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ABSTRACT

Hierath, Sarah Teresa. M.S. Department of Physics, Wright State University, 2016. Social
Network Analysis and the Representation of Female Students in Introductory
Undergraduate Physics

Physics Education Research has begun to focus on the learning habits, success, and

connections of students in physics classrooms using Social Network Analysis (SNA). SNA

is an important tool in studying classroom dynamics because it can be used to map the

social structure of a classroom’s interactions and to aid in understanding how students

work and study together. This study presents network diagrams, statistics, centrality mea-

sures, and conceptual understanding correlations for 7 different sections of introductory

physics. Centrality measures were determined from a first and last week survey in which

students were asked to indicate their study partners within the class. Courses were then

analyzed in aggregate and by gender to look for gender effects in network participation,

which may take the form of different patterns of centrality, or different centrality shifts

over the semester. These measures were then correlated with Force Concept Inventory

(FCI) scores and gains.
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Chapter 1

Introduction

Physics Education Research seeks to improve instructional methods and enhance stu-

dent learning and understanding in physics (Beichner, 2009). Researchers and teachers

work together to give students a strong foundation while minimizing the potential strug-

gles encountered by students, particularly women and underrepresented minorities (Gon-

zales et al., 2002). Social Network Analysis allows us to study, quantify, and visualize the

relationships that students build throughout a course and can be used in order to better

understand classroom dynamics in hopes (or as a means) of increasing student success

(Brewe et al., 2012; Bruun and Brewe, 2013). Student connections can be evaluated using

different types of measures, called centrality. Different types of centrality consider factors

such as students’ numbers of connections, their positions as "information brokers" be-

tween groups of others students, or an iterative estimate based on the importance of their

network "neighbors." By correlating these centrality calculations with a success measure

like the Force Concept Inventory (FCI), a common conceptual test, we may be able to

examine how new methods of instruction affect student learning (Hestenes et al., 1992).

The FCI lends itself to studying student success because of its reliability to measure con-

ceptual gains, which can be slower to improve than students’ ability to solve quantitative

textbook or exam problems (Hake, 1998). Centrality values for students in several sec-

tions of introductory undergraduate physics will be reported, in addition to correlations

of these values with FCI post scores and gains. Additionally, student rankings based on

the different measures of centrality will be correlated to determine the effect of the cen-
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trality measure on the students position within a network. Finally, preliminary results

will be reported for these analyses for women specifically, as their under-representation

in physics means that they are sometimes lost in the overall data.

1.1 Purpose of study

Educational research is important because it works to improve the learning and un-

derstanding of students, and educating individuals in order to better prepare them for the

workplace is one of the most important tasks that fall upon university faculty (National

Research Council, 2012). Traditional modes of instruction have left students with less

understanding than what was intended or expected, and educational research has sought

to change this (Freeman et al., 2014). New modes of instruction like active learning and

group cooperation have been developed in hopes of improving student understanding

by implementing more hands-on, engaging activities. Additionally, women and students

from underrepresented minority groups may struggle more in traditional passive lec-

ture settings (Seymour, 1995), for many reasons that could potentially be addressed in

an active learning environment. In physics, female students are exceptionally under-

represented and their success rates are of particular interest to education researchers

(Jovanovic and King, 1998; Seymour, 1995).

In order to better understand how of different instructional methods affect students,

specifically females, social network analysis has been used to analyze and graphically

display the connections that students make with one another throughout an introductory

physics course. The aim of this study is to probe not just students’ individual concep-

tual gains, but also how the social structure of the classroom develops over a semester,

and how this may connect with conceptual gains. After analyzing this information, con-

ceptual gains may be correlated with network information to explore the relationship

between instruction, connection, and understanding. The purpose of this study is to ex-

amine the representation of female students in introductory physics courses, and how the

connections they make are related to their conceptual gains.
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1.2 Significance of the study

Female students are often underrepresented in the sciences, however the absence of

female students is particularly pronounced in physics, with only about 20% of awarded

bachelor’s degrees going to female students 1. At a university where many different

forms of instruction exist, are any of these forms more conducive to the success of female

students? While research indicates that active learning and group-based activities may

improve student understanding, do classes that encourage group work also encourage

interaction of females students with their classmates? Additionally, does interaction with

classmates correlate with higher conceptual gains and successes in the course? By quanti-

fying the interactions and successes of female students, perhaps more can be understood

about this under-representation and how it can be changed. In order to better understand

the learning habits, group interactions, and success of female students in physics courses,

social network analysis and conceptual gains will be explored for several sections of intro-

ductory calculus-based physics and compared to the overall gains of the sections. These

results may provide feedback to the department and university as a whole as the school

implements more active learning classroom settings, and will add to the still-growing

literature on network analysis in introductory science classrooms.

1This data can be seen at the APS website at http://www.aps.org/programs/education/
statistics/womenphysics.cfm
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Chapter 2

Literature Review and Background

2.1 Educational Research Importance

Education-based research has become an important aspect in preparing undergradu-

ate students for the workplace. While it is critical for students to learn and understand

the complicated topics of science and engineering, it is equally essential to ensure that

the material is communicated in a way that is conducive to the students. The National

Academy of Sciences (NAS) directed the National Research Council (NRC) to develop a

committee to more closely examine discipline-based education research with the goal of

improving the education of undergraduate science and engineering students (National

Research Council, 2012). It is also important to note that while previous modes of edu-

cation have relied on the communication and repetition of facts, more recent education

research has focused on the importance of understanding, rather than memorizing mate-

rial.

Assembled by the NRC in 2010, the Committee on Undergraduate Physics Educa-

tion Research and Implementation began identifying and evaluating the goals and chal-

lenges of physics education. From this study, many important themes became apparent.

These themes included how foundational and fundamental physics is, that systemic ten-

sions, major challenges, and improvements exist, and that there can be a scientific ap-

proach to how physics is taught. Physics provides fundamental information about the

universe while helping students to develop conceptual understanding and mathematical

techniques to comprehend complicated processes. However, this is not without strain.
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Many physics departments play an important role in educating many majors, but physics

majors remain particularly scarce with serious under-representation of minority groups.

Additionally, despite the large numbers of students required to take physics courses, pre-

and post- testing conceptual testing indicate students struggle to understand core physics

principles (National Research Council, 2013). In order to improve the undergraduate ed-

ucation of physics, new methods of teaching have been developed to incorporate (and

sometimes correct) pre-existing knowledge and to promote active learning by encourag-

ing group problem solving and metacognition as students determine what material they

do or do not understand (National Research Council, 2004). More recently, education

research has indicated that utilizing active learning style courses rather than traditional

lecture courses may improve the success and understanding of students (Freeman et al.,

2014).

Physics Education Research (PER) aims to understand and learn how students work

with and apply physics material. PER comes in several forms, from more basic to more

applied, in both qualitative and quantitative forms while also exploring socio-cultural

issues like race and gender in addition to epistemology and attitudes about physics.

Basic PER looks to explain how students learn and use physics while applied PER looks to

analyze these results, induce instructional changes, and analyze the results of the imposed

changes. Qualitative PER includes interview-based studies in which students may be

asked to talk through their problem solving methods, in order to gain insight into how

students approach and utilize physics in problem solving. Quantitative PER typically

incorporates the Force Concept Inventory (FCI) or similar testing methods where results

are statistically analyzed over large sets of data in order to identify the topics and concepts

that students may struggle with (Beichner, 2009).

While Physics Education Research may appear to fall under the scope of education

rather than physics, it is important to note that being able to understand the concepts be-

ing tested or explored is an important attribute the researcher must possess and explains

why this research is typically conducted within a physics department rather than a de-

partment of education. The typical Physics Education Researcher is not simply a faculty

member that teaches, they are faculty that conduct research that is focused on students
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and the education of physics. This is distinctly different from curriculum development

because the focus on education is more about what students gain from physics, how in-

struction can be improved to help students understand, how students solve problems,

and what students fail to understand (Beichner, 2009). Additionally PER looks at how

instructional methods affect student knowledge development and understanding, while

recognizing that both acquisition of information and participation are important to learn-

ing (Sfard, 1998). The investigation of discourse models and collaborative group learning

would fall within the scope of PER (Beichner, 2009) and many researchers have begun

to explore the effects of group-based activities on the understanding of physics concepts

(Heller et al., 1992; Heller and Hollabaugh, 1992).

In the last 5-10 years, students’ social interactions and collaborations in class have be-

gun to be studied at a course-wide level using techniques from social network analysis

(SNA) (Brewe et al., 2010; Grunspan et al., 2014). This is important because student-

student interactions are foundational to many active learning techniques, but close qual-

itative studies (Alsop and Watts, 1998) are impractical to do at such a large scale.

PER also examines the under-representation of minority groups in physics education.

Women in particular are seriously underrepresented in physics and at least some of this

difference has been attributed to the classroom environment (Seymour, 1995).

2.2 Social Network Analysis

Social network analysis (SNA) is an important tool used by researchers to represent

the flow of information within a network of individuals (Cook et al., 1983). The goal

of SNA is to understand the relationships and structures that make up the network. In

educational research, SNA is typically used within a class to map the connections that

students make with others over the course of a semester as a means of improving the

educational experience. Networks consist of students and the relationships between them

and they are represented by nodes and edges. In a network, each student is represented

by a node and the edges indicate the self-identified interaction between students within

the specified network. Network data can be obtained using survey style questionnaires
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in which students may be asked to identify who they work or study with within the class

(Marsden, 2011). Once a network is constructed, this information can be correlated with

success measures (Grunspan et al., 2014)

In PER, SNA has been used to map the development of relationships within physics

courses over a given period of time. In most cases, this time period is the length of one

course (a semester), but in some cases data is recorded over longer intervals. The length

and frequency of data collection is determined by the researcher and depends upon what

type of information is sought. Additionally, PER has begun to incorporate SNA as a

means of monitoring the effects of participation in learning communities as a measure of

success, rather than just conceptual gains or course grades (Goertzen et al., 2012). This

allows for researchers to better understand the role that participation plays in retention

rates of physics majors, along with the interaction of students within the learning commu-

nity (Brewe et al., 2012). More intricate applications of SNA aim to quantify the changes

that large networks undergo (Rosvall and Bergstrom, 2010) and how groups within a net-

work evolve, congregate, and stabilize over time (Bruun and Bearden, 2014). This study

will utilize SNA to map the representation of female students in multiple sections of

introductory physics as a measure to correlate with conceptual gains.

2.2.1 Network Diagrams

Each network object can be plotted as a visual representation of connections between

people within the course. These network objects are constructed using data collected

through a survey-style questionnaire that students completed at both the beginning and

end of the course. The dots (also called nodes) in a network diagram represent students

while the lines connecting them (also called edges) represent a connection in which at

least one of the two students involved in the connection identified the other as someone

they work with to learn physics. Our network objects are undirected, meaning that a

connection from one node to another is present so long as one of the students in the con-

nection identified the other. A directed network would typically have arrows connecting

students in order to indicate which students were named by others, and a link could be

two-way or one-way depending on whether both students reported the connection.
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2.3 Centrality Measures

Once a network has been constructed, the nodes and connections of the network can

be evaluated in a multitude of ways. One way to mathematically describe the nodes of

a network is to use centrality measures. Centrality is a mathematical formulation with

many forms that depend on the information sought by the researcher. The most basic

form of centrality is degree centrality which is a measure of the number of connections

a node makes to other nodes in the network. The higher the number of connections a

node has, the higher the degree centrality of the node (Freeman, 1978). Another measure

of centrality is betweenness centrality, which is related to the number of times a given

node appears on the shortest path between two other nodes in the network. A node

that is situated between two nodes that are otherwise limitedly connected would have a

high betweenness centrality, while a node that is not situated between many nodes, or

is not located on the shortest path between nodes would have a low betweenness cen-

trality (Freeman, 1978). Eigenvector centrality is an additional measure of centrality, that

depends on the connectedness of a nodes connections. A node with connections to other

nodes that are largely further connected to other nodes, would have a high eigenvector

centrality. A node that is connected to other nodes that have fewer connections would

have lower eigenvector centrality (Bonacich, 1987). Other measures of centrality include

closeness and PageRank, but are outside the scope of this project (Freeman, 1978; Page

et al., 1998).

A network diagram will typically show the many nodes of the network presented as

points, with lines (edges) connecting them, showing the connections identified between

students. Different measures of centrality reveal different information about the network

objects and each can be used to create different network diagrams (Cook et al., 1983).

These constructions allow us to quantify how important an individual may be within the

network, while also allowing us to characterize the nodes with various other pieces of

information, like FCI scores or demographic information.
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2.4 Force Concept Inventory (FCI)

The Force Concept Inventory (FCI) was developed by David Hestenes, Malcolm Wells,

and Gregg Swackhamer in the late 1980s/early 1990s (Hestenes et al., 1992). It is a

concept-based examination that can be utilized to gauge student misconceptions about

the physics of force in introductory physics courses. The inventory consists of 30 mul-

tiple choice questions that probe students’ understanding of Newtonian Mechanics by

presenting a set of answers in which the correct, Newtonian choice is present in addition

to the "commonsense" answer. Incorrect answers on the FCI are indicative of concepts

where students allow their common sense thoughts, rather than knowledge of physics,

dictate how they solve a problem or apply a concept. The test has shown exceptional

reliability and reproducibility as diagnostic and an instructional evaluation tool (Hake,

1998).

Some concerns about the FCI include whether it should be used as a placement test,

whether it is meaningful to students, and its pre-test use as an influence on its post-test

scores. In short, the FCI alone should not be used as a placement test, but students do

take the exam seriously whether it is graded or ungraded and administering the FCI as

a pretest does not have a statistically significant effect on the posttest scores (Henderson,

2002). Other criticisms revolve around the authors’ 6 broad categories of questions pre-

sented in the exam. The questions on the inventory fall into the categories of Kinematics,

Impetus, Active Force, Action/Reaction Pairs, Concatenation of Influences, and Other

Influences on Motion. While a physicist or educational researcher might agree with the

developers’ categories, a factor analysis suggests that students actually see these ques-

tions as unique items. They answer the questions mostly by applying bits and pieces of

their conceptual knowledge rather than a broader understanding (Huffman and Heller,

1995). While correct answers on the FCI are not quite as revealing as incorrect responses,

if we can decrease the number of incorrect responses on the FCI over the course of a

semester, we can attribute this to student conceptual improvement.

Our goal in this study is to use the FCI as a means of measuring student success in

introductory physics. We plan to correlate different network centrality measures with
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students’ gain on the FCI. Using gain allows us to compare scores of multiple sections

to each other because all courses were taught at Wright State University. The FCI is

chosen as our success measure because it is typically administered to each course at the

beginning and end of the first semester of physics. Another option would have been to

use final grades or exam grades as a measure of success, however with multiple faculty

members teaching these courses, the differences in syllabus structure, scheduling, and

material influence may have led to larger disparities between courses. The FCI provides

a consistent measure of success across multiple sections of introductory physics and can

be paired with SNA to quantify the effects of student-student interactions (Bruun and

Brewe, 2013).

2.5 Gender

While the number of women in the physics has continued to increased over the past

several years, enrollment of females in physics is still the lowest amongst the sciences cite.

The fraction of bachelor’s degrees earned by women in physics is approximately 20%

while in other science and mathematics majors this ratio is significantly higher (Biology

>55%, Chemistry >45%, Math and Stats >40%, Earth Sciences >35%). The fraction of

bachelor’s degrees earned by women is >55%1. Research has focused on the pre college

experiences of men and women in an attempt to discern when the retention rates begin

to decrease and what may cause them. These disparities begin early as boys and girls

receive different types of feedback and attention, and are observable by 9th grade. The

actual college experiences of female students choosing science, math, and engineering

majors is less known. It is possible that emotions play a large role in why undergraduate

and graduate level female students leave science, math, and engineering disciplines with

reports of depression or alienation (Seymour, 1995; Gonsalves, 2012). Educators hope

that by preventing these feelings or by looking at the role of connections made by female

students to other students in courses may help these students perform better and succeed

1See data from the American Physical Society http://www.aps.org/programs/education/
statistics/womenmajors.cfm, APS graph: Fraction of Bachelor’s Degrees Earned by Women, by Major,
sourced from the IPEDS Completion Survey.
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in science courses and as science majors.

Another important struggle facing women in physics is the idea of stereotype threat.

Stereotype threat has three main components. The first requires the individual be aware

of a negative stereotype about a group with which they identify. This could take the form

of a female student being aware of the stereotype that women aren’t as good at math as

men. Second, the individual must be in a situation where the stereotype seems salient,

like a female student taking a difficult, math-intensive exam. This is where the third piece

comes in: because the student is aware of the stereotype and are in a situation where it

may seem most noticeable, they experience additional cognitive load while attempting to

perform well. As a result, a portion of the student’s attention is divided into attempting

to disprove the stereotype and they aren’t able to fully focus on the task at hand, thus

adversely affecting their grade or score (Aronson, 2004).

While any group can be subjected to stereotype threat (Aronson et al., 1999), female

students are particularly susceptible to this Aronson (2004), and the effect can be com-

pounded when female students belong to additional minority groups (Gonzales et al.,

2002). In a physics classroom, small numbers of female students are enrolled alongside

large numbers of male students. This setting in particular can lead to adverse perfor-

mance effects by either directly or indirectly inducing anxiety (Aronson, 2004) and these

adverse effects may play a part in the under-representation of females in physics and

their success rates. Additionally, introductory physics courses are well known as so-

called "weed-out" courses and this notion may emphasize the effects of stereotype threat

by adding additional pressure to students, specifically female students (Gonsalves, 2012).

In order to examine the centrality measures and success scores of female students, we

will present data for our overall sections (including both male and female students) in

addition to the data for the female students within those sections (Rodriguez et al., 2012).
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Chapter 3

Methods

3.1 Introduction and Background

Network and conceptual data were collected at both the beginning and end of each

semester. Students were asked to complete a survey, outside of class, in order to identify

with whom they worked to learn physics. They were provided a roster and were able to

choose classmates from this list. Conceptual data was collected using the FCI which was

taken during the first week of classes either in-class or during lab. Pre data was obtained

during the first week of class and post data was obtained during the last week of class.

The network data allows us to graphically represent students within the course and study

how their connections to other students change throughout the semester. The FCI allows

us to measure conceptual gains students obtain by taking the course. We would like to

compare the network and centrality data correlated with conceptual gains for both the

entire class and the gender-differentiated network. Centrality data is calculated from

the network/survey data and then each form of centrality can be used to correlate with

conceptual data to track gender differences throughout the course.

3.2 Human Subject Research

One focus of educational research is how individuals are educated and how they

respond to different modes of instruction. In order to research such a topic, human

subjects must be used which comes with important guidelines and considerations. While
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the implications of educational research may appear as only beneficial, it is still important

to protect the identity of the subjects of a study. In order to regulate how human subjects

are researched, universities use Institutional Review Boards (IRB) which are responsible

for monitoring the research that is conducted on human subjects by researchers at the

university. To conduct research on human subjects, researchers must seek IRB approval

by clearly stating the goals, methods, implications, and outcomes of the research they

intend to conduct. This also requires not only the notification of the subjects in question,

but also their consent to participate in the given study. The identities of the subjects in

this study are anonymous, however the demographic and testing information used in our

study is considered sensitive information by the IRB and is a key part of our analysis. The

informed consent materials used for this study can be found in Appendix 6.2 (Antonellis

et al., 2012).

3.3 Measures of Centrality

In social network analysis, centrality is a measure that is used to quantify the position

of a node within a network. Centrality can be calculated in a number of ways, depend-

ing on the information that is sought from the network. Some measures of centrality

include degree, betweenness, closeness, eigenvector, and PageRank. Different measures

of centrality reveal different information about the nodes of the network based on dif-

ferent assumptions about what processes are important in network communication. This

study will focus on degree, betweenness, and eigenvector centrality. Degree centrality is

the number of connections that a given node has to the other nodes in the network. This

centrality measure can be normalized by dividing the total number of connections of the

node by N-1, where N is the total number of nodes in the network. Betweenness central-

ity is a measure of a nodes position between other nodes in the network, and can also be

normalized, but with a different normalization factor than degree centrality. Eigenvector

centrality is a measure of the connectedness of a nodes connections.

In this study, network centrality measures of interest include degree, betweenness,

and eigenvector centrality. Each of these measures produces slightly different results and
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have varying indications about a network object. The formulas used for each of these

centrality measures will be provided and explained below.

The adjacency matrix is a mathematical representation of the course network. Undi-

rected networks, such as the networks in our data, will have symmetric adjacency matri-

ces, where each student is both a column and a row, and a matrix entry of 1 indicates that

one of the students (either column or row) identified the other on the survey as someone

they work with to learn physics. An example adjacency matrix, A, is presented below.

A =

0

BBBBBBBBBB@

0 1 0 0 0 0 0 0
1 0 1 0 0 1 0 0
0 1 0 1 1 1 0 0
0 0 1 0 0 0 0 0
0 0 1 0 0 1 1 0
0 1 1 0 1 0 0 1
0 0 0 0 1 0 0 1
0 0 0 0 0 1 1 0

1

CCCCCCCCCCA

(3.1)

If students A through H had participated in the survey, this matrix would indicate

that student A was connected to student B, student B was connected to students A, C, F,

student C was connected to students B, D, E, and F, student D was connected to student C,

student E was connected to students C, F, and G, student F was connected to students B,

C, E, and H, student G was connected to students E and H, and student H was connected

to students F and G. The graphical representation of this network would look like Figure

3.1.

Figure 3.1: Toy Network A

Degree, betweenness, and eigenvector centrality mores will be described in detail and

sample calculations will be shown for Toy Network A.

14



3.3.1 Degree Centrality

Degree centrality for node i is calculated by summing the ith row of the adjacency

matrix, or:

CD(i) =
n

Â
j=1

gij(i 6= j) (3.2)

This measure is also sometimes used as a normalized value, in which the highest

degree centrality a node may have is 1, indicating that it is directly connected to all of the

other nodes in the network (Freeman, 1978). This calculation is accomplished by dividing

the degree centrality of the node by n-1 (where n is the total number of nodes in the

network), as shown below:

CD,normalized(i)
Ân

j=1 gij

n � 1
(i 6= j) (3.3)

For the Toy Network in Fig. 3.1, the degree of each node is tabulated in Table 3.1.

Table 3.1: Degree Centrality for Toy Network A

Node A B C D E F G H
Degree 1 3 4 1 3 4 2 2

Normalized Degree 0.14 0.43 0.57 0.14 0.43 0.57 0.29 0.29

Degree centrality is simply the number of connections each individual student has. If

a student is named by many and/or names many students within the course that they

learn physics with, this student would have a high degree centrality.
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3.3.2 Betweenness Centrality

Betweenness centrality measures the extent to which a particular node lies on the

shortest paths between the other nodes in the network (Freeman, 1978). In more detail, it

is expressed as the sum of the shortest paths (or geodesics), g, between node j and node

k including node i, over the total number of shortest paths between node j and k, up to a

total number of nodes, n.

CB(i) =
n

Â
j<k

gjk(i)
gik

(3.4)

Betweenness centrality can be normalized by dividing by the number of node pairs

excluding the node i, where n is the total number of nodes, as follows:

(n � 1)(n � 2)
2

(3.5)

Hence, normalized betweenness centrality would be calculated by

CB,normalized(i) =
Ân

j<k
gjk(i)

gik

( (n�1)(n�2)
2 )

=
CB(i)

( (n�1)(n�2)
2 )

(3.6)

For the Toy Network in Fig. 3.1, the betweenness of each node is tabulated in Table

3.2. A student that is situated between large numbers of nodes, appearing on many

paths between nodes, would have a higher betweenness centrality than a node with few

connections, located near the exterior of a network.

Table 3.2: Betweenness Centrality for Toy Network A

Node A B C D E F G H
Betweenness 0 6 8.33 0 3.83 6.83 0.5 1.17

Normalized Betweenness 0 0.29 0.40 0 0.18 0.33 0.02 0.06

3.3.3 Eigenvector Centrality

Eigenvector centrality is a measure of the connectedness of a node’s connections. It

takes into account the entire shape and structure of the network, not just the connections
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of the ith node. A given node is represented as a row and column within the adjacency

matrix. Connections to other nodes are indicated with an entry of 1, while an absence

of connection is marked with an entry of 0. This matrix will typically be symmetric

for an undirected network, and the main diagonal entries will be zeros (Bonacich, 1987).

According to Bonacich, this centrality of node i may be calculated by:

lei = Â
i

Aijej (3.7)

For a network of multiple nodes, the eigenvector centrality is calculated by solving

the system of linear equations through the classic eigenvalue-eigenvector problem. After

obtaining the eigenvalues, the highest eigenvalue is typically used in order to calculate

eigenvector, which will then represent the eigenvector centralities of the nodes in the

network.

det|A � lI| = 0 (3.8)

Where I is the identity matrix, which will have dimensions n x n for a network of n nodes.

For Toy Network A, this identity matrix would have dimensions 8 x 8 and would look

like

I =

0

BBBBBBBBBB@

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

1

CCCCCCCCCCA

(3.9)

lv = Av (3.10)

The eigenvector centrality of Toy Network A, shown in in Fig. 3.1, is presented in

Table 3.3. This was calculated using the highest eigenvalue of matrix A, which is 2.982.

A node with a high number of connections to nodes with high numbers of connections
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Table 3.3: Eigenvector Centrality for Toy Network A

Node A B C D E F G H
Eigenvector 0.518 1.545 2.004 0.672 1.672 2.086 0.896 1

would have a higher eigenvector centrality than a node that is connected to nodes with

few connections.

3.4 Participants and Course Logistics

Wright State University is a public institution located in Fairborn, Ohio. According to

the Office of Institutional Research at there were 13,614 undergraduates attending in Fall

of 2014. Of these undergraduates, there were 6,994 females and 6,620 males. In the Fall of

2015, there were 13,710 undergraduates, of which 7,079 were female and 6,631 were male

1.

In the last several years, Wright State University has begun to incorporate more active

learning educational settings. The Physics Department has several types of instructional

methods that have been used in recent semesters, mostly for the introductory physics

courses. These methods vary from traditional lecture to heavily interactive. The tradi-

tional style courses typically involve an instructor lecturing and working problems during

class, with students listening and taking notes. The heavily interactive courses, such as co-

operative group problem-solving and SCALE-UP (Student-Centered Activities for Large

Enrollment Undergraduate Programs) courses tend to incorporate less lecture and more

student involvement (Beichner et al., 2007). Data collected for this study was collected

over four semesters and consists of multiple course types and sizes of calculus-based in-

troductory physics I (PHY 2400), taught by four different instructors, which are detailed

below.

Our first semester of data (Section A) is for a large scale (~220 students), lecture-based

instruction course that met three times for 55 minutes and incorporated a separate 55

minute recitation each week. This course was taught by instructor 1, with three additional

1This data can be seen at the WSU Institutional Research website at http://www.wright.edu/
institutional-research/publications-and-resources/student-fact-book
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instructors assisting with recitations. The second semester of data contains three sections

of introductory physics. One section (Section B, taught by instructor 2) is a large scale

(~200 students), traditional instruction course that met twice weekly for one hour and 20

minutes and incorporated an additional 55 minute recitation section taught by separate

instructors, that met once each week. The other two sections (Sections C and D, taught by

instructor 3) were small scale (~20 students), cooperative group problem-solving courses

that both met twice weekly for one hour and 50 minutes. Our third semester of data (Sec-

tion E, taught by instructor 1) is for a small scale (~30 students), SCALE-UP instructional

course that met three times each week for one hour and 40 minutes. Our fourth semester

of data includes two sections of introductory physics. One section (Section F, taught by

instructor 4) was a medium scale (~100 students), traditional instruction course that met

three times for 55 minutes and incorporated a separate 55 minute recitation each week.

The other section (Section G) was medium scale (~70 students, taught by instructor 1),

SCALE-UP instructional course that met three times for one hour and 20 minutes each

week.

Table 3.4: Course Logistics

Section Instructor Class Size Meeting Frequency Class Length Recitation
A 1 ~220 students 4x per week 55 min. Yes
B 2 ~200 students 3x per week 80 min. Yes
C 3 ~20 students 2x per week 110 min. Integrated
D 3 ~20 students 2x per week 110 min. Integrated
E 1 ~30 students 3x per week 80 min. Integrated
F 4 ~100 students 4x per week 55 min. Yes
G 1 ~70 students 3x per week 80 min. Integrated

3.5 Statistical Correlations

Correlations were used for two reasons in this study. The first use was to deter-

mine what, if any relationship exists between network/centrality data and conceptual

scores/gains. The second use was to see how sensitive students’ centrality rankings are

to the centrality measure used (Kendall, 1938). Network data is inherently interdependent
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and because of this, permutation methods must be used when calculating correlation co-

efficients. In permutation methods, data is resampled over many iterations (n=10000) in

order to calculate the correlation coefficient between the variables being correlated. Once

statistical significance is determined (p<0.05), the correlation coefficient is compared to

different effect size ranges in order to appropriately characterize the relationship between

the variables (Fan, 2001). A coefficient of 0.1 is taken as a small effect, a medium effect

is approximately 0.3, and a large effect is anything above 0.5 (Cohen, 1992). In order to

detect a small effect, when using the correlation coefficient, the sample size must contain

783 participants while a medium effect requires 85 participants, and a large effect size

requires 28 participants.

3.6 Procedures

Network data was collected in each course section using a survey in which partici-

pants were asked the question "Who do you work with to learn physics in this class?"

Students were given the opportunity to complete this survey during the first and last

week of the course and chose from a roster list in order to identify those that they work

with (Marsden, 2011). In addition to the survey data, students also completed the Force

Concept Inventory (FCI) during the first and final week of the course (Hestenes et al.,

1992). Their scores on this concept test were used as a measure of learning gains in the

course. The post scores and score gain on the FCI were used as correlating factors with

the connectedness of each student at the beginning and end of the course, where the

connectedness of a student depends on the centrality measure chosen.

The Flowchart shown in Figure 3.2 shows how data is collected and combined in order

to conduct analysis and obtain results in this study.

This network data is inherently interdependent because it is built on relationships

between students, so one students’ connections are related to the other students in the

network. This requires the use of a permutation method which resamples the data re-

peatedly in order to determine the significance of the correlations between data sets. In

addition to correlation calculations, network objects were also constructed for the pre and
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Figure 3.2: Data Collection and Analyzation Flow Chart

post networks to display how the networks evolved from the start of the course to the

end, and to represent the proportion of females within the networks.

3.7 Instrumentation

Network analysis was conducted using the R Studio igraph package (Csárdi and Ne-

pusz, 2006). Node lists (the students in the network) and edge lists (the connections

between students) were constructed from survey data that was obtained using Qualtrics.

Students were asked to take this survey at the beginning and end of the course as part

of a longer survey that also included the CLASS (Colorado Learning About Science Sur-

vey). The network analysis portion of the survey provided students with the roster list

of names of the other students in the course, and also provided students the opportunity

to identify individuals they did not see on the list. Once this data was collected, student

names and information were formatted and standardized to match roster information.

Students also completed the FCI at the beginning and end of the course, which consists

of 30 multiple choice questions. Student responses were recorded on scantrons, which

were scored in order to calculate pre scores, post scores, and gains.
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3.8 Data Analysis

Network data was analyzed in RStudio using the igraph package. Network diagrams

were constructed from survey data and FCI results and demographic information from

the IRB were imported and attached to nodes by matching UIDs.
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Chapter 4

Results

Network surveys and the FCI were administered to each class (with the exception of

Section B, which did not take the FCI). Network surveys were taken outside of class, while

the FCI was taken either during class time or lab time. The class sizes and responses rates

are presented in Table 4.1for Sections A-G. From the network surveys, network objects

were constructed in R and graphical representations of the courses were created and are

presented. Student positions within these networks were characterized using degree,

betweenness, and eigenvector centrality. These centrality distributions of students are

presented in histograms and boxplots and are then followed by the cumulative degree

distributions. Cumulative degree distributions present the likelihood that a given student

has a specific degree centrality. Following the network objects, FCI results are reported

for each section of data, both for the overall class, and for the female students specifically.

These results are then combined with network centrality measures in order to determine

the relationship between student connections and conceptual gains.

4.1 Network Objects

The network object is a representation of the students in the classroom and the con-

nections between them. Each node represents a student while the lines connecting nodes

represent actual connections between them. The size of each node indicates a higher de-
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Table 4.1: Response Rates

Section Instructor Class Size FCI Network Survey FCI & Network Survey
A 1 Pre 203 94% 95% 88%

Post 209 73% 63% 61%
B 2 Pre 193 – 85% –

Post 188 – 83% –
C 3 Pre 26 92% 69% 65%

Post 19 68% 84% 63%
D 3 Pre 30 100% 75% 70%

Post 26 81% 69% 67%
E 1 Pre 36 69% 67% 66%

Post 29 59% 72% 59%
F 4 Pre 118 81% 41% 40%

Post 104 66% 28% 26%
G 1 Pre 70 80% 86% 57%

Post 71 63% 61% 45%

gree centrality. The network is undirected, indicating a connection regardless of which

student specified it. The following network diagrams are color coded by gender, with

male students colored blue, and female students colored pink. The size of the nodes also

vary, depending on the degree centrality of the node. Students with higher degree cen-

tralities are represented by larger nodes. It is important to note that proximity of nodes

in the network representation isn’t their actual closeness (another form of centrality), nor

does it indicate physical proximity within the class, as that was not documented or stud-

ied. Students with no connections to others are referred to as isolates and are identified

on the network objects as solitary points at the periphery of the network. The network

density is a measure of how densely connected the network is, and is calculated using

the number of connections divided by the total possible connections (given by n(n-1)/2,

where n is the number of nodes in the network). Table 4.2 contains a summary of the

descriptive network statistics for each of the various sections.
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Table 4.2: Network Descriptive Statistics

Section Nodes % Female Edges Network Density % isolates
A Pre 203 20.7% 213 0.010 34.0%

Post 174 19.0% 304 0.020 8.0%
B Pre 185 20.5% 288 0.017 11.9%

Post 177 22.9% 327 0.021 7.9%
C Pre 24 33.3% 28 0.102 4.2%

Post 19 26.3% 17 0.099 15.8%
D Pre 29 27.6% 47 0.116 3.4%

Post 23 30.4% 27 0.107 4.3%
E Pre 28 35.7% 28 0.074 10.7%

Post 29 31.0% 47 0.116 3.4%
F Pre 65 24.6% 41 0.019 32.3%

Post 57 22.8% 56 0.035 12.2%
G Pre 69 21.7% 69 0.029 15.9%

Post 63 23.8% 70 0.036 11.1%
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4.1.1 Section A

Section A was a large, lecture style course that met three times each week and incor-

porated peer instruction and group work. This course also had an additional recitation

period in which students were encouraged to work together to solve problems. The pre

and post network diagrams for Section A are presented in Figure 4.1. This was a large

class that contains 203 people in the pre network and 174 in the post network. The nodes

are colored by gender and the size of each node varies depending on its degree centrality.

Together these networks show that the course became more connected at the end of the

class (the percentage of isolates decreased from 34% to 8% and the number of connections

increased from 213 to 304), which is expected as students meet each other and begin to

work on physics together. It is important to note that this class began with a relatively

high number of connections. This may be attributed to the fact that introductory physics

is typically taken by second year students, whom may have already met some of the other

students in the course in earlier classes.

(a) Pre Network (b) Post Network

Figure 4.1: Section A Network Diagrams. These diagrams are color coded by gender
(male students are blue, while female students are pink), and sized by degree centrality.
Larger nodes have higher degree centrality.
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4.1.2 Section B

Section B was a large, traditional lecture style course in which students attended

class that met twice weekly for an hour and twenty minutes and also incorporated an

additional 55 minute recitation period. The pre and post network diagrams are shown

in Figure 4.2. This network, like section A, is a large course with 185 students in the

pre network and 177 in the post network. This course became more connected from

pre to post, as the number of isolates decreased from 11.9% to 7.9% and the number of

connections increased from 288 to 327. The pre course network was 20.5% female and

the post course network was 22.9% female. This class was also more connected at the

beginning of the course than expected, which could be attributed to the required pre-

requisites of the course (of Calculus I and/or EGR 1010), or that it was offered during the

second term of the year.

(a) Pre Network (b) Post Network

Figure 4.2: Section B Network Diagrams
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4.1.3 Section C

Section C was a small, interactive course in which students worked through hands-

on activities in order to solve problems and answer questions. The pre and post course

network diagrams are shown in Figure 4.3. This was a small class with 24 students in the

pre network and 19 in the post network. This course is a bit unusual because students

began the course working with more people than was reported at the end of the course

and the percentage of isolates increased from 4.2% to 15.8%. This decrease in connections

from pre to post can be explained by two mechanisms. In this course, fewer people took

the post survey in comparison to the pre survey, and the people who completed the post

survey actually reported fewer connections at the end of the course.

(a) Pre Network (b) Post Network

Figure 4.3: Section C Network Diagrams
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4.1.4 Section D

Section C was a small, interactive course in which students worked through hands-

on activities in order to solve problems and answer questions. The pre and post course

network diagrams are shown in Figure 4.4. This class began with 29 students and ended

with 23, with the number of connections decreasing throughout the semester and the

percentage of isolates increasing (from 3.4% to 4.3%). This course began with 27.6%

female and ended at 30.4% female. Initially the network was more connected than is

typically seen and is less connected at the end. This is a result of people identifying less

connections on the post survey than the pre survey.

(a) Pre Network (b) Post Network

Figure 4.4: Section D Network Diagrams
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4.1.5 Section E

Section E was a small, SCALE-UP style course in which students sat at tables in groups

of 5-6 and worked together to complete activities. The pre and post course network

diagrams are shown in Figure 4.5. There were 28 students in the pre network and 29

in the post network, with roughly 36% being female in the pre network and 31% in the

post. This course began with a large group of students identifying others in the course as

connections, and ended with a higher number of connections, which is expected, as the

percentage of isolates decreased 10.7% to 3.4%.

(a) Pre Network (b) Post Network

Figure 4.5: Section E Network Diagrams
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4.1.6 Section F

Section F was a large, traditional lecture course in which the instructor presented

material three times each week and students worked together on problem sets during an

additional recitation period. The pre and post course network diagrams are shown in

Figure 4.6. This course began with 65 students (24.6% female) in the pre network and

57 students (22.8% female) in the post network. The connections in this course increased

from pre to post and the number of isolates decreased, indicating it was more connected

as a whole at the end of the course. This course was actually larger than the network

object due to a relatively low participation rate on the pre and post course survey (41%

and 28% respectively), leading to a smaller network size than actual class.

(a) Pre Network (b) Post Network

Figure 4.6: Section F Network Diagrams
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4.1.7 Section G

Section G was a medium sized, SCALE-UP course in which students sat at tables in

groups of 5-6 and worked together to complete activities and solve problems. The pre

and post course network diagrams are shown in Figure 4.7. This course began with 69

students (21.7% female) in the pre network and ended with 63 students (23.8% females)

in the post network. The number of connections increased from the pre to post network

and the number of isolates decreased, indicating the network became more connected

over the semester.

(a) Pre Network (b) Post Network

Figure 4.7: Section G Network Diagrams
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4.2 Centrality

4.2.1 Section A

Figure 4.8 shows the histograms of the degree centralities for the pre and post course

networks of Section A. Degree centrality is plotted along the x-axis, while frequency is

plotted on the y-axis. The pre course histogram shows the frequencies of specific degree

centralities of students at the beginning of the course, and the post course histogram

shows the same information for the end of the course. The pink overlapping data set

represents the female degree centralities for Section A. In the pre course network, over

100 students had degree centrality of 0 or 1, indicating that they worked with no other

students in the course, or just one other student, and few students had more than 6

connections to other students at the beginning of the course. The post course network

shows less than 60 students had degree centrality of 0 or 1 at the end of the course, and

that more students had degree centralities of 3+, than at the beginning. For the female-

specific data, approximately 20 female students had degree of 0 or 1 at the beginning

of the course, with few having greater than 2+ connections. In the post course network,

only about 10 female students have degree 0 or 1, with more female students having high

degree centralities than the pre course network.

Figure 4.9 contains boxplots of the pre and post course degree centralities for the

overall and female networks. Boxplots display the five-number summary of the data,

including the minimum, first quartile, median, third quartile, and maximum values of

the data set. Roughly 50% of the data falls between the first and third quartiles, with an

additional 25% above the third quartile and below the first quartile. The median value

is the middle number of the data set, indicating that 50% of the data falls below that

number, and 50% is above it. The size of the boxplots are scaled by the size of the class,

using a factor of the square root of the number of students in the class.

These histogram in Figure 4.8, in addition to Figure 4.9, indicate that the number of

connections students made over the period of the course increased for the overall course

and for female students specifically. Degree centrality values range from 0 to 15, with
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69 students having degree 0 in the pre network and values range from 0 to 15, with 43

students having degree centrality of 1 in the post network. Figure 4.9 also shows that

outliers exist in both the pre and post network. In the pre network, 50% of the course

(overall or female) has degree centralities between 0 and 3, while in the post network,

50% have degree centralities between 1 and 5.

(a) Pre Network (b) Post Network

Figure 4.8: Section A Degree Centrality Histograms. It is important to note that the scale
of the vertical axes of the plot are not equivalent.
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Figure 4.9: Boxplot of Degree Centrality Pre and Post
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Figure 4.10 shows the histogram plots of the normalized betweenness centrality for

the pre and post course networks. Betweenness centrality is a measure of the position

of a node relative to other nodes in the network. Normalized betweenness allows for a

maximum centrality value of 1 and in both the pre and post course networks, no node

has betweenness centrality above 0.15. In both networks, the majority of students have

betweenness centrality values between 0 and 0.01. The post network does indicate that the

betweenness centrality increased for students over the course of the semester and Figure

4.11 shows this as well. There is a broader range of values for normalized betweenness

centrality in the post course network, indicating that a higher number of students were

situated between others in the post course network, when compared to the pre course

network.

(a) Pre Network (b) Post Network

Figure 4.10: Section A Betweenness Centrality Histograms. It is important to note that
the scale of the vertical axes of the plot are not equivalent.

Figure 4.11 shows that 75% of the pre course has betweenness centrality values be-

tween 0 and 0.005, with a maximum value of 0.112. In the post course, 75% of students

have betweenness centrality values between 0 and 0.017, with a maximum value of 0.142.

Figure 4.12 shows the histogram plots for eigenvector centrality for the pre and post

course networks of Section A. The pre course histogram shows that approximately 150

students had eigenvector centrality of less than 0.1 but this number decreased slightly in

the post course network. Eigenvector centrality is a measure of the connectedness of a
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Figure 4.11: Boxplot of Normalized Betweenness Centrality Pre and Post

nodes’ connections, and Figure 4.13 shows that while the pre course network had roughly

half the course with between 0 and 0.1 eigenvector centralities, the post course network

has nodes connected to more connected nodes, as the median eigenvector centrality mea-

sure is higher in the post course network than the pre course. It can also be seen that

outliers exist in both the pre and post course networks, as the range of eigenvector cen-

trality for both networks goes from 0 to 1, despite a high number of nodes having low

eigenvector centrality.
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(a) Pre Network (b) Post Network

Figure 4.12: Section A Eigenvector Centrality Histograms. It is important to note that the
scale of the vertical axes of the plot are not equivalent.

Figure 4.13: Boxplot of Eigenvector Centrality Pre and Post
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4.2.2 Section B

Figure 4.14 shows the histograms of degree centrality for the pre and post course

networks of Section B. The range of degree centrality in the pre network is 0 to 38, while

the post course network has a range of 0 to 35. In the overall course, nearly 70 students

had degree centrality of 0 or 1, while this number was closer to 50 in the post course

network. For female students specifically, about 15 students had degree centrality of 0 or

1 in the pre network, while less than 10 did in the post course network.

(a) Pre Network (b) Post Network

Figure 4.14: Section B Degree Centrality Histograms. It is important to note that the scale
of the vertical axes of the plot are not equivalent.

The median degree centrality increased for both the overall and female networks.

Figure 4.15 shows a boxplot of the degree centrality for Section B, where the median

degree centrality increased for both the overall and female networks. In the overall pre

network 50% of students have degree centrality between 1 and 4.00, while in the post

course network, 50% have degree centrality between 1 and 5. In the female pre network,

50% have degree between 1 and 5.75 and between 1 and 6 in the post network.

Figure 4.16 shows the betweenness centrality for the pre and post course networks for

Section B. The range of betweenness centralities for the pre course network is 0 to 0.37,

and is 0 to 0.51 for the post course network. In the pre course network, 75% of students

have betweenness centrality less than 0.09, and in the post course network, this number

is 0.14.
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Figure 4.15: Boxplot of Degree Centrality Pre and Post. The median degree centrality for
the overall network increased from 2 in the pre network to 3 in the post, while the median
in the female network increased from 2 to 4.

(a) Pre Network (b) Post Network

Figure 4.16: Section B Betweenness Centrality Histograms. It is important to note that the
scale of the vertical axes of the plot are not equivalent.

40



Figure 4.17 shows that the median betweenness centrality increased from pre to post,

starting at a value of 0.0007 in the pre, and increasing to 0.003 in the post. The mean

value increased as well, from 0.009 to 0.0138 and outliers exist in both cases.

Figure 4.17: Boxplot of Normalized Betweenness Centrality Pre and Post

Figure 4.18 shows that the ranges of eigenvector centralities for the pre and post course

networks go from 0 to 1. The mean eigenvector centrality increased from pre to post (from

0.08 to 0.098) while the median decreased (from 0.049 to 0.045), indicating that overall the

larger centralities increased and the smaller values remained the same or decreased. This

can also be seen in Figure 4.19.
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(a) Pre Network (b) Post Network

Figure 4.18: Section B Eigenvector Centrality Histograms. It is important to note that the
scale of the vertical axes of the plot are not equivalent.

Figure 4.19: Boxplot of Eigenvector Centrality Pre and Post
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4.2.3 Section C

Figure 4.20b shows the pre and post course degree distributions for Section C. In this

section, the overall pre course degree centralities range from 0 to 6, and in the post course,

they range from 0 to 4. In the female pre course network, degree centralities range from

1 to 3, and from 0 to 3 in the post course. In this section, the median and mean degree

centralities decreased for both the overall and female networks from pre to post, which

can be seen in Figure 4.21 and may be due to the small size of the class ( 25 students).

(a) Pre Network (b) Post Network

Figure 4.20: Section C Degree Centrality Histograms. It is important to note that the scale
of the vertical axes of the plot are not equivalent.

Figure 4.22 shows the betweenness centralities of the pre and post course networks

of Section C. In the pre course network, betweenness ranges from 0 to 0.63, and in the

post from 0 to 0.25. At both the beginning and end of the course, 50% of students had

betweenness values of 0. The mean betweenness centrality decreased from 0.107 in the

pre network to 0.041 in the post network, indicating that the students in the course were

less situated between others in the post network than in the pre network. This can also

be seen in Figure 4.23.

Figure 4.24 shows the eigenvector centrality distributions for Section C. These values

range from 0 to 1 in both the pre and post course networks. Both the mean and median

values of eigenvector centrality decreased from pre to post, as can be seen in Figure 4.25.
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Figure 4.21: Boxplot of Degree Centrality Pre and Post. Overall median degree is 2 for
the pre course and 1 for the post course. Female median degree is 1.5 for the pre course,
and 1 for the post course.

(a) Pre Network (b) Post Network

Figure 4.22: Section C Betweenness Centrality Histograms. It is important to note that
the scale of the vertical axes of the plot are not equivalent.
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Figure 4.23: Boxplot of Normalized Betweenness Centrality Pre and Post

(a) Pre Network (b) Post Network

Figure 4.24: Section C Eigenvector Centrality Histograms. It is important to note that the
scale of the vertical axes of the plot are not equivalent.
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Figure 4.25: Boxplot of Eigenvector Centrality Pre and Post
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4.2.4 Section D

Figure 4.26 shows the degree distributions for the pre and post course overall and

female networks of Section D. In the pre course network, degree centralities range from

0 to 7 and in the post course network they range from 0 to 5. Both the median and

mean values of degree centrality of the overall and female networks decreased from pre

to post for this section. Figure 4.27 shows a boxplot of the degree centrality data where

the overall median value decreased from 3 to 2, and the female median decreased from 4

to 2. The mean values also decreased, with the overall network decreasing from 3.24 to

2.35 and the female network decreasing from 4 to 1.86. This unusual decrease could be

due to the small class size of Section D, which contained approximately 25 students.

(a) Pre Network (b) Post Network

Figure 4.26: Section D Degree Centrality Histograms. It is important to note that the scale
of the vertical axes of the plot are not equivalent.

Figure 4.28 shows the betweenness centrality distributions for the pre and post net-

works. The pre course betweenness ranges from 0 to 0.236 and the post course between-

ness ranges from 0 to 0.244. The median and mean betweenness values decreased from

pre to post. The median decreased from 0.012 to 0.002 and the mean decreased from 0.067

to 0.055. This can also be seen in Figure 4.29.

Figure 4.30 shows the eigenvector centrality distributions for the pre and post course

networks. The range of eigenvector centralities are 0 to 1 for both pre and post course.

The median and mean eigenvector centralities decreased from pre to post. The median
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Figure 4.27: Boxplot of Degree Centrality Pre and Post

(a) Pre Network (b) Post Network

Figure 4.28: Section D Betweenness Centrality Histograms. It is important to note that
the scale of the vertical axes of the plot are not equivalent.
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Figure 4.29: Boxplot of Normalized Betweenness Centrality Pre and Post

decreased from 0.387 to 0.167 and the mean decreased from 0.482 to 0.287. This informa-

tion can also be seen in Figure 4.31.
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(a) Pre Network (b) Post Network

Figure 4.30: Section D Eigenvector Centrality Histograms. It is important to note that the
scale of the vertical axes of the plot are not equivalent.

Figure 4.31: Boxplot of Eigenvector Centrality Pre and Post

50



4.2.5 Section E

Figure 4.32 shows the degree centrality distributions for the pre and post course over-

all and female networks of Section E. The degree centrality values range from 0 to 5 in the

pre network and 0 to 9 in the post network. Both the median and mean degree centrality

values increased for the overall and female networks from pre to post. Figure 4.33 shows

that the overall median increased from 2 to 3, and the female median increased from 2.5

to 3. The overall mean increased from 2 to 3.24, and the female mean increased from 3 to

3.44.

(a) Pre Network (b) Post Network

Figure 4.32: Section E Degree Centrality Histograms. It is important to note that the scale
of the vertical axes of the plot are not equivalent.

Figure 4.34 shows the betweenness distributions of the pre and post networks. The

pre network betweenness ranges from 0 to 0.208 and the post network ranges from 0 to

0.28. The median value of betweenness centrality increased from pre to post, starting at a

value of 0.0057 and ending at 0.0097 while the mean value decreased from 0.055 to 0.046.

This can be seen in Figure 4.35.

Figure 4.36 shows the eigenvector centrality distributions for the pre and post course

networks. In both the pre and post course networks, the values range from 0 to 1, and

both the mean and median eigenvector centrality values increased. This can also be seen

in Figure 4.37.
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Figure 4.33: Boxplot of Degree Centrality Pre and Post

(a) Pre Network (b) Post Network

Figure 4.34: Section E Betweenness Centrality Histograms. It is important to note that the
scale of the vertical axes of the plot are not equivalent.
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Figure 4.35: Boxplot of Normalized Betweenness Centrality Pre and Post

(a) Pre Network (b) Post Network

Figure 4.36: Section E Eigenvector Centrality Histograms. It is important to note that the
scale of the vertical axes of the plot are not equivalent.
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Figure 4.37: Boxplot of Eigenvector Centrality Pre and Post
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4.2.6 Section F

Figure 4.38 shows the degree centrality distributions of the pre and post course overall

and female networks for Section F. The range of degree centrality values for the pre

network is 0 to 6, and is 0 to 7 in the post course network. Figure 4.39 shows that the

overall median value of degree centrality remained constant at 1, while the female median

increased from 0.5 to 2. The mean degree centrality increased for both the overall (from

1.26 to 1.97) and for the female network (from 0.94 to 2.850).

(a) Pre Network (b) Post Network

Figure 4.38: Section F Degree Centrality Histograms. It is important to note that the scale
of the vertical axes of the plot are not equivalent.

Figure 4.40b show the betweenness centrality distributions for the pre and post course

networks. Betweenness ranges from 0 to 0.052 in the pre network, and 0 to 0.35 in the post

network. The median betweenness value remained constant at 0 from pre to post while

the mean decreased from 0.0048 to 0.0047. The pre course network has 75% of students

with betweenness centrality of 0. This can also be seen in Figure 4.41.

Figure 4.42 shows the eigenvector centrality distributions for the pre and post course

networks. In both the pre and post course, the range of centralities is 0 to 1 and the

median and mean eigenvector centrality values increased from beginning to end. The

median increased from 0 to 0.027 and the mean increased from 0.094 to 0.142.
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Figure 4.39: Boxplot of Degree Centrality Pre and Post

(a) Pre Network (b) Post Network

Figure 4.40: Section F Betweenness Centrality Histograms. It is important to note that the
scale of the vertical axes of the plot are not equivalent.
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Figure 4.41: Boxplot of Normalized Betweenness Centrality Pre and Post

(a) Pre Network (b) Post Network

Figure 4.42: Section F Eigenvector Centrality Histograms. It is important to note that the
scale of the vertical axes of the plot are not equivalent.
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Figure 4.43: Boxplot of Eigenvector Centrality Pre and Post
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4.2.7 Section G

Figure 4.44 shows the degree centrality distributions for the pre and post course over-

all and female networks of Section G. In the pre network, degree values range from 0 to 6

and in the post they range from 0 to 7. Figure 4.45 shows that the median value of degree

centrality remained constant at 2 for the overall and female network. The mean degree

values both increased, with the overall starting at 2 and increasing to 2.22, and the female

network starting at 2.26 and ending at 2.33.

(a) Pre Network (b) Post Network

Figure 4.44: Section G Degree Centrality Histograms. It is important to note that the scale
of the vertical axes of the plot are not equivalent.

Figure 4.46 shows the betweenness centrality distributions for the pre and post course

networks. The pre network betweenness values range from 0 to 0.25 and the post network

values range from 0 to 0.428. The median betweenness centrality value remained constant

at 0 from pre to post while the mean value increased from 0.027 to 0.059. This can also be

seen in Figure 4.47.

Figure 4.48b shows the eigenvector centrality distribution for the pre and post course

networks. The eigenvector centrality values range from 0 to 1 in both pre and post, and

the mean and median values increased from beginning to end. The mean increased from

0.095 to 0.16 and the median increased from 0.0125 to 0.0141. This can also be seen in

Figure 4.49
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Figure 4.45: Boxplot of Degree Centrality Pre and Post

(a) Pre Network (b) Post Network

Figure 4.46: Section G Betweenness Centrality Histograms. It is important to note that
the scale of the vertical axes of the plot are not equivalent.
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Figure 4.47: Boxplot of Normalized Betweenness Centrality Pre and Post

(a) Pre Network (b) Post Network

Figure 4.48: Section G Eigenvector Centrality Histograms. It is important to note that the
scale of the vertical axes of the plot are not equivalent.
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Figure 4.49: Boxplot of Eigenvector Centrality Pre and Post
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4.2.8 Summary

Figures 4.50 and 4.51 show the summary boxplots for sections A through G, includ-

ing pre and post degree centrality spreads for both the overall networks and the female

networks. The width of these plots is dependent on the number of students represented

in each (so smaller sections like C, D, and E are narrower than larger sections like A and

B). For sections A, B, E, and F, the median degree centrality increased for both the overall

network and for the female network, while in sections C, D, G, the median degree cen-

trality for both the overall and female network either decreased (C,D) or remained nearly

the same (G). These results are also summarized in Table 4.3 which shows how the mean

(x̄) and median (Med.) changed for each centrality measure from the pre network to the

post of each section. An up arrow indicates that the centrality measure increased, a down

arrow indicates a decrease, and a – indicates no change from the beginning to end of the

semester.

Figure 4.50: Boxplot of Degree Centrality Pre and Post by Section
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Figure 4.51: Boxplot of Degree Centrality Pre and Post of Females by Section

Table 4.3: Overall Pre-Post Centrality Changes by Section

Centrality
Degree Betweenness Eigenvector

Overall || Female Overall || Female Overall || Female
Section x̄ | Med. | x̄ | Med. x̄ | Med. | x̄ | Med. x̄ | Med. | x̄ | Med.

A "" | "" "" | "" "" | #"
B "" | "" "" | # " " # | ""
C ## | ## - # |- # ## | " #
D ## | ## ## | ## ## | ##
E "" | "" # " | ## "" | ""
F " - | "" " - | "" "" | ""
G " - | " - " - | # - "" | ""
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4.3 Degree Plots

These plots demonstrate the fraction of the class that had a given degree centrality

and are differentiated for the male and female pre and post course networks of each

section. The proportion of students with a given degree is shown on the y-axis, using a

logarithmic scale and degree centrality, shown linearly, is on the x-axis.

4.3.1 Section A

Figure 4.52 shows the cumulative degree distribution for the female and male pre and

post networks of Section A. This plots shows that a smaller and smaller fraction of the

male and female networks had higher degree centralities. This would indicate that higher

degree centralities made up a smaller portion of the course and that a larger portion of

students had lower degree centralities.

Figure 4.52: Cumulative Degree Plot - Male and Female
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Figure 4.53: Cumulative Degree Plot - Female
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4.3.2 Section B

Figure 4.54 shows the cumulative degree distribution for the female and male pre and

post networks of Section B. In this plot, the outliers who had very high degree centrality

make up a very low portion of the class. This plot also shows that female students at

higher degrees are represented with larger proportions than the male students. A similar

trend is seen in the plots for Section E and G, which are not shown.

Figure 4.54: Cumulative Degree Plot - Male and Female. The y-axis is log-scale proportion
of the network and the x-axis is linear-scale degree centrality
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4.3.3 Section C

Figure 4.55 shows the cumulative degree distribution for the female and male pre

and post networks of Section C. This figure shows that the proportion of male students

with higher pre degree centralities are larger than female students at the higher degree

centralities but the proportions are closer at the lower degree centralities. Section D

reveals a similar trend and is not shown.

Figure 4.55: Cumulative Degree Plot - Male and Female. The y-axis is log-scale proportion
of the network and the x-axis is linear-scale degree centrality
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4.3.4 Section F

Figure 4.56 shows the cumulative degree distribution for the female and male pre and

post networks of Section F. In this plot we can see that as the degree centrality increases,

higher proportions of female students are present than male students. This course was a

traditional lecture with a separate recitation which may have allowed female students to

work with more students than in some of the others sections.

Figure 4.56: Cumulative Degree Plot - Male and Female. The y-axis is log-scale proportion
of the network and the x-axis is linear-scale degree centrality
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4.4 Force Concept Inventory Statistics

4.4.1 Section A

Tables 4.4 and 4.5 show the FCI pre, post, and gain statistics for the overall course

and for female students specifically for Section A. Table 4.4 includes the five number

summary (which includes the minimum value, first quartile, median, third quartile, and

maximum values of the data set) statistics of the FCI for the pre and post network, along

with the FCI gains, while Table 4.5 lists the mean and standard error of these statistics.

In this large section, the median and mean FCI scores for both the overall course and

female portion increased from pre to post. Female students had a slightly smaller range

of FCI gain values, however the maximum post score earned by females was lower than

that of the overall network. Female students also started and ended with lower median

and mean FCI scores, when compared with the overall network, as shown in Figure 4.57.

The median improvement of females in this course is the same as the overall network, at

4 points.

Table 4.4: FCI Statistics - Five Number Summary

Min 1st Qu. Med 3rd Qu. Max
Overall FCI pre 2.00 7.00 10.00 14.00 28.00

FCI post 1.00 8.00 12.00 21.00 30.00
FCI gain -6.00 1.00 4.00 7.50 18.00

Female FCI pre 2.00 7.00 9.00 12.00 22.00
FCI post 5.00 8.25 11.50 18.00 28.00
FCI gain -5.00 1.00 4.00 7.00 18.00

Table 4.5: FCI Statistics - Mean and Standard Error

Mean S.E.
Overall FCI pre 10.92 0.37

FCI post 14.28 0.66
FCI gain 4.29 0.45

Female FCI pre 9.225 0.66
FCI post 13.27 1.13
FCI gain 4.00 0.97
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Figure 4.57: Boxplots of FCI Statistics - Overall and Female

71



4.4.2 Section B

FCI data is not available for this section of PHY 2400.

4.4.3 Section C

Tables 4.6 and 4.7 show the FCI statistics for Section C. In this section, female students

begin and end the course with lower median and mean FCI scores when compared to

the overall course. Additionally, their maximum pre scores, post scores, and gains are

also lower than the overall network, however their minimum scores are equivalent to the

overall network. This can be seen in Figure 4.58.

Table 4.6: FCI Statistics

Min 1st Qu. Med 3rd Qu. Max
Overall FCI pre 1.00 7.00 11.00 17.00 25.00

FCI post 15.00 19.50 22.50 26.00 27.00
FCI gain 4.00 5.50 7.00 12.00 24.00

Female FCI pre 1.00 6.50 8.00 10.25 18.00
FCI post 15.00 15.75 18.00 20.50 22.00
FCI gain 4.00 4.50 5.00 6.00 7.00

Table 4.7: FCI Statistics - Mean and Standard Error

Mean S.E.
Overall FCI pre 12.00 1.41

FCI post 22.08 1.21
FCI gain 9.64 1.84

Female FCI pre 8.67 2.31
FCI post 18.25 1.65
FCI gain 5.33 0.88
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Figure 4.58: Boxplots of FCI Statistics - Overall and Female

73



4.4.4 Section D

Tables 4.8 and 4.9 show the FCI statistics for Section D. In this section, the lowest pre

and post score of females is higher than the overall course. The mean pre scores, post

scores, and gains of females is lower than that of the overall network. The span of scores

for the female portion is smaller for the pre and post scores, but is equivalent with the

overall network for gains, as can be seen in Figure 4.59.

Table 4.8: FCI Statistics

Min 1st Qu. Med 3rd Qu. Max
Overall FCI pre 2.00 8.00 10.00 14.00 19.00

FCI post 10.00 14.50 18.00 21.00 29.00
FCI gain 1.00 4.75 8.50 10.00 15.00

Female FCI pre 5.00 6.75 9.00 11.00 14.00
FCI post 11.00 12.25 16.50 20.00 24.00
FCI gain 1.00 2.50 6.50 9.75 15.00

Table 4.9: FCI Statistics - Mean and Standard Error

Mean S.E.
Overall FCI pre 10.55 0.84

FCI post 18.60 1.29
FCI gain 8.00 0.90

Female FCI pre 9.00 1.05
FCI post 16.67 2.19
FCI gain 6.83 2.21
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Figure 4.59: Boxplots of FCI Statistics - Overall and Female
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4.4.5 Section E

Tables 4.10 and 4.11 show the FCI statistics for Section E. The mean and median gains

of female students in this course are higher than the overall network, while the mean

and median pre and post scores of female students are lower than the overall network.

The overall network has wider spans of pre scores, post scores, and gains than female

students. This can be seen in Figure 4.60.

Table 4.10: FCI Statistics

Min 1st Qu. Med 3rd Qu. Max
Overall FCI pre 3.00 6.00 8.00 11.25 15.00

FCI post 5.00 7.00 11.00 17.00 22.00
FCI gain -5.00 -1.00 3.00 6.00 13.00

Female FCI pre 3.00 4.50 6.00 6.00 12.00
FCI post 7.00 7.00 7.50 8.75 15.00
FCI gain -5.00 3.00 3.50 5.50 7.00

Table 4.11: FCI Statistics - Mean and Standard Error

Mean S.E.
Overall FCI pre 8.21 0.69

FCI post 11.94 1.35
FCI gain 2.85 1.39

Female FCI pre 6.10 0.80
FCI post 8.83 1.28
FCI gain 3.00 1.73
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Figure 4.60: Boxplots of FCI Statistics - Overall and Female
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4.4.6 Section F

Tables 4.12 and 4.13 show the FCI statistics for Section F. Female students have higher

median and mean gains than the overall network. The overall network does have wider

spans of data for pre scores, post scores, and gains than the female network. The median

and mean pre scores for the overall network are higher than the female network, while

the post scores are closer together. These trends are well illustrated in Figure 4.61.

Table 4.12: FCI Statistics

Min 1st Qu. Med 3rd Qu. Max
Overall FCI pre 4.00 7.75 11.00 14.00 26.00

FCI post 4.00 11.25 14.50 21.00 26.00
FCI gain -1.00 2.00 5.00 6.75 17.00

Female FCI pre 4.00 6.00 9.00 12.00 18.00
FCI post 10.00 12.50 14.00 19.25 23.00
FCI gain 0.00 2.75 5.50 6.25 10.00

Table 4.13: FCI Statistics - Mean and Standard Error

Mean S.E.
Overall FCI pre 11.41 0.71

FCI post 15.96 0.87
FCI gain 5.03 0.62

Female FCI pre 9.33 1.13
FCI post 15.58 1.32
FCI gain 5.08 0.85
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Figure 4.61: Boxplots of FCI Statistics - Overall and Female
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4.4.7 Section G

Tables 4.14 and 4.15 display the FCI statistics for Section G. The minimum pre scores

are the same for the overall and female network, however female students have much

larger median and mean gains than the overall network. The ranges of pre scores, post

scores, and gains for the overall network are much larger than the female network. Female

students also began with lower pre scores than the overall network, as seen in Figure 4.62

Table 4.14: FCI Statistics

Min 1st Qu. Med 3rd Qu. Max
Overall FCI pre 2.00 6.00 11.00 15.00 30.00

FCI post 3.00 10.00 15.00 25.00 30.00
FCI gain -5.00 0.00 3.50 7.00 14.00

Female FCI pre 2.00 5.00 6.00 7.75 10.00
FCI post 6.00 9.50 14.50 15.00 16.00
FCI gain 7.00 7.50 8.00 8.50 9.00

Table 4.15: FCI Statistics - Mean and Standard Error

Mean S.E.
Overall FCI pre 12.41 1.06

FCI post 16.41 1.31
FCI gain 3.75 0.81

Female FCI pre 6.20 0.70
FCI post 12.33 1.73
FCI gain 8.00 1.00
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Figure 4.62: Boxplots of FCI Statistics - Overall and Female
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4.4.8 Summary

Figures 4.63 and 4.64 show the boxplot distributions of FCI pre and post scores for

the overall and female network. In each one of the overall networks the median FCI score

increased from pre to post, as it also did in the female network. In the overall network,

some sections underwent larger changes, like sections C and D, while others underwent

nearly the same changes, as seen for sections A, E, F, and G. In the female network,

sections C, D, F, and G underwent large changes, while sections A and E saw smaller

changes in the median FCI scores from pre to post. Figures 4.65 and Figure 4.66 show

the FCI gains for the overall and female networks for each section. These figures that the

FCI gains have relatively large spans for the middle 50% of the data (located between the

first and third quartiles) for the overall and female networks, and that the gains for each

appear to fall roughly around 5 points of gain.

Figure 4.63: FCI Pre and Post scores by section
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Figure 4.64: FCI Pre and Post scores of Females by section
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Figure 4.65: FCI Gains by Section
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Figure 4.66: Female FCI Gains by Section
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4.5 Correlations

4.5.1 Centrality and FCI correlations

Permutation correlation statistics were conducted on each semesters data set in order

to compare the FCI post scores and score gains with the pre and post degree, betweenness,

and eigenvector centralities for the entire network and the female network separately.

The correlations were run and p values were compared to an alpha of 0.05. Significant

correlations were those with a p-value of less than 0.05, indicating a relationship may be

present between the variables. Using the correlation coefficient as the effect size, we can

determine if our samples are large enough to comment on the size of the effect between

the variables. The number of students, and female students specifically, are presented by

section in Table 4.16.

Table 4.16: Student Counts

Overall Female
Section A Pre 203 42

Post 174 33
Section B Pre 185 38

Post 177 33
Section C Pre 24 8

Post 19 5
Section D Pre 29 8

Post 23 7
Section E Pre 28 10

Post 29 9
Section F Pre 65 16

Post 57 13
Section G Pre 69 15

Post 63 15

Below are the correlation values for each of the combinations. Table 4.17 shows that

Sections E, F, and G have significant correlations at the 0.05 level. Sections not presented

did not have statistically significant correlations, however the correlation coefficients and

corresponding p-values for these sections can be found in the Appendix. For Section E,

both FCI post and FCI gain, when correlated with post degree, have correlation coeffi-

cients of 0.5872 and 0.7293 respectively. This would indicate that students who ended
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the course with a higher number of connections to other students also had higher FCI

post scores and gains. Section F has a significant correlation for FCI post scores and post

degree with a correlation coefficient of -0.2996. This would indicate that students who

ended the course with a higher number of connections to other students had lower FCI

post scores and gains. Section G has a significant correlation between FCI post and post

degree with a correlation coefficient of -0.3517. This would indicate that students who

ended the course with a higher number of connections had lower FCI post scores.

Table 4.17: Correlation Results - Overall Network - Degree and FCI

Semester Exam Stat Pre Degree Pr (r � obs) Post Degree Pr (r � obs)
Section E FCI Post -0.2413 0.3880 0.5872 0.0120

FCI Gain -0.1028 0.7306 0.7293 0.0037
Section F FCI Post -0.0816 0.5650 -0.2996 0.0409

FCI Gain 0.0211 0.8968 -0.2425 0.1452
Section G FCI Post -0.0739 0.6328 -0.3517 0.0237

FCI Gain -0.0006 0.998 -0.0915 0.6200

Table 4.18 shows correlation results for the subset of female students. The correlation

of 0.3693 for FCI post scores with pre degree in Section A was significant at the 0.05 level.

This would indicate that female students who entered the course with a high number

of connections to other students had higher FCI post scores. All other correlations from

Section A are not significant, and neither are correlations conducted for Sections C, D, E,

F, and G.

Table 4.18: Correlation Results - Female Network - Degree and FCI

Semester Exam Stat Pre Degree Pr (r � obs) Post Degree Pr (r � obs)
Section A FCI post 0.3693 0.0308 -0.134 0.4836

FCI gain 0.05769 0.7472 -0.01898 0.9235

Table 4.19 shows that Section E had a significant correlation at the 0.05 level of 0.5025

for FCI post scores with post betweenness. This would indicate that students who had

higher betweenness centrality at the end of the course also had higher FCI post scores.

Sections C, D, E, F, and G did not have any significant correlations for FCI post or gain

with pre or post betweenness at the 0.05 level. Table 4.20 shows correlation results for

the subset of female students. A positive correlation of 0.5227 was present between pre
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betweenness centrality and FCI post scores of female students for Section A. This would

indicate that female students who entered the course with a higher betweenness centrality

had higher FCI post scores.

Table 4.19: Correlation Results - Overall Network - Betweenness and FCI

Semester Exam Stat Pre Betweenness Pr (r � obs) Post Betweenness Pr (r � obs)
Section E FCI Post -0.2415 0.3761 0.5025 0.0325

FCI Gain -0.2490 0.4074 0.4994 0.0849

Table 4.20: Correlation Results - Female Network - Betweenness and FCI

Semester Exam Stat Pre Betweenness Pr (r � obs) Post Betweenness Pr (r � obs)
Section A FCI post 0.5227 0.0018 -0.1529 0.411

FCI gain 0.1215 0.492 NA NA

Table 4.21 shows that the overall networks of Sections A, E, and G had significant

correlations at the 0.05 level for betweenness centrality and FCI post scores and gains.

Section A had correlation coefficients of -0.2023 and -0.3439 for FCI post with pre eigen-

vector, and FCI post with post eigenvector respectively. This would indicate that students

in this course who entered or ended the course with high eigenvector centrality had lower

FCI post scores. Section A also had a correlation of -0.2086 for FCI gain with post eigen-

vector. This would indicate that students who ended the course with higher eigenvector

centrality had lower FCI gains. Section E had correlation coefficients 0.5765 and 0.6509

for FCI post with post eigenvector and FCI gain with post eigenvector respectively. This

would indicate that students who ended the course with higher eigenvector centrality had

higher FCI post scores and gains. Section G had a correlation of -0.3748 for FCI post with

post eigenvector. This would indicate that students who ended the course with higher

eigenvector centrality had lower FCI post scores. Sections C, D, and F did not have any

significant correlations for FCI post or gain with pre or post eigenvector at the 0.05 level.

There were no significant correlations of FCI post scores or gains with pre or post

eigenvector centrality values for the female student network of any section at the 0.05

level.
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Table 4.21: Correlation Results - Overall Network - Eigenvector and FCI

Semester Exam Stat Pre Eigenvector Pr (r � obs) Post Eigenvector Pr (r � obs)
Section A FCI Post -0.2023 0.0156 -0.3439 0.0002

FCI Gain -0.1183 0.1834 -0.2086 0.0235
Section E FCI Post -0.2862 0.3058 0.5765 0.0151

FCI Gain -0.1696 0.5807 0.6509 0.0161
Section G FCI Post 0.2849 0.0545 -0.3748 0.0122

FCI Gain 0.1413 0.4180 -0.1044 0.5717
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4.5.2 Centrality Ranking Correlations

Tables 4.22 and 4.23 present the pre and post centrality ranking correlation coefficients

between degree, betweenness and eigenvector centrality . All of the following correlation

coefficients were significant at the 0.05 level, indicating that the ranking of students based

on different centrality measures appear in similar order. While both Kendall and Spear-

man correlations give slightly different values, they reinforce the relationships of these

centrality values because all of the correlations gave significant results. The larger the

correlation coefficient between two centrality measures, the more likely that that rank-

ing of students based on a given centrality measure will appear in similar order. In other

words, if each student in the course is characterized by a degree and betweenness central-

ity value, these correlation coefficients indicate that most of the time the students would

appear in a similar ranking order when ranked by either centrality measure. Table 4.22

shows that degree centrality and betweenness centrality tend to be the most correlated,

while eigenvector centrality and betweenness centrality tend to correlate the least. In

most cases, the Spearman coefficient is higher than the Kendall coefficient in both the pre

and post correlations. Additionally, the correlations do not seem to follow a trend when

comparing pre and post coefficients for the same course. In some instances the post cor-

relation ranking coefficients are higher than the pre, in some they are lower than the pre,

and in some they are roughly the same.
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Table 4.22: Correlation Results - Centrality Ranks - Pre Data

Section Method Degree Eigenvector Betweenness
Section A Kendall Degree - 0.6833 0.7289

Eigenvector - - 0.5804
Spearman Degree - 0.8327 0.8403

Eigenvector - - 0.7263
Section B Kendall Degree - 0.5349 0.7121

Eigenvector - - 0.4787
Spearman Degree - 0.6772 0.8597

Eigenvector - - 0.6157
Section C Kendall Degree - 0.7337 0.6152

Eigenvector - - 0.4128
Spearman Degree - 0.8470 0.6817

Eigenvector - - 0.4793
Section D Kendall Degree - 0.7089 0.7255

Eigenvector - - 0.6172
Spearman Degree - 0.8468 0.8594

Eigenvector - - 0.8008
Section E Kendall Degree - 0.5662 0.8047

Eigenvector - - 0.3805
Spearman Degree - 0.6912 0.9065

Eigenvector - - 0.5100
Section F Kendall Degree - 0.2036 0.6512

Eigenvector - - 0.2301
Spearman Degree - 0.2628 0.7098

Eigenvector - - 0.2909
Section G Kendall Degree - 0.6422 0.6909

Eigenvector - - 0.4667
Spearman Degree - 0.7622 0.8149

Eigenvector - - 0.5919
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Table 4.23: Correlation Results - Centrality Ranks - Post Data

Section Method Degree Eigenvector Betweenness
Section A Kendall Degree - 0.5811 0.6995

Eigenvector - - 0.4137
Spearman Degree 0.7291 0.8496

Eigenvector - - 0.5639
Section B Kendall Degree - 0.6326 0.6584

Eigenvector - - 0.5128
Spearman Degree - 0.7785 0.8155

Eigenvector - - 0.6865
Section C Kendall Degree - 0.7507 0.5996

Eigenvector - - 0.4382
Spearman Degree - 0.8662 0.6956

Eigenvector - - 0.5141
Section D Kendall Degree - 0.5018 0.6385

Eigenvector - - 0.4882
Spearman Degree - 0.5952 0.7880

Eigenvector - - 0.6025
Section E Kendall Degree - 0.8409 0.8351

Eigenvector - - 0.7255
Spearman Degree - 0.9441 0.9356

Eigenvector - - 0.8836
Section F Kendall Degree - 0.5456 0.7390

Eigenvector - - 0.4464
Spearman Degree - 0.6636 0.8431

Eigenvector - - 0.5577
Section G Kendall Degree - 0.5531 0.6937

Eigenvector - - 0.3256
Spearman Degree - 0.6882 0.8071

Eigenvector - - 0.4363
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Chapter 5

Discussion

5.1 Centrality and Network Representation

Social Network Analysis allows us to mathematically characterize and analyze stu-

dents within a network. Using SNA in PER to apply descriptive results is still a relatively

new technique and extracting information from different centrality measures when ap-

plied to many different class sizes and structures is difficult. The expected results of

degree, betweenness, and eigenvector centralities would typically show increases over

the course of a semester as students meet and have more opportunities to work together

but this wasn’t the case in every section.

The larger sections of data (A, B, F and G) do show that the mean degree centrality

values increased for both the overall and female networks, while the median values either

remained constant or increased. For the smaller sections of data (C, D, and E), these values

were less consistent. Sections C and D both saw decreases in the mean and median values

for the overall and female network degree centralities, while Section E saw increases in

these values. This may be due to different instructional methods, as sections C and D

were based on peer-instruction models taught by instructor 3, and section E was a newly

adapted SCALE-UP model taught by instructor 1. In sections C and D students may have

entered the course with more connections but by the end, they may have only identified
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the students they worked closely with at their tables, causing the number of connections

to decrease. In section E students were encouraged to work within their assigned groups,

which were shuffled over the course of the semester, and may have allowed students to

increase the number of individuals they worked with. Additionally, because of the small

class sizes, omitting even one high degree student from the correlation calculation could

have a more meaningful effect in comparison to removing a high degree student from a

class with more students.

Betweenness centrality saw mixed results throughout this study. One section saw

increases in both the median and mean (Section A) for both the overall and female net-

works, one section saw decreases in both the median and mean (Section D) for the both

the overall and female networks, and another section saw the mean decrease for the over-

all network while the median increased for the overall network and decreased for the

female network (Section E). The remaining sections (B, C, F, and G) saw varying results

for the mean and median for both the overall and female student networks.

Eigenvector centrality experienced the same inconsistent results, with the mean and

median increasing in sections A, E, F, G, both decreasing in sections C and D, and a mean

increase with a median decrease in Section B. These results indicate that more information

may be necessary to further understand the effects. By asking students to characterize

the relationships they form with others, we may be able to study the different groups

within a network of students. This could provide addition insight into how students

form connections and how they change depending on instructional methods.

However, this apparent decrease in centrality values may also be an artifact of the

small class sizes. It is inevitable that some students will be represented in pre or post

data but not in both, which would cause some differences in centrality distributions even

if nothing else about the network changed. In larger sections these effects are small

against the overall averages, but in small sections the removal of one high-degree node

could noticeably change the shape (and the corresponding calculations) of the network.
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5.2 Success and Gender

Extrapolating the effects of gender on success using social network analysis and con-

ceptual gains on the FCI revealed inconclusive results. Previous research using SNA in

PER has characterized students by gender, in addition to other factors, but results of cor-

relations between centrality and conceptual gains on the FCI have not been reported for

networks that were subset by gender. While the overall networks of sections E, F, and G

showed significant relationships between post network degree centrality and FCI scores

and/or gains, significant results were not obtained for the female subset of the network

in these sections. This could be due to the smaller proportion of female students within

these networks, which is then further complicated when response rates are not as high

as possible (in other words, if all female students do not complete the network survey

or the FCI at the beginning and end of the course, an already small part of the class is

even less represented in the network). When trying to detect significant correlations in

a small subset of a network, having an incomplete response from the population makes

it difficult to conduct correlation calculations. Conversely, the female network of Section

A showed a significant correlation between FCI post scores and initial degree centrality,

indicating that female students who began the class with more connections may fare bet-

ter when taking the FCI at the end of the course. This section also saw a strong, positive

correlation between female pre course betweenness centrality and FCI post scores. This

could indicate that female students who entered the course being located between higher

numbers of other students may have had better success when taking the FCI at the end

of the semester.

Section E showed a strong, positive correlation between overall post course degree,

betweenness, and eigenvector centralities and FCI post scores, but this relationship was

not significant for the female student subset of the network. Unfortunately eigenvector

centrality when correlated with FCI post scores and gains did not reveal any significant

relationships in the female network, and more data collection is necessary to further study

this centrality measure. Perhaps with higher response rates and more points of data

collection, we may be able to discern correlations between each of the centrality measures
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and FCI post scores or gains for both the overall network and the female student subset

of the network in each of the sections, or in future ones.
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Chapter 6

Conclusions and Future Work

Physics Education Research is actively working to improve the learning experience

and conceptual understanding of students in physics courses. By utilizing a powerful

tool like Social Network Analysis (SNA), we can gain insight to the relationships that

students build throughout these courses. For example, we anticipated seeing central-

ity measures increase throughout the semester as students work together with others,

however this was not the case in all sections of data, and was not always true for the

overall networks or the female student subset. Specifically, eigenvector centrality was in-

consistent across the sections presented in this study, which was unexpected. In fact, in

some of the smaller sections of data, centrality measures decreased from the pre to post

networks, where we would have expected to see an increase with students having more

of an opportunity to work together. It’s difficult to say with certainty what may have

caused this effect, but by asking more detailed questions about the relationships students

form with others, we can further characterize students in order to study their centralities.

Additional points of data collection throughout the semester could provide insight on

how frequently student connections are formed or lost and could also differentiate social

aspects student connections from those that are purely academic.

In correlating centrality measures, which quantify these connections, with success

measures like the Force Concept Inventory, we can draw conclusions about whether in-
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creasing student connections also increases their conceptual gains in a physics course.

While the data in this study was sporadic and hard to discern trends from, it still shows

that SNA can be used in a meaningful way to describe students relationships and graph-

ically represent them. Additional measures could also be used in these correlation cal-

culations, such as exam scores, final grades and even drop-fail-withdrawal (DFW) rates.

Students could be further characterized by their lab sections, pre-requisite grades, and

even grade levels to determine what impact these factors may have on their centrality

and conceptual gains.

In order to look closer at the female student subset of these networks, community de-

tection could be used to investigate group formation within these networks. This could

then be used further to determine how female students are represented within these

groups relative to the overall networks. For example, do female students appear to con-

gregate together, or do they make up an equivalent proportion of groups relative to their

proportion in the overall network? Future work could use SNA and the FCI to correlate

conceptual gains with different forms of centrality, or to study other under-represented

minority groups. These tools could also be used to compare different instructional meth-

ods, or be used to study different class sizes and setups like SCALE-UP and traditional

lectures.
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Chapter 7

Appendices

7.1 Additional Figures

7.1.1 Correlations

Table 7.1 includes the correlation results for the overall network between pre and post

degree centralities and FCI post scores and gains. The information presented in this

table contains the tests that revealed nonsignificant relationships between the variables in

question. Data with significant correlations can be found in Table 4.17.

Table 7.1: Correlation Results - Overall Network - Degree and FCI

Semester Exam Stat Pre Degree Pr (r � obs) Post Degree Pr (r � obs)
Section A FCI Post -0.1536 0.686 -0.1641 0.0619

FCI Gain -0.0793 0.3691 -0.0374 0.6823
Section C FCI Post 0.2772 0.406 0.0114 0.9714

FCI Gain 0.0436 0.8990 -0.0862 0.8081
Section D FCI Post 0.1074 0.6436 0.2616 0.2636

FCI Gain 0.0759 0.7452 0.3089 0.1861

Table 7.2 includes the correlation results for the female network between pre and post

degree centralities and FCI post scores and gains. The information presented in this

table contains the tests that revealed nonsignificant relationships between the variables in

question. Data with significant correlations can be found in Table 4.18.
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Table 7.2: Correlation Results - Female Network - Degree and FCI

Semester Exam Stat Pre Degree Pr (r � obs) Post Degree Pr (r � obs)
Section C FCI Post 0.6099 NA 0.2621 0.696

FCI Gain -0.9449 NA -0.9449 0.2661
Section D FCI Post 0.6175 0.1885 0.6497 0.1607

FCI Gain 0.7878 0.0707 0.7294 0.1055
Section E FCI Post -0.5241 0.3023 0.3814 0.5199

FCI Gain -0.5000 0.3305 0.5081 0.3255
Section F FCI Post -0.3599 0.3026 -0.1909 0.5512

FCI Gain -0.4831 0.1974 -0.4582 0.1345
Section G FCI Post -0.1265 0.8157 0.5985 0.2181

FCI Gain -1 NA NA NA

Table 7.3 includes the correlation results for the overall network between pre and post

betweenness centralities and FCI post scores and gains. The information presented in this

table contains the tests that revealed nonsignificant relationships between the variables in

question. Data with significant correlations can be found in Table 4.19.

Table 7.3: Correlation Results - Overall Network - Betweenness and FCI

Semester Exam Stat Pre Betweenness Pr (r � obs) Post Betweenness Pr (r � obs)
Section A FCI Post 0.0271 0.7659 -0.0549 0.5358

FCI Gain 0.0383 0.6745 0.0169 0.8608
Section C FCI Post 0.4337 NA 0.3715 NA

FCI Gain 0.2049 NA 0.2763 NA
Section D FCI Post 0.2062 0.3592 0.2477 0.2937

FCI Gain 0.1318 0.5571 0.2779 0.2401
Section F FCI Post -0.0815 0.5973 -0.0955 0.5294

FCI Gain 0.0229 0.8820 0.0046 0.9787
Section G FCI Post -0.0809 0.6111 -0.1098 0.4985

FCI Gain -0.0394 0.8218 -0.2236 0.2201

Table 7.4 includes the correlation results for the female network between pre and post

betweenness centralities and FCI post scores and gains. The information presented in this

table contains the tests that revealed nonsignificant relationships between the variables in

question. Data with significant correlations can be found in Table 4.20.

Table 7.5 includes the correlation results for the overall network between pre and post

eigenvector centralities and FCI post scores and gains. The information presented in this

table contains the tests that revealed nonsignificant relationships between the variables in

question. Bold-faced data represent statistically significant correlations that can also be
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Table 7.4: Correlation Results - Female Network - Betweenness and FCI

Semester Exam Stat Pre Betweenness Pr (r � obs) Post Betweenness Pr (r � obs)
Section C FCI Post NA NA NA NA

FCI Gain NA NA NA NA
Section D FCI Post 0.3937 0.4144 0.6053 0.1935

FCI Gain 0.5536 0.2504 NA NA
Section E FCI Post -0.7905 0.0711 0.4265 0.3827

FCI Gain -0.6803 0.1168 NA NA
Section F FCI Post -0.4553 NA 0.0476 0.8833

FCI Gain -0.3798 NA NA NA
Section G FCI Post -0.7527 NA 0.4488 NA

FCI Gain -1 NA NA NA

found in Table 4.21.

Table 7.5: Correlation Results - Overall Network - Eigenvector and FCI

Semester Exam Stat Pre Eigenvector Pr (r � obs) Post Eigenvector Pr (r � obs)
Section C FCI Post 0.0644 0.8547 -0.2708 0.4021

FCI Gain -0.4441 0.1674 -0.4426 0.1617
Section D FCI Post 0.0118 0.9586 -0.0297 0.8939

FCI Gain 0.0964 0.666 -0.1717 0.4698
Section F FCI Post -0.0469 0.7689 -0.0909 0.5557

FCI Gain -0.0614 0.692 0.0018 0.9924

Table 7.6 includes the correlation results for the female network between pre and post

eigenvector centralities and FCI post scores and gains. The information presented in this

table contains the tests that revealed nonsignificant relationships between the variables in

question.
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Table 7.6: Correlation Results - Female Network - Eigenvector and FCI

Semester Exam Stat Pre Eigenvector Pr (r � obs) Post Eigenvector Pr (r � obs)
Section A FCI post 0.2791 0.1121 -0.1254 0.5244

FCI gain -0.1868 0.2991 -0.3325 0.0763
Section C FCI Post 0.6099 0.6025 0.2621 0.6374

FCI Gain -0.9449 0.2397 -0.9449 0.2727
Section D FCI Post 0.2596 0.5949 0.5068 0.2961

FCI Gain 0.5065 0.2887 0.5314 0.284
Section E FCI Post -0.1373 0.7780 0.5037 0.3126

FCI Gain -0.4386 0.4024 0.4590 0.3739
Section F FCI Post -0.3757 0.2382 0.0197 0.9565

FCI Gain -0.4717 0.2452 -0.0470 0.8900
Section G FCI Post 0.2302 0.7588 0.1090 0.8758

FCI Gain -1 NA 1 NA
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7.2 Informed Consent Materials

Approval for this study was provided by the Institutional Review Board at Wright

State University under study number SC 5951. As part of this study, students were pro-

vided with the following consent form at the time they took the Force Concept Inventory.

SURVEY COVER SHEET

Students will read this information before taking the surveys, and either agree or disagree

to participate in place of a signed informed consent. If they do not agree, their results

will not be saved or used for analysis, but they will still receive credit for participation.

Introductory physics courses include a variety of learning strategies in addition to lecture.

The use of cooperative learning is designed to give you practice at working in groups, as

professional scientists and engineers do, and to help your learning by collaborating on

challenging problems. This semester, Dr. Adrienne Traxler will be evaluating this strategy

in the course. The evaluation is important in determining how cooperative learning can

best be used for this class, and how it can be improved. The evaluation data collected will

not be a part of your grade for the course (there are no âĂIJrightâĂİ or âĂIJwrongâĂİ

answers on the surveys), but will be used for future planning.

If the evaluation of the learning strategies is useful, Dr. Traxler would like to share it

with other educators and researchers to help them in teaching physics. Therefore, she

is requesting permission to share the data you provide with other educators as part of a

summary report and research work. These reports will be about results from the whole

class, so you will not be identifiable as an individual. Your survey results will be kept

only in password-protected electronic storage or locked physical storage, and only people

who are part of the research project will have access. Survey responses will not be seen by

your instructor during the semester, and so specific answers cannot influence your grade.

All data will be treated confidentially, and if shared in the scientific literature, will not

identify the particular class that provided the information.

This method of protecting your identity and the confidentiality of the data has been

approved by the appropriate review board at Wright State University.
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As part of taking PHY 2400, you are required to participate in all learning activities and

to complete the pre-course, mid-semester, and post-course surveys. If you are unable to

participate in the learning activities or surveys due to an excused absence, you will be

given a written make-up assignment.

You do have an option to allow or not allow the information you provide as part of this

evaluation of learning strategies to be shared with educators beyond this university. It

is hoped that you will consent to including your data in the analysis, because there will

be no way to identify you as an individual. After having any questions answered (email

the instructor or Dr. Traxler, adrienne.traxler@wright.edu, with any questions), please

indicate your willingness to have your data included as part of the summary report by

checking the appropriate box below.

The consent question will be stored as part of the survey, and all will be kept on a

password-protected website until the end of the semester. Dr. Traxler will not review

which students have chosen to allow their data to be shared in a group summary until

after the end of the semester and final grades have been posted.
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• All my questions about the evaluation of the learning strategies and the con-

fidentiality of any information I provide have been answered.

• I understand that all evaluation data I provide will be treated confidentially.

• I also understand that in the event a summary of the evaluation is shared

with the wider educational community, no individuals providing data will

be able to be identified.

• I further understand that if I have any additional questions about this evalu-

ation or the procedure for maintaining the confidentiality of my data, I may

call Dr. Traxler at 937-775-3139 or email her at adrienne.traxler@wright.edu.

I have read the cover letter and voluntarily: (check the appropriate response)

consent

do not consent

to allow my data to be included in a summary report shared with the wider edu-

cation community.

Name:

UID:

7.3 Surveys and FCI

Surveys

Students in each section took an online survey-style questionnaire which consisted of

two parts, only one of which was used for the this study. The first portion asked students

to answer the question shown below. The second portion was the CLASS (Colorado

Learning Attitudes about Science Survey) and can be found at http://www.colorado.

edu/sei/surveys/Faculty/CLASS-PHYS-faculty.html, the data from which was

not used in this study.

105



NETWORK SURVEY

This survey will be given at the beginning, midpoint, and end of the semester to collect

information about learning community structures that form in the class.

The physics department is conducting several surveys to understand how to better ac-

commodate learning in introductory physics courses. In this survey you will be asked

to identify other students enrolled in this course that you have studied with or that you

discuss physics concepts with. The responses will not be made public, and will not affect

your grade.

1. What is your name?

2. What is your UID?

3. Who do you work with to learn physics? Please select as many students as you

study with.

[List of names from course roster]

7.3.1 FCI

The Force Concept Inventory can be found at http://modeling.asu.edu/R&E/

Research.html.
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