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ABSTRACT 
 
 
 

Hall, Brady. M.S., Department of Chemistry, Wright State University, 2016. 
Synthesis, Characterization, and Polymerization of Sulfonamide Based Bifunctional 
Monomers. 

 
 
 
A series of bifunctional monomers based on N,N-diallylbenzenesulfonamides 

with varying groups on the benzene moiety were investigated. The main goal of this 

project was to polymerize these monomers using radical and acyclic diene metathesis 

(ADMET) polymerization methods to polymerize through the allyl groups, and 

nucleophilic aromatic substitution (SNAr) to polymerize through the fluorine groups on 

the phenyl ring. 

Using phenyl substituted benzenesulfonyl chloride derivatives as a starting 

material, a series of N,N-diallylbenzenesulfonamide derivatives were prepared. The 

ADMET and radical cyclopolymerizations were monitored by 1H NMR spectroscopy, 

observing the disappearance of signals for the allyl groups in both, and the appearance of 

broad aliphatic signals in the radical cyclopolymers. The polymers formed via SNAr 

reactions were followed by DEPT 90 13C NMR spectroscopy.  Additionally, GPC, DSC, 

and TGA were used to characterize the polymers, which indicated successful 

cyclopolymerization, ADMET, and SNAr reactions.  
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1. INTRODUCTION 

1.1. Radical Polymerization 

1.1.1. Free Radical Polymerization (FRP) 

Radicals are chemical species that possess an unpaired electron in an outer shell, 

sometimes called a free spin, which gives rise to the term “free radical”. Free radical 

polymerization (FRP) is a type of chain growth polymerization, meaning that a high 

molecular weight polymer is formed early in the reaction. FRP is most commonly 

conducted on compounds with a carbon-carbon double bond using a radical initiator, 

such as 2,2’-azobis(2-methylpropionitrile) (AIBN) or benzoyl peroxide (BPO). The 

radicals are formed through either thermal or photochemical decomposition (see Scheme 

1), and add to a monomer molecule by opening the π-bond to form a new radical center. 

This process is repeated many times as more monomer molecules are added to the 

propagating radical center. 

 
Scheme 1. Radical formation in the radical initiators AIBN and BPO. 

Substitution at a radical center almost always increases stability by reducing the 

bond dissociation energy, and as such radical stability typically increases from 

AIBN 

BPO 
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methyl<primary<secondary<tertiary. Normally this results in the addition of a radical to 

the less highly substituted end of asymmetrically substituted compounds (i.e. they 

predominantly result in tail addition, as shown in Scheme 2). Due to the high 

concentration of radical species in the system, the growing polymer chain is terminated 

by the destruction of the reactive center through hydrogen abstraction or some type of 

coupling, as illustrated in Scheme 3. 

 
Scheme 2. Head and tail addition. 

 
Scheme 3. Mechanism of the free radical polymerization of styrene. 

 

Tail Addition 

Head Addition 

Radical Formation 

Initiation 

Propagation 

Transfer 

Termination 
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Owing to the high rate of termination in FRP, a narrow distribution of molecular 

weights cannot be achieved, and the dispersity (Đ) is greater than 1.5.1 In order to address 

this issue, methods of limiting the concentration of active radical species were 

investigated. Various types of controlled radical polymerization (CRP) techniques were 

developed, all of which owe their success to the persistent radical effect; a type of self-

regulation of the two types of radical species (propagating and persistent) by some sort of 

mediating complex.2 

1.1.2. Atom Transfer Radical Polymerization (ATRP) 

Atom Transfer Radical Polymerization (ATRP), first reported in 1995 from the 

laboratories of Sawamoto,3 Matyjaszewski,4 and Percec,5 was the first true CRP 

technique. Previous attempts include iniferter and nitroxide-mediated radical 

polymerization (NMP) methods, both of which have only limited success in facilitating 

radical polymerizations. Both iniferter and NMP have a limited selection of monomers 

from which to choose, and iniferter polymerization further suffers from broad Đ and 

limited block copolymer formation. ATRP does not have these issues, and can be tailored 

for specific reactions by modifying one of the reagents involved: the halogenated 

initiator, transition metal compound, or nitrogen based ligand. 

In ATRP, a transition metal compound in its lower oxidative state (e.g. copper (I) 

bromide) is used to mediate a reversible redox process and establish equilibrium between 

propagating and persistent radicals.1 This reversible process results in control of the 

radical species by deactivating the radical center, causing low radical concentration and 

minimizing termination of the growing polymer chain. The success of an ATRP is 

contingent on fast and quantitative initiation of the monomers so that all of the 
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propagating species grow simultaneously; resulting in a narrow Đ. ATRP is traditionally 

conducted on vinyl monomers, with ratios of monomer:catalyst:initiator in the range of 

100:1:1 to 100:1:10 and can been conducted in bulk, solution, or various heterogeneous 

media including suspension, dispersion and aqueous emulsion.6  

 
Scheme 4. General mechanism of ATRP.7  

1.1.3. Initiators for Constant Activator Regeneration (ICAR) ATRP 

While ATRP is a very versatile polymerization method, it is not applicable for 

every type of situation. Initiators for constant activator regeneration (ICAR) ATRP is one 

technique that has been developed to address these limitations. Unlike ATRP, ICAR 

ATRP utilizes a transition metal compound in a higher oxidative state, (e.g. a copper (II) 

halide) as well as a traditional radical initiator (e.g. AIBN or BPO). The initiator 

generates radicals that react with the transition metal complex to continuously regenerate 

its lower oxidative state, preventing it from being consumed in termination reactions. 

This allows for use of the catalyst at concentrations between 10-50 ppm, and is beneficial 

in situations where removal or recycling of the catalyst is not possible.8 
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1.1.4. Reversible Addition-Fragmentation Chain Transfer (RAFT) Polymerization 

Another prominent type of CRP is reversible addition-fragmentation chain 

transfer (RAFT) polymerization, which was developed in 1996 by a team at 

Commonwealth Scientific and Industrial Research Organisation (CSIRO).9 In RAFT 

polymerization, the propagating and persistent radical equilibrium is mediated by a di- or 

trithiocarbonylthio RAFT agent. 

 
Figure 1. Di- and tri-thiocarbonylthio RAFT agents. 

RAFT owes its success to a sequence of addition-fragmentation equilibria, shown 

in Scheme 5. Early in the polymerization, the propagating radical adds to the 

thiocarbonylthio compound, which results in fragmentation of the intermediate radical 

species (Step II). This yields a polymeric thiocarbonylthio compound (Pm
•) as well as a 

new radical species, which can further react with more monomer forming a new 

propagating radical species (Pn
•). A rapid equilibrium is established between the active 

propagating radicals (Pm
• and Pn

•) that provide an equal probability for all chains to grow, 

allowing for the formation of polymers with a narrow Đ.10 

Reactive 
double bond 

Leaving 
group 

Weak single 
bond Activating  

Group 
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Scheme 5. Generally accepted mechanism for RAFT polymerization. 

1.2. Acyclic Diene Metathesis (ADMET) Polymerization 

Acyclic diene metathesis (ADMET) polymerization is a type of step-growth, 

condensation polymerization, and was developed in 1991 by Dr. Ken Wagener at the 

University of Florida. In ADMET polymerization, a transition metal catalyst is used to 

polymerize terminal dienes to polyenes. Polymer formation is driven by the liberation of 

ethylene gas, with the double bonds formed either in a cis- or trans-configuration, 

depending on the monomer and catalyst structure.  
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Scheme 6. Mechanism of ADMET polymerization. 

1.3. Cyclopolymerization 

Alternating intra-intermolecular polymerization, more commonly known as 

cyclopolymerization, is a type of polymerization in which cyclic species are formed from 

the intramolecular cyclization of monomers containing unconjugated dienes. This type of 

polymerization was first introduced by Butler and coworkers, who demonstrated that the 

radical polymerization of N,N-diallyl-N,N-dimethylammonium chloride (DADMAC) 

yielded soluble, uncrosslinked polymers with little to no unsaturation.11 Though Butler 

believed that he had formed a six-membered (endo cyclized) species, Hawthorn et al. 

demonstrated that the route through which the polymer was formed yielded a five-

membered (exo cyclized) species due to more favorable orbital overlap in the transition 

state,12 as shown in Scheme 7. 
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Scheme 7. Cyclization of quaternary amines. 

Although diallyl quaternary ammonium salts cyclopolymerize to a relatively high 

efficiency, diallyl tertiary amines do not readily cyclopolymerize,13 in part due to 

degradative chain transfer, a chain-breaking reaction involving the abstraction of 

hydrogen or some other atom or species, i.e. initiator, monomer, or polymer.14 This 

decreases the size of the propagating polymer species, and results in a branched polymer 

system when chain transfer to polymer occurs. However, Zubov et al. suggested that a 

strong electron withdrawing substituent on diallyl tertiary amines induces a strong partial 

positive charge on the nitrogen atom, decreasing the effects of degradative chain 

transfer.15 

 
Scheme 8. Degradative chain transfer. 

Due to the strong electron withdrawing nature of the sulfone group, a partial 

positive charge is induced on the nitrogen in diallyl tertiary sulfonamides, which should 

Butler, 1956 
endo 

exo 

Hawthorne, 1976 

Transfer to 
Initiator 

Transfer to 
Monomer 

Transfer to 
Polymer 
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increase their ability to polymerize. Indeed, J. H. Hodgkin et al. successfully radically 

polymerized tertiary diallyl sulfonamides with methyl and phenyl substituents in bulk.16 

It has also been shown that the smaller the difference in chemical shifts of the terminal 

and penultimate alkene carbons or hydrogens, the greater the cyclization efficiency and 

greater the molecular weight of the resulting polymer,17 and is indicative of a greater 

partial positive charge on the nitrogen.  

Table 1. Literature values for diallylamine derivatives. 

 
% Conversion 

to Polymer 
R1 R2 
-H - Trace 16 

-H -H 70 18 

-CH3 - 24 19 

-CH3 -CH3 80 20 

-CN - 22 16 

-SO2C6H5 - 30 16 

-SO2C6H4Cl - 36 21 

 

1.4. Nucleophilic Aromatic Substitution (SNAr) Polycondensation 

Poly(arylene ether sulfone)s (PAES) are a class of amorphous engineering 

thermoplastics, and can be prepared by either electrophilic aromatic substitution,22 or 

nucleophilic aromatic substitution (SNAr) polycondensation.23 Today, the SNAr route of 

polycondensation is most commonly utilized for the commercial production of these 

thermoplastics, and a few of the commercially available PAES are shown in Figure 2. 

The mechanism of SNAr involves the activation of an aryl halide by an electron-

withdrawing group (EWG), typically located in the para-position, as shown in Scheme 9.  
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Figure 2. Commercially available PAES. 

The first step in a SNAr mechanism is largely thought to be reversible and the 

rate-determining step: a nucleophilic attack at the ipso carbon resulting in a 

Meisenheimer complex, a resonance stabilized anionic intermediate species. The second 

step involves the loss of the halide group, resulting in the benzene regaining its 

aromaticity. 

 
Scheme 9. General mechanism for SNAr. 

 

UDEL® (Union Carbide) 
Tg = 190 °C 

RADEL® (Union Carbide) 
Tg = 220 °C 

VICTREX (ICI) 
Tg = 230 °C 

PES (ICI) 
Tg = 250 °C 

ASTREL® (3M Corp) 
Tg = 285 °C 
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Scheme 10. Outline of SNAr polycondensation. 

Although SNAr reactions are usually carried out with aryl halides activated by an 

EWG in the ortho- or para- position, Kaiti et al. demonstrated that SNAr can also take 

place at the meta position relative to the EWG.24 Since then, our group has introduced a 

variety of activating groups for the synthesis of PAEs via meta activated SNAr 

reactions,25-27 as shown in Scheme 11. In these systems, the activating group resides 

pendent to the polymer backbone, allowing for the introduction of various functional 

groups without directly modifying the backbone of the polymer.  

 
Scheme 11. Synthesis of PAEs via meta-activated SNAr polycondensation reactions. 

Sulfonamides have been described as strong electron withdrawing groups for the 

activation of aryl halides for SNAr reactions when positioned ortho and para,28 as well as 

meta, to the halide.27,29 As a site for the introduction of a variety of functional groups 

pendent to the polymer chain, sulfonamides are an attractive option. This feature can be 

exploited to tailor the properties of the polymer for a specific application. 
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1.5. Bifunctional Monomers 

Bifunctional monomers are compounds that have two distinct types of 

functionality with mutually exclusive reactivity. That is to say, polymerization of one 

type of functional group does not affect the other. Current methods of polymerizing 

bifunctional monomers make use of anionic, cationic, and radical polymerization 

methods, examples of which are shown in Figure 3. 

 
Figure 3. Examples of bifunctional monomers. 

1.6. Introduction of Functionality 

In order to meet a specific application need, it is a useful tool to tailor the physical 

and chemical properties of a polymer through introduction of functional groups to the 

system. This can be achieved in one of two ways: by either introducing functionality at 

the monomer stage (pre), or by introducing functionality after the polymerization has 

been completed (post). A general scheme for the introduction of functional groups is 

shown in Scheme 12.  

Hagiswara 
1991 30 

Jing 
2008 31 

Alkan 
2015 32 

Frey 
2015 33 

Sumerlin 
2015 34 
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Scheme 12. Introducing functionality via pre and post polymerization modification. 

1.7. Current Research 

In this project, the sulfonamide moiety was exploited in order to form bifunctional 

monomers that were capable of undergoing SNAr polycondensation, as well as metathesis 

and various forms of radical polymerizations. A series of N,N-diallylbenzenesulfonamide 

based monomers were prepared in a one-step process modified from the literature, as 

shown in Scheme 15. These monomers are able to be utilized for both pre-and post 

polymerization functionalization, and provide a straightforward way of tuning the 

physical properties of a polymer by changing the ratio of the selected monomer. 

In order to take advantage of both systems (pre or post polymerization 

modification), as well as the bifunctionality of these monomers, the type of modification, 

as well as the type of polymerization (radical, ADMET, or SNAr) can be varied to 

produce a wide variety of polymers. For post-polymerization functionalization of a 

polymer formed by either radical or ADMET polymerization, an inactive functional 

group, such as bromine, can be introduced at the monomer level then converted by post-

polymerization modification (Scheme 13). Conversely, polymers formed via SNAr can be 
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post functionalized by reacting the pendent allyl groups with an appropriate compound, 

e.g. a thiol compound (Scheme 14).  

 
Scheme 13. Pre (top) and post (bottom) polymerization modification of DABSA-4-Br. 

 
Scheme 14. Pre (top) and post (bottom) polymerization modification of DABSA-3,5-DF. 
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2. EXPERIMENTAL 

2.1. Materials 

Diethyl ether and toluene were purchased from Fischer Scientific and used as 

received. 4-Fluorobenzenesulfonyl chloride, 2,4-difluorobenzenesulfonyl chloride and 

3,5-diflurobenzenesulfonyl chloride were purchased from Oakwood Chemicals and used 

as received. 2,2’-Azobis(2-methylpropionitrile) (AIBN), benzenesulfonyl chloride, 4-

bromobenzenesulfonyl chloride, benzoyl peroxide (BPO), chloroform-d (CDCl3), copper 

(I) bromide (CuBr), copper (II) bromide (CuBr2), diallylamine, dioctylamine, ethyl-2-

bromopropionate (EBrP), Hoveyda-Grubbs 2nd generation catalyst (HG2G), hydrochloric 

acid (HCl), N,N,N’,N’,N”-pentamethyldiethylenetriamine (PMDETA), triethylamine 

(TEA), tris[2-(dimethylamino)ethyl]amine (Me6TREN), and cyanomethyl 

methyl(phenyl) carbamodithioate (CMMPCDT), were purchased from Sigma-Aldrich 

and used as received. 4,4’-dihydroxydiphenyl ether was purchased from TCI Chemicals 

and recrystallized from toluene and dried under vacuum prior to use. Calcium hydride 

(CaH2) and potassium carbonate (K2CO3) were purchased from Sigma-Aldrich and dried 

in an oven at 130 °C before use. Dichloromethane (DCM) and xylenes were purchased 

from Fischer Scientific; N-methyl-2-pyrrolidone (NMP) was purchased from Sigma-

Aldrich, all were dried over CaH2 and distilled prior to use. 
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2.2. Instrumentation 

Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis 

(TGA) analyses were carried out on a TA Instruments DSC Q200  (under nitrogen) and 

TGA Q500 (under nitrogen or air), respectively at a heating rate of 10 °C/min. Gas 

chromatography-mass spectroscopy (GC/MS) analyses were performed using an Agilent 

Technologies 7820A Series GC System, and an Agilent Technologies 5975 Mass 

Selective Detector/Quadrupole system. 1H and 13C Nuclear Magnetic Resonance (NMR) 

spectra were acquired using a Bruker AVANCE 300 MHz instrument operating at 300 

and 75.5 MHz, respectively. Samples were dissolved in CDCl3 at a concentration of (~30 

mg /0.7 mL). Gel permeation chromatography (GPC) analysis was performed using 

instrumentation consisting of a Viscotek Model 270 dual detector (viscometer and light 

scattering) and a Viscotek Model VE3580 refractive index detector. Two Polymer 

Laboratories 5 µm PLgel Mixed-C columns (heated to 35 °C) were used with THF/5% 

(v/v) acetic acid as the eluent and a GPC max VE-2001 with pump operating at 1.0 

mL/minute. Cyclization efficiencies (CE) were determined by integrating the double 

bond proton peaks relative to the backbone proton peaks in the 1H NMR spectrum. 

Weight average molecular weights, Mw, and Dispersity (Đ) values were determined using 

OmniSec software (calibrated with polystyrene standards). Melting points were 

determined on a MEL-TEMP apparatus, or DSC and are uncorrected. Elemental analyses 

were obtained from Midwest Microlabs, Inc., Indianapolis, IN. The energy of monomers 

1a-e was calculated in vacuum using the Spartan’ 10 computational software package 

(Wavefunction, Inc., Irvin, CA). The geometries were initially optimized using the 

semiempirical method RM1, and then further optimized using density functional theory at 
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the B3LYP/6-31+G** level. The energy of each of the monomers was recorded and 

expressed as a relative energy with respect to the most stable species of that charge. 

2.3. General Procedure for the Synthesis of N,N-diallylbenzenesulfonamide (DABSA) 

Derivatives 

The general procedure for the synthesis of N,N-diallylbenzenesulfonamide 

(DABSA) derivatives will be illustrated using N,N-diallylbenzenesulfonamide. 

To a solution of benzenesulfonyl chloride (4.00 g, 22.6 mmol) in 70 mL of 

dichloromethane, was added triethylamine (TEA, 3.95 mL, 28.3 mmol, 25% excess). The 

solution was allowed to stir for five minutes, at which point diallylamine (3.62 mL, 28.31 

mmol, 25% excess) was added and the resulting mixture stirred for approximately three 

hours, during which time a mild exothermic reaction occurred. Analysis of an aliquot by 

GC/MS showed quantitative conversion of the starting material to the desired product (if 

the GC/MS did not show quantitative conversion, TEA was added dropwise until TEA-

HCl precipitated in the reaction mixture). The organic phase was extracted with 2 x 250 

mL 10% HCl, 2 x 250 mL cold, distilled water, 1 x 100 mL 5% HCl, and 1 x 100 mL 

cold, distilled water, and then dried over MgSO4 and filtered. The solvent was removed 

via rotary evaporation to afford 4.83 g (90%) of N,N-diallylbenzenesulfonamide 

(DABSA, 1a) as a light yellow liquid (M.P. < -85 °C by DSC), 1H-NMR (CDCl3, δ):  

3.84 (d, 4H, N-CH2-), 5.13 (m, 2H, cis C=CH2), 5.18 (m, 2H, trans C=CH2), 5.62 (m, 2H, 

-CH=), 7.56 (m, 3H, Ar-H), 7.84 (m, 2H, Ar-H) ppm; DEPT 135 13C NMR (CDCl3, 

δ): 49.3 (s, N-CH2-), 119.0 (s, =CH2), 127.1 (s, Ar-H), 129.1 (s, Ar-H), 132.5 (s, -CH=), 

132.5 (s, Ar-H) ppm. 13C NMR (CDCl3, δ): 49.3 (s, -CH2-), 119.0 (s, =CH2), 127.1 (s, 

Ar-H), 129.1 (s, Ar-H), 132.5 (s, Ar-H), 132.5 (s, -CH=), 140.4 (s, Ar-SO2) ppm. 
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Elemental Analysis: Calc. Anal. for C12H15NO2S: C, 60.3; H, 6.37; Found: C, 60.8; H, 

6.29. 

Syntheses of the remaining N,N-diallylbenzenesulfonamides were carried out in a 

similar fashion, with the exception of N,N-diallyl-3,5-difluorobenzenesulfonamide which 

was precipitated from ethanol/water to afford a white solid. 

N,N-diallyl-4-bromobenzenesulfonamide (DABSA-4-Br, 1b, 96%): M.P. = -62 

°C by DSC; 1H-NMR (CDCl3, δ): 3.76 (d, 4H, N-CH2-), 5.10 (m, 2H, cis C=CH2), 5.13 

(m, 2H, trans C=CH2), 5.56 (m, 2H, -CH=), 7.63 (m, 4H, Ar-H) ppm; DEPT 135 13C 

NMR (CDCl3, δ): 49.3 (s, N-CH2-), 119.3 (s, =CH2), 128.7 (s, Ar-H), 132.3 (s, Ar-H), 

132.3 (s, -CH=) ppm. 13C NMR (CDCl3, δ):  49.3 (s, -CH2-), 119.3 (s, =CH2), 127.3 (s, 

Ar-Br), 128.7 (s, Ar-H), 132.3 (s, Ar-H), 132.3 (s, -CH=), 139.5 (s, Ar-SO2) ppm. 

Elemental Analysis: Calc. Anal. for C12H14NO2SBr: C, 45.5; H, 4.46; Found: C, 45.7; H, 

4.32. 

N,N-diallyl-4-fluorobenzensulfonamide (DABSA-4-F, 1c, 86%): M.P. < -85 °C 

by DSC; 1H-NMR (CDCl3, δ): 3.79 (d, 4H, N-CH2-), 5.10 (m, 2H, cis C=CH2), 5.15 (m, 

2H, trans C=CH2), 5.58 (m, 2H, -CH=), 7.16 (m, 2H, Ar-H), 7.82 (m, 2H, Ar-H) ppm; 

DEPT 135 13C NMR (CDCl3, δ): 49.3 (s, N-CH2-) 116.1 (d, Ar-H), 119.2 (s, =CH2), 

129.8 (d, Ar-H), 132.3 (s, -CH=) ppm. 13C NMR (CDCl3, δ): 49.3 (s, -CH2-), 116.1 (s, 

Ar-H), 119.2 (s, =CH2), 129.8 (d, Ar-H), 132.3 (s, -CH=), 136.4 (s, Ar-SO2), 166.4 (d, 

Ar-F) ppm. Elemental Analysis: Calc. Anal. for C12H14NO2SF: C, 56.5; H, 5.53; Found: 

C, 56.5; H, 5.45. 

N,N-diallyl-2,4-diflurobenzenesulfonamide (DABSA-2,4-DF, 1d, 94%): M.P. < -

85 °C by DSC; 1H-NMR (CDCl3, δ): 3.92 (d, 4H, N-CH2-), 5.15 (m, 2H, cis C=CH2), 
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5.19 (m, 2H, trans C=CH2), 5.64 (m, 2H, -CH=), 6.95 (m, 2H, Ar-H), 7.94 (m, 1H, Ar-H) 

ppm; DEPT 135 13C NMR (CDCl3, δ): 49.1 (s, N-CH2-), 105.6 (t, Ar-H), 111.7 (dd, Ar-

H), 119.2 (s, =CH2), 132.3  (s, -CH=), 132.5 (d, Ar-H) ppm. 13C NMR (CDCl3, δ):  49.1 

(d, -CH2-), 105.6 (t, Ar-H), 111.6 (d, Ar-H), 119.2 (s, =CH2), 125.4 (m, Ar-SO2), 132.3 

(s, -CH=), 132.5 (d, Ar-H) 159.5 (dd, Ar-F), 165.6 (dd, Ar-F) ppm.  Elemental Analysis: 

Calc. Anal. for C12H13NO2SF2: C, 52.7; H, 4.79; Found: C, 52.3; H, 4.63. 

N,N-diallyl-3,5-diflurobenzenesulfonamide (DABSA-3,5-DF, 1e, 93%): M.P. = 

45.5-48 °C; 1H-NMR (CDCl3, δ): 3.86 (d, 4H, N-CH2-), 5.18 (m, 2H, cis C=CH2), 5.22 

(dq, 2H, trans C=CH2), 5.64 (m, 2H, -CH=C), 7.03 (tt, 1H, Ar-H), 7.37 (m, 2H, Ar-H); 

DEPT 135 13C NMR (CDCl3, δ): 49.4 (s, N-CH2-), 108.0 (t, Ar-H), 110.6 (dd, Ar-H), 

119.6 (s, =CH2), 131.9 (s, -CH=) ppm. 13C NMR (CDCl3, δ):  49.4 (s, -CH2-), 108.0 (t, 

Ar-H), 110.6 (dd, Ar-H), 119.6 (s, =CH2), 131.9 (s, -CH=), 143.9 (t, Ar-SO2) 162.8 (dd, 

Ar-H) ppm. Elemental Analysis: Calc. Anal. for C13H14NO2SF2: C, 52.74; H, 4.79; 

Found: C, 52.8; H, 4.67. 

2.4. General Procedure for the Synthesis of N,N-dioctylbenzenesulfonamide 

(DOctBSA) Derivatives 

The general procedure for the synthesis of N,N-dioctylbenzenesulfonamide 

derivatives will be illustrated using N,N-dioctyl-2,4-difluorobenzenesulfonamide (2a). 

To a solution of 2,4-difluorobenzenesulfonyl chloride (4.00 g, 22.6 mmol) in 70 

mL of dichloromethane, was added triethylamine (TEA, 3.95 mL, 28.3 mmol, 25% 

excess). The solution was allowed to stir for five minutes, at which point dioctylamine 

(3.62 mL, 28.31 mmol, 25% excess) was added and the resulting mixture stirred for 

approximately three hours, during which time a mild exothermic reaction occurred. 
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Analysis of an aliquot by GC/MS showed quantitative conversion of the starting material 

to the desired product (if the GC/MS did not show quantitative conversion, TEA was 

added dropwise until TEA-HCl precipitated in the reaction mixture). The organic phase 

was extracted with 2 x 250 mL 10% HCl, 2 x 250 mL cold, distilled water, 1 x 100 mL 

5% HCl, and 1 x 100 mL cold, distilled water, and then dried over MgSO4 and filtered. 

Once the solvent was removed via rotary evaporation, approximately 25 mL of hexanes 

was added and the solution stirred for two hours. The dioctylamine precipitate was 

filtered off, and the solvent removed via rotary evaporation to afford 4.83 g (70%) of 

N,N-dioctyl-2,4-difluorobenzenesulfonamide (DOctBSA-2,4-DF, 2a) as a light yellow 

liquid. 1H-NMR (CDCl3, δ): 0.89 (t, 6H, -CH3), 1.28, (m, 20H, -CH2-), 1.51 (m, 4H, -

CH2-), 3.23 (t, 4H, N-CH2-), 6.96 (m, 2H, Ar-H), 7.93 (m, 1H, Ar-H) ppm. DEPT 135 13C 

NMR (CDCl3, δ): 13.9 (s, -CH3), 22.5 (s, -CH2-), 26.5 (s, -CH2-), 28.4 (s, -CH2-), 29.1 (s, 

-CH2-), 29.1 (s, -CH2-), 31.7 (s, -CH2-), 49.5 (d, N-CH2), 105.3 (t, Ar-H), 111.4 (dd, Ar-

H), 132.4 (dd, Ar-H) ppm. 13C NMR (CDCl3, δ): 13.9 (s, -CH3), 22.5 (s, -CH2-) 26.5 (s, -

CH2-), 28.4 (s, -CH2-), 29.1 (s, -CH2-), 29.1 (s, -CH2-), 31.7 (s, -CH2), 49.5 (d, N-CH2-), 

105.3 (t, Ar-H), 111.4 (dd, Ar-H), 125.3 (dd, Ar-SO2-), 132.4 (dd, Ar-H), 159.4 (dd, Ar-

F), 165.3 (dd, Ar-F) ppm. Elemental Analysis: Calc. Anal. for C22H33NO2SF2: C, 63.3; H, 

8.93; Found: C, 62.3; H, 8.55. 

N,N-dioctyl-3,5-difluoronbenzenesulfonamide (DOctBSA-3,5-DF, 2b, 70%): 1H-

NMR (CDCl3, δ): 0.90 (t, 6H, -CH3), 1.27 (m, 20H, -CH2-), 1.53 (m, 4H, -CH2-), 3.15 (t, 

4H, N-CH2-), 7.01 (tt, 1H, Ar-H), 7.35 (m, 1H, Ar-H) ppm. DEPT 135 13C NMR (CDCl3, 

δ): 14.0 (s, -CH3), 22.6 (s, -CH2), 26.7 (s, -CH2-), 28.6 (s, -CH2-), 29.1 (s, -CH2-), 31.7 (s, 

-CH2-), 48.2 (s, N-CH2-), 107.7 (t, Ar-H), 110.5 (dd, Ar-H) ppm. 13C NMR (CDCl3, δ): 



 21 

14.0 (s, -CH3), 22.6 (s, -CH2), 26.7 (s, -CH2-), 28.6 (s, -CH2-), 29.1 (s, -CH2-), 31.7 (s, -

CH2-), 48.2 (s, N-CH2-), 107.7 (t, Ar-H), 110.5 (dd, Ar-H), 143.7 (t, Ar-SO2), 162.8 (dd, 

Ar-F) ppm. Elemental Analysis: Calc. Anal. for C22H33NO2SF2: C, 63.9; H, 8.04; Found: 

C, 63.1; H, 9.05. 

2.5. Radical Polymerization 

2.5.1. FRP of DABSA Derivatives 

The general procedure for the free radical polymerization (FRP) of N,N-

diallylbenzenesulfonamide (DABSA) derivatives will be illustrated using DABSA, with 

AIBN as the initiating species. 

To a 25 mL Schlenk tube equipped with a magnetic stir bar was added DABSA 

(0.183 g, 7.75 mmol) and AIBN (0.191 g, 1.16 mmol, 15%). After purging with nitrogen 

for 25 minutes, the tube was lowered into an oil bath heated to 70 °C and allowed to react 

for 24 hours, after which point a highly viscous, dark yellow oil was observed. The 

polymer was precipitated from diethyl ether to afford 0.094 g (51%) of p1a as a white 

solid. 1H NMR (CDCl3, δ): 2.06 (m, 243H, Backbone –H), 3.83 (d, 4H, N-CH2-), 5.15 

(m, 4H, =CH2), 5.61 (m, 2H, -CH=), 7.57 (s, 65H, Ar-H), 7.82 (s, 45H, Ar-H) ppm. 

p1a (BPO, 49%) 1H NMR (CDCl3, δ): 1.97 (m, 503 H, Backbone-H), 3.83 (d, 4H, 

N-CH2-), 5.15 (m, 4H, =CH2), 5.61 (m, 2H, -CH=), 7.56 (s, 149H, Ar-H), 7.82 (s, 99H, 

Ar-H) ppm. 

The FRP of the remaining DABSA derivatives were carried out in an analogous 

fashion 

p1b (AIBN, 84%) 1H NMR (CDCl3, δ): 2.08 (m, 330H, Backbone-H), 3.83 (d, 

4H, N-CH2-), 5.17 (m, 2H, =CH2), 5.59 (m, 4H, -CH=), 7.70 (m, 122H, Ar-H) ppm. 
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p1c (AIBN, 63%) 1H NMR (CDCl3, δ): 2.05 (m, 285H, Backbone-H), 3.83 (d, 

4H, N-CH2-), 5.16 (m, 4H, =CH2), 5.62 (m, 2H, -CH=), 7.23 (m, 50H, Ar-H), 7.85 (m, 

50H, Ar-H) ppm. 

p1d (AIBN, 67%) 1H NMR (CDCl3, δ): 2.19 (m, 869H, Backbone-H), 3.91 (d, 

4H, N-CH2-), 5.17 (m, 4H, =CH2), 5.63 (m, 2H, -CH=), 7.03 (s, 145H, Ar-H), 7.91 (s, 

75H, Ar-H) ppm. 

p1d (BPO, 58%) 1H NMR (CDCl3, δ): 2.15 (m, 923H, Backbone-H), 3.92 (d, 4H, 

N-CH2-), 5.17 (m, 4H, =CH2), 5.63 (m, 2H, -CH=), 7.01 (s, 164H, Ar-H), 7.91 (s, 85H, 

Ar-H) ppm. 

p1e (AIBN, 90%) 1H NMR (CDCl3, δ): 2.10 (m, 490H, Backbone-H), 3.86 (d, 

4H, N-CH2-), 5.20 (m, 4H, =CH2), 5.63 (m, 2H, -CH=), 7.09 (s, 42H, Ar-H), 7.36 (s, 

92H, Ar-H) ppm. 

p1e (BPO, 56%) 1H NMR (CDCl3, δ): 2.12 (m, 509H, Backbone-H), 3.86 (d, 4H, 

N-CH2-), 5.19 (m, 4H, =CH2), 5.64 (m, 2H, -CH=), 7.08 (s, 50H, Ar-H), 7.36 (s, 108, Ar-

H) ppm. 

2.5.2. ATRP of DABSA Derivatives 

The general procedure for atom transfer radical polymerization (ATRP) will be 

illustrated using DABSA and tris[2-(dimethylamino)ethyl]amine (Me6TREN) as the 

ligand. 

To a 25 mL Schlenk tube under a nitrogen atmosphere was added DABSA (0.712 

gm, 3.00 mmol), and CuBr (4.30 mg, 0.0300 mmol, 1%), ethyl-2-bromopropionate 

(EBrP, 5.43 mg, 0.0300 mmol, 1%), and Me6TREN (5.96 µL, 0.0300 mmol, 1%) in 2.00 

mL of dry xylenes. After sparging the solution with nitrogen for 30 minutes, the flask 
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was lowered into an oil bath heated to 100 °C, and allowed to react for 48 hours. Analysis 

via 1H NMR spectroscopy indicated no conversion to polymer. 

2.5.3. ICAR ATRP of DABSA Derivatives 

The general procedure for initiators for constant activator regeneration (ICAR) 

ATRP will be illustrated using DABSA, Me6TREN as the ligand, and AIBN as the source 

of radicals that react with the transition metal complex to continuously regenerate its 

lower oxidative state. 

To a 25 mL Schlenk tube under a nitrogen atmosphere was added DABSA (0.712 

g, 3.00 mmol), and CuBr2 (0.0340 mg, 1.50x10-4 mmol, 0.005%), EBrP (2.72 mg, 0.0150 

mmol, 1%), and Me6TREN (0.0298 µL, 1.50x10-4 mmol, 0.005%) in 2.00 mL of dry 

xylenes. After sparging the solution with nitrogen for 30 minutes, the flask was lowered 

into an oil bath heated to 100 °C, and allowed to react for 48 hours. Analysis via 1H 

NMR spectroscopy indicated no conversion to polymer. 

2.5.4. Reversible Addition-Fragmentation Chain Transfer (RAFT) Polymerization of 

DABSA-2,4-DF 

To a 25 mL Schlenk tube under a nitrogen atmosphere was added DABSA-2,4-

DF (0.728 g, 2.67 mmol), cyanomethyl methyl(phenyl) carbamodithioate (CMMPCDT, 

29.59 mg, 0.133 mmol, 5%) and AIBN (21.88 mg, 0.133 mmol, 5%) in 1mL of dry 

xylenes. After sparging the solution with nitrogen for 30 minutes, the flask was lowered 

into an oil bath heated to 80 °C for 7 days, after which point the polymer was precipitated 

from diethyl ether to afford 0.085 g (12%) of p2d as a yellow solid.  
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2.6. ADMET Polymerization of DABSA Derivatives 

The general procedure of acyclic diene metathesis (ADMET) polymerization will 

be illustrated using DABSA. 

To a solution of DABSA (0.133 g, 0.56 mmol) in 0.56 mL of xylenes, was added 

Hoveyda-Grubbs 2nd Generation catalyst (11.4 mg, 0.0182 mmol, 3.25%). The solution 

was sparged with nitrogen for 25 minutes, then lowered into an oil bath heated to 70 °C 

and allowed to react under vacuum for 24 hours. The polymer was precipitated from 

diethyl ether and dried under vacuum to afford 0.069 g (52%) of p3a as a grey solid. The 

polymer was characterized by 1H-NMR spectroscopy, GPC analysis, TGA, and DSC (Mn 

= 14,915 g/mol, Tm = 115 °C, Td-5% = 146 °C), 1H NMR (CDCl3, δ): 4.15 (s, 4H, N-CH2), 

5.67 (s, 2H, -CH=), 7.58 (m, 3H, Ar-H), 7.86 (m, 2H, Ar-H) ppm; 13C NMR (CDCl3, δ): 

54.9 (s, N-CH2), 125.4 (s, -CH=), 127.3 (s, Ar-H), 129.1 (s, Ar-H), 132.7 (s, Ar-H), 137.3 

(s, Ar-H) ppm. 

The ADMET Polymerization of the remaining DABSA derivatives was carried 

out in an analogous fashion. 

p3b (54%): Mn = 8,690 g/mol, Tm = 136 °C, Td-5% = 167 °C; 1H-NMR (CDCl3, 

δ): 4.14 (s, 4H, N-CH2-), 5.69 (s, 2H, -CH=), 7.70 (m, 4H, Ar-H) ppm. 13C NMR (CDCl3, 

δ): 54.9 (s, N-CH2-), 125.4 (s, -CH=), 127.7 (s, Ar-Br), 128.8 (s, Ar-H), 132.4 (s, Ar-H), 

136.4 (s, Ar-SO2-) ppm. 

p3c (50%): Mn = 17,075 g/mol Tm = 90 °C, Td-5% = 159 °C; 1H-NMR (CDCl3, δ): 

4.13 (s, 4H, N-CH2-), 5.68 (s, 2H, -CH=), 7.22 (t, 2H, Ar-H), 7.86 (m, 2H, Ar-H) ppm. 

13C (CDCl3, δ): 54.9 (s, N-CH2-), 116.4 (d, Ar-H), 125.4 (s, -CH=), 130.0 (d, Ar-H), 

133.5 (s, Ar-SO2), 165.1 (d, Ar-F) ppm. 
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p3d (49%): Mn = 5,550 g/mol Tm = 65.5 °C, Td-5% = 146 °C; 1H-NMR (CDCl3, 

δ): 4.24 (s, 4H, N-CH2-), 5.75 (s, 2H, -CH=), 6.99 (m, 3H, Ar-H), 7.96 (m, 1H, Ar-H) 

ppm. 13C (CDCl3, δ): 54.5 (s, N-CH2-), 105.7 (t, Ar-H), 111.7 (dd, Ar-H), 122.9 (m, Ar-

SO2), 125.4 (s, -CH=), 132.9 (dd, Ar-H), 159.7 (dd, Ar-F), 165.6 (dd, Ar-F). 

p3e (58%): Mn = 10,210 g/mol, Tm = 109 °C, Td-5% = 125 °C; 1H-NMR (CDCl3, 

δ): 4.17 (s, 4H, N-CH2), 5.72 (s, 2H, -CH=), 7.06 (tt, 1H, Ar-H), 7.39 (m, 2H, Ar-H) 

ppm; 13C (CDCl3, δ): 55.0 (s, N-CH2-), 108.3 (t, Ar-H), 110.7 (dd, Ar-H), 125.4 (s, -

CH=), 140.7 (t, Ar-SO2-), 162.9 (dd, Ar-F) ppm. 

2.7. SNAr Copolymerization of 2a/b and 1d/e using 4,4’-dihydroxydiphenyl ether 

The general procedure for nucleophilic aromatic substitution (SNAr) 

copolymerization will be illustrated using 2,4-DFDOctBSA (2a), and DABSA-2,4-DF 

(1d). 

To a solution of 2a (0.595 g, 1.43 mmol, 95%), 1d (0.0205 g, 0.0750 mmol, 5%), 

and 4,4’-dihydroxydiphenyl ether (0.303 g, 1.5 mmol) in 4.69 mL of NMP, was added 

K2CO3 (0.311 g, 2.25 mmol) and the solution sparged for 25 minutes then lowered into 

an oil bath heated to 135 °C and allowed to react for 72 hours. The polymer was 

precipitated from water and dried under vacuum to afford 0.492 g (58.6%) of 95/5-

poly(2,4-DOctBSA-co-2,4-DABSA) (p4a, Mn = 3,660 g/mol, Tg = 14.5 °C, Td-5% = 354 

°C), 1H-NMR (CDCl3, δ): 0.87 (m, 6H, -CH3), 1.24 (s, 20H, -CH2-), 1.53 (m, 4H, -CH2-), 

3.27 (m, 4H, N-CH2-), 3.96 (m, 4H, N-CH2-), 5.17 (d, m, 4H, =CH2), 5.69, (m, 2H, -

CH=), 6.54 (m, 2H, Ar-H), 7.02 (m, 4H, Ar-H), 7.28 (s, 2H, Ar-H), 7.92 (d, 2H, Ar-H) 

ppm; DEPT 90 13C NMR (CDCl3, δ): 107.0 (s, Ar-H), 109.5 (s, Ar-H), 120.2 (s, Ar-H), 

121.6 (d, Ar-H), 132.9 (s, -CH=) ppm.  
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SNAr copolymerization of 1e/2b was carried out in an analogous fashion. 

p4b (54.3%): Mn = 3,050 g/mol; Tg = 6.34 °C; Td-5%
 = 329 °C; 1H NMR (CDCl3, 

δ): 0.89 (m, 6H, -CH3), 1.27 (s, 20H, -CH2-), 1.52 (m, 4H, -CH2-), 3.15 (m, 4H, N-CH2-), 

3.79 (m, 4H, N-CH2-), 5.16 (m, 4H, =CH2), 5.64 (m, 2H, -CH=), 6.79 (m, 2H, Ar-H), 

7.11 (m, 4H, Ar-H), 7.37 (d, 4H, Ar-H) ppm; DEPT 90 13C NMR (CDCl3, δ): 110.0 (s, 

Ar-H), 110.7 (s, Ar-H), 121.4 (s, Ar-H), 136.0 (s, -CH=) ppm. 

2.8. Characterization 

2.8.1. Size Exclusion Chromatography (SEC) 

Size exclusion chromatography (SEC) was used to determine molecular weight 

and molecular weight distributions of polymers in THF/5% acetic acid. Number average 

molecular weights (Mn) and dispersity (Đ) were determined using the refractive index 

(RI) signal, the weight average molecular weight (Mw) were determined via the light 

scattering signal. Calibration was done using polystyrene standards. 

2.8.2. Differential Scanning Calorimetry (DSC) 

The thermal transition temperatures of the materials were determined using a TA 

Instruments Q200 Differential Scanning Calorimeter. The melting point of the monomers 

were determined by heating 5 mg of sample, in a Tzero aluminum pan, at 10 °C/min from  

-185 to 50 °C. A typical method of determining the thermal transition temperatures of 

polymers included heating 5 mg of sample, in a Tzero aluminum pan, at 10 °C/min from 

40 to 150 °C and cooling at 10 °C/min to 0 °C in two cycles under a nitrogen atmosphere. 

The glass transition temperature (Tg) was determined at the midpoint of the tangent of the 

second heating cycle. The first heating cycle was utilized to erase the thermal history of 
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the polymers, and the melting temperature (Tm) was determined at the endothermic peak 

of the second heating cycle. 

2.8.3. Thermogravimetric Analysis (TGA) 

The thermal stability of the polymers was investigated using a TA Instruments 

Q500 Thermogravimetric Analyzer. The analysis involved heating a sample of 5 mg at a 

rate of 10 °C/min from 40 to 800 °C under a nitrogen atmosphere. The weight loss was 

recorded as a function of temperature, and the thermal stability was reported as 5% 

weight loss (Td-5%). 
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3. RESULTS AND DISCUSSION 

3.1. Monomer Synthesis 

A series of bifunctional monomers based on N,N-diallylbenzenesulfonamide 

(DABSA) with varying groups present on the benzene moiety, was investigated. Using 

the appropriate benzenesulfonyl chloride (BSC) derivative as a starting material, five 

monomers were prepared via nucleophilic substitution, as shown in Scheme 15. For each 

of the reactions, commercially available triethyl amine (TEA) and diallylamine were 

allowed to react with the BSC derivative in DCM for approximately three hours, at which 

point GC/MS analysis indicated complete conversion of the starting materials to the 

desired product. 

 
Scheme 15. Synthetic route for DABSA derivatives. 

DABSA 
1a 

DABSA-4-Br 
1b 

DABSA-4-F 
1c 

DABSA-2,4-DF 
1d 

DABSA-3,5-DF 
1e 
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3.1.1. Synthesis of N,N-diallylbenzenesulfonamide (DABSA) Derivatives 

Using benzenesulfonyl chloride as a starting material, N,N-

diallylbenzenesulfonamide (DABSA), 1a, was prepared by nucleophilic substitution. 

Commercially available benzenesulfonyl chloride was allowed to react at room 

temperature with triethyl amine for fifteen minutes, at which point diallylamine was 

added and allowed to react for 3 hours, during which time an exothermic reaction 

occurred. GC/MS analysis of an aliquot confirmed that the starting materials were 

converted to the desired product. After washing with HCl/water, and removing the DCM 

via rotary evaporation, the product was isolated to afford 1a as a yellow oil in a 90 % 

yield. 

The structure was confirmed by 1H and 13C NMR spectroscopy, GC/MS, and 

elemental analysis. The 1H and 13C NMR spectra of 1a are presented in Figure 4 and 

Figure 6, respectively. Integration of the 1H NMR spectrum confirmed the correct 

number of hydrogens in the monomer. There are six unique peaks that appear in the 1H 

NMR spectrum of 1a (Figure 4). The most upfield proton c appears as a doublet at 3.84 

ppm (3JH-H = 6.28 Hz) due to coupling with an adjacent hydrogen atom. Both the cis- (a’) 

and trans- (a) protons appear as multiplets from 5.12-5.15 and 5.17-5.19 ppm, 

respectively. Protons a and a’ can be distinguished by the difference in shielding; a’ is 

more shielded by the CH2 than is a, resulting in a’ being more upfield. Protons b and d 

appear as a series of multiplets from 5.55-5.69 and from 7.83-7.87 ppm, respectively. 

Protons e and f appear as a complex series of overlapping multiplets from 7.49-7.62 ppm.  
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Figure 4. 300 MHz 1H NMR spectrum (CDCl3) of 1a. 

Syntheses of the remaining N,N-diallylbenzenesulfonamide derivatives were 

carried out in an analogous fashion, and the major differences between the 1H and 13C 

NMR spectra are the specific signals in the aromatic region, arising from the 

benzenesulfonyl chloride derivative used for the synthesis (see Figure 5 and Figure 7).  

Protons a-c and carbons a-c appear in essentially the same positions in monomers 1a-e. 

N,N-diallyl-4-bromobenzenesulfonamide (1b) was prepared in a 96% yield as a 

yellow oil, and in the 1H NMR spectrum protons d and e appear as a series of broad, 

overlapping multiplets from 7.58-7.69 ppm. N,N-diallyl-4-fluorobenzenesulfonamide (1c) 

was prepared in a 86% yield as a yellow oil; protons d and e appear as a series of broad 

multiplets from 7.78-7.85 and 7.13-7.19 ppm, respectively. N,N-diallyl-2,4-

difluorobenzenesulfonamide (1d) was prepared in a 94% yield as a yellow oil; proton d 

appears as a multiplet from 7.86-7.95 ppm, and protons e and f appear as a series of 

broad, overlapping multiplets from 6.89-7.01 ppm. N,N-diallyl-3,5-
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difluorobenzenesulfonamide (1e) was prepared in a 93% yield as a white powder; proton 

d appears as a series of broad multiplets from 7.33-7.42 ppm respectively, while proton e 

appears as a triplet of triplets at 7.03 ppm due to coupling with two ortho-fluorines with 

equal coupling constants (3JH-F = 8.47 Hz) and two meta-hydrogens with equal coupling 

constants (4JH-H = 2.32 Hz). 

 
Figure 5. 300 MHz NMR spectra (CDCl3) of the aromatic region of 1a-e. 

In the 13C NMR spectrum of 1a (Figure 6), carbons a, b, c, d, e, f, and g appear 

as singlets at 119.0, 132.5, 49.3, 140.4, 127.1, 129.1, and 132.5 ppm, respectively. 

Carbons b and g appear at 132.5 ppm, and the two peaks can be distinguished by the 

shielding associated with g. Carbon g experiences a greater pull of electrons from the 

para-sulfone than carbon b does from the ipso-CH2-N, resulting in g being slightly more 

upfield.  
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Figure 6. 75.7 MHz DEPT 135 (top) and 13C NMR (bottom) spectral overlay (CDCl3) of 
DABSA. 

The 13C NMR spectra of 1a-1e are presented in Figure 7. In the 13C NMR 

spectrum of 1b, carbons d, e, and g appear as singlets at 139.5, 128.7, and 127.3 ppm, 

respectively. Both carbons b and f appear at 132.3 ppm, and the two peaks can be 

distinguished by the shielding associated with f. Carbon f experiences a greater pull of 

electrons from the para-sulfone than carbon b does from the ipso-CH2-N, resulting in f 

being slightly more upfield. In the 13C NMR spectrum of 1c, carbons d at 136.4 (4JC-F = 

3.29 Hz), e at 129.8 ppm (3JC-F = 9.30 Hz), f at 116.1 ppm (2JC-F = 22.5 Hz), and g at 

166.4 ppm (1JC-F = 254 Hz) all appear as doublets. In the 13C NMR spectrum of 1d, 

carbon d appears as a multiplet from 125.2-125.6 ppm, carbon h appears as a triplet at 

105.6 ppm (2JC-F = 25.7 Hz) due to splitting with two ortho fluorines. Carbon f appears as 

a doublet of doublets at 111.6 ppm (2JC-F = 3.81 Hz, 4JC-F = 21.6 Hz) due to splitting with 

ortho- and para-fluorines. Carbon e appears as a doublet of doublets at 132.5 ppm (3JC-F 
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= 2.2 Hz, 3JC-F = 10.2 Hz) due to splitting with two non-equivalent meta-fluorines. 

Carbons g at 165.6 ppm (1JC-F = 13.5 Hz, 3JC-F = 259 Hz) and i at 159.5 ppm (1JC-F = 14.4 

Hz, 3JC-F = 260 Hz) both appear as doublets of doublets due to coupling with two non-

equivalent fluorine atoms. In the 13C NMR spectrum of 1e, carbons d 143.9 ppm (3JC-F = 

8.15 Hz), and g at 108.0 ppm (2JC-F = 25.1 Hz) both appear as triplets at due to splitting 

with two equivalent fluorine atoms. Carbons e at 110.6 ppm (2JC-F = 9.39 Hz, 4JC-F = 18.3 

Hz) and f at 162.8 ppm (1JC-F = 11.6 Hz, 3JC-F = 255 Hz) both appear as a doublet of 

doublets due to splitting with two non-equivalent fluorine atoms. 

 
Figure 7. 75.5 MHz 13C NMR spectral overlay (CDCl3) of DABSA derivatives. 

3.1.2. Synthesis of N,N-dioctylbenzenesulfonamide Derivatives 

Using 2,4-difluorobenzenesulfonyl chloride as a starting material, N,N-dioctyl-

2,4-difluorobenzenesulfonamide (DOctBSA-2,4-DF, 2a) was prepared by nucleophilic 

substitution, as illustrated in Scheme 16. Commercially available 2,4-

difluorobenzenesulfonyl chloride was allowed to react at room temperature with triethyl 
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amine (TEA) for fifteen minutes, at which point dioctylamine was added and allowed to 

react for 3 hours, during which time an exothermic reaction occurred. GC/MS analysis of 

an aliquot confirmed that the starting materials had been converted to the desired product. 

After washing with HCl/water, hexanes, and removing the DCM via rotary evaporation, 

the product was isolated to afford 2a as a yellow oil in a 86 % yield. 

 

Scheme 16. Synthetic route for DOctBSA derivatives. 

The structure was confirmed by 1H, DEPT 135, and 13C NMR spectroscopy, 

GC/MS, and elemental analysis. Integration of the 1H NMR spectrum confirmed the 

structure of the monomer. The 1H NMR spectrum (Figure 8) contains six unique peaks. 

The most upfield proton, a, appears as a triplet at 0.89 ppm (3JH-H = 6.81 Hz) due to 

coupling with two adjacent hydrogens with equivalent coupling constants. Protons c-g 

appear as a broad multiplet from 1.22-1.33 ppm due to coupling with adjacent hydrogens. 

Protons b and i appear as broad multiplets from 1.45-1.58 ppm and 7.89-7.97 ppm, 

respectively. Protons i and j appear as a series of broad, overlapping multiplets from 

6.90-7.02 ppm. 

Synthesis of N,N-dioctyl-3,5-difluorobenzenesulfonamide (DOctBSA-3,5-DF, 2b) 

was carried out in an analogous fashion, and the major differences between the 1H and 
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3,5-DF 



 35 

13C NMR spectra are the specific signals in the aromatic region, arising from the 

monomer used. Protons a-h and carbons a-h appear in essentially the same positions in 

both of the monomers. 

Monomer 2b was prepared in a 76% yield as a yellow oil; proton i appears as a 

multiplet from 7.33-7.38 ppm, and proton j appears as a triplet of triplets at 7.01 ppm due 

to coupling with two ortho-fluorines with equal coupling constants  (3JH-F =  8.50 Hz) and 

two meta-hydrogens with equal coupling constants (4JH-H = 2.31 Hz) 

 
Figure 8. 1H NMR spectral overlay (CDCl3) of 2a (top) and 2b (bottom). 

The DEPT 135 and 13C NMR spectra of 2a (Figure 9) contain 10 and 14 peaks, 

respectively. Carbons a at 13.9 ppm, b at 22.5 ppm, g at 26.5 ppm, f at 28.4 ppm, and c at 

31.7 ppm appear as singlets. Protons d and e appear as singlets at 29.1 ppm, with proton e 

shifted slightly more upfield due to shielding from the nitrogen.  Carbon h appears as a 

doublet at 47.5 ppm (JC,F = 2.27 Hz) due to through-space coupling with the fluorine 

ortho- to the sulfonamide. Carbon m appears as a triplet at 105.3 ppm (2JC-F = 25.8) due 
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to coupling with two similar fluorine atoms. Carbons k at 111.4 ppm (2JC-F = 3.74 Hz, 4JC-

F = 21.6 Hz), i at 125.3 ppm (2JC-F = 3.90 Hz, 4JC-F = 15.2 Hz), j at 132.4 ppm (3JC-F = 

2.29 Hz, 3JC-F = 10.2 Hz), n at 159.4 ppm (1JC-F = 12.5 Hz, 3JC-F = 257 Hz), and l at   

165.3 ppm (1JC-F = 11.3 Hz, 3JC-F = 256 Hz) each appear as a doublet of doublets due to 

coupling with two non-equivalent fluorine atoms. 

 
Figure 9. 75.5 MHz DEPT 135 (top) and 13C (bottom) NMR spectral overlay (CDCl3) of 
2a. 

The DEPT 135 and 13C NMR spectra of 2b (Figure 10) contain nine and twelve 

unique peaks, respectively. Carbons a at 14.0 ppm, b at 22.6 ppm, c at 31.7 ppm, d and e 

at 29.1 ppm, f at 28.6 ppm, g at 26.7 ppm, and h at 48.2 ppm appear as singlets. Carbons i 

at 143.7 ppm (3JC-F = 7.99 Hz) and l at 107.7 ppm (2JC-F = 25.1 Hz) appear as triplets due 

to splitting with a para- and ortho- fluorine, respectively. Carbons j at 110.5 ppm (2JC-F = 

9.26 Hz, 4JC-F = 18.2 Hz) and k at 162.8 ppm (1JC-F = 11.6 Hz, 3JC-F = 254 Hz) appear as 

doublets of doublets due to splitting with two non-equivalent fluorine atoms. 
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Figure 10. 75.5 MHz DEPT 135 (top) and 13C NMR (bottom) spectral overlay (CDCl3) 
of 2b. 

3.1.3. Spartan Calculations 

 The energy of monomers 1a-e was calculated in vacuum using the Spartan’ 10 

computational software package (Wavefunction, Inc., Irvin, CA). The geometries were 

initially optimized using the semiempirical method RM1, and then further optimized 

using density functional theory at the B3LYP/6-31+G** level. The energy of each of the 

monomers was recorded and expressed as a relative energy with respect to the most 

stable species of that charge. As shown in Table 2, by incorporating the 

benzenesulfonamide moiety, the electrostatic charge on the nitrogen becomes 

significantly more positive; which, as previously stated, reduces the rate of degradative 

chain transfer, and indicates that a higher molecular weight polymer can be formed. 
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Figure 11. Electron density mapping of starting materials. 

Table 2. Calculated electrostatic charges of diallylamine derivatives. 

Compound 
Electrostatic  
Charge on  

Nitrogen Atom 
Diallylamine -0.641 

DABSA 
(1a) -0.105 

DABSA-4-Br 
(1b) -0.138 

DABSA-4-F 
(1c) -0.131 

DABSA-2,4-DF 
(1d) -0.134 

DABSA-3,5-DF 
(1e) -0.139 

 
The most negative charge on the nitrogen was on diallylamine, while the most 

positive charge on the nitrogen atom was calculated on DABSA. The monomers 

containing halides (1b-e) have a slightly more negative charge than does DABSA, which 

   DAA  DABSA DABSA- 
4-Br 

DABSA- 
4-F 

  DABSA- 
  2,4-DF 

   DABSA- 
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can be explained through electron donating effects. Both fluorine and bromine withdraw 

electron density through inductive effects, but strongly donate ortho- and para- through 

resonance effects. The meta-fluorines in DABSA-3,5-DF are electron withdrawing 

through inductive effects on the carbon ipso- to the sulfonamide, resulting in a decrease 

in electron density at that position. However, the contribution through resonance is much 

greater than the inductive effects, the two fluorine groups donate electron density to the 

ortho- and para- positions through resonance, resulting in a benzene ring that is more 

electron rich than it is in monomers 1a-d. As shown in Table 3, these calculations also 

correlate with the difference in chemical shift of the allyl groups in the 13C NMR spectra  

of the monomers. 

3.1.4. Free Radical Polymers 

Polymers p1a-e were prepared via the free radical polymerization (FRP) of 

monomers 1a-e, as outlined in Scheme 17. For each of the reactions, commercially 

available 2,2’-azobis(2-methylpropionitrile) (AIBN) or benzoyl peroxide (BPO) was 

allowed to react with the DABSA derivative for approximately twenty-four hours. AIBN 

was selected as the initiator for FRP because the resulting polymers typically had a higher 

yield and greater thermal stability than those prepared with BPO, as shown in Table 4.  
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Scheme 17. General outline of the FRP of DABSA derivatives. 

The polymers were precipitated from diethyl ether, centrifuged, washed again 

with diethyl ether, and isolated as off-white solids by the removal of diethyl ether by 

decantation and vacuum. The structures were confirmed by 1H NMR Spectroscopy, SEC, 

TGA, and DSC, while the cyclization efficiencies (CE) were determined by integrating 

the double bond proton peaks relative to the backbone proton peaks in the 1H NMR 

spectrum (Figure 12). 

3.1.4.1 AIBN Initiated Polymerization of DABSA Derivatives 

AIBN initiated p1a was prepared in a 51% yield, with a cyclization efficiency of 

97.5%. Protons a and b appear as a series of broad multiplets from 5.12-5.18 ppm and 

5.54-5.67 ppm, respectively (see Figure 12). Proton c appears as a doublet at 3.83 ppm 

(3JH-H = 5.90 Hz) due to coupling with an adjacent hydrogen atom. The decrease in 

intensity of protons a-c indicates successful polymerization of 1a, while the residual allyl 

peaks indicated that 100% cyclization did not occur. Protons n, and o/p appear as broad 

singlets from 7.75-7.90 and 7.45-7.65 ppm, respectively, and protons d-m appear as a 

broad series of multiplets from 0.61-3.50 ppm, both of which are typical in FRP.  
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AIBN initiated FRP of the remaining N,N-diallylbenzenesulfonamide derivatives 

were carried out in an analogous fashion, and the major differences between the 1H 

spectra (Figure 12) are the specific signals in the aromatic region, arising from monomer 

used, with protons a-m appear in essentially the same positions in each of the polymers. 

AIBN initiated p1b was prepared in an 84% yield, with a cyclization efficiency of 

98.2%; protons n and o appear as broad singlets from 7.63-7.78, which is typical in FRP. 

AIBN initiated p1c was prepared in a 63% yield, with a cyclization efficiency of 97.9%; 

protons n and o appear as broad singlets from 7.79-7.91 and 7.15-7.31 ppm, respectively, 

which is typical in FRP. AIBN initiated p1d was prepared in a 67% yield, with a 

cyclization efficiency of 99.3%; protons n and o/p appear as broad multiplets from 7.81-

8.00 and 6.90-7.21 ppm, respectively, which is typical in FRP. AIBN initiated p1e was 

prepared in a 90% yield, with a cyclization efficiency of 98.8%; protons n and o appear 

as broad singlets from 7.25-7.47 and 6.96-7.22 ppm, respectively, which is typical in 

FRP.  
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Figure 12. 300 MHz 1H NMR spectral overlay (CDCl3) of AIBN initiated p1a-e. 

3.1.4.2 BPO Initiated Polymerization of DABSA Derivatives 

Benzoyl peroxide (BPO) initiated p1a was prepared in a 49% yield, with a 

cyclization efficiency of 98.8%. Protons a and b appear as a series of broad multiplets 

from 5.14-5.20 ppm and 5.54-5.67 ppm, respectively (see Figure 13). Proton c appears as 

a doublet at 3.83 ppm (3JH-H = 5.90 ppm) due to coupling with an adjacent hydrogen. 

Protons n and o/p appear as broad singlets from 7.71-7.91 and 7.36-7.70 ppm, 

respectively, and protons d-m appear as a broad series of multiplets from 0.43-3.50 ppm, 

both of which are typical in FRP. The additional peaks present in the aromatic region are 

attributed to the phenyl ring in BPO. 

BPO initiated FRP of the remaining N,N-diallylbenzenesulfonamide derivatives 

were carried out in an analogous fashion, and the major differences between the 1H 

spectra (Figure 13) are the specific signals in the aromatic region, arising from monomer 
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used, with protons a-m appearing in essentially the same positions in each of the 

polymers. 

BPO initiated p1d was prepared in a 58% yield, with a cyclization efficiency of 

99.3%; protons n and o/p appear as broad singlets from 7.80-8.01 and 6.89-7.15 ppm, 

respectively, which is typical in FRP. BPO initiated p1e was prepared in a 56% yield, 

with a cyclization efficiency of 98.8%; protons n and o appear as broad singlets from 

7.25-7.52 and 6.69-7.19 ppm, respectively, which is typical in FRP. 

 
Figure 13. 300 MHz 1H NMR spectral overlay (CDCl3) of BPO initiated p1a, d, and e. 

3.1.5. ATRP and ICAR ATRP Polymers 

3.1.5.1 ATRP of DABSA Derivatives 

The atom transfer radical polymerization (ATRP) of 1a-e was conducted as 

outlined in Scheme 18. For each of the reactions, commercially available N,N,N’,N’,N”-

pentamethyldiethylenetriamine (PMDETA) or tris[2-(dimethylamino)ethyl]amine 

(Me6TREN) in xylenes was added to a Schlenk tube containing CuBr, ethyl-2-
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bromopropionate (EBrP), and the appropriate DABSA derivative, and allowed to react at 

100 °C for 48 hours. After 48 hours, the polymer was analyzed via 1H NMR analysis, 

which showed no conversion of monomer to polymer.  

ATRP owes its success to the transition metal catalyst, in this case CuBr, and 

nitrogen based ligand complex. Because the monomers used are also nitrogen based, they 

may be acting as an alternative ligand for the copper center, resulting in the ATRP being 

unsuccessful.  

 
Scheme 18. ATRP of 1a-e. 

3.1.5.2 ICAR ATRP of DABSA Derivatives 

The ICAR ATRP of 1a-e was conducted as outlined in Scheme 19. For each of 

the reactions, commercially available PMDETA or Me6TREN in xylenes was added to a 

Schlenk tube containing CuBr, EBrP, AIBN, and the appropriate DABSA derivative, and 

allowed to react at 100 °C for 48 hours. After 48 hours, the polymer was analyzed via 1H 

NMR analysis, which showed no conversion of monomer to polymer. 

For reasons that were previously mentioned, ICAR ATRP was unsuccessful in 

polymerizing the monomers that were used. 
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Scheme 19. ICAR ATRP of 1a-e. 

3.1.6. RAFT of DABSA-2,4-DF 

The reversible addition-fragmentation chain transfer (RAFT) polymerization of 

DABSA-2,4-DF (1d) was conducted as outlined in Scheme 20. For each of the reactions, 

commercially available cyanomethyl methyl(phenyl) carbamodithioate (CMMPCDT) in 

xylenes was added to a Schlenk tube containing AIBN and 1d and allowed to react at 100 

°C for 48 hours. After 48 hours, the polymer was analyzed via 1H NMR analysis, which 

showed little conversion of monomer to polymer. The reaction was allowed to continue 

for 7 days, at which point the polymer was precipitated from diethyl ether to afford 0.016 

g (2%) of p2d. The polymer was once again analyzed via 1H NMR spectroscopy and 

GPC.  

 
Scheme 20. RAFT polymerization of 1d. 
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The 1H NMR spectrum of RAFT polymerization of 1d is shown in Figure 14. 

The spectrum indicates successful polymerization of 1d, with a cyclization efficiency of 

94.5%. The decrease in intensity of protons a-c indicates the polymerization of 1d, while 

the residual allyl peaks indicate that 100% cyclization did not occur. Protons d and e/f 

appear as broad singlets from 7.84-8.00 ppm and 6.94-7.08, respectively. Protons a', b', 

and c' appear as a broad series of multiplets from 0.50-3.70 ppm. The broadening in the 

aromatic and aliphatic region are both stereotypical in cyclopolymerization. The 

additional peaks present in the aromatic region are attributed to the phenyl ring in 

CMMPCDT. 

 
Figure 14. 300 MHz 1H NMR spectra of 1d (top) and p2d (bottom). 

3.2. ADMET Polymers 

Polymers p3a-e were prepared via the acyclic diene metathesis (ADMET) 

polymerization of monomers 1a-e, as outlined in Scheme 21. For each of the reactions, 

commercially available Hoveyda-Grubbs 2nd generation catalyst was allowed to react 
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with the appropriate DABSA derivative at 70 ºC for approximately 48 hours. The 

reaction was carried out under reduced pressure in order to remove the ethylene that 

builds up in the reaction, which can result in the formation of lower molecular weight 

polymers (Scheme 6). The polymers were precipitated from diethyl ether, centrifuged, 

washed again with diethyl ether, and isolated by the removal of diethyl ether via 

decantation and vacuum to afford an off-white solid. The structures were confirmed by 

1H and 13C NMR spectroscopy, and integration of the 1H NMR spectrum confirmed the 

correct number of hydrogens in the polymer. 

 
Scheme 21. ADMET polymerization of monomers 1a-e. 

Polymer p3a was prepared in a 52% yield. The 1H NMR spectrum contains six 

unique peaks (see Figure 15). Both protons b’  (5.67 ppm) and c’ (4.15 ppm) appear as 

singlets. Peaks a and b in the monomer 1H NMR spectrum are consolidated into a single 

peak in the polymer 1H NMR spectrum (b’), indicating the loss of ethylene, and the 

successful formation of polymer. The lack of splitting in b’ and c’ indicates that the allyl 

groups have been converted to alkenes, and could be indicative of a conformationally 

locked polymer structure (i.e. carbon-carbon double bond in the backbone is either in cis- 

or trans- conformation). As in the monomer spectrum, proton d’ appears as a multiplet 
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from 7.83-7.88, and protons e’ and f’ appear as a series of broad, overlapping multiplets 

from 7.52-7.64 ppm, indicating that the phenyl ring was unaffected by the 

polymerization.  

 
Figure 15. 300 MHz 1H NMR spectral overlay (CDCl3) of 1a (top) and p3a (bottom). 

ADMET polymerizations of the remaining N,N-diallylbenzenesulfonamide 

derivatives were carried out in an analogous fashion, and the major differences between 

the 1H spectra (see Figure 16) are the specific signals in the aromatic region, arising from 

monomer used, with protons b’ and c’ appearing in essentially the same positions in each 

of the polymers. 

Polymer p3b was prepared in a 54% yield; protons d’ and e’ appear as a series of 

broad, overlapping multiplets from 7.67-7.74 ppm. Polymer p3c was prepared in a 50% 

yield; proton d’ and e’ appear as a series of broad multiplets from 7.84-7.90 ppm and 

7.18-7.25 ppm, respectively. Polymer p3d was prepared in a 40% yield; proton d’ 

appears as a series of broad multiplets from 7.91-8.00 ppm, and protons e’/f’ appear as a 
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series of broad, overlapping multiplets from 6.93-7.05 ppm. Polymer p3e was prepared in 

a 58% yield; proton d’ appears as a series of broad multiplets from 7.35-7.43 ppm, and 

proton e’ appears as a triplet of triplets at 7.06 ppm due to coupling with two equivalent 

ortho-fluorine atoms (2JH-F = 2.34 Hz) and two equivalent meta-hydrogen atoms (3JH-H = 

8.50 Hz). 

 
Figure 16. 300 MHz 1H NMR spectral overlay (CDCl3) of ADMET polymers p3a-e. 

The 13C NMR spectrum of p3a (Figure 17) contains six unique peaks. Peaks a 

and b in the monomer spectrum are consolidated into a single peak in the polymer 

spectrum (b’), indicating the loss of ethylene, and the successful formation of polymer. 

Carbons b’ and c’ appear as singlets at 125.4 and 54.9 ppm, respectively. Carbons d’ at 

137.3 ppm, e’ at 127.3 ppm, f’ at 129.1, and g’ at 132.7 also appear as singlets, as they do 

in the 13C NMR spectrum of 1a, indicating that the phenyl ring was unaffected by the 

polymerization. 
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Figure 17. 75.5 MHz 13C NMR spectra (CDCl3) of 1a (top) and p3a (bottom). 

The major differences between the 13C spectra (see Figure 18) are the specific 

signals in the aromatic region, arising from monomer used, with carbons b’ and c’ 

appearing in essentially the same positions in each of the polymers. 

In the 13C NMR spectrum of p3b, carbons d’, e’, and f’ appear as singlets at 

136.4, 128.8, and 132.4 ppm, respectively. In the 13C NMR spectrum of p3c, carbon d’ 

appears as a singlet at 133.5 ppm, carbon e’ appears as a doublet at 130.0 ppm (3JC-F = 

9.28 Hz) due to coupling with a meta-fluorine atom, carbon f’ appears as a doublet at 

116.4 ppm (2JC-F = 22.5 Hz) due to coupling with an ortho-fluorine atom, and carbon g’ 

appears as a doublet at 165.1 ppm (1JC-F = 255 Hz) due to coupling with an ipso-fluorine 

atom. In the 13C NMR spectrum of p3d, carbon d’ appears as a multiplet from 122.8-

123.1 ppm, and carbons e’ at 132.9 ppm (3JC-F = 2.24, 3JC-F = 10.3 Hz), f’ at 111.7 ppm 

(2JC-F = 3.81 Hz, 4JC-F = 21.8 Hz), g’ at 165.6 ppm (1JC-F =11.4 Hz, 3JC-F = 166 Hz) and 

carbon i’ at 159.7 ppm (1JC-F = 12.7 Hz, 3JC-F = 258 Hz) appear as doublets of doublets 
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due to coupling with two non-equivalent fluorine atoms and carbon h appears as a triplet 

at 105.7 ppm (2JC-F =25.7 Hz) due to coupling with two equivalent fluorine atoms. In the 

13C NMR spectrum of p3e, carbons d’ at 140.7 ppm (3JC-F = 7.79 Hz) and g’ at 108.3 

ppm (2JC-F = 25.1 Hz) appear as triplets due to coupling with two equivalent fluorine 

atoms, and carbons e’ at 110.7 ppm (2JC-F = 9.36 Hz, 4JC-F = 18.2 Hz) and f’ at 162.9 ppm 

(1JC-F =11.64 Hz, 3JC-F = 255 Hz) appear as doublets of doublets due to coupling with two 

non-equivalent fluorine atoms. 

 
Figure 18. 75.5 MHz 13C NMR spectral overlay (CDCl3) of ADMET polymers p3a-e. 

3.3. SNAr Copolymers 

Copolymers p4a and p4b were prepared via the SNAr copolymerization of 1d/2a 

or 1e/2b in a 95/5 ratio using 4,4’-dihydroxydiphenyl ether, as shown in Scheme 22. The 

reagents were heated to 135 °C in order to prevent crosslinking of the allyl groups. After 

72 hours, DEPT 90 13C NMR spectroscopy showed no residual starting material, as 

indicated by the absence of the triplet present in the starting material. The structure of the 
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polymers were confirmed by 1H and DEPT 90 13C NMR spectroscopy, and the polymers 

were characterized by GPC, TGA, and DSC analyses. 

 
Scheme 22. SNAr copolymerization of 2a/b and 1d/e to form p4a/b. 

3.3.1. SNAr Copolymerization of 1d and 2a using 4,4’-dihydroxydiphenyl ether 

The 1H NMR spectrum of p4a (Figure 19) contains eleven distinct peaks.  

Protons a and b from 6.94-7.11, c from 0.84-0.91 ppm, i from 1.47-1.60 ppm, j from 

3.25-3.30 ppm, l from 5.63-5.75 ppm, and p from 6.49-6.58 ppm appear as a series of 

broad multiplets.  Protons d, e, f, g, and h appear as a singlet at 1.24 ppm, as does proton 

o at 7.28 ppm. Protons k at 5.17 ppm (3JH-H = 13.20 Hz), m at 3.96 ppm (3JH-H = 6.01 

Hz), and n at 7.92 ppm (3JH-H = 8.40 Hz) appear as doublets due to coupling with an 

adjacent proton. Due to coupling with both the ipso- proton, as well as an adjacent 

proton, proton k has a larger coupling constant than either m or n.  

Protons c-l appear in essentially the same positions in p4b, with the major 

differences being in the aromatic region.  Protons a and b from 6.94-7.23, n from 6.72-

6.86 ppm, and o from 6.94-7.23 ppm appear as multiplets. 
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Figure 19. 300 MHz 1H NMR (CDCl3) spectral overlay of p4a (top) and p4b (bottom). 

In the DEPT 90 13C NMR spectrum of p4a (Figure 20), carbons a, b, c, and d 

appear as singlets at 132.9, 120.2, 109.5 and 107.0 ppm, respectively. Carbons e and f 

appears as a doublet at 121.6 ppm (2JC-O = 8.15 Hz) because of the difference in chemical 

shift associated with coupling with an ortho- and para- sulfonamide. In the DEPT 90 13C 

spectrum of p4b (Figure 21), carbons a, b, c, and d/e appear as singlets at 136.0, 110.0, 

110.7, and 121.4 ppm, respectively. 
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Figure 20. 75.5 MHz DEPT 90 13C NMR (CDCl3) spectral overlay of 1d (top) and p4a 
(bottom). 

 
Figure 21. 75.5 MHz DEPT 90 13C NMR (CDCl3) spectral overlay of 1e (top) and p4b 
(bottom). 
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3.4. Polymer Molecular Weights and Thermal Properties 

The polymers were further analyzed using gel permeation chromatography 

(GPC), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). 

Characterization data, including number and weight average molecular weight (Mn and 

Mw, respectively), dispersity (Đ), cyclization efficiency (CE), glass transition temperature 

(Tg), melting temperature (Tm), and the 5% weight loss (Td-5%) are summarized in Tables 

3-7. 

GPC was used to determine molecular weight and molecular weight distributions 

of polymers soluble in THF/5% acetic acid. The Đ and Mw were determined using the 

refractive index (RI) and light-scattering detectors. For the free radical polymers, the Mw 

was found to be from 1,421 to 5,079 g/mol, with Đ values ranging from 1.78-3.31. In 

both the AIBN and BPO initiated polymers, N,N-diallyl-3,5-difluorobenzenesulfonamide 

(1e) afforded the highest Mw polymers, whereas N,N-diallylbenzenesulfonamide (1a) 

afforded the lowest. By comparing the calculated electrostatic charge and differences in 

chemical shift between the terminal and penultimate allyl carbons, the difference in 

molecular weight can be explained. Although the calculated charge on the nitrogen is 

more negative for 1e than it is on 1a-d, the actual chemical shifts explain the difference 

in molecular weight. As previously stated, Mathias et al. showed that the smaller the 

difference in chemical shift in the allyl groups, the lower the propensity for chain transfer 

via hydrogen abstraction from the allyl position, resulting in an increase in molecular 

weight of the resulting polymer. 
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Table 3. Differences in chemical shift and molecular weights of free radical polymers. 

 Δδ 
(ppm) 

Electrostatic 
Charge Initiator Mn 

(g/mol) 
Mw 

(g/mol) Đ Yield 
(%) 

CE 
(%) 

p1a 13.5 -0.105 AIBN 700 1,431 2.04 33 97.5 
BPO 1,128 2,003 1.78 24 98.9 

p1b 13.1 -0.138 AIBN 820 2,010 2.45 24 97.8 
BPO - - - - - 

p1c 13.1 -0.131 AIBN 994 2,158 2.17 35 97.9 
BPO - - - - - 

p1d 13.1 -0.134 AIBN 1,497 3,420 2.28 29 99.2 
BPO 1,209 2,976 2.46 21 99.1 

p1e 12.3 -0.139 AIBN 1,325 4,386 3.31 37 98.8 
BPO 1,630 5,079 3.12 28 98.7 

 

The thermal stability of the polymers, reported as 5% decomposition temperature 

(Td-5%) under nitrogen was investigated using thermogravimetric analysis (TGA), while 

the glass transition temperatures (Tg) were determined using differential scanning 

calorimetry (DSC).  

Overlays of the thermal analyses of AIBN and BPO initiated polymers are shown 

in Figures 22-25. 

The glass transition temperatures (Tg) ranged from 86 °C for BPO initiated 

DABSA (see Figure 22) to 114 °C for AIBN initiated DABSA-4-Br (see Figure 24). 

The higher Tg can be attributed to a more rigid polymer backbone. 

The free radical polymers showed moderate thermal stability above 290 °C for 

AIBN initiated polymers (see Figure 23), and 262 °C for BPO initiated polymers (see 

Figure 25) under nitrogen atmosphere. For AIBN initiated polymers, the Td-5% for the 

first degradation step ranged from 290 °C for p1c to 305 °C for p1d, while the BPO 

initiated polymers ranged from 262 °C for p1a to 302 °C for p1d.  
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Table 4. Thermal data for free radical polymers. 

 Initiator Tg  
(°C) 

Td-5% 
(°C) 

p1a AIBN 94 292 
BPO 86 262 

p1b AIBN 114 303 
BPO - - 

p1c AIBN 87 290 
BPO - - 

p1d AIBN 112 305 
BPO 111 302 

p1e AIBN 87 302 
BPO 98 287 

 

 
Figure 22. DSC results of AIBN initiated DABSA derivatives. 
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Figure 23. TGA results of AIBN initiated DABSA derivatives. 

 
Figure 24. DSC results of BPO initiated DABSA derivatives. 
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Figure 25. TGA results of BPO initiated DABSA derivatives. 

For the RAFT polymer of DABSA-2,4-DF, the Mw was found to be 1,154 g/mol, 

with a dispersity of 1.47. The low molecular weight may be attributed to the selection of 

RAFT transfer agent (RTA), by selecting an alternative RTA such as 2-

(dodecylthiocarbonothioylthio)-2-methylpropionic acid, which is well suited for the 

RAFT polymerization of acrylamides. 

Table 5. Molecular weight of RAFT polymer p2d. 

 Mn 
(g/mol) 

Mw 
(g/mol) Đ 

DABSA- 
2,4-DF 786 1,154 1.47 

 

For the ADMET polymers, the Mw was found to be from 10,150 to 30,229 g/mol, 

with Đ values ranging from 1.24-2.03. N,N-diallylbenzenesulfonamide (1a) afforded the 

highest Mw polymers, whereas N,N-diallyl-2,4-difluorobenzenesulfonamide (1d) afforded 

the lowest. Due to the ortho- and para- fluorine atoms in monomer 1d, the structure is 
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asymmetric. This could limit the ability of the catalyst to convert monomer to polymer, 

resulting in the decrease in molecular weight.  

Table 6. Molecular weights and thermal properties of ADMET polymers. 

 Mn 
(g/mol) 

Mw 
(g/mol) Đ Tm 

(°C) 
Td-5% 
(°C) 

DABSA 14,915 30,229 2.03 115 146 
DABSA-

4-Br 8,692 14,168 1.63 136 167 

DABSA-
4-F 17,075 28,966 1.70 90 159 

DABSA-
2,4-DF 5,547 10,150 1.86 65.5 171 

DABSA-
3,5-DF 10,210 13,637 1.34 109 125 

 

Melting temperatures (Tm) were determined using differential scanning 

calorimetry (DSC), and are shown in (Figure 26). 

The melting temperature (Tm) of the ADMET polymers ranged from 65.5 °C for 

p3d to 136 °C p3b. The lower Tm associated with p3d is, as previously stated, due to 

steric effects associated with monomer 1d.  

The ADMET polymers showed low thermal stability above 125 °C for under 

nitrogen atmosphere. The Td-5% for the first degradation step ranged from 125 °C for 1e 

to 171 °C for 1d. As shown in Figure 27, the difference in degradation temperature 

between 1c and p3c is minimal (152 and 157 °C, respectively), which can be explained 

through the structure of the polymer. The similarity of the polymer structure to that of the 

monomer (see Scheme 21) results in the degradation of the polymer being only slightly 

higher than the monomer. The TGA thermogram of ADMET polymers under nitrogen 

atmosphere is shown in Figure 28. 
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Figure 26. DSC results of ADMET polymers. 

 
Figure 27. TGA results of 1c and p3c. 
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Figure 28. TGA results of ADMET Polymers. 

As shown in Table 7, the Mw of the SNAr copolymers were 7,440 g/mol for p4b 

and 9,530 g/mol for p4a, with Đ values ranging from 2.44-2.60.  

Table 7. Molecular weights and thermal properties of SNAr polymers. 

Polymer Monomer 
Components Ratio Mn 

(g/mol) 
Mw 

(g/mol) Đ Tg 
(°C) 

Td-5% 
(°C) 

p4a 2a:1d 95:5 3,660 9,530 2.60 14.5 354 
p4b 2b:1e 95:5 3,050 7,440 2.44 6.34 329 

 

Glass transition temperatures (Tg) were determined using differential scanning 

calorimetry (DSC) and overlays of SNAr copolymers are shown in Figure 29. 

The glass transition temperatures (Tg) were 70.3 °C for p4b and 96.3 °C for p4a. 

The higher Tg can be attributed to a more rigid polymer backbone, resulting from the 

incorporation of a greater amount of monomer into the polymer.  
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Figure 29. DSC results of SNAr copolymers. 

The SNAr copolymers showed moderate thermal stability above 329 °C under 

nitrogen atmosphere. The Td-5% for the first degradation step ranged from 329 °C for p4b 

to 354 °C for p4a. The TGA thermogram of SNAr copolymers under nitrogen atmosphere 

is shown in Figure 30. 
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Figure 30. TGA results of SNAr copolymers. 
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4. CONCLUSIONS 

A series of sulfonamide based bifunctional monomers was successfully 

synthesized and polymerized via free radical (FRP), acyclic diene metathesis (ADMET), 

reversible addition-fragmentation chain transfer (RAFT), and nucleophilic aromatic 

substitution (SNAr) polymerization processes. The weight average molecular weights, as 

determined by GPC, ranged from 1,430 Da to 5,070 Da, with Đ values ranging from 

2.04-3.31 for FRP polymers; 13,640 Da to 30,230 Da, with Đ values ranging from 1.3 to 

2.0 for ADMET polymers; 1,150 Da, with a Đ value of 1.47 for RAFT; and 7,440 to 

9,530 Da, with Đ values ranging from 2.44 to 2.60 for SNAr. 

Thermal properties for the resulting polymers were determined by TGA and DSC 

with TGA analysis showing the polymers prepared via FRP possessed moderate thermal 

stability above 260 °C; polymers prepared via ADMET possessed relatively low thermal 

stability above 125 °C; and polymers prepared via SNAr possessed better thermal stability 

above 330 °C. 

DSC analysis showed that polymers prepared via FRP were amorphous, with 

glass transition temperatures ranging from a low of 87 °C for the AIBN initiated polymer 

of N,N-diallyl-3,5-diflurobenzenesulfonamide to a high of 114 °C for the polymer of 

N,N-diallyl-4-bromobenzenesulfonamide. The copolymers prepared via SNAr were also 

found to be amorphous, with glass transition temperatures of 6 °C for the 3,5-difluoro 

copolymer to a high of 12 °C for the 2,4-difluoro copolymer. DSC analysis also showed 
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that polymers prepared via ADMET were crystalline, with melting temperatures ranging 

from a low of 65.5 °C for the polymer of N,N-diallyl-2,4-difluorobenzenesulfonamide to 

136 °C for the polymer of N,N-diallyl-4-bromobenzenesulfonamide. 
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5. FUTURE WORK 

SNAr copolymers carrying pendent allyl groups can undergo further modification 

via post polymerization modification chemistry, such as thiol-ene click chemistry, and 

could incorporate various functional groups by changing the thiol chosen. These 

polymers may also be crosslinked after polymerization by the addition of a 

multifunctional thiol. Alternatively, polymers formed via radical or ADMET 

polymerization that carry pendent, functionalized benzene moieties can undergo various 

types of post polymerization modification such as SNAr. 
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