2d). Larvae on all species except L. japonica were able to 

successfully reach the pre-pupal development stage and there was no significant 

difference in the amount of time it took larvae to reach that stage (Table 3.3, Figure 3.3a). 

The percentage reaching the pre-pupal stage differed significantly due to the high larval 

mortality on L. reticulata and L. japonica (Figure 3.3b) 

     (B) Early Instar Larvae 2014 

 In the no-choice bioassays with two week old Z. montana collected from S. albus 

from Wright State University, repeated measures ANOVA revealed differences in larval 

mass through time and between plant species (Table 3.4, Figure 3.4a). However, there 

was a marginally significant interaction detected between species and time (Table 3.4). 

After four days, larvae on L. tatarica had a significantly higher relative growth rate 

compared to both native species (S. albus and L. reticulata), but not significantly 
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different than L. maackii (Figure 3.4b). Larval survival was significantly different among 

all species (Figure 3.4c). All larvae fed on L. sempervirens died by day 10 (Figure 3.4c). 

There was 100% larval survival on S. albus (Figure 3.4d).  The final larval survivorship 

was higher on native S. albus and L. reticulata compared to non-native L. maackii and L. 

tatarica (Figure 3.4d). Larvae on all species except L. sempervirens were able to 

successfully reach the pre-pupal development stage and there was no significant 

difference in the amount of time it took larvae to reach that stage (Table 3.6, Figure 3.5a). 

The percentage reaching the pre-pupal stage differed significantly, larvae reared on S. 

albus had the highest success rate (Figure 3.3b). Larvae reared on non-native L. maackii 

and L. tatarica had similar percentage reaching pre-pupation at 67% and 71%, 

respectively (Figure 3.5b). 

 

3.3.2 Feeding Bioassays on Damaged and Undamaged Leaves 

     (A) Newly Emerged Larvae on Damaged L. reticulata and L. maackii 2015 

 In the no-choice bioassays with Z. montana reared from eggs, repeated measures 

ANOVA revealed differences in larval mass between treatments, through time, and an 

interaction between time and treatment (Table 3.7, Figure 3.6a). At peak larval weight, 

larvae feeding on damaged L. reticulata had a significantly lower relative growth rate 

compared to larvae feeding on damaged and undamaged L. maackii, but not significantly 

different than undamaged L. reticulata (Table 3.8, Figure 3.6b). Survivorship differed 

significantly through time between the treatments (Figure 3.6c). Larvae feeding on 

damaged and undamaged L. reticulata had high mortality in the first five days of the 

bioassay (Figure 3.6c). Undamaged L. maackii had the highest larval survival through 
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time followed by damaged L. maackii with final larval survival at 65% and 47%, 

respectively (Figure 3.6d). Larvae on damaged and undamaged L. reticulata had low 

larval survival at 7% and 21%, respectively (Figure 3.6d). All larvae successfully reached 

the pre-pupal stage and the time to reach pre-pupation differed significantly between 

treatments (Table 3.9, Figure 3.7a). It took larvae on damaged L. reticulata significantly 

less time to reach the pre-pupal stage compared to undamaged L. reticulata and damage 

L. maackii (Figure 3.7a). The percentage of larvae reaching the pre-pupal stage differed 

significantly among treatments (Figure 3.7b). More larvae were successful at pre-

pupating on undamaged leaves compared to damaged leaves. More larvae on the non-

native L. maackii reached the pre-pupation stage compared to native L. reticulata due to 

high larval mortality on the native. 

 

      (B) Early Instar Larvae on Damaged S. albus 2014 

 In the no-choice bioassays with two week old Z. montana collected off of S. albus 

from Wright State University, repeated measures ANOVA revealed no differences in 

larval mass through time, between treatments, or an interaction between time and 

treatment (Table 3.10, Figure 3.8a). There was no difference in relative growth rate, final 

larval survival, or time to reach the pre-pupal stage between larvae reared on damaged 

and undamaged L. reticulata foliage (Figure 3.8b-d).  
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3.4 DISCUSSION 

3.4.1 Zaschizonyx montana Performance on Native and Non-native Hosts 

 Newly emerged and two week old Z. montana larvae were able to complete their 

life cycle and had similar larval mass through time, relative growth rate, and days to pre-

pupation on their preferred host S. albus, native L. reticulata, and non-native L. maackii 

and L. tatarica. Newly hatched larvae had a difficult time adhering to and consuming the 

waxy L. reticulata foliage, which lead to high larval mortality during the first four days 

after larval eclosion. This supported our prediction that Z. montana would be able to 

complete their life cycle on S. albus, L. reticulata, and L. maackii, but our prediction of 

higher performance on native species was shown to be incorrect. Surprisingly, we found 

larvae switched onto non-native L. tatarica had higher larval mass through time and 

relative growth rate after four days compared to all native and non-native species 

including Z. montana’s preferred host S. albus. In the face of L. maackii invasion, Z. 

montana larvae will be able to use L. maackii as a potential host. However, the other non-

native in this study, L. japonica, and the native L. sempervirens were not a suitable larval 

host because all larvae died within a few days on these species foliage. This shows that 

not all native and non-native hosts can be used by this specialist herbivore. 

 

3.4.2 Zaschizonyx montana Performance on Damaged and Undamaged Foliage 

 Symphoricarpos albus has relatively low abundances in the field compared to 

non-native, invasive species like L. maackii, L. tatarica, and L. japonica 

(http://plants.usda.gov). As these invasives continue to spread, they will compete and 

reduced native Symphoricarpos species populations. Since Z. americana is only known to 
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feed on native Symphoricarpos, these native plants may start receive greater herbivore 

damage from Z. americana in invaded areas (Smith and Gibson 1984). This is especially 

true, because adult Z. americana feed on foliage before they lay eggs, which can cause 

significant early season defoliation on snowberry even before larval herbivore damage. 

This ultimately will lead to larvae being forced to consume damaged leaves which may 

have lower quality due to lower water and nutrient content, higher toughness, and higher 

quantities of defensive chemicals (Feeny 1970; Myers and Post 1981; Rhoades 1983). An 

alternative to consuming damaged leaves is to switch to a novel host which may come at 

a cost or may lead to finding a new suitable host for Z. montana. 

 As predicted, Z. montana larvae reared on damaged and undamaged L. reticulata 

and L. maackii were able to reach the pre-pupal stage. In general, larvae on undamaged 

foliage had higher larval mass, relative growth rate, larval survival, and higher percentage 

reach-pupation even though some values were not significantly higher. This supported 

our hypothesis that Z. montana larvae would perform better on undamaged foliage. 

However, larvae consuming damaged L. reticulata did reach pre-pupation faster than 

larvae on undamaged L. reticulata and damaged L. maackii. This could have been due to 

the low sample size of larvae feeding on damaged L. reticulata foliage after the large 

larval mortality early in development. Newly hatched larvae had a difficult time adhering 

to and consuming the waxy L. reticulata foliage, which lead to high larval mortality 

during the first four days after larval eclosion on both damaged and undamaged foliage. 

When comparing native and non-native hosts, Z. montana larvae on non-native L. 

maackii foliage had higher relative growth rates, larval survival, and percentage reaching 
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pre-pupation compared to native L. reticulata. This did not support our prediction that Z. 

montana larvae would have the highest performance on undamaged, native foliage.  

 Although we found some evidence for a decrease in larval performance on 

damaged foliage, this cost may be greater in the field with natural leaf herbivory 

compared to the simulated herbivory in our experiment. Simulated herbivory and natural 

herbivory can evoke different plant response in the leaves, and often simulated herbivory 

is a poor substitute for actual damage done by a herbivore (Strauss and Agrawal 1999). 

When a herbivore consumes foliage, their saliva and the chewing of the leaf can trigger 

different plant response compared to the clipping of foliage with relatively clean scissors 

(Strauss and Agrawal 1999; Musser et al. 2005). However, Lieurance and Cipollini 

(2013) found that the plant chemistry did not differ between simulated and real herbivory 

in L. maackii. Another major factor not in our experiment was exposure to predators. 

Larvae feeding on damaged leaves could be more easily spotted and attacked by a 

predator. Lastly, L. maackii does not typically receive 50% herbivore damage in the field 

as was tested in this study and has abundant foliage (Lieurance and Cipollini 2012). 

Larvae in areas with high abundances of L. maackii will always have undamaged foliage 

to consume.  

 Two week old Z. montana larvae switched onto damaged S. albus foliage had 

similar larval mass through time, relative growth rates, larval survival, and time reaching 

pre-pupation as larvae feeding on undamaged foliage. This did not support our prediction 

that Z. montana larvae feeding on damaged foliage would have lower performance. This 

was surprising because damaged leaves often have lower quality and higher chemical 

defenses (Feeny 1970; Myers and Post 1981; Rhoades 1983). However, since Z. montana 
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is a specialist on Symphoricarpos species, it may have evolved mechanisms to tolerate 

the secondary defensive compounds produced by S. albus which allowed it to perform 

just as well on damaged and undamaged foliage. In the face of invasion when undamaged 

Symphoricarpos foliage is unavailable, Z. montana larvae could be able to consume 

damaged leaves instead of switching to a novel host. However, our study was done in a 

laboratory setting which does not fully mimic the conditions of Z. montana larvae in the 

field. For example, predators are one of the most important factors our larvae were not 

exposed in this study. Predators often use damaged leaves as a visual and odor cue to find 

herbivores (Anthony 1998; VanLaerhoven et al. 2000). Larvae feeding on damaged 

leaves could be more easily spotted and attacked by a predator. Switching to a novel host 

may be beneficial if predator populations are high to reduce to risk of being spotted.  
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3.5 CONCLUSION 

This was the first study to look at host performance of the specialists Z. montana 

on its preferred host S. albus along with close native and non-native Lonicera relatives. 

These performance assays are the first step in determining the potential interactions of Z. 

montana with novel host plants. It was found that this specialist sawfly is able to perform 

equally well on its preferred native host, S. albus, and the non-native host, L. maackii.  

This could indicate a positive interaction in which Z. montana can utilize this non-native 

host and increase in population size. This positive interaction is possible if adult Z. 

montana are able to recognize L. maackii as a suitable host and oviposit eggs on this 

novel host. The eggs must be able to successfully hatch and larvae must be able to feed 

on foliage. If adult or larval Z. montana do not recognize L. maackii as a suitable host, 

this interaction will be neutral. On the other hand, if eggs cannot hatch in L. maackii then 

this interaction will be negative.  

High larval mortality on native L. sempervirens, native L. reticulata, and non-

native L. japonica indicate a potential negative interaction between Z. montana and these 

hosts in the laboratory. However, Z. montana larvae that switched onto L. reticulata after 

two weeks on S. albus had similar performance to larvae that remained on S. albus, 

possibly indicating L. reticulata as a suitable host for later development.  Adult 

interaction with these Lonicera hosts will play a major role in determining these 

interactions in the field. If adults do not recognize or utilize a host, then the resulting 

interaction is neutral. However, if an adult does oviposit in these hosts and the eggs 

cannot hatch, then all of these host could have negative interactions. Oviposition studies 

will need to be done in the future to help determine how Z. montana interacts with native 

and non-native Lonicera species. 
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Table 3.1 ANOVA table for Z. montana larval mass of survivors through time when 

reared on native (S. albus and L. reticulata) and non-native (L. maackii and L. 

japonica) leaves collected from Wright State University in 2015. 

 

 

 

 

 

Table 3.2 ANOVA table for mean relative growth rate of surviving Z. montana 

larvae on native (S. albus and L. reticulata) and non-native (L. maackii and L. 

japonica) leaves in 2015. 

 

 

 

 

 

Table 3.3 ANOVA table average number of days for Z. montana larvae to reach the 

pre-pupal stage on native (S. albus and L. reticulata) and non-native (L. maackii and 

L. japonica) leaves collected from Wright State University in 2015. 

 

  

 
DF MS F  P value 

Significant 

Time 7 0.0087 144.10 P < 0.0001 Yes 

Treatment 2 0.0011 5.95 P = 0.0086 Yes 

Time x Treatment 14 0.0002 3.87 P < 0.0001 Yes 

Error 72 0.0000 
 

 
 

 
DF MS F  P value 

Significant 

Treatment 2 0.0050 1.65 P = 0.2156 No 

Error 22 0.0030 
 

 
 

 
DF MS F  P value 

Significant 

Treatment 2 10.1000 2.81 P = 0.0793 No 

Error 25 3.5960 
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Table 3.4 ANOVA table for Z. montana larval mass of survivors through time when 

reared on native (S. albus and L. reticulata) and non-native (L. maackii and L. 

tatarica) leaves collected from Wright State University in 2014. 

 

 

 

 

 

Table 3.5 ANOVA table for mean relative growth rate of surviving Z. montana 

larvae after four days on native (S. albus and L. reticulata) and non-native (L. 

maackii and L. tatarica) leaves in 2014. 

 

 

 

 

Table 3.6 ANOVA table average number of days for Z. montana larvae to reach the 

pre-pupal stage on native (S. albus, L. reticulata, and L. sempervirens) and non-

native (L. maackii and L. tatarica) leaves collected from Wright State University in 

2014. 

 

 

  

 
DF MS F  P value 

Significant 

Time 3 0.0011 17.12 P < 0.0001 Yes 

Treatment 3 0.0006 5.75 P = 0.0041 Yes 

Time x Treatment 9 0.0001 1.99 P = 0.0528 No 

Error 72 0.0000 
 

 
 

 
DF MS F  P value 

Significant 

Treatment 3 0.0260 3.48 P = 0.0313 Yes 

Error 24 0.0074 
 

 
 

 
DF MS F  P value 

Significant 

Treatment 4 62.9700 18.05 P < 0.0001 Yes 

Error 29 3.4880 
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Table 3.7 ANOVA table for Z. montana larval mass of survivors through time when 

reared on undamaged and damaged L. reticulata and L. maackii in 2015. 

 

 

 

 

 

Table 3.8 ANOVA table for mean relative growth rate of surviving Z. montana 

larvae at peak larval mass when reared on damaged and undamaged L. reticulata 

and L. maackii in 2015. 

 

 

 

 

Table 3.9 ANOVA table average number of days for Z. montana larvae to reach the 

pre-pupal stage on damaged and undamaged L. reticulata and L. maackii in 2015. 

  

 
DF MS F  P value 

Significant 

Time 7 0.0024 48.92 P < 0.0001 Yes 

Treatment 2 0.0010 6.98 P = 0.0098 Yes 

Time x Treatment 14 0.0002 4.87 P < 0.0001 Yes 

Error 84 0.0000 
 

 
 

 
DF MS F  P value 

Significant 

Treatment 3 0.0162 7.54 P = 0.0016 Yes 

Error 19 0.0022 
 

 
 

 
DF MS F  P value 

Significant 

Treatment 3 15.7700 4.80 P = 0.0101 Yes 

Error 22 3.2830 
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Table 3.10 ANOVA table for Z. montana larval mass of survivors through time 

when reared on damaged and undamaged S. albus leaves collected from Wright 

State University in 2014. 

 

 

 

 

 

  

 
DF MS F  P value 

Significant 

Time 3 0.0003 4.88 P = 0.0045 Yes 

Treatment 1 0.0000 0.06 P = 0.8134 No 

Time x Treatment 3 0.0000 0.88 P = 0.4549 No 

Error 54 0.0000 
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Figure 3.1 Life cycle of Z. montana.  Adult females lay eggs in leaves using her saw-

like ovipositor. The eggs hatch in 5-8 days. The larvae start off with no spots and 

markings and as they get older, the larvae get darker with visible spots on the sides 

of their bodies. After 2-3 weeks, the larvae turn lime green and lose their spots. They 

remain curled underneath foliage for weeks. It is unsure if Z. montana overwinters 

as a larva or pre-pupa. Adults emerge in late April to early May. 

  

Adult 

Eggs 

Larvae 

Pre-pupa 

Photo by Jessica  Womack 
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Figure 3.2 Mean larval mass of the specialist Zaschizonyx montana feeding on the 

foliage of two native (S. albus and L. reticulata) and two non-native species (L. 

maackii and L. japonica) (A), relative growth rate (RGR) measured at peak larval 

weight on day 13 (B), larval survivorship (C), and final larval survivorship (D). 

Species not included in the statistical analysis are denoted as “n.a.”. Letters 

represent a difference in means determined through Tukey post hoc tests (P < 0.05). 

 

P < 0.0001 

P = 0.2156 

P < 0.0001 

 = 125.1 

N = 11 N = 3 N = 11 

N = 14 N = 13 N = 16 N = 8 

(N = 14) 

(N = 13) 

(N = 16) 

(N = 8) 
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Figure 3.3 Mean days for Zaschizonyx montana larvae to reach pre-pupation feeding 

on foliage of 2 native and 2 non-native species (A), and percentage reaching pre-

pupation (B). Species not included in the statistical analysis are denoted as “n.a.”. 

Letters represent a difference in means determined through Tukey post hoc tests (P 

< 0.05). 

 

 

 

 

 

  

P =0.0793 
P < 0.0001 

 = 118.7 

N = 13 N = 3 N = 12 
N = 14 N = 13 N = 12 N = 8 
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Figure 3.4 Mean larval mass of two week old Z. montana feeding on foliage of three 

native and two non-native species (A), relative growth rate (RGR) measured at peak 

larval weight on day four (B), larval survivorship (C), and final larval survivorship 

(D). Species not included in the statistical analysis are denoted as “n.a.”.  Letters 

represent a difference in means determined through Tukey post hoc tests (P < 0.05).  

P = 0.0098 

P < 0.0001 P < 0.0001 

 = 197.0 

N = 7 N = 6 N = 4 N = 4 

(N = 10) 

(N = 10) 

(N = 10) 

(N = 9) 

(N = 7) N = 10 N = 10 N = 10 N = 9 N = 7 
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Figure 3.5 Mean days for Z. montana larvae to reach pre-pupation feeding on foliage 

of three native and two non-native species (A), and percentage reaching pre-

pupation (B). Species not included in the statistical analysis are denoted as “n.a.”. 

Letters represent a difference in means determined through Tukey post hoc tests (P 

< 0.05). 

  

P < 0.0001 

 = 198.3 
P = 0.2426 

426 

N = 10 N = 8 N = 6 N = 5 N = 10 N = 10 N = 9 N = 7 N = 10 



88 
 

 

 

 

  

 

 

  

 

  

  

 

 

 

 

 

 

 

  

 

 

 

 

Figure 3.6 Mean larval mass of the specialist Z. montana feeding on damaged and 

undamaged foliage of native L. reticulata and non-native L. maackii (A), relative 

growth rate (RGR) measured at peak larval weight on day 13 (B), larval 

survivorship (C), and final larval survivorship (D). Letters represent a difference in 

means determined through Tukey post hoc tests (P < 0.05).  

P < 0.0001 

P =0.0793 

P < 0.0001 

 = 40.28 

N = 3 N = 1 N = 11 N = 7 

N = 14 N = 13 N = 16 N = 18 

(N = 14) 

(N = 13) 

(N = 16) 

(N = 18) 



89 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7 Mean days for Z. montana larvae to reach pre-pupation feeding on 

damaged and undamaged foliage of native L. reticulata and non-native L. maackii 

(A), and percentage reaching pre-pupation (B). Letters represent a difference in 

means determined through Tukey post hoc tests (P < 0.05). 

 

 

 

 

  

P =0.0101 P < 0.0001 
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Figure 3.8 Mean larval mass of two week old Z. montana feeding on foliage of 

undamaged and damaged S. albus (A), relative growth rate (RGR) measured at 

peak larval weight on day four (B), final larval survivorship (C), and mean time to 

reach pre-pupation (D). Letters represent a difference in means determined through 

Tukey post hoc tests (P < 0.05).

P =0.1812 

P =1.0000 P =0.9534 

N = 10 N = 10 N = 10 N = 10 

N = 10 N = 10 
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4. PERFORMANCE AND PREFERENCE OF THE GENERALIST FALL 

WEBWORM (HYPHANTRIA CUNEA) ON NATIVE AND NON-NATIVE 

SPECIES 

 

4.1 INTRODUCTION 

  As invasive plant species enter a new habitat, they interact with native fauna, 

especially insect communities. These novel-plant insect interactions can be positive, 

negative, or neutral. A positive interaction could occur in which an insect benefits by 

successfully recognizing and using the invasive plant to increase in population size 

(Davis and Cipollini 2014). A negative interaction could occur in which insects have 

lower fitness and reproductive success on the novel plant because one or all life stages 

cannot utilize the host (Davis and Cipollini 2014). Lastly, a neutral interaction could 

occur because the native insect does not recognize the novel plant as a food source and 

does not use it (Davis and Cipollini 2014).  

Generalist herbivores can consume a wide range of plant species that are not 

closely related to one another. Generalist herbivores can tolerate a wide variety of toxins, 

but are not specialized to deal with any particular plant defense (Bernays and Minkenberg 

1997; Ali and Agrawal 2012). Being able to consume a wide range of hosts reduces the 

herbivores exposure to high levels of allelochemicals, but producing a wide range of 

detoxification enzymes can be metabolically costly, (Bernays and Minkenberg 1997; Ali 

and Agrawal 2012). Generalist herbivores, just like specialists, are threatened by non-
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native plant invasions. Invasive plants often outcompete native plants and could 

potentially reduce the abundance of ideal foliage for the generalist herbivore. The 

generalist may be left eating lower quality food, which reduces the overall fitness and 

health of the organism. The generalist may be able to consume the invasive host but may 

not choose to consume it because it does not recognize the new host as a food source 

(Lankau et al. 2004). However, being able to eat a large range of species ensures the 

generalists will not become stranded if they run out of food on their original host, they 

can just move onto the next native or even invasive species (Bernays and Minkenberg 

1997). 

 The generalist herbivore chosen for this study is the fall webworm (Hyphantria 

cunea). Hyphantria cunea is a generalist herbivore native to North America that can feed 

on over 630 different plant species (Warren and Tadic 1970). Hyphantria cunea has 

become an invasive pest in Europe, China, and North Korea (Sourakov and Paris 

2014).There are two races of fall webworm, the black and the red race (Loewy et al. 

2013a). The red race is more common in southern areas, whereas the black race is more 

common in more northern areas including Ohio (Loewy et al. 2013a). In Ohio, adults 

emerge in late May to early July (Fig 4.1). Females lay egg masses of 400-1000 eggs on 

the underside of leaves (Sourakov and Paris 2014). Fall webworm caterpillars have 5-8 

instars. The caterpillars of H. cunea stay in large groups and build webs on the outer 

branches of their host (Mason et al. 2011). The red race caterpillars feed together their 

whole entire lives, the black race feed together for most of their lives until they reach 

later instars. Then the caterpillars will disperse, mature, and pupate in the soil. Fall 
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webworms in more northern areas, like Ohio, only have one to two generation per year, 

but more southern areas can have as many as four generations in one year (Gordon 1976).  

Hyphantria cunea is known to feed on honeysuckle, and we have found it feeding 

on invasive Lonicera maackii and native Lonicera reticulata locally in the field (personal 

observation). Caterpillars of H. cunea have also been seen on other invasive hosts such as 

L. japonica and P. calleryana (personal observations). Many bioassays have been 

conducted using H. cunea. However, none of these studies have examined H. cunea 

feeding preferences and performance on invasive species, in particular, various invasive 

honeysuckle species, compared to native host plants. This study evaluated the 

performance of H. cunea on an artificial diet, native (L. reticulata and P. serotina) and 

non-native (L. maackii, L. japonica, E. umbellata, E. alatus, and P. calleryana) species. 

Another performance assay was conducted to look at the impact of switching four week 

old H. cunea caterpillars from native P. serotina to native (L. reticulata and L. 

sempervirens) and non-native (L. maackii, L. japonica, and L. tatarica). Lastly, choice 

studies were conducted with caterpillars to determine host preference when given a 

choice between various combinations of native and non-native foliage. 

The primary objective of these experiments were to determine if all stages of H. 

cunea could utilize non-native, invasive honeysuckle species along with other known 

invasive species. The secondary goal was to compare the performance of H. cunea 

caterpillars on native and non-native species. The final objective was to determine the 

feeding preference of H. cunea caterpillars when given a choice between consuming a 

native or non-native host.  
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 We predicted H. cunea caterpillars reared on native (L. reticulata and P. serotina) 

foliage from eggs in groups will have higher survivorship and larval mass after four 

weeks compared to caterpillars reared on non-native (L. maackii, L. japonica, P. 

calleryana, E. umbellata, and E. alatus) foliage. Hyphantria cunea have used native 

foliage much longer in their evolutionary history compared to non-native hosts which 

should lead to faster development. When these H. cunea are reared individually on native 

and non-native foliage, we hypothesized caterpillars feeding on native foliage will grow 

faster, grow larger, have higher survival, reach pupation faster, have higher pupal mass, 

and have a higher percent emergence.  

 We predicted that 4 week old H. cunea caterpillars switched onto native (L. 

reticulata and L. sempervirens) and non-native (L. maackii, L. tatarica, and L. japonica) 

honeysuckle foliage will be able to complete their development on these new hosts 

because most of their life cycle has been completed on native foliage and generalist 

caterpillars are able to tolerate a wide range of toxins. However, we predicted H. cunea 

feeding on native Lonicera foliage will grow faster, grow larger, have higher survival, 

reach pupation faster, have higher pupal mass, and have a higher percent emergence. 

 If H. cunea caterpillars are given a choice between native and non-native foliage, 

we predicted caterpillars will consume more native foliage no matter if they were reared 

on a native or non-native host before given the choice. Due to the long evolutionary 

history between native foliage and H. cunea, caterpillars may have mechanisms to 

recognize high quality, native foliage. If given a choice between two non-native hosts, we 

predict the caterpillars will have no preference because non-native foliage may not have 

recognizable volatiles H. cunea uses to find high quality, native hosts.  
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4.2 METHODS 

4.2.1 No-choice Feeding Bioassay in Groups on Native and Non-native Hosts 2015 

 Eggs were collected from H. cunea adults that emerged in 2015 from pupae in the 

2014 trials. Pupae were placed individual into 60 x 15 mm petri dishes with moistened 

vermiculite. Multiple petri dishes with pupae were placed together into plastic deli 

container (4 x 6 x 6 cm). Pupae were grouped based on larval host. The containers were 

placed in the fridge (4ᵒ C) on September 9, 2014 and transferred to an incubator at 25°C 

(16:8 L:D) on May 20, 2015. Every month, I would check the vermiculite and add more 

DI water as needed to keep it moistened. Containers were checked daily for adults. 

  One male and one female were placed together for 1-3 days for mating to occur. 

There were a total of 15 female and male pairs. Once mating was observed or three days 

had elapsed, the females were placed into a 6 quart, clear plastic storage container. In 

each container, there was a stem of L. reticulata and L. maackii inserted into separate 

water picks filled with DI water. Females were left in the oviposition containers until 

they died. All eggs were counted and removed from the containers. Eggs from four 

females were placed in groups of 50 on parafilm. The parafilm was placed with eggs 

facing upwards on a leaf and the leaf was placed into a 100 x 20 mm petri dishes. Eggs 

were placed on an artificial diet (Southland products Inc.), native foliage (L. reticulata 

and P. serotina), and non-native foliage (L. maackii, L. japonica, P. calleryana, E. 

umbellata, and E. alatus). Eggs from each female were haphazardly divided between host 

species. The petri dishes with eggs were placed in the incubator at 25°C (16:8 L:D). Eggs 

were checked daily for hatching. The total number hatched for each treatment was 

recorded. The newly hatched larvae were reared on their host in a group for 4 weeks. 
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New leaves were added as needed. The number surviving was checked every 2-5 days. 

Larvae were not weighed until the end of the 4 weeks to prevent larval mortality by 

handling the early instar caterpillars. 

 

4.2.2 No-choice Feeding Bioassays on Native and Non-native Hosts 

   (A) Newly Emerged Larvae on Artificial Diet, Native, and Non-native Hosts 2015 

The four week old H. cunea reared in groups were weighed and separated into 

individual containers (Genpak Clear Hinged Deli Container, Plastic, 24 oz, 7-1/4 x 6-2/5 

x 2-1/4). The plastic deli containers had air holes perforating the lid and small push pins 

inserted into the side of the container to allow each container to stand freely. The sharp 

metal point inside the container was covered in hot glue to prevent the pins from falling 

off and to prevent caterpillars from impaling themselves on the sharp point. A 7.62 cm 

floral water pick with a cap was taped to the bottom of the container and filled with DI 

water. A 12-16 cm stem of foliage was placed into each water pick that corresponded 

with the original host of each H. cunea caterpillar. The number of caterpillar reared on 

each host was dependent on the group survivorship, ideally 20 replicates were set-up.  [L. 

reticulata (N=20), P. serotina (N=20), L. maackii (N=20), L. japonica (N=9), P. 

calleryana (N=20), E. umbellate (N=3), and E. alatus (N=10)]. The artificial diet (N=20) 

was not placed in a water pick, but rather was poured into a 60 x 15 mm petri dish that 

was glued to the deli container at the same height as the foliage stems. 

After the caterpillars were transferred to their new containers, they were 

haphazardly placed under grow lights. The grow lights were suspended in groups of three 

above a 1.5 m long folding table. Each group of lights was suspended above the table at a 
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height at which they were emitting 50-60 nm of light. The lights were placed on timers to 

be turned on between 6 am and 10 pm (16:8 L:D). The temperature under the lights was 

25-27 ᵒC. Containers were placed into two rows that were centered underneath grow 

lights. The caterpillars were weighed, checked for survivorship, and pupation every 3-5 

days. Relative growth rate was calculated by subtracting the natural logarithm of initial 

mass from the natural logarithm of mass at the second time point and dividing by 

difference in time between weighing. Relative Growth Rate (RGR) = ln(W2)- ln(W1) 

                   T2 – T1 

[T1 = time of initial weight (days), T2 = time of second weight (days), W1 = initial mass 

(grams) and, W2 = second mass (grams) New leaves and water were added as needed. 

Leaves remained in containers for no longer than a week. Once a week, the containers 

were cleaned of frass. Once caterpillars pupated, the pupa was weighed and placed back 

under the lights for several weeks to allow for adult emergence. The experiment ended 

after all larvae died, reach pupation, or emerged.  

 

   (B)  Four-week Old Larvae Switched onto Native and Non-native Lonicera 2014 

A no-choice bioassay was set-up using H. cunea caterpillars collected from one 

web found on P. serotina from Hocking County, OH on August 1, 2014. The caterpillars 

were approximately 3-4 weeks old. On August 4, 2014 the caterpillars were separated 

individually into a clear plastic deli container (4 x 6 x 6 cm) with a 1.5 mL centrifuge 

tube filled with DI water. The centrifuge tube was used as a water pick to support a 12- 

16 cm stem of foliage of one of the following Lonicera species: L. reticulata (N=14), L. 

sempervirens (N=9), L. maackii (N=14), L. japonica (N=13), and L. tatarica (N=13). The 
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containers were haphazardly placed in an incubator at 25°C (16:8 L:D). Larvae were 

checked and reared as described above in section A. 

 

4.2.3 Choice Bioassays on Native and Non-native Hosts  

   (A) Native and Non-native Hosts 2015 

 Choice bioassays were conducted using 4.5 week old H. cunea caterpillars reared 

from eggs on L. maackii, P. serotina, and P. calleryana. Caterpillars were placed 

individually into a deli container and given equally sized leaves of two hosts. One of the 

hosts was the species the caterpillar was reared on and the other host was a native or non-

native species. The different combinations of original host/new choice host were as 

follows: L. maackii/L. reticulata (N=10), L. maackii/P. serotina (N=10), L. maackii/P. 

calleryana (N=7), P. calleryana/L. reticulata (N=7), P. calleryana/P. serotina (N=7), P. 

serotina/L. maackii (N=7). The caterpillars were placed in an incubator at 25°C (16:8 

L:D). The caterpillars were given three days to consume foliage. After three days, the 

total leaf area eaten was measured to the nearest cm2. A preference index was calculated 

using this equation:  

Choice Index = Leaf area removed Choice 1 - Leaf area removed choice 2           x 100 

Total leaf area removed 

The total leaf area removed from one host was subtracted by the total leaf area removed 

from host two. The difference is divided by the total leaf area and multiplied by 100. A 

zero indicated no choice, a positive number indicated choice for the first host, and a 

negative number indicated choice for second host. A mean choice index was found to 

determine if there was a preference for one leaf species over another.  
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   (B)  Native and Non-native Lonicera 2014 

 Choice bioassays were performed the same way as described above. The only 

difference was H. cunea caterpillars were first reared for approximately 4-5 weeks on 

slippery elm, Ulmus rubra, and then given a choice between L. reticulata/L. maackii 

(N=10), L. reticulata/L. tatarica (N=10), and L. maackii/L. tatarica (N=10). The 

caterpillars were allowed to feed for four days. 

 

4.2.4 Data Analysis 

Repeated measures ANOVA were used to compare larval masses with plant 

species as the between subjects effect and time as the within subjects effect. Mean larval 

mass in groups, relative growth rates, pupal mass, days to pupation, and days to 

emergence were compared among plant species using ANOVA. Comparisons of means 

were made using Tukey post-hoc tests. Percent survival, percent pupating, and percent 

emergence were compared using chi-square tests. All percentages were converted to 

arcsine values. Survivorship was compared among plant species using the non-parametric 

Mantel-Cox test. Sample T-test were used to determine if the choice feeding index 

differed from zero. A zero indicated no choice, a positive number indicated choice for 

initial host, and a negative number indicated choice for new host. All statistical analyses 

were performed using GraphPad Prism (Version 6.07, GraphPad Software, Inc., La Jolla, 

California). 

 

 

  



100 
 

4.3 RESULTS 

4.3.1 No-choice Feeding Bioassay in Groups on Native and Non-native Hosts 2015 

  In the no-choice bioassays with Hyphantria cunea reared from eggs in groups, 

larval survivorship varied significantly between hosts (Figure 4.2a). Larval survivorship 

was highest on non-native L. maackii and P. calleryana at 96% and 97%, respectively. 

All native species ranged between 45-60% larval survival. Non-native E. alatus, E. 

umbellata, and L. japonica had the lowest larval survivorship between 10-25%. Larvae 

feeding on the artificial diet, L. reticulata, and L. maackii were significantly heavier after 

four weeks than larvae on the other species (Figure 4.2b). Larvae feeding on L. japonica 

were the smallest and significantly smaller than larvae feeding on native P. serotina 

(Figure 4.2b). Larvae reared on P. serotina, P. calleryana, E. alatus, and E. umbellata 

had similar larval masses (Figure 4.2b) 

 

4.3.2 No-choice Feeding Bioassays on Native and Non-native Hosts  

   (A) Newly Emerged Larvae on Artificial Diet, Native, and Non-native Hosts 2015 

 In the no-choice bioassays with Hyphantria cunea reared from eggs, repeated 

measures ANOVA revealed differences in larval mass between species, through time, 

and an interaction between time and species (Table 4.3, Figure 4.3a). There was a 

statistically significant difference between relative growth rate (RGR) between all species 

on day 14 before any H. cunea pupated (P=0.0014, Figure 4.3b). Caterpillars feeding on 

native P. serotina had the highest RGR, which was significantly higher than caterpillars 

feeding on the artificial diet and P. calleryana (Figure 4.3b). RGR of H. cunea feeding on 

the native species did not differ significantly from one another, nor did the RGR of 
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caterpillars feeding on non-native species (Figure 4.3b). There was 100% mortality of 

caterpillars feeding on L. japonica and E. umbellata by day 7 and day 2, respectively 

(Figure 4.3a). Larval survival was significantly different between species (P < 0.0001,  

= 366.3, Figure 4.3c). Caterpillars had 100% survival on L. maackii followed by 90% 

survival on L. reticulata, P. serotina, and E. alatus. Overall, H. cunea had pretty high 

survivorship on most species, except for non-native L. japonica and E. umbellata (Figure 

4.3c).  

Female pupal mass of H. cunea reared on all species were significantly heavier 

than male pupal mass (P = 0.0003, Table 4.3). Repeated measures ANOVA also revealed 

differences in pupal mass between species, but no interaction between host and sex 

(Table 4.3). Comparing mean female pupal mass between species, caterpillars reared on 

the artificial diet had significantly lower mass than caterpillars reared on L. maackii 

(Figure 4.4a). However, female pupal masses between all other species did not differ 

significantly. Male pupal mass was significantly higher on L. reticulata and L. maackii 

compared to E. alatus (Figure 4.4a). The ratio of males and females reaching pupation on 

each species was significantly different (P<0.0001,  = 50.27, Figure 4.4b). The 

caterpillars reared on the artificial diet had the highest percentage of females reaching 

pupation at 86%. The H. cunea caterpillars reared on the natives had more females reach 

pupation than males, compared to more males reaching pupation on the non-native P. 

calleryana and E. alatus (Figure 4.4b). Similar to the native species, L. maackii had more 

females reach pupation. Caterpillars reared on the artificial diet, L. reticulata, P. serotina, 

and L. maackii reached pupation significantly faster than caterpillars reared on P. 

calleryana and E. alatus (Table 4.4, Figure 4.5a). The percentage pupating on all species 
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was very high, and was significantly different between species (P<0.0001,  = 55.07). 

Caterpillars reared on the artificial diet and P. calleryana had the lowest percentages 

pupating at 65% and 70%, respectively (Figure 4.5b).  

The mean time to emergence did not differ between species (P=0.6912, Table 4.5, 

Figure 4.5c). However, there was a significant difference in the percentage emergence 

between treatments (P<0.0001,  = 137.0, Figure 4.5d). Over 50% of pupae reared on E. 

alatus and 25% of pupae on P. serotina emerged (Figure 4.5d).  Overall, a low 

percentage of H. cunea emerged in 2015, no adults emerged from pupae reared on the 

artificial diet (Figure 4.5d).  

 

   (B)  Four-week Old Larvae Switched onto Native and Non-native Lonicera 2014 

 In the no-choice bioassays with four-week old Hyphantria cunea, repeated 

measures ANOVA revealed differences in larval mass through time, between species, 

and an interaction between time and species (Table 4.6, Figure 4.6a). However, relative 

growth rate at peak caterpillar mass was not significantly different between species 

(P=0.0800, Figure 4.6b). All H. cunea had high survival which differed significantly 

between species (P<0.0001,  = 36.82, Figure 4.6c). Caterpillars reared on native L. 

sempervirens and L. reticulata had the highest larval survival at 100% and 92% (Figure 

4.6c). Caterpillars reared on non-native L. tatarica had high survival at 92%. However, 

caterpillars reared other non-natives, L. maackii and L. japonica, had survival just under 

80% (Figure 4.6c). 

Mean female pupal mass of H. cunea reared on all species was significantly 

higher than male pupal mass (P = 0.0015, Table 4.8). Repeated measures ANOVA also 
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revealed differences in pupal mass between species, and an interaction between host and 

sex (Table 4.8). Pupal mass of males did not differ between species treatment (Figure 

4.7a). Female pupal mass did vary between species. Females reared on L. tatarica had 

significantly heavier pupal masses compared to both native species and L. japonica 

(Figure 4.7a). The smallest female pupae were reared on L. sempervirens and L. japonica 

(Figure 4.7a). The ratio of males and females reaching pupation on each species was not 

significantly different between species, but there is a highly suggestive trend than species 

impacts sex ratios (P=0.0596,  = 9.061, Figure 4.7b). For all species, except for L. 

reticulata, there was a higher percentage of males reaching pupation compared to females 

(Figure 4.7b). The time to pupation did not differ between species (P = 0.4652, Table 4.9, 

Figure 4.8c). The percentage pupating on all species was very high, and was significantly 

different between species (P<0.0001,  = 35.75). Hyphantria cunea had the highest 

pupation success on L. sempervirens and L. tatarica at 100% and 92%, respectively 

(Figure 4.8b). Caterpillars reared on L. reticulata, L. maackii, and l. japonica had 

pupation success right around 80% (Figure 4.8b). 

No adults emerged in 2014, however many did emerge in 2015. The mean time to 

emerge after being removed from the cold storage, did not different between species 

(P=0.1450, Table 4.10, Figure 4.8c). There was a significant difference in the percentage 

emergence between treatments (P = 0.0009,  = 18.62, Figure 4.8d). The pupae reared on 

native L. sempervirens and L. reticulata had the highest percent emergence at 78% and 

67% respectively (Figure 4.8d). The pupae reared on non-native species had under 60% 

emergence (Figure 4.8d). When looking at percentage emergence by sex, 74% of all 

female pupae emerged whereas, 47% of male pupae emerged.  
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4.3.3 Choice Bioassays on Native and Non-native Hosts 

   (A) Native and Non-native Hosts 2015 

  In the choice bioassays with 27 day old H. cunea reared on L. maackii, larvae 

showed a significant preference for non-native L. maackii foliage over non-native P. 

calleryana (P = 0.0010, t = 6.000, Figure 4.9a). Larvae consumed more native L. 

reticulata and P. serotina foliage when given a choice between non-native L. maackii, 

but this was not significant (P = 0.2415, t = 1.254; P = 0.1372, t = 1.632; Figure 4.9a). In 

the choice bioassays with H. cunea reared on P. serotina, larvae showed a significant 

preference for native P. serotina over non-native L. maackii foliage (P = 0.0127, t = 

3.505, Figure 4.9b). In the choice bioassays with H. cunea reared on P. calleryana, larvae 

showed a significant preference for native P. serotina over non-native P. calleryana (P = 

0.0005, t = 6.873, Figure 4.9c). Larvae consumed more native L. reticulata foliage when 

given a choice of P. calleryana, but this was not significant (P = 0.2367, t = 1.315; Figure 

4.9c). 

 

   (B)  Native and Non-native Lonicera 2014 

 In the choice bioassays with four-week old Hyphantria cunea reared on P. 

serotina, larvae showed a significant preference for native L. reticulata over L. maackii 

(P = 0.0130, t = 3.086, Figure 4.10). Larvae consumed more L. reticulata foliage when 

given a choice between native L. reticulata and non-native L. tatarica, but this was not 

significant (P = 0.0683, t = 2.070, Figure 4.10). When given a choice between two non-

native species, H. cunea larvae had no preference (P = 0.5710, t = 0.5879, Figure 4.10).   



105 
 

4.4 DISCUSSION 

4.4.1 Hyphantria cunea Performance on Native and Non-native Hosts 

     (A) Newly Emerged Larvae in groups 

 Larval survivorship in groups varied greatly between the artificial diet, native 

species, and non-native species. Hyphantria cunea reared on non-native L. maackii and 

P. calleryana had very high larval survival compared to the artificial diet, the two native 

species (L. reticulata and P. serotina), and the three other non-native species (E. alatus, 

E. umbellata, and L. japonica). This was surprising and did not support our hypothesis 

that H. cunea larvae would have higher survivorship when reared in groups on native 

species. Newly emerged larvae can survive at least 4 weeks in a group on all native and 

non-native hosts tested in this experiment in the absence of predators and disease.  

Similar to larval survivorship, mean larval mass after four weeks in groups varied 

on the different hosts. The H. cunea caterpillars reared on native L. reticulata had 

significantly higher larval mass than four of the non-native species (P. calleryana, E. 

alatus, E. umbellata, and L. japonica). Many of the non-native hosts tested had extremely 

low larval mass after four weeks, especially H. cunea reared on L. japonica. This 

provides some support for our prediction that H. cunea would have higher larval mass 

reared on native species compared to non-native species.  However, larvae reared on non-

native L. maackii had similar larval mass compared to L. reticulata and significantly 

higher larval mass compared to native P. serotina. This was surprising because H. cunea 

caterpillars are often found on and prefer P. serotina in the field, so I predicted H. cunea 

would perform well on this preferred host (Barbosa and Greenblatt 1979; Travis 2005). 
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Larvae reared on P. serotina had larval mass significantly lower than non-native L. 

maackii, similar to the non-native P. calleryana, and higher than non-native L. japonica.   

 

   (B) Four-week Old Larvae  

 In the no-choice bioassays, larval survival was relatively high on the artificial diet 

and all native and non-native species except for larvae feeding on non-native E. 

umbellata and L. japonica, which experienced 100% larval mortality after being 

separated individually. These larvae were extremely small after four weeks, and may not 

have been developmentally ready to survive and feed alone. However, H. cunea reared on 

E. alatus started off smaller than larvae reared on E. umbellata, but they were able to 

survive relatively well individually. 

The typical pattern for larval growth is a steady increase in larval weight until a 

maximum mass, after which there is a slight decline due to decreased feeding before 

pupation. This pattern can be clearly seen for all hosts, except for P. serotina, E. 

umbellata, and L. japonica. There were some differences in the shape of the larval mass 

curves between hosts. Hyphantria cunea reared on non-native P. calleryana and non-

native E. alatus took longer to reach their peak mass and longer to pupate compared to 

caterpillar reared on the artificial diet, L. reticulata (native), and L. maackii (non-native). 

Larvae reared on native P. serotina foliage had two peak larval masses, one with the 

artificial diet, L. reticulata, and L. maackii, and the other peak with E. umbellata and L. 

japonica. The two peaks were caused by differences in growth rate of larvae. Most of the 

larvae grew quickly and gained mass, whereas, some larvae grew more slowly and took 

much longer to reach peak mass. The mean days to pupation for H. cunea on native P. 
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serotina was significantly faster than non-native P. calleryana and E. alatus. This 

provides some support that H. cunea will grow faster and reach pupation faster on native 

foliage compared to some non-native species (P. calleryana, E. alatus, E. umbellata, and 

L. japonica), but not compared to some non-native hosts (L. maackii). Prolonged 

development time can negatively impact H. cunea larval survival, because they are 

exposed longer to parasitoids (Morris 1976; Jang et al. 2015), invertebrates (Morris 

1972a), and birds (Morris 1972b). 

Female H. cunea pupae were larger than male pupae in all treatments except for 

the larvae reared on the artificial diet. Female H. cunea reached the highest average 

female pupal mass on native L. reticulata, non-native L maackii, and non-native P. 

calleryana. This did not support our prediction of H. cunea having higher pupal masses 

on native hosts. Larvae were able to reach similar female and male pupal masses on P. 

calleryana despite taking significantly longer to reach pupation compared to the artificial 

diet, the two natives, and non-native L. maackii. However, larvae reared on non-native E. 

alatus had lower female and male pupal masses than H. cunea reared on other hosts. 

Female pupal mass is positively correlated with female potential fecundity, the potential 

number of offspring the female can produce (Morris and Fulton 1970; Awmack and 

Leather 2002; Loewy et al. 2013b). Loewy et al. (2013b) found that every 1 mg of pupal 

mass was equal to 2.35 eggs. Male pupal mass is also important, because the larger the 

male the more energy he will have to fly to and copulate with as many females as 

possible, thus increasing his fitness as well (Rossiter 1991; Engels and Sauer 2007). 

Sex ratios are very important to maintaining H. cunea population. Typically H. 

cunea have a female biased sex ratio when reared on an artificial diet and equal when 
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reared on native foliage from Colorado (Yearian et al. 1966; Loewy 2013). In sawflies, 

sex ratios were dependent on plant quality, where male-biased ratios were a result of 

larvae feeding on slow-growing low quality plants and female-biased ratios were found 

when larvae consumed fast-growing high quality foliage (Craig et al. 1992). This male-

biased sex ratios on low quality plants has also been seen in other sawflies, leafhoppers, 

and aphids (Awmack and Leather 2002).  More females reached pupation on the artificial 

diet, L. reticulata, P. serotina, and L. maackii. However, more males reached pupation on 

non-native P. calleryana and E. alatus. This may suggest that some poor quality hosts or 

non-native hosts may cause higher female larval mortality compared to males. Female H. 

cunea pupae are larger than males, so female larvae must be on a host that allows them to 

gain enough mass to pupate. If the host quality is extremely low, females may die before 

they can gain enough mass to pupate. This could potential lead to reduction in overall H. 

cunea populations. 

Many of the H. cunea larvae in this study went into diapause instead of emerging. 

However, pupae did eclose on all native and non-native hosts except for E. umbellata, L. 

japonica, and the artificial diet. The time to eclosion did not different between hosts. 

However, almost 50% of pupae emerged on non-native E. alatus which was much higher 

than all other non-native and native hosts. This was especially surprising because E. 

alatus was a low quality host in which larvae took significantly longer to pupate and were 

smaller than most other species. Previous studies have shown that H. cunea feeding on 

low quality host often enter diapause compared to larvae feeding on high quality hosts 

(Gomi et al. 2005), This did not support my prediction that H. cunea pupae reared on 

native foliage would have higher percentage emerging compared to non-native foliage.  
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   (C)  Four-week Old Larvae Switched onto Lonicera  

 All H. cunea larvae switched onto native and non-native Lonicera were able to 

complete their life cycle on these hosts and had very similar larval mass curves which 

reached peak larval mass between day 16 and 18. Larvae reared on non-native L. maackii 

and non-native L. tatarica had higher larval mass compared to the two natives (L. 

reticulata and L. sempervirens) and L. japonica. Larval survival and percentage reaching 

pupation were relatively high for H. cunea on the 2 native and 3 non-native Lonicera, 

ranging between 75-100%. The highest survivorship and percent pupated was on native 

L. sempervirens. Relative growth rates and time to pupation did not differ between all 

hosts. Male pupal mass were not different between hosts and were smaller than female 

pupae reared on L. tatarica, L. maackii, and L. reticulata. Female pupal mass did differ 

significantly between treatments. Larvae reared on non-native L. maackii and L. tatarica 

had the highest female pupal mass. Whereas, females reared on L. japonica had the 

lowest pupal mass. Hyphantria cunea reared on L. reticulata and L. sempervirens had 

intermediate female pupal mass that was significantly lower than larvae reared on L. 

tatarica. Female pupal mass is important for future female reproductive fitness, the larger 

the female the more eggs she can lay (Morris and Fulton 1970; Loewy et al. 2013b). This 

suggests that female larvae reared on low quality hosts, could not gain as much mass as 

larvae reared on higher quality hosts. This will lead to lower fitness of females reared on 

non-native L. japonica. 

The ratio of female to male pupae on L. reticulata was equal, but on all other 

hosts it was male biased. As mentioned above, fall webworms typically have a female 

biased sex ratio on the artificial diet, or an equal ratio when reared on foliage (Yearian et 
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al. 1966; Loewy 2013). In this study it is unclear if the foliage caused the shift in the sex 

ratios due to female larval mortality or if female larvae were preferentially parasitized by 

parasitoids in the field. A small percentage of larvae, removed from this study, were 

attacked by parasitoids leading to their death. Lastly, there was no difference in the length 

of time for adult emergence on the native and non-native Lonicera species, however, 

there was a difference in the percentage emergence. Hyphantria cunea larvae that were 

reared on native foliage had higher percentage emerging compared to all non-native 

hosts. In all host, a higher percentage of female pupae emerged than male pupae, this was 

interesting because more males reached pupation. You would expect equal numbers of 

male and female pupae to emerge when reared under the same environmental conditions. 

Overall, H. cunea performed very well when switched onto L. reticulata, L. 

sempervirens, L. maackii, L. tatarica, and L. japonica. There was no support for our 

prediction that H. cunea larvae would perform better on native hosts over non-native 

hosts, in fact, larvae reared on non-native L. maackii and L. tatarica performed extremely 

well sometimes even better than on closely related native species. The ability for H. 

cunea to be able to switch to a new non-native host will benefit this species in the face of 

invasion by L. maackii, L. tatarica, and L. japonica.  

 

4.4.3 Choice Bioassays on Native and Non-native Hosts  

 In the choice bioassays with H. cunea larvae reared on black cherry for 4 weeks 

and given a choice between native L. reticulata and non-native L. maackii, larvae 

significantly preferred and consumed more native foliage than non-native foliage. When 

given a choice between native L. reticulata and non-native L. tatarica, larvae consumed 
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more native foliage but this was not a significant preference. When given a choice 

between the two invasive species, H. cunea larvae had no preference and consumed 

similar amounts of each non-native host. This supports our prediction that caterpillars 

will consume and prefer native foliage over non-native foliage and larvae will have no 

preference when given a choice between two non-native hosts. 

 Hyphantria cunea caterpillars reared on non-native L. maackii for 27 days had a 

significant preference for L. maackii over non-native P. calleryana. Larvae also preferred 

to feed on native L. reticulata and native P. serotina over L. maackii but this was not 

significant. Larvae reared on native P. serotina strongly preferred P. serotina over non-

native L. maackii when given a choice. Lastly, larvae reared on non-native P. calleryana 

preferred native L. reticulata and P. serotina over P. calleryana when given a choice. 

Overall, no matter what foliage the H. cunea larvae were reared on, they would almost 

always choose to consume a native host over a non-native host. When given the option 

between two non-natives, H. cunea in this case chose the natal host. This supports our 

prediction that caterpillars will consume and prefer native foliage over non-native foliage. 

However, it did not support our prediction that caterpillars will have no preference when 

given a choice between two non-native hosts. 
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4.5 CONCLUSION 

Overall, some non-native species (L. maackii, L. tatarica and P. calleryana) 

appear to be suitable host for H. cunea and other non-native species (L. japonica, E. 

alatus, and E. umbellata) are unsuitable hosts for early larval development by reducing 

the larval survival and preventing larval growth. There appears to be a range in the leaf 

quality of novel hosts which corresponds with H. cunea performance. The high leaf 

quality (e.g. L. maackii) leads to high larval performance, the intermediate leaf quality 

(e.g. P. calleryana) leads to intermediate larval performance, and the low leaf quality (L. 

japonica) leads to low larval performance. This same leaf quality associated with larval 

performance can be seen in native hosts as well, where better quality hosts lead to higher 

performance than lower quality foliage (Loewy 2013).  

The larval interactions between H. cunea and novel hosts is dependent on the 

novel host and the time of interaction. For example, newly emerged larvae perform very 

poorly on L. japonica, E. umbellata, and E. alatus indicating a negative interaction 

between H. cunea and the novel hosts. On the other hand, newly emerged larvae feeding 

on non-native L. maackii perform very well, indicating a positive interaction with some 

novel hosts. The life stage of H. cunea at the interaction plays a big role. Later instar 

larvae which fed on L. japonica were able to survive and develop just as well as on native 

hosts, indicating a positive interaction between H. cunea larvae and this novel host. Later 

instar H. cunea larvae are very mobile and often switch hosts as they continue to develop 

outside of their natal nest. Later instar H. cunea were able to successfully switch hosts 

onto all native and non-native Lonicera tested. However, when given a choice, H. cunea 
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larvae will prefer to consume native foliage, suggesting a neutral interaction in which H. 

cunea larvae will avoid using non-native hosts. 

The novel plant insect interaction between adult H. cunea and novel hosts was not 

a focus of this study, but we did observe H. cunea webs on non-native L. maackii, L. 

japonica, and P. calleryana in the field. This indicates that female H. cunea are 

recognizing and ovipositing eggs on novel hosts in the field. This is supported by a study 

done by Mason et al (2011), looking at female H. cunea oviposition host choice. They 

found females were choosing host based on the abundance of the potential hosts rather 

than larval performance or avoidance of enemies (Mason et al. 2011). This suggest H. 

cunea females have high selective pressure to reduce oviposition search time to avoid 

potential predation (Loewy 2013). Since invasive, non-native hosts are often very 

abundant in invaded sites, H. cunea may oviposit on non-native host more often than 

previously thought. Since, adult H. cunea do not select host based on larval performance, 

this may lead to negative impacts of laying on eggs on novel hosts that do not support the 

development of early instar larvae like L. japonica and E. umbellata. 

The generalist H. cunea appears to already be interacting with novel hosts as they 

invade habitats throughout Ohio and the United States. On native hosts, H. cunea can 

cause significant defoliation (Cranshaw et al. 2000) and reduce plant growth. Hyphantria 

cunea may start increasing herbivory rates on these non-native hosts, which typically 

receive minimal herbivore damage, in particular L. maackii (Lieurance and Cipollini 

2012). Hyphantria cunea could potentially become a native generalist that can help keep 

L. maackii, L. japonica, L. tatarica, and P. calleryana populations “in-check” especially 

in the summer and fall.  
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Table 4.1 ANOVA table for mean larval mass of the generalist H. cunea feeding in 

groups for four weeks in a no-choice bioassay on the artificial diet, native (L. 

reticulata and P. serotina), or non-native (L. maackii, P. calleryana, E. alatus, E. 

umbellata, and L. japonica) species. 

 

 

 

 

Table 4.2 ANOVA table for H. cunea caterpillar mass of survivors through time 

when reared individually on an artificial diet, native (L. reticulata and P. serotina), 

and non-native (L. maackii, P. calleryana, E. alatus, E. umbellata, and L. japonica) 

species for two weeks before pupation began. 

 

 

 

 

 

Table 4.3 ANOVA table for H. cunea pupal mass of female and male reared in a no-

choice bioassay on an artificial diet, native (L. reticulata and P. serotina), and non-

native (L. maackii, P. calleryana, E. alatus) species. 

 

 

 

 

 DF MS F  P value Significant 

Treatment 7 0.0044 29.76 P < 0.0001 Yes 

Error 172 0.0001    

 DF MS F  P value Significant 

Time 3 0.0976 177.70 P < 0.0001 Yes 

Treatment 5 0.0676 16.53 P < 0.0001 Yes 

Time x Treatment 15 0.0049 8.98 P < 0.0001 Yes 

Error 252 0.0005    

 DF MS F  P value Significant 

Sex 1 0.0062 14.43 P = 0.0003 Yes 

Host 5 0.0020 4.56 P = 0.0012 Yes 

Sex x Host 5 0.0006 1.28 P = 0.2808 No 

Error 68 0.0004    
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Table 4.4 ANOVA table for the mean number of days for H. cunea to reach 

pupation after being reared in a no-choice bioassay on an artificial diet, native (L. 

reticulata and P. serotina), and non-native (L. maackii, P. calleryana, E. alatus) hosts. 

 

 

Table 4.5 ANOVA table for the mean number of days after pupation for H. cunea to 

emerge in 2015 after being reared in a no-choice bioassay native (L. reticulata and P. 

serotina), and non-native (L. maackii, P. calleryana, E. alatus) species. 

 

 

 

Table 4.6 ANOVA table for H. cunea caterpillar weight of survivors through time 

when reared on native (L. reticulata and L. sempervirens) and non-native (L. 

maackii, L. tatarica, and L. japonica) honeysuckle species in 2014. 

 

 

 

 

Table 4.7 ANOVA table for mean relative growth rate of surviving H. cunea after 

being placed individually for 14 days on native (L. reticulata and L. sempervirens) 

and non-native (L. maackii, L. tatarica, and L. japonica) honeysuckle species. 

 

 

 

 DF MS F  P value Significant 

Treatment 5 1400.0000 24.83 P < 0.0001 Yes 

Error 86 56.3900    

 DF MS F  P value Significant 

Treatment 4 54.3800 0.57 P = 0.6912 No 

Error 11 95.7200    

 DF MS F  P value Significant 

Time 5 0.0998 153.80 P < 0.0001 Yes 

Treatment 4 0.0153 2.92 P = 0.0300 Yes 

Time x Treatment 20 0.0015 2.24 P = 0.0022 Yes 

Error 255 0.0006    

 DF MS F  P value Significant 

Treatment 4 0.0024 2.22 P = 0.0800 No 

Error 51 0.0011    
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Table 4.8 ANOVA table for H. cunea mean pupal mass of female and male H. cunea 

caterpillars switched after four weeks onto native (L. reticulata and L. sempervirens) 

and non-native (L. maackii, L. tatarica, and L. japonica) honeysuckle species. 

 

 

 

 

Table 4.9 ANOVA table for the mean number of days for H. cunea to reach 

pupation after being reared in a no-choice bioassay on native (L. reticulata and L. 

sempervirens) and non-native (L. maackii, L. tatarica, and L. japonica) honeysuckle 

species. 

 

 

 

Table 4.10 ANOVA table for the mean number of days for adults to emerge after 

being removed from 4 ᵒC to 25 ᵒC incubator to emerge on native (L. reticulata and L. 

sempervirens) and non-native (L. maackii, L. tatarica, and L. japonica) honeysuckle 

species. 

 

 

 

 

  

 DF MS F  P value Significant 

Sex 1 0.0032 11.62 P = 0.0015 Yes 

Host 4 0.0034 12.27 P < 0.0001 Yes 

Sex x Host 4 0.0016 5.73 P = 0.0009 Yes 

Error 41 0.0003    

 DF MS F  P value Significant 

Treatment 4 71.5500 2.88 P = 0.0323 Yes 

Error 49 24.8800    

 DF MS F  P value Significant 

Treatment 4 5.1630 0.15 P = 0.9635 No 

Error 24 35.6100    
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Figure 4.1 Life cycle of H. cunea.  Adult females lay eggs on leaves in large groups 

covered with here scales. The eggs hatch in 9-13 days. Larvae typically feed in 

groups for at least 4 weeks, after four weeks the larvae continue development 

individual. Larvae begin to pupate around 40 days after hatching. Some pupa go 

into diapause until the next year and others will emerge the same year after about 

18-22 days. 
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Figure 4.2   Larval survivorship (A) and larval mass (B) of the generalist H. cunea 

feeding in groups for four weeks in a no-choice bioassay on artificial diet, native (L. 

reticulata and P. serotina), or non-native (L. maackii, P. calleryana, E. alatus, E. 

umbellata, and L. japonica) species. Letters represent a difference in means 

determined through Tukey post hoc tests (P < 0.05).  

P < 0.0001 

 = 163.9 

P < 0.0001 

N =30 N = 47 N = 49 N = 37 N = 54 N = 46 N = 27 N = 38 

N =20 N = 21 N = 28 N = 36 N = 53 N = 10 N = 2 N = 9 
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Figure 4.3   Mean larval mass of surviving H. cunea feeding on an artificial diet, and 

the foliage of two native and five non-native species for 49 days (A), relative growth 

rate (RGR) (B), and larval survival (C). RGR was calculated on day 14, before any 

larvae pupated. Species not included in the statistical analysis are denoted as “n.a.”. 

Letters represent a difference in means determined through Tukey post hoc tests (P 

< 0.05). Numbers in the bars represent sample size. 

P = 0.0014 
P < 0.0001 

 = 366.3 

13 17 18 19 14 9 
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Figure 4.4 Mean pupal mass for female (gray) and male (black) H. cunea 

caterpillars feeding on an artificial diet, and foliage of two native and five non-

native species (A), and ratio of female and male pupae (B). Species not included in 

the statistical analysis are denoted as “n.a.”. Letters represent a difference in means 

determined through Tukey post hoc tests (P < 0.05). Numbers in the bars represent 

sample size. 

P < 0.0001 

 = 50.27 

6 12 10 12 4 2 1 5 6 7 8 7 
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Figure 4.5 Mean days for H. cunea caterpillars to reach pupation feeding on a 

artificial diet, and foliage of two native and five non-native species (A), percentage 

reaching pupation (B), days to emergence (C), and percentage emerged (D). Species 

not included in the statistical analysis are denoted as “n.a.”. Letters represent a 

difference in means determined through Tukey post hoc tests (P < 0.05). Numbers in 

the bars represent sample size. 

P = 0.0373 P < 0.0001 

 = 55.07 

P < 0.0001 

 = 137.0 
P = 0.6912 

13 17 18 20 14 9 
20 20 20 20 20 10 3 9 

2 5 2 2 5 13 17 18 20 14 9 n.a
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Figure 4.6   Mean larval mass of surviving H. cunea feeding on foliage of two native 

and three non-native Lonicera species (A), relative growth rate (RGR) (B), and final 

larval survival (C). RGR was calculated on day 14, before any larvae pupated. 

Letters represent a difference in means determined through Tukey post hoc tests (P 

< 0.05). Numbers in the bars represent sample size. 
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Figure 4.7 Mean pupal mass for female (gray) and male (black) H. cunea 

caterpillars feeding on foliage of two native and three non-native Lonicera species 

(A), and ratio of female and male pupae (B). Letters represent a difference in means 

determined through Tukey post hoc tests (P < 0.05). Numbers in the bars represent 

sample size. 

P = 0.0596 

 = 9.061 
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Figure 4.8 Mean days for H. cunea caterpillars to reach pupation feeding on foliage 

of two native and three non-native Lonicera species (A), percentage reaching 

pupation (B), days to emergence after a cold period of 4 ᵒC for 8 months (C), and 

percentage emerged (D). Letters represent a difference in means determined 

through Tukey post hoc tests (P < 0.05). Numbers in the bars represent sample size. 

P = 0.4652 

P = 0.1450 P = 0.0009 

 = 18.62 

P < 0.0001 

 = 35.75 

12 9 11 11 9 14 9 14 13 13 

12 9 11 11 9 8 7 4 5 5 



128 
 

   

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9   Mean larval choice preference of the generalist H. cunea when reared 

on (A) L. maackii, (B) P. serotina, and (C) P. calleryana for 27 days and then given 

native and non-native host choices. The choice index was calculated as (Leaf area 

removed Choice 1 -  Leaf area removed choice 2/ Total leaf area removed) x 100. The 

mean choice index is shown above. One sampled T-tests were performed to see if 

choice index differed from zero (no preference). * = significant preference. Numbers 

in the bars represent sample size. 
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Figure 4.10   Mean larval choice preference of the generalist H. cunea when given a 

choice between L. reticulata and L. maackii, L. reticulata and L. tatarica, and L. 

maackii and L. tatarica. Hyphantria cunea caterpillars were reared on black cherry 

for approximately 4 weeks before the choice trials were run in 2014. The choice 

index was calculated as (Leaf area removed Choice 1 - Leaf area removed choice 2/ Total 

leaf area removed) x 100. The mean choice index is shown above. One sampled T-

tests were performed to see if choice index differed from zero (no preference). * = 

significant preference. Numbers in the bars represent sample size. 

 

  

10 10 10 



130 
 

5. CONCLUSIONS, FUTURE DIRECTIONS, AND APPLICATIONS 

 

In this study, I found that the specialist sawfly A. americana can lay eggs and the 

eggs can successfully develop in native (S. albus and L. reticulata) and non-native (L. 

maackii and L. japonica) foliage. Newly emerged A. americana and Z. montana larvae 

can reach pre-pupation on native L. reticulata, native S. albus, and non-native L. maackii, 

but have 100% larval mortality on L. japonica. When Z. montana larvae were switched 

onto non-native Lonicera species after 2 weeks, larvae reached pre-pupation on native (S. 

albus and L. reticulata) and non-native (L. maackii and L. tatarica) foliage. Abia inflata 

and Z. montana larvae performed equally well on undamaged and artificially damaged 

foliage. However, A. inflata had a reduction in larval mass on herbivore damaged foliage, 

whereas, Z. montana larvae had no reduction in mass on herbivore damaged foliage.  

The generalist H. cunea caterpillars reared from eggs on native and non-native 

host had a wide range of performance. Some non-native species (L. maackii, L. tatarica 

and P. calleryana) appear to be suitable host for H. cunea, whereas other non-native 

species (L. japonica, E. alatus, and E. umbellata) are unsuitable hosts for early larval 

development. When four week old H. cunea caterpillars are switched onto native and 

non-native Lonicera species caterpillars could reach pupation, even on L. japonica. When 

H. cunea are given a choice between native and non-native foliage, caterpillars preferred 

native foliage. However, when given a choice between two non-native species, 
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caterpillars had no preference when the non-native species were closely related, and 

strongly preferred L. maackii over P. calleryana.   

Overall, both specialist and generalist herbivores can perform equally well on 

most native hosts and some non-native invasive plants. All species in this study can 

perform well and complete their whole life cycle on L. maackii. This was surprising to 

find, because in the field, L. maackii has relatively low herbivory rates. For specialists, 

this low herbivory suggests a neutral interaction in which A. americana, A. inflata, and Z. 

montana do not use or do not recognize L. maackii as a suitable, novel host. If no native 

foliage is present, the specialist A. americana will lay eggs in L. maackii and L. japonica. 

On the other hand, the generalist H. cunea appears to have a positive interaction with L. 

maackii, because adults will oviposit on L. maackii in the field and the larvae can 

perform well on this novel host. Other novel hosts, especially L. japonica, are not suitable 

hosts for the specialist or generalist herbivores in this study. If adults preferentially 

oviposit on L. japonica, this could lead to population declines of some our specialist and 

generalist herbivores. More oviposition studies are needed to fully investigate the 

interactions of these specialist and generalist herbivores with these novel host and 

additional non-native hosts. Also, choice oviposition studies would help determine if 

adults prefer to oviposit in native or non-native foliage. 

As L. maackii continues to spread and outcompete the preferred, native hosts of 

these specialists and generalist, they may be forced to interact with this novel host. Adults 

that recognize L. maackii as a suitable hosts will have reduced searching time to find an 

oviposition site due to the high abundance of this non-native plant. This reduced 

searching time will increase adult survivorship and potential reproductive fitness. From 
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our studies, A. americana, A. inflata, Z. montana, and H. cunea larvae can perform just as 

well on L. maackii as their preferred native hosts. Non-native L. maackii is very abundant 

compared to native hosts, which would provide an ample food supply to herbivores that 

can recognize it as a host. Hyphantria cunea adults are already starting to recognize L. 

maackii and other non-native species as suitable host due to selection pressure on adults 

to quickly find oviposition sites. If selection pressure to find an oviposition site is high 

enough due to a reduction in native host populations, then adult A. americana, A. inflata, 

and Z. montana may begin to evolve mechanisms to fully utilize and recognize novel 

hosts, especially L. maackii. The specialists A. americana, A. inflata, Z. montana along 

with the generalist H. cunea could potentially become native herbivores that can help 

keep L. maackii populations “in-check”. Futures studies determining factors that 

influence host choices of adults and larvae could benefit efforts at using these native 

insects as biocontrol agents for L. maackii or other non-native, invaders. 
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