
Wright State University Wright State University 

CORE Scholar CORE Scholar 

Browse all Theses and Dissertations Theses and Dissertations 

2016 

Examination of a Post-Stroke Drug Treatment for its Effect on Examination of a Post-Stroke Drug Treatment for its Effect on 

Blood Brain Barrier Permeability, and Gene Expression Changes in Blood Brain Barrier Permeability, and Gene Expression Changes in 

the Peri-Infarct Region the Peri-Infarct Region 

Ankita Anil Patel 
Wright State University 

Follow this and additional works at: https://corescholar.libraries.wright.edu/etd_all 

 Part of the Neuroscience and Neurobiology Commons, and the Physiology Commons 

Repository Citation Repository Citation 
Patel, Ankita Anil, "Examination of a Post-Stroke Drug Treatment for its Effect on Blood Brain Barrier 
Permeability, and Gene Expression Changes in the Peri-Infarct Region" (2016). Browse all Theses and 
Dissertations. 1556. 
https://corescholar.libraries.wright.edu/etd_all/1556 

This Thesis is brought to you for free and open access by the Theses and Dissertations at CORE Scholar. It has 
been accepted for inclusion in Browse all Theses and Dissertations by an authorized administrator of CORE 
Scholar. For more information, please contact library-corescholar@wright.edu. 

https://corescholar.libraries.wright.edu/
https://corescholar.libraries.wright.edu/etd_all
https://corescholar.libraries.wright.edu/etd_comm
https://corescholar.libraries.wright.edu/etd_all?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F1556&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/55?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F1556&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/69?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F1556&utm_medium=PDF&utm_campaign=PDFCoverPages
https://corescholar.libraries.wright.edu/etd_all/1556?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F1556&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library-corescholar@wright.edu


EXAMINATION OF A POST-STROKE DRUG TREATMENT FOR ITS EFFECT ON 

BLOOD BRAIN BARRIER PERMEABILITY, AND GENE EXPRESSION  

CHANGES IN THE PERI-INFARCT REGION 

 

 

 

 

 

 

 

 

 

A thesis submitted in partial fulfillment of the  

requirements for the degree of  

Master of Science 

 

 

 

 

 

 

By 

 

 

 

 

 

 

ANKITA ANIL PATEL 

B.S., Western Kentucky University, 2012 

 

 

 

 

 

 

 

2016 

Wright State University 

 

 



WRIGHT STATE UNIVERSITY 

 

GRADUATE SCHOOL 

 

 

 

May 27, 2016 

 

I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY 

SUPERVISION BY Ankita Anil Patel ENTITLED Examination of a Post-Stroke Drug 

Treatment for its Effect on Blood Brain Barrier Permeability, and Gene Expression 

Changes in the Peri-infarct Region BE ACCEPTED IN PARTIAL FULFILLMENT OF 

THE REQUIREMENTS FOR THE DEGREE OF Master of Science. 

 

 

_______________________________________ 

Adrian Corbett, Ph.D. 

Thesis Director 

 

 

_______________________________________ 

Christopher Wyatt, Ph.D. 

Department Chair 

Department of Neuroscience, Cell Biology, and Physiology 

 

Committee on 

Final Examination 

 

_________________________________ 

Adrian Corbett, Ph.D. 

 

_________________________________ 

Debra Mayes, Ph.D. 

 

_________________________________ 

Salim El-Amouri, Ph.D. 

 

_________________________________ 

Robert E.W. Fyffe, Ph.D. 

Vice President for Research and  

Dean of the Graduate School 



  iii 

ABSTRACT 
 
Patel, Ankita Anil. M.S. Department of Neuroscience, Cell Biology, and Physiology, 
Wright State University, 2016. Examination of a Post-Stroke Drug Treatment for its 
Effect on Blood Brain Barrier Permeability, and Gene Expression Changes in the Peri-
infarct Region. 
 
 
 
 In this current study, we have investigated a combination of fluoxetine, 

simvastatin and ascorbic acid administered daily beginning at 20-26 hours after stroke 

induction. We hope to understand therapeutic abilities by studying its effectiveness on the 

blood brain barrier permeability and gene expression changes of the microglial subtypes 

involved in neuro-inflammation and neurogenesis factors in the peri-infarct region.  Our 

results indicate that S-enantiomer of fluoxetine may be more beneficial compared to the 

R-enantiomer. The S-enantiomer was effective in tightening the blood brain barrier in 

contrast to the R-enantiomer, in which the latter showed a greater Evans Blue dye 

permeability across the BBB studied in the cerebral cortex and cerebellum. Similarly, 

gene expression studies of both enantiomers compared in male and female groups 

confirmed the presence of microglial subtypes, and the study also showed the S-

enantiomer appears to up-regulate neurogenesis growth factors and down-regulate 

inflammatory signals. 
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I. INTRODUCTION 

Background 

In the United States, serious medical implications leading to a long-term disability 

occur due to a critical medical condition, called stroke. Stroke is the fifth leading cause of 

death in the US [1]. Each year approximately 795,000 people suffer from stroke, and 

more than 140,000 stroke-induced deaths occur [2]. Each year about 600,000 people 

suffer from stroke for the first time, and about 185,000 (31%) have reported repeating 

attacks [2]. Strokes can occur at any age, however, people over the age of 65 have a 

greater incidence of stroke when compared to those under 65 (three-fourths to one-fourth 

respectively). In fact, the risk factor doubles each decade over the age of 55 [3]. 

Stroke is defined as interruption of blood flow to any area of the brain. This is a 

major issue because blood flow occlusion can cause oxygen deficiency within minutes. 

This can trigger the death of brain cells and affect physiological function of parts of the 

nervous system. There are two known types of stroke: ischemic stroke and hemorrhagic 

stroke (sub-types: intracerebral hemorrhage and subarachnoid hemorrhage) as shown in 

figure 1.  
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Figure 1 Types of Stroke: Ischemic Stroke and Hemorrhagic Stroke. Pictures courtesy of 
http://www.wjmc.org/StrokeCare/WJMC-Neuroscience-Types-Of-Stroke.aspx 

 

Ischemic stroke is the most common type of stroke, accounting for approximately 

88%, and is caused by arterial occlusion. A warning stroke, often labeled as a ‘mini-

stroke’, is a temporary arterial blockage inside the brain and is called transient ischemic 

attack (TIA). Its symptoms occur rapidly and persist for less than five minutes, with an 

average of one minute [2].   

Hemorrhagic stroke is caused by a rupture of a blood vessel leading to bleeding 

inside the brain. The two hemorrhagic stroke sub-types differ in that, following a vessel 

rupture, in the case of intracerebral hemorrhage, the blood is released into the brain 

compressing brain structures, whereas in the case of subarachnoid hemorrhage, the blood 

fills spaces surrounding the brain rather than inside of it. 
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It is estimated that two-thirds of stroke survivors will have some type of disability 

[2]. Severity of a disability is dependent on the location of the stroke, which matters more 

than if the stroke is major or minor. For example, if a large stroke is in the somatosensory 

region, it wouldn’t have a huge functional effect, but if a small stroke is in the motor 

cortex, the effect will be large. A minor stroke in the motor cortex causes minor problems 

such as temporary weakness in a limb whereas a major stroke in the same location can 

cause permanent disabilities such as paralysis on one side of the body. With such known 

severity of stroke, research dedicated to find an effective treatment is a subject of prime 

interest.  

Currently, treatment available for stroke is intravenous injection of tissue 

plasminogen activator (tPA), which dissolves the blood clot to restore normal blood flow. 

However, it poses a risk of causing uncontrollable bleeding inside the brain and the 

intravenous route renders it effective if tPA is administered within 3 to 4.5 hours of the 

onset of stroke, with the chance of improvement being greater with earlier treatment [4]. 

The reason tPA must be administered within this time frame is because after 5 hours it 

causes bleeding inside the brain, which negates any beneficial effects achieved from 

blood clot removal. Thrombin in the blood causes neuro-inflammation in the brain which 

can make the damage from a stroke worse as neuro-inflammation can irritate and destroy 

normal blood vessels. Hence, this treatment is preferred currently if the patient makes it 

to the hospital in time, and generally about 73% of stroke victims do not reach the 

hospital in time to be considered for tPA treatment [5].  

Another treatment option is an endovascular procedure called mechanical 

thrombectomy, which surgically removes the blood clot via insertion of a stent retriever. 
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This method yields the best functional recovery compared to other treatments, because it 

surgically removes the whole clot. In addition, its time period for intervention is valid up 

to 8 hours after stroke onset, which is significantly greater than the time period valid for 

tPA administration. Results from one study show that 64% of patients with MALCOM 

(maximal admission lesion volume compatible with favorable outcome) of less than 39 

milliliters in size achieved favorable outcome after undergoing thrombectomy [6].  

Another known treatment, if stroke victims arrive at the hospital more than 12 

hours after stroke, they are administered Aspirin, an acetylsalicylic acid which inhibits 

COX-1 enzyme, thus preventing platelet aggregation [7].  

Although all of these discussed options are effective in removal of the blood clot, 

they are not completely reliable to treat a stroke condition because they do pose their own 

disadvantages. Aspirin provides a treatment only temporarily; tPA administration allows 

a narrow time window for treatment; and a thrombectomy is an invasive procedure to be 

performed within few hours of the onset of stroke [8]. In fact, Barber et. al [5] reports 

that only about 27% of stroke patients qualified and received intravenous tPA treatment 

which is a preferred current method. Because of this low percentage, discovery of a 

compelling post-stroke treatment plan with drugs that can be administered 20-26 hours 

after the onset of stroke and still yield functional recovery is warranted.  

Increasing Neurogenesis Pharmacologically 

Current research indicates that the combination of fluoxetine, simvastatin, and 

ascorbic acid is effective in increasing neurogenesis following stroke survival surgery in 

rat models [9]. Fluoxetine (brand name Prozac) is an antidepressant of the selective 

serotonin reuptake inhibitor (SSRI) family, which has been shown to increase 
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neurogenesis in adult rat models [10]. Figure 2 indicates the organic structure of 

fluoxetine and its R- and S-enantiomers.  

 

Figure 2 Structure of Fluoxetine and its R- and S-enantiomers 

 

Simvastatin (brand name Zocor), is a statin which has also been shown to increase 

neurogenesis, as well as improve spatial learning in rat models after a traumatic brain 

injury [11-13]. Cui and colleagues found that simvastatin treatment increased synaptic 

plasticity and promoted neuro-blast migration in the sub-ventricular zone of the ischemic 

brain [14]. Figure 3 indicates the organic structure of Simvastatin.  

 
Figure 3 Structure of Simvastatin 
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In addition to these two potent drugs, Corbett et. al [9, 15] has combined ascorbic 

acid (vitamin C), fluoxetine, and simvastatin as a combination therapy for neurogenesis 

after stroke. Ascorbic acid is an antioxidant. It may therefore enhance the effects of 

fluoxetine by protecting the serotonin from oxidation. It may also protect endothelial 

nitric oxide synthase (eNOS) from oxidation, thereby enhancing the effects of simvastatin 

[9, 16]. Simvastatin exerts an anti-oxidative effect through inhibiting an increase in the 

levels of serum 8-isoprostane, a marker of oxidative stress in acute ischemic stroke 

patients. This could be partly due to ascorbic acid packed as an inactive ingredient in 

simvastatin and thereby implicitly contributes its anti-oxidative effects [17].  

Another way that this combination may be beneficial to stroke patients is their 

combined effect on neurogenesis. Corbett et. al [9] indicates that simvastatin (0.5mg/kg) 

and ascorbic acid (20mg/kg) treatment in a daily dose did not produce any increase in 

neurogenesis, whereas the addition of fluoxetine (5mg/kg) produced nearly doubled 

neurogenesis over fluoxetine alone. The combination of fluoxetine/ascorbic acid 

treatment did not show any increase in functional recovery over fluoxetine alone, 

whereas the addition of simvastatin to the treatment showed a two-fold increase in 

functional recovery over fluoxetine alone. Overall, these studies indicate that drug 

treatment using the combination of 0.5mg/kg simvastatin, 5mg/kg fluoxetine, and 

20mg/kg ascorbic acid can successfully increase neurogenesis, improve motor function, 

and increase plasticity of injured neurons. Thereby this also causes a smaller infarct after 

cortical, ischemic stroke in Long Evans female rat models [9].  

The therapeutic potential of fluoxetine is implicated in the manifestations of 

different neurological disorders such as Alzheimer’s disease, epilepsy, Huntington’s 
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disease, and stroke [18]. For example, this antidepressant treatment also helps to achieve 

better recovery from disability after stroke onset [19]. A clinical study conducted in 

patients to investigate motor deficit after stroke, showed enhanced motor recovery after 3 

months following a 20mg fluoxetine treatment compared to placebo [20]. This FLAME 

(acronym for – Fluoxetine for Motor Recovery After Acute Ischemic Stoke) clinical trial 

showed significantly greater Fugl-Meyer motor scale score at day 90 after adjustment for 

depression. In addition, a significant improvement in the modified Rankin scale 

evaluating independence in normal daily tasks was noted [21].  

In humans, when compared to the control, antidepressants such as fluoxetine, has 

improved executive functions to maintain mental control and self-regulation, by 

modulating neuronal network associations involved with prefrontal functions (studied 

using magnetic resonance scans) and is attributed as a possibility to its neurotransmission 

and neurotropic activities [22]. A study from another laboratory indicates that the 

administration of fluoxetine for 7 days post stroke enhances motor function by 

maintaining synaptic plasticity through a reduction of inhibitory interneuron activity in 

the premotor cortex [23]. Fluoxetine has also been reported to produce neuro-blast cells 

in the sub-ventricular zone and the dentate gyrus of adult male Wistar rats a month after 

stroke induction [24]. However this study also found that oral administration of 

16mg/kg/day of fluoxetine for 3 weeks (initiated 1 week after stroke) did not improve 

sensorimotor recovery and had no influence in the survival or differentiation of the newly 

generated cells possibly because this would translate into over 100mg dose in humans 

[24]. A pilot study indicated that fluoxetine influences motor output in chronic stroke 

patients by activating both agonist and antagonist muscles of the paretic arm, suggesting 
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that it may influence motor recovery [25]. Chronic fluoxetine treatment of 10mg/kg for 4 

weeks improved spatial cognitive function recovery after ischemic stroke [26]. This drug 

has also been reported to improve cortico-cerebral blood flow after ischemic stroke in 

rabbits [27].  

In nature, fluoxetine exists in a 50/50 racemic mixture of R-fluoxetine and S-

fluoxetine enantiomers. The S-fluoxetine enantiomer is eliminated slowly and is present 

in the plasma at profound levels compared to the R-fluoxetine[28]. One study shows that 

the S-enantiomer is more potent compared to R-enantiomer in producing anorexic effects 

in meal-fed rats [29]. Fluoxetine is metabolized by the liver in its metabolite form called 

norfluoxetine, which is formed by demethylation of fluoxetine. Human liver enzyme 

cytochrome P450 (figure 4) has several isoforms that are largely involved in the 

metabolism of fluoxetine enantiomers [30]. In the process, R-/S-fluoxetine in the drug 

form is converted into metabolite forms such as R- or S-norfluoxetine, fluoxetine 

glucuronide, norfluoxetine glucuronide, and inactive metabolites. Cytochrome P2D6 is 

significant because it influences the formation of S-norfluoxetine, and cytochrome P2C9 

is also significant as it influences the formation of R-norfluoxetine. In animal models, the 

activity of S-norfluoxetine is 20 times higher than R-norfluoxetine in SSRI potency and 

plasma concentrations of S-enantiomers are usually two times higher than R-enantiomers 

after several weeks of administration [30]. This is also demonstrated in a clinical study 

done in adult patients receiving 10 to 60 mg/d fluoxetine, in whom the plasma 

concentrations of S-enantiomers were higher than their R-enantiomers with a statistical 

significance of P<0.0001 [31].  
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Figure 4 Enzymatic metabolism of fluoxetine. Fluoxetine enantiomers are 
metabolized to an active form called norfluoxetine by enzymes in a liver cell. Human 

liver enzyme cytochrome P450 has several isoforms involved in this process as 
shown. R-/S-Fluoxetine is the drug form metabolized into R- or S-Norfluoxetine, 
Fluoxetine glucuronide, Norfluoxetine glucuronide, and inactive metabolites via 
enzymatic action of indicated liver enzymes (blue circles). Starred enzymes are 

important and greatly influence the formation of a certain (R/S) metabolite 
enantiomer. Solid purple box indicates drug, shaded purple-yellow box indicates 

metabolite, yellow colored stars indicate significant, shaded blue oval bubbles 
represent specific liver enzymes (CYP – Cytochrome) [30] 

 

Contradictory finding indicates at between 1 and 10 micro molar concentrations, 

R (-) enantiomer of fluoxetine is more effective than the S (+) enantiomer on neuronal 

channels and less effective on cardiac channels [32]. This epilepsy study found that R-

fluoxetine had stronger anticonvulsant effects compared to S-fluoxetine in mouse models 

[32]. Also, increased serum levels of the active metabolite, norfluoxetine (which is an 

active form of S-enantiomer but, inactive for the R-enantiomer) at 112.66 ng/mL, is 

shown compared to fluoxetine levels at 19.285 ng/mL at 1-4 hours after ingestion [15]. 

The elimination half-life of metabolite form norfluoxetine is 7 to 15 days in humans, 

which is slow compared to the drug form fluoxetine elimination occurring quickly 

ranging from 1 to 4 days [33].   
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In this current project, several neuronal growth factor genes are believed to be 

influenced by fluoxetine enantiomers; I investigated both enantiomers which were up- or 

down-regulated and contribute to healing in the sub-ventricular zone after stroke. 

Stroke Animal Models 

Given the poignant statistics of stroke casualties in the United States of America, 

research on stroke requires a model that can closely resemble human biological 

characteristics and behavior. It is necessary to study stroke in an animal model that would 

yield results translational to human medicine. Since the 16th century, rats and mice are the 

most common laboratory animals used in biomedical research worldwide. They are 

financially cost effective and efficiently manageable to conduct experiments compared to 

other animals such as apes, which are occasionally used for single final experiment 

before clinical trials. Retired breeder Sprague Dawley rats were chosen as a model to 

study stroke recovery and neurogenesis in this project. The need to select retired breeder, 

aged models comes from the fact that the majority of stroke occurs in the elderly 

population. A Sprague Dawley rat is an outbred albino rat. This strain is most commonly 

used in neuroscience medical research as its brain anatomy and physiology is understood 

to be similar to that of humans.  

Different stroke induction methods have previously been used to generate an 

average sized infarct. One study done in rats of 12-14 weeks’ old used a modification of 

the MCAO method [34]. This method was modified to overcome problems associated 

with thread insertion into the narrow carotid canal of the middle cerebral artery (MCA)  

[34]. Improved stroke induction rates were noted by 14% to 86%. In addition, they 

showed decreased mortality from 21-31% to 3-7% after thread-occlusion of the middle 
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cerebral artery. During the procedure, the suture was retracted to reopen the MCA after 

injury [34]. An intraluminal suture method in the middle cerebral artery had only an 11% 

survival rate in mice, although this rate increased to 60% survival rate upon administering 

prophylactic antibiotics. This ischemia induction method resulted in severe functional 

impairment and loss of body weight [35].  

There are two methods commonly used to induce a stroke in animal models. First 

method commonly used to produce stroke in rats is called a middle cerebral artery 

occlusion (MCAO). In a thromboembolic MCAO procedure, blood clots are directly 

injected into the carotid artery of the animal. In an endovascular filament MCAO 

procedure, a surgical filament is inserted in the carotid until it occludes the middle 

cerebral artery, which then results in blocked vascular flow hence producing an infarct. 

These MCAO procedures produce variable infarct sizes and are also only applicable to 

certain rat strains [36]. The transcranial MCAO procedure is a method which requires a 

craniotomy. This procedure involves surgical dissection of the middle cerebral artery and 

is then permanently occluded to produce focal ischemia [36]. Acoustic startle reflexes 

have been shown to be altered due to permanent middle cerebral artery occlusion after 

surgery in Sprague Dawley rats [37]. Reversible MCAO method using an intraluminal 

suture is a reliable and effective method in younger rats, but the size of the infarct 

produced is much larger than the size produced in humans. Generally older rats don’t 

survive the stroke under this method. Therefore, we suggest that this method is not the 

best model to imitate human stroke. However, the MCAO suture can be removed, 

allowing for reperfusion injury in these animals [38]. Middle cerebral artery occlusion 

(MCAO) rodent models were not used in this study because it produces very large infarct 
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volumes, which again does not closely resemble the average sized human stroke infarct 

[39].  

Focal ischemia is a second method in which reduced ischemic stroke induced 

either with a vasoconstrictor or photo-thrombosis in rats. A potent vasoconstrictor, 

endothelin-1, is injected near the middle cerebral artery to induce focal ischemia and 

stroke via constriction of arteries and veins. We chose this method in this project because 

of the low mortality rates (less than 10%) and the ability to produce reproducible infarcts 

in the forelimb motor cortex in aged rats [36]. In another focal ischemia method called 

distal MCAO, the middle cerebral artery is electro-coagulated on the surface of the brain, 

away from its origin in the circle of Willis. The stroke that is induced is similar in size of 

that occurring in humans, but the surgery is very difficult on older rats because of a risk 

of bleeding out of the artery [40].  

Another focal ischemia method commonly used to produce stroke in rats involves 

photochemical occlusion of irradiated vessels. It is performed by intravenous injection of 

photosensitive dyes such as rose-bengal leading to photocoagulation of circumscribed 

cortical areas inside the brain via a small hole in the skull. This procedure is not used in 

our project because the photo-chemically induced blood clot might damage the 

endothelial Nitric Oxide Synthase (eNOS) present in the inner lining of the blood vessels 

in the sub-ventricular region and then it would be unable to respond to the statins. 

However, this method can use aged animals, produces small infarct in specific areas and 

demonstrates a high survival rate of 100% following surgery [41].  
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Stress and Neurogenesis 

Stress has a profound effect on neurogenesis, which eventually leads to significant 

decrease in cell proliferation in the adult hippocampus region and in the sub-ventricular 

zone [42, 43]. One study performed in vitro showed anti-proliferative effects on cultured 

neural stem cells dissected from the sub-ventricular zone, due to high cortisol levels in 

the blood obtained before the animals were euthanized [44]. A research finding in 

Sprague Dawley rats showed reduced proliferation of cells affected in the sub-ventricular 

zone (figure 5) by chronic traumatic-brain injury, but the neuronal cell differentiation 

profile remained unaffected [45].  

 

Figure 5 Schematic diagram of sub-ventricular zone of a rat brain. (SVZ: sub-ventricular zone, cc: 
corpus callosum, cx: cerebral cortex, cp: striatum-caudate putamen) [46] 

 

Because neurogenesis is the subject of prime interest of this study, particularly 

after the induction of stroke which is considered traumatic, methods to keep the stress 

levels at a minimum were deemed necessary to prevent its effects on neurogenesis. A 

study suggested that rats injected intraperitoneally with hypertonic saline injections once 

daily for 14 days showed significantly increased corticosterone levels thereby resulting in 

chronic stress [47]. Therefore, in this present project we have used reliable voluntary oral 

administration of FDA approved drugs chosen to enhance neurogenesis [15]. This 
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method is proven to cause no stress because whether the animal will consume the drug is 

a voluntary decision. Corbett et. al [15] utilized fluoxetine to promote neurogenesis, 

which corresponds with the conclusions from Warner-Schmidt et. al [42] study that 

chronic antidepressant treatment up-regulates hippocampal neurogenesis, and could 

thereby block or reverse the damage caused due to stress. I propose the possibility that 

fluoxetine may up-regulate neurogenesis in the sub-ventricular zone in this study.  

Gene Expression 

Molecular and Cellular Effect on Neurogenesis 

Neurogenesis is the process by which neurons are generated from neural stem 

cells or progenitor cells. The subject of neurogenesis is very intricate because it 

constitutes several pathways in its course of action during the period of regeneration. 

Although given its complexity, an insight into neurogenesis can be achieved through the 

study of gene expression, which is the process of transcribing genes into a functional 

gene product such as mRNA and proteins. This product can be analyzed to understand 

the pathways involved in leading to neurogenesis inside the brain, particularly after the 

post-stroke delayed drug treatment involved in this project. Table 1 describes the 

neurogenesis genes and their functions that we have chosen to study in this project.  
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Table 1 – Neurogenesis Gene markers and their functions 

Bdnf Maintenance of neurons; growth and differentiation of 
neural stem cells; learning and memory organization 

Camk2a Spatial learning; neurotransmitter release 

Camk2g Synaptic plasticity to govern spatial learning 

Ccl11 Decreases neurogenesis with age; allergic responses 

Cntf Survival of neurons; reduces tissue destruction during 
inflammatory attacks 

Cntfr Neuronal cell survival and differentiation; signal 
transduction; gene expression 

Creb1 Transcription factor 

Crh Neuroendocrine and behavioral responses to stress; cell 
growth and survival; synaptogenesis; circuit integration 
of adult-born neurons 

Nos2 Neurotransmission 

Plat2 Tissue remodeling; cell migration; breakdown of blood 
clots 

Vegfa Vascular permeability; apoptosis inhibition 

 

An FDA approved SSRI drug, fluoxetine has been shown to up-regulate genes 

associated with brain-derived neurotropic factor (Bdnf) which induces long term 

potentiation (LTP) [48]. This leads to the fact that tracing genes involving the Bdnf could 

lead to potential pathways of neurogenesis. Another such study provides evidence that 

fluoxetine treatment leads to increased gene expression levels of mRNA for glucose 

transporters namely GLUT1 and GLUT10 [49]. These glucose transporters play key roles 

in homeostatic control of brain functions.  

Similarly, administration of simvastatin has been shown to alter multiple gene 

expression patterns in the cerebral cortex [50]. Chen et al. [16] indicates a role for statins 

in increasing Bdnf, which would aid in neurogenesis as mentioned earlier. Administration 
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of the statins is very beneficial for the treatment of stroke because it induces not only 

neurogenesis, but also angiogenesis and synaptogenesis thereby enhancing the functional 

outcome [51].  

A growth factor, called insulin-like growth factor 2 (IGF2) is shown to be 

selectively controlling the proliferation of dentate gyrus neural stem cells in vitro and in 

vivo through AKT-dependent (AKT stands for Protein kinase B) signaling, thus proving 

that IGF2 is a novel regulator of adult neurogenesis [52]. Also in the sub-ventricular 

zone, endothelial-derived IGF2 is implicated in maintaining neural stem cells [53].  

Certain brain resident immune cells have also proven their contribution to the 

regeneration of neurons. Microglia are found in the forebrain region of sub-ventricular 

zone (SVZ) of the rat, where neurogenesis is enhanced via the release of cytokines [54]. 

In addition to neurogenesis, microglia are predominantly known for causing 

inflammation and oxidative stress inside the brain. 

We believe that studying gene expression changes associated with post-stroke 

fluoxetine, simvastatin, and ascorbic acid combination drug treatments on neurogenesis 

could elucidate further pathways involved in brain recovery. This research may aid 

further studies which can help discover better stroke treatments. 

Fluoxetine and Simvastatin Influencing Polarization of Microglial Subtypes 

Stroke causes neurological damage as a result of blockage of normal blood flow. 

This occlusion undoubtedly provokes a physiological mechanism to fight the disturbance 

and correct it back using homeostasis. The immune system is one such mechanism that is 

activated instantly triggering the release of cytokines and chemokines.  
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Microglia are resident macrophages of the brain that play a role in attacking 

foreign substances entering the central nervous system and in inducing neuro-

inflammation. The brain is protected by a physical barrier called the blood-brain barrier 

(BBB), which is made up of endothelial cells that exclude certain foreign pathogens from 

crossing into the brain. This blood-brain barrier is a site of action for microglia, where its 

function is affected in certain neurological diseases such as ischemic stroke, epilepsy, 

multiple sclerosis, and Alzheimer’s disease [55]. 

Evans Blue is a dye used to study vascular permeability in animal models. Evans 

Blue leakage into the brain parenchyma means that the blood brain barrier is disrupted 

[56]. This study reveals that spectroscopic measurement of this dye can be found in rat 

tissue samples, and quantities can be determined by standard curves established by 

mixing the dye with trichloroacetic acid [56].  

Activated microglia can disrupt the blood-brain barrier and cause neurological 

damage in ischemic stroke. The cellular damage is caused by its production of reactive 

oxygen species (ROS) and nitric oxide (NO). Blood flow occlusion recruits microglial 

cells which release ROS such as NADPH (nicotinamide adenine dinucleotide phosphate 

hydrogen) oxidase, in addition to certain cytokines such as interleukin-6 (Il-6), 

interleukin-1beta (Il-1β), insulin-like growth factor-1 (IGF-1), and tumor necrosis factor 

alpha (Tnf-α), and certain chemokines such as CXCL-1 [55]. The release of ROS and 

certain cytokines affects BBB permeability, thereby aggravating stroke. da Fonseca et. al 

[55] reports that the Il-1beta and Tnf-alpha down-regulate the tight junctions, and 

together with Il-6 affect the expression of adhesion molecules of BBB endothelial cells. 

However, intracerebroventricular injection of microglia has been shown to protect BBB 
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permeability and neurodegeneration caused by ischemic stroke [57]. These contradictory 

findings suggest that microglia are implicated in neuro-inflammatory regulation at the 

blood-brain barrier and the gene expression of its cytokines will provide an insight into 

possible pathways of its action to understand its role in ischemic stroke.  

Microglia provide innate inflammatory immunity to protect the brain. 

Macrophages exist in two distinct phenotypes according to their functionality. One group 

is classically activated and is pro-inflammatory. They are often referred to as type I, or 

M1. The other is alternatively activated and is anti-inflammatory. They are referred to as 

type II, or M2. The latter subset (M2) can be subdivided: M2a are involved in tissue 

repair, M2b are involved in B cell immunoglobulin-G production, and M2c are 

implicated in anti-inflammatory or scavenging mechanisms [58, 59]. These macrophage 

subtypes were originally studied in the peripheral macrophages, therefore the gene 

markers may or may not be associated with the microglia [58]. Some macrophage gene 

markers are present in microglia and some are not.  
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Figure 6 Gene markers involved in the stimulation and differentiation of macrophage subtypes M1, 
M2a, M2b, and M2c. M1 is classically activated and is pro-inflammatory. M2 is alternatively activated 

and is anti-inflammatory. The molecular markers listed in the table are categorized into functional 
phenotypes of (1.) signaling molecules, (2.) cytokine expression profile, (3.) chemokine profile, (4.) 

scavenger receptor expression, (5.) tryptophan metabolism. Lower segment summarizes the function of 
each subtype as M1 – anti-microbial, M2a – involved in tissue repair, M2b – involved in B-cell IgG 

production, and M2c – anti-inflammatory or scavenging mechanisms. Abbreviations: lipopolysaccharide 
(LPS), interferon gamma (IFNJ), interleukin-4 (IL-4), tumor growth factor beta (TGFE), major 

histocompatibility complex II (MHC II), inducible nitric oxide synthase (iNOS), tumor necrosis factor 
alpha (TNFD), arginase (Arg), chemokine ligands (CCL-2, CXCL-1), cluster of differentiation 163 (CD163), 

and poorly defined effector molecules (FIZZ-1, Ym-1) [58] 

 

Macrophages express a pool of cytokines and chemokines upon activation as 

shown in figure 6. Out of these we chose certain markers to study microglial gene 
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expression as listed in table 2. The gene markers of M1 studied in our project include 

Tnf-alpha, Il-1beta, and Il-6. Similarly, the gene markers of M1 that we focused on this 

study are Ccl11 and Cxcr-4 [58, 59]. Interleukin-10 (Il-10) is also an cytokine to identify 

M1 type, and a transcription factor called Stat1 is believed to cause its polarization [58, 

59]. Further research shows that the activation of Stat1 inhibits Stat6, which is the 

transcription factor involved in M2 subtype polarization. Thereby, this finding suggests 

that the M1 polarization cross-regulates the M2 polarization; meaning that the activation 

of one suppresses the other and vice versa [58, 59]. In addition to Stat6 transcription 

factor, Il-10 and Tgf-beta are also studied to provide insight into M2 type activation. 

Arginase-1 is also a tryptophan-metabolism marker that is known to induce M2 

polarization activity [58, 59]. Inducible nitric oxide synthase (iNOS) requires arginine to 

produce nitric oxide. If the enzyme arginase is present, it would break down the substrate 

that the iNOS needs, so it would directly work against the production of nitric oxide. 
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Table -2 Microglial Subtype Markers Used in this Study 

M1 (Pro-

inflammatory) 

M2a (Anti-

inflammatory) 

M2b (Anti-

inflammatory) 

M2c (Anti-

inflammatory) 

Stat1 

Stat4 

Tnf-alpha 

Il-6 

Il-1beta 

Ccl11 

Nos2 

Stat3 

Il-10 

Tgf-beta 

Arg1 

Il-10 

Tnf-alpha 

Il-1beta 

Il-6 

Nos2 

Stat6 

Cd163 

Il-10 

Tgf-beta 

Arg1 

 

Macrophage plasticity is governed by the switching of M1 pro-inflammatory to 

M2 anti-inflammatory macrophage or vice versa by the release of certain cytokines as 

mentioned earlier. It has also been discovered that the energy expenditure-associated with 

oxidative stress leads to conversion of M1 type to M2 type in the brain. The M1 type is 

pro-inflammatory activation of macrophages while the M2 type is understood to be an 

anti-inflammatory signaling and wound healing macrophages [60]. However, following a 

traumatic brain injury, one study showed that microglia simultaneously express both M1 

and M2 phenotypes because of mixed signaling surrounding them inside the brain [61]. 

The pro-inflammatory M1 phenotype is expressed at the end stage of neurodegenerative 

diseases, which results in neuronal loss, therefore, studying a stage-specific switch of M1 

to M2 type has been suggested to offer insight into therapeutic time window for better 

treatment [62, 63].  
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SSRIs have been implicated in modulating the immune system. Fluoxetine has 

been shown to down-regulate the activation of M1 pro-inflammatory microglia, and up-

regulate the activation of M2 anti-inflammatory microglia [64]. Similarly, Lim et. al 

showed 10mg/kg of fluoxetine administered intravenously after stroke induction by 

MCAO caused suppression of the pro-inflammatory marker NF-kappaB [65]. Fluoxetine 

has also been shown to inhibit lipopolysaccharide(LPS)-induced microglia activation, 

certain pro-inflammatory cytokines, and toxic factors including Tnf-alpha, Il-1beta, and 

nitric oxide [66, 67]. Another study published in 2015 showed fluoxetine inhibited the 

activation of microglia after spinal cord injury and protected oligodendrocytes from cell 

death [68]. Also, fluoxetine treatment down-regulated microglia activation in neuropathic 

pain [69]. Administration of aspirin (acetylsalicyclic acid) enhanced the anti-

inflammatory effect of fluoxetine by inhibiting the LPS-induced activation of pro-

inflammatory microglia and promoting that of anti-inflammatory microglia [70]. SSRIs, 

including fluoxetine inhibited microglial Tnf-alpha and nitric oxide production, along 

with cAMP signaling [71]. Microglia in the brain are seen to be activated by interleukin-

1beta (Il-1b), which in turn increased significantly upon administration of fluoxetine [72].  

Similarly, simvastatin treatment alters the release of cytokines and trophic factors 

in a cholesterol-dependent manner. Upon administration, it also inhibited phagocytosis in 

microglia in a cholesterol-independent manner [73]. Also, administration of simvastatin 

has been proven to attenuate microglial activity to produce anti-inflammatory responses 

after ischemic stroke by releasing cytokines such as Il1-beta, Tnf-alpha, and Bdnf in vitro 

[73].  
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There is interesting evidence in mice after injection of Il-4 showing that microglia 

are responsive in a temporal-spatial fashion [74]. The ability of microglia to respond to 

neuro-inflammation ultimately depends on the number of microglial cells activated and 

their polarization. Local cytokines and cellular environment has been implicated in 

playing a role in causing their stimulatory activity [74].  

In addition to cytokines such as Il-6, Il-1β, Igf-1, and Tnfα, microglia are 

implicated in up-regulation of Stat1 transcription factor in response to cerebral ischemia 

[75]. Likewise, p-Stat3 is also highly expressed after cerebral ischemia in mice and is 

believed to play a role in neuronal cell death [76]. Interleukin-6 (Il-6) has a direct effect 

on microglial activation of Stat3 and this particular transcription factor plays a role in 

long-term recovery after stroke [77, 78]. Manwani and colleagues found that biological 

sex has a differential effect on the inflammatory response post-stroke, showing that 

female rats display increased level of expression of anti-inflammatory microglia 

compared to male rats [79]. Age is another factor that enhances neuronal degeneration, 

alters microglial response with increased pro-inflammatory cytokine expression, and also 

changes the time-course of activation of Stat3 transcription factor [80].
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II. MATERIALS AND METHODS 

Sprague Dawley rats were received from Harlan, and housed in the Laboratory 

Animal Care facility. Each rat was housed in an enclosed shoe-box sized cage separately, 

at the room temperature of nearly 74 degrees Fahrenheit. They were fed with a Harlan rat 

chow, restricted at times during the course of the experiment for the purpose of motor 

functional tests. The restricted diet was weighed at 85% of the ad lib food, ranging from 

9.6 grams to 12.4 grams, with an average of 10.2 grams.  

Montoya Staircase 

 

 

 

 

 

 

 

 

 Figure 7 Montoya Staircase. Sprague Dawley rat in a Montoya 
Staircase apparatus to test bilateral forepaw motor functioning. 
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Sprague Dawley rats participated in Montoya staircase training for the purpose of 

motor functional analysis. The Montoya staircase apparatus is an enclosed rectangular 

box with the dimensions of 10 by 12 inches (see figure 7). It consists of seven steps on 

each side separated by a platform to test front left and front right forepaw motor function. 

Each step has a depression which was filled with three Bio-Serv 45-mg Chocolate Flavor 

Dustless Precision Sucrose Pellets. The rats were transported and kept inside the 

apparatus for 15 minutes. This training was carried out in a dark phase.  

 The rats were fasted during the day with restricted diet administered only after the 

training. The fasting condition induced them to consume sucrose pellets voluntarily 

immediately when placed inside the apparatus. At the end of training, both sides of the 

staircase were checked to record the number of pellets consumed using each left and right 

paw. This training was performed before and after endothelin-induced stroke surgery to 

record the numbers of pellets each rat consumed and to perform the motor functional 

analysis. Our baseline criteria were that each rat must learn to retrieve at least 9 pellets 

with the left paw in order to be included in later functional tests. The average number of 

pellets retrieved was generally 15-18 for each paw. 

For the purpose of functional analysis, data from training conducted the final 

three days’ pre-stroke and post-stroke surgery (3-day trial period: post-stroke days 3, 4, 

5) were selected. Of those three day trials, one best performance (highest total number of 

pellets retrieved overall) was chosen to calculate contralateral and ipsilateral functional 

deficit. The mathematical formula used to calculate contralateral function after stroke was 

dividing the number of pellets retrieved by the left paw post-stroke by the number of 

pellets retrieved by the left paw pre-stroke. If the post-stroke performance is the same as 
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the pre-stroke performance, the ratio would be one. If the post-stroke performance is less 

than the pre-stroke performance, then the contralateral performance would be somewhere 

between 0 and 1. Similarly, the formula used to calculate ipsilateral function after stroke 

was dividing the number of pellets retrieved by the right paw post-stroke by the number 

of pellets retrieved by the right paw pre-stroke.  

Endothelin-Induced Stroke Surgery 

The following day of completion of Montoya training, surgery was performed to 

induce stroke for the purpose of the study. Eight rats assigned to a group, with a total of 

three groups, were scheduled for the surgery each day. The purpose of assigning surgical 

groups (different from the treatment groups) was to ensure that each rat had followed 

Montoya tests and drug treatment on the same post-stroke days, because completion of all 

surgeries in a single day was physically unfeasible. Prior to the start of surgery, the rats 

were placed into an induction chamber boxed with oxygen running at 0.6 liters per 

minute and isoflurane at 5% for a total of 4 minutes. When the animal was under the 

plane of anesthesia, the top of the head was shaved using an electronic shaver starting at 

slightly above the eyes to past the ears medially. The rats were mounted into a 

stereotactic apparatus using non-traumatic ear bars and fitted with an anesthesia mask 

with 2% isoflurane flowing continuously. Eye lube was administered to both eyes to keep 

them lubricated during the surgery. The shaved area was scrubbed with provoiodine, then 

70% ethanol, then again, a final scrub of provoiodine, which was left in place. Next, a slit 

was made midway between ears with a pair of scissors extending from just above eyes till 

a short distance in front of ears, and then bupivacaine was dropped onto the edges of the 

incision. Anatomical position called bregma was located and marked with a permanent 
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marker pen. A hand held drill with a burr drill bit was mounted into the stereotactic 

apparatus and the drill bit was aligned to bregma, and the stereotactic coordinates of 

bregma were recorded. We then moved 2.5 millimeters lateral (to the right side), where 

the first hole was drilled. From this position, we then moved 1.5 millimeter anterior, 

where the second hole was drilled. Sterile endothelin (reconstituted in acetic acid and 

water at a concentration of 400 pmoles/microliter) was kept in an ice bath, then taken up 

into a Hamilton syringe (3 microliters total) and then 1.5 microliters (600 pico-moles) 

was injected into each of the two holes at a depth of 2 millimeters, adding only 0.1 

microliters every 10 seconds. The slit was sutured up to close using discontinuous 

stitches. When rats regained consciousness, they were transferred to a warm bed and kept 

there for post-surgical recovery for 15 minutes, after which they were transferred to their 

individual cages. They were allowed to consume ad lib moist chow on the day of surgery.  

Voluntary Drug Administration 

Sprague Dawley rats were administered the FDA approved drugs of 5mg/kg 

Fluoxetine (manufactured by Lilly), 1mg/kg Simvastatin (manufactured by Northstar 

RX), and 20mg/kg Ascorbic Acid (manufactured by Sigma-Aldrich). Table 3 shows the 

drugs administered to animal groups and lists the abbreviations used for each group in the 

results and discussion sections of this project.  
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GROUPS ABBREVIATIONS  DRUGS 

Female Control Group FC  No drugs 

Female FSA Group FFSA  

 

Fluoxetine 

Simvastatin 

Ascorbic Acid 

Female S-Fluoxetine Group FS-Flu  

 

S-Fluoxetine 

Simvastatin 

Ascorbic Acid 

Female R-Fluoxetine Group FR-Flu  

 

R-Fluoxetine 

Simvastatin 

Ascorbic Acid 

Male S-Fluoxetine Group MS-Flu  

 

S-Fluoxetine 

Simvastatin 

Ascorbic Acid 

Male R-Fluoxetine Group MR-Flu  

 

R-Fluoxetine 

Simvastatin 

Ascorbic Acid 

Table 3 Drugs administered to the animal groups and a list of the abbreviations used for each group in 
the following sections of this project. Drugs were administered in fixed dosages as 5 mg/kg fluoxetine, 1 
mg/kg simvastatin, and 20 mg/kg ascorbic acid.  

 

Each rat was given the drugs weighed and rolled into a Pillsbury brand sugar 

cookie dough 4-gram rolled rounds. Each of the three drugs were weighed according to 

the body weight index and mixed together with over-night refrigerated and weighted 

cookie dough. All drugs were placed into a central indent into the dough, which was 
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made using a finger, and then rolled into rounds to completely encase the drugs. They 

were then placed into plastic boats which were placed inside animal cages for 

consumption. Control animals received plain Pillsbury sugar cookie dough rounds with 

no drugs. This procedure was performed at the same time in the afternoon each day, 

beginning 20-26 hours after stroke induction.  

Euthanization and Cardioperfusion 

Each Sprague Dawley rat was euthanized through intraperitoneal injection 

containing pentobarbital (Euthasol). When the animal was under a surgical plane of 

anesthesia, they were injected with a one milliliter Evans Blue dye directly into the 

ventricles of the heart. Next, they were cardio-perfused using a phosphate-buffered saline 

injection. Consecutively, the brain was dissected, and then quickly frozen in dry ice with 

isopentane.  

Cryostat 

Dissected brains from Sprague Dawley rats were kept frozen for three days in a 

deep freezer at -86 degree Celsius. Except the duration of the cryostat procedure, they 

were kept on dry ice when not in the freezer. First, each brain was glued onto the block 

using Tissue Tek O.C.T. Compound. Next, the brain was carefully sliced until the area of 

the infarct was detected in the right hemisphere. Sections were cut out using fine forceps 

in a chunk containing the infarct on the right hemisphere. Constant temperature of -30 

degree Celsius was maintained throughout the procedure. 
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Real-time Polymerase Chain Reaction Gene Array 

To investigate the genes involved in neurogenesis, a Qiagen real-time profiler 

PCR mini array kit was used. A 96-well custom plate was designed and utilized to 

amplify the genes of interest as shown in figure 8.  

 

Figure 8 PCR Gene Array 96-well Custom Plate. Each gene has a duplicate. (Light blue wells – genes of 
interest, dark blue wells – housekeeping genes, red wells – control wells). Control wells include GDC – 

genomic DNA contamination, RTC – reverse transcription control, and PPC – positive PCR control. 

 

Construction of mRNA after tissue homogenization: Each sample was first weighed to 

obtain between 20 to 30 milligrams of the tissue. This was calculated by subtracting the 

weight of an empty vial from the weight of the vial plus tissue. Then, 600 microliters of 

Qiagen RNeasy RLT Plus lysis buffer were added to the tissue in the vial and washed 

down to the bottom of the vial using the pipette. This tissue was completely lysed using a 

Tissue Tearor – Model 985-370 Type 2 at about 2,000 rpm, to obtain a homogenized 

lysate. Next, this lysate was centrifuged at maximum speed of 16,000 x g for 3 minutes. 
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Using a pipette, the supernatant was removed and placed into a Qiagen gDNA Eliminator 

mini spin column inside a 2 ml collection tube. The tube was centrifuged at 8,000 x g for 

30 seconds. The flow-through volume was saved while the column was discarded. Then, 

600 microliters of 70% ethanol were added to the flow-through and mixed well by 

pipetting up and down. 700 microliters of the sample and any remaining precipitate was 

transferred into a Qiagen RNeasy spin column inside a 2 ml collection tube. This mixture 

was centrifuged at 8,000 x g for 30 seconds and repeated once again after discarding the 

flow through volume. Next, 700 microliters of Qiagen RW1 (RNA Wash 1) wash buffer 

was added to the RNeasy spin column and centrifuged at 8,000 x g for 30 seconds. The 

flow-through volume was discarded. Then, 500 microliters of Qiagen RPE (RNA Pre-

Eluant) wash buffer was added to the RNeasy spin column and centrifuged at 8,000 x g 

for 30 seconds. Again, the flow-through volume was discarded. Then, again 500 

microliters of Qiagen RPE wash buffer was added to RNeasy spin column and 

centrifuged at 8,000 x g for 2 minutes. The spin column was placed into a 2 ml collection 

tube and centrifuged at 16,000 x g for 1 minute to further dry the membrane. Now, the 

RNeasy spin column was placed into a 1.5 ml collection tube. Next, 40 microliters of 

RNase-free water were pipetted into the spin column and centrifuged at 8,000 x g for 1 

minute to elute the RNA. This step was again repeated after adding 20 microliters of 

RNase-free water to the spin column. The mRNA was stored in a deep freezer at -80 

degrees Celsius.  

Prior to its storage in a freezer, the concentration of mRNA was measured using a 

NanoDrop Spectrophotometer instrument. A drop containing one microliter of the sample 

was carefully placed on the NanoDrop, which yielded a graph along with concentration in 
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ng/PL and the salt-contamination in the sample. This step was repeated twice to obtain 

the average of the concentration.  

Synthesis of cDNA from mRNA: Frozen messenger RNA stored in vials were first 

thawed to obtain the contents into a liquid form. Next, calculated amounts of mRNA, 

RNase-free water, and buffer Genomic Eliminator (Qiagen brand) were mixed into a vial 

using a 10 microliter pipette. Calculations were figured as not to exceed the volume of 10 

microliters total in the vial. Contents were mixed and brought to the bottom of the vial 

using a centrifuge. Next, this genomic DNA elimination mix was incubated at 42 degrees 

Celsius for 5 minutes and then immediately placed onto ice for at least 1 minute.  

Total volume of ten microliters of reverse-transcription mix was prepared by 

mixing 4 microliters of 5x Buffer BC3, 1 microliter of Control P2 (Primer and external 

control mix), 2 microliters of RE3 Reverse-Transcription Mix, and 3 microliters of 

RNase-free water. This RT mixture was added to each vial containing 10 microliters of 

genomic DNA elimination mix, and then mixed gently via pipetting up and down. Again, 

this mixture was incubated at 42 degrees Celsius for exactly 15 minutes and then 

immediately at 95 degrees Celsius for 5 minutes. Last, 91 microliters of RNase-free water 

was added and mixed by pipetting up and down, and then stored in a freezer at -20 

degrees Celsius.  

Real-time Polymerase Chain Reaction:  

First, RT-PCR Components Mix was prepared in a 5 ml tray using a pipette. In 

order to prepare this mixture, Qiagen RNase-free water was added to the tray in two 

parts: 700 microliters, followed by 600 microliters using a pipette to make a total of 1300 

microliters. Then, 1350 microliters of Qiagen 2x RT2 SYBR Green Mastermix was added 
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after centrifuging, and mixed by pipetting up and down. Next, 102 microliters of thawed 

cDNA synthesis reaction were added and again mixed by pipetting up and down. This 

mixture was transferred into a 96-well plate using an 8-channel pipette delivering 25 

microliters in each well. The plate was centrifuged at 1000 rpm for 2 minutes and 

repeated until absence of air bubbles was ensured. Thus prepared 96-well plate was 

inserted into a RT-PCR software instrument to obtain data for analysis.  

 The data obtained from the software was transferred into an Excel document, 

which was then uploaded to Qiagen website for RT-PCR data analysis. The volcano plots 

generated by the website were enhanced using Adobe Photoshop for labeling and 

coloring of the gene markers. 

Evans Blue Spectrophotometer 

 Tissue containing Evans-blue dye was dissected in chunks from the cerebral 

cortex and cerebellum of the rat brain samples. Each tissue was weighed and collected 

into separate vials, to which the calibrated trichloroacetic acid (TCA) solution was added. 

The solution was prepared in a 1:4 ratios by mixing 100 microliters of artificial 

cerebrospinal fluid (ACSF) in 400 microliters of 50% trichloroacetic acid (TCA). The 

tissue samples submerged in the calibrated solution was homogenized using a Tissue 

Tearor – Model 985-370 Type 2. Next, the samples were centrifuged at 10,000 rpm for 

20 minutes. Supernatant was separated and retained from the pellet using a pipet.  

 Next, 30 microliters of supernatant were added to the clear 96-well plates in three 

replicates. Then, 90 microliters of 95% ethanol were added to each well. The plates were 

run in a spectrophotometer instrument which yielded fluorescence values excited at 

620nm and emitted at 680nm. These values are used for linear regression analysis to 
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obtain micrograms per gram of each tissue fluorescing Evans Blue, which are plotted 

using a GraphPad Prism software.  

Statistical Analysis  

 One-way Analysis of Variance (ANOVA) was used to determine the statistical 

significance among different groups of female and male rats. The P-value < 0.05 is 

considered significant. Unpaired t-test with Welch’s correction was used to compare 

statistics between two groups at a time. GraphPad Prism6 was utilized to generate the 

graphs in this project.  
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III. RESULTS  

Montoya Staircase Motor Functional Analysis 

The Montoya Staircase motor functional data was obtained from the last 3 days of 

pre-stroke training and animals were retested on post-stroke days 3, 4, and 5. Both right 

and left paw function was recorded as the number of sucrose pellets retrieved by the rats 

on each of those days. Data from the day with most number of pellets retrieved was 

chosen for the analysis. We did not take the average of the 3 days because we wanted to 

study the best performance within those three days for both right and left paw.  

GROUP # OF 
RATS 

EXCLUSIONS 
(# OF 

ANIMALS) 

REACHED 
TRAINING 
CRITERIA 

CONTRALATERAL 
DEFICIT REACHED 

≥ 20% 

IPSILATERAL 
DEFICIT 

REACHED ≥ 
20% 

FC 6 1* 6* 5 2 

FFSA 6 1© 6 5 1 

FS-flu 6 1# , 1* 5* 5 2 

FR-flu 6 2# 4 4 2 

MS-flu 6 1§ , 1Ϣ 5 4 4 

MR-flu 6 1§ , 2© 5 3 1 

Table 4 Montoya Staircase Functional Data Table. In order for animals to reach the training criteria and thereby 
become included in this part of study, they had to pick up at least 9 pellets with either right or left paw. Deficit of 
greater than or equal to 20% was also a requirement to qualify for this part of study. Exclusions column indicates 
animals that were excluded in this part of study for reasons marked by symbols: § indicates did not survive post-
surgery; # indicates animal retrieved no pellets pre-stroke; * indicates animal obtained ≥9 pellets with left paw, this 
animal is excluded in ipsilateral deficit but included in contralateral deficit, © indicates animal did not reach at 
least 20% deficit on both sides, Ϣ indicates animal excluded in contralateral deficit but included in ipsilateral 
deficit. (FC - Female Control, FFSA - Female Fluoxetine, Simvastatin, Ascorbic Acid, FS-flu – Female S-Fluoxetine, FR-
flu – Female R-Fluoxetine, MS-flu – Male S-Fluoxetine, MR-flu – Male R-Fluoxetine) 
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Table 4 above shows exclusions and criteria used in the Montoya staircase test. A 

functional deficit of greater than or equal to 20% is necessary for the post-stroke analysis 

criteria and thereby only those animals are included in this part of study. With stroke 

induced on their right hemisphere, animals who retrieved greater than or equal to nine 

pellets with left paw were also included, however animals that retrieved no pellets on pre-

stroke days were excluded from the study. Also excluded were animals that died post - 

surgery.  
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Figure 9 Graph showing the paw contralateral function, with each data point representing an individual 
animal and it is plotted with a wide horizontal bar which represents a group mean with standard 

deviation error bars. (FC - Female Control, FFSA - Female Fluoxetine, Simvastatin, Ascorbic Acid, FS-flu – 
Female S-Fluoxetine, FR-flu – Female R-Fluoxetine, MS-flu – Male S-Fluoxetine, MR-flu – Male R-

Fluoxetine) 

 

The paw contralateral function is obtained as left post-stroke number of pellets 

retrieved divided by left pre-stroke number of pellets. The contralateral function is 

plotted in figure 9 using the group mean with the standard deviation error bars. There are 
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no statistically significant differences among the mean values, with the P-value equal to 

0.5272, derived using the one-way Analysis of Variance (ANOVA) statistical analysis. A 

contralateral function of 1 would mean that the animal has the same baseline function 

with that paw post- and pre-stroke, which would also mean that there was no functional 

deficit from the surgery, and therefore such an animal would be excluded from this part 

of study. However, if an animal picked up 8 pellets with its left paw after stroke 

compared to 10 pellets pre-stroke, then it retained 80% contralateral baseline function of 

its pre-stroke performance, and the contralateral function value on the graph would be at 

0.8 on the y-axis.  

 

Figure 10 Graph showing the percent paw contralateral deficit, with each data point representing an 
individual animal and it is plotted with a wide horizontal bar which represents a group mean with 

standard deviation error bars. (FC - Female Control, FFSA - Female Fluoxetine, Simvastatin, Ascorbic 
Acid, FS-flu – Female S-Fluoxetine, FR-flu – Female R-Fluoxetine, MS-flu – Male S-Fluoxetine, MR-flu – 

Male R-Fluoxetine) 

 

The paw contralateral deficit is a normalized value obtained by subtracting 

contralateral function value from 1. Both values complement each other in such a way 

that a 90% contralateral deficit post-stroke indicates a 10% baseline contralateral function 
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post-stroke compared to its pre-stroke function. For example, if an animal picked up 10 

pellets with its left paw before stroke and 6 pellets after stroke with that same paw, then 

the contralateral baseline function was 60% of the pre-stroke function, with a 40% deficit 

on the left paw. Consequently, if an animal retrieved 15 pellets with its left paw pre-

stroke and 12 pellets with left paw post-stroke with a 20% deficit in the left paw, then this 

translates as 80% contralateral baseline function. Figure 10 shows the contralateral deficit 

passing the 20% threshold deficit criteria across all groups and is graphed as a group 

mean with standard deviation error bars. Differences among the mean values are not 

statistically significant, and the P-value was 0.5340 obtained using one-way ANOVA 

statistical analysis.  

 

 

 

 

 

 

 

 

 

  

 

The paw ipsilateral function as plotted in figure 11 was obtained as dividing right 

post-stroke number of pellets retrieved by right pre-stroke number of pellets retrieved. 

F C

F F S A

F S -F
L U

F R -F
L U

M
S -F

L U

M
R -F

L U

0 .0

0 .2

0 .4

0 .6

0 .8

1 .0

G ro u p s

R
ig

h
t 

p
o

st
-s

tr
o

k
e

/R
ig

h
t 

p
re

-s
tr

o
ke

Ip s ila te ra l F u n c t io n  w ith  b ila te ra l d e f ic it

F C

F F S A

F S -F
L U

F R -F
L U

M
S -F

L U

M
R -F

L U

0 .0

0 .5

1 .0

1 .5

2 .0

N o rm a l Ip s ila te ra l F u n c t io n

G ro u p s

R
ig

h
t 

p
o

s
t-

s
tr

o
k

e
/R

ig
h

t 
p

re
-s

tr
o

k
e

 
Figure 11 Graphs showing the paw ipsilateral function. The left panel of the graph shows ipsilateral 
function with bilateral deficit, and the right panel of the graph shows ipsilateral function with only 
ipsilateral deficit of less than 20% labeled as normal. Each data point on the graph is representing an 
individual animal and it is plotted with a wide horizontal bar which represents a group mean with 
standard deviation error bars. (FC - Female Control, FFSA - Female Fluoxetine, Simvastatin, Ascorbic 
Acid, FS-flu – Female S-Fluoxetine, FR-flu – Female R-Fluoxetine, MS-flu – Male S-Fluoxetine, MR-flu – 
Male R-Fluoxetine) 
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Only the animals reaching 20% bilateral deficit on both sides (right and left) are included 

in the left panel of figure 11, to determine any impaired function of the right paw. The 

right panel of figure 11 includes animals with less than 20% ipsilateral deficit in the right 

paw, to determine their normal baseline ipsilateral function for an animal that had a 

unilateral stroke. The values are plotted as a group mean with standard deviation error 

bars. One-way ANOVA analysis could not be performed because it requires each group 

to have at least two or more data points, and some of the groups did not pass that 

requirement.  

 

 

Bilateral deficit is a normalized value obtained by subtracting ipsilateral function 

value from 1. Graphed on the left in figure 12, only the animals reaching 20% deficit on 

both sides are included in this part to determine the bilateral deficit of the right paw. The  
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Figure 12 Graphs showing percent bilateral and percent ipsilateral deficit. Graph on the left indicates 
percent bilateral deficit which includes animals that had more than or equal to 20% contralateral and 
ipsilateral deficit. The graph on the right shows percent ipsilateral deficit which includes animals that 
had less than 20% ipsilateral deficit. Each data point on the graph is representing an individual animal 
and it is plotted with a wide horizontal bar which represents a group mean with standard deviation 
error bars. (FC - Female Control, FFSA - Female Fluoxetine, Simvastatin, Ascorbic Acid, FS-flu – Female S-
Fluoxetine, FR-flu – Female R-Fluoxetine, MS-flu – Male S-Fluoxetine, MR-flu – Male R-Fluoxetine) 
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right graph indicates normal ipsilateral deficit which includes animals with less than 20% 

ipsilateral deficit. The % ipsilateral deficit values are plotted as a group mean with 

standard deviation error bars. The negative values associated with the FC (female 

control) group in the normal ipsilateral deficit graph, indicates that the animals performed 

better post-stroke with their right paw than they did in pre-stroke training: this only 

occurs if the animal did not reach a plateau in the Montoya Training. One-way ANOVA 

analysis could not be performed because it requires each group to have at least two or 

more data points, and some of the groups did not pass that requirement. 

Evans Blue Spectrophotometer Analysis 

One milliliter of Evans Blue dye injected during cardio-perfusion of animals is 

viewed using a spectrophotometer instrument and micro-titer plates containing 120 

microliter samples with three replicates. Tissue section containing Evans Blue dye in the 

cerebral cortex and cerebellum was dissected from each brain sample of each group. 

Fluorescence was read from each sample with excitation at 620 nm and emission at 680 

nm. Fluorescence data was used to calculate microgram/gram of Evans Blue dye in each 

sample and is plotted on the y-axis in the graphs to follow. The tissue Evans Blue data is 

calibrated against its corresponding control curve using known amounts of Evans Blue 

dye. The calibration curve is a control curve bereft of any tissue and was prepared with 

1:4 calibrated trichloroacetic acid (TCA) background solution (100 microliters of 

artificial cerebrospinal fluid (ACSF) in 400 microliters of 50% TCA). Then, 30 

microliters of Evans blue dye plus the background stock solution was mixed with 90 

microliters of 95% ethanol. Similarly, tissue samples were homogenized in the 

background stock solution prepared with 1:4 calibrated TCA solution (100 microliters 
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ACSF in 400 microliters of 50% TCA). Then, 30 microliters of Evans Blue captured in 

the supernatant was added into 90 microliters of 95% ethanol.     

 

BLANK 2 µg 
CALIBRATION 

5 µg 
CALIBRATION 

10 µg 
CALIBRATION 

1.0 ml BS 998 µl BS 995 µl BS 990 µl BS 
0 µl 
EBBS 

2 µl EBBS 5 µl EBBS  10 µl EBBS 

Table 5 Preparation of Evans Blue calibrated stock solution. 1mg/1ml of Evans Blue was mixed in the 
prepared background solution. Three replicates of each were fixed by adding the Evans Blue plus 
background stock solution minus the tissue, followed by adding 90 microliters of 95% ethanol into each 
well. (BS = Background solution, EBBS = Evans Blue plus background solution) 

  

The test samples were calibrated against control samples, which contained only 

the Evans Blue dye plus the background stock solution, devoid of any tissue. As shown in 

table 5, the calibration was made in the increments of 0, 2, 5 and 10 micrograms. This 

was obtained by adding respective amounts in microliters of Evans Blue dye in their 

corresponding amounts in microliters of background stock solution. Total of 1mg/ml of 

Evans Blue in background stock solution was prepared to add as three replicates in each 

96-well micro-titer spectrophotometer plate.   

 Fluorescence data from each standard curve is used to perform linear regression 

analysis which yielded slope and the y-intercept of the line. This is used to calculate 

microgram per 30 microliters of Evans Blue in the micro-titer plate sample. Then, this is 

converted into microgram per 500 microliters of Evans Blue in the original solution of 

the sample. The grams of tissue obtained in TCA solution was used to calculate 

micrograms/gram of Evans Blue tissue. We then plotted these values to interpret our 

results.  
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Figure 13 shows three calibration curves that were obtained against their 

corresponding test samples in the same micro-titer plate. The calibration curve is a 

control curve bereft of any tissue and was prepared with 1:4 calibrated TCA solution (100 

microliters ACSF in 400 microliters of 50% TCA). Then, 30 microliters of Evans blue 

dye plus the background stock solution was mixed with 90 microliters of 95% ethanol.  
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Figure 13 Evans Blue Calibration Curves A, B, C. These are the control curves that contained only the 
Evans Blue solution prepared in a 1:4 calibrated TCA solution (100µL ACSF + 400µL 50% TCA) and 
followed by adding 90µL of 95% ethanol The calibrated curves are bereft of any tissue. R2-values for 
line of good fit for each Curves A, B, and C are 0.9865, 0.9952, and 0.995 respectively.  
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Evans Blue fluorescence at the blood brain barrier (BBB) in the cerebral cortex of 

female groups is graphed in figure 14. There is no evident difference among the groups 

when compared against each other statistically. Statistical variance of the distribution of 

the sample means appears to be less in the female S-fluoxetine as compared to control 

and the other two groups. In the left panel of the figure, it is notable that the 

administration of FSA showed similar variance to the control group, however the control 

group had one outlier identified according to the ROUT analysis of Q=1.000%. One-way 

ANOVA statistical test with an outlier revealed no significant difference among the 

group means with a P-value of 0.5285. This data was calibrated against Curve-A in figure 

13.  
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Figure 14 Assessment of BBB permeability by Evans Blue detection in female cerebral cortex. 
Evans Blue Fluorescence excited at 620nm and emitted at 680nm. This data is calibrated 
against Curve-A shown in Figure 13. For the left panel of the figure, one-way ANOVA statistical 
test revealed no significant difference among the group means with P-value of 0.5285. The 
values are plotted with a wide horizontal bar which represents a group mean with standard 
deviation error bars. The outlier’s test identified one outlier in the control group with ROUT 
analysis of Q=1.000%. The right panel of the graph has no outliers present as tested using 
ROUT analysis Q=1.000%. The P-value is 0.3962, with no statistical significance detected among 
differences within the mean according to one-way ANOVA statistical analysis. (FC-Female 
Control, FFSA-Female Fluoxetine, Simvastatin, Ascorbic Acid, FS-Female S-fluoxetine, FR-
Female R-fluoxetine)  
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With an outlier removed from the female control group newly graphed on the 

right in figure 14, the P-value changed from 0.5285 to 0.3962. One-way ANOVA 

without outliers revealed no significant differences among the mean, as shown in figure 

14. The ROUT analysis for outliers of Q=1.000% confirmed no outliers present. Hence, 

all the groups are statistically similar to each other with some statistical variance present 

in each group. This data was calibrated against Curve-A shown in figure 13. 

 

 

Interestingly, it can be noted from figure 15 that the Evans blue permeation at the 

blood brain barrier in the cerebral cortex was less in the female group as well as in the 
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Figure 15 Assessment of BBB permeability by Evans Blue detection in male and female cerebral 
cortex. Evans Blue Fluorescence excited at 620nm and emitted at 680nm. This data is calibrated 
against Curve-C shown in Figure 13. The outlier’s test identified no outliers present, using ROUT 
analysis of Q=1.000%. The P-value of 0.0091 shows that both male and female S-fluoxetine are 
statistically significantly different from the male R-fluoxetine with differences within the mean 
present according to one-way ANOVA statistical analysis. The values are plotted with a wide 
horizontal bar which represents a group mean with standard deviation error bars. (FS-Female S-
fluoxetine, FR-Female R-fluoxetine, MS-Male S-fluoxetine, MR-Male R-fluoxetine) 
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male group treated with S-fluoxetine compared to male R-fluoxetine group, meaning that 

the blood brain barrier was not as permeable to Evans Blue dye after stroke induction due 

to S-fluoxetine in the male and female rats compared to R-fluoxetine in male rats. 

Unpaired t-test with Welch’s correction confirms that female S-fluoxetine and male R-

fluoxetine are significantly different to each other with a P-value of 0.0041. It also 

confirms that male S-fluoxetine and male R-fluoxetine are significantly different to each 

other with P-value of 0.0045. This graph did not show any outliers present according to 

the ROUT analysis with Q=1.000%. One-way ANOVA without outliers revealed a 

significant difference among the means with a P-value of 0.0091. Hence, it can be 

deduced that the R-fluoxetine treatment in male makes the BBB more permeable to 

Evans Blue. This data is calibrated against Curve-C shown in figure 13. 
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As shown in the figure, the control and different female treated groups showed no 

significant differences in the amount of Evans Blue dye detected in the cerebellum tissue. 

Figure 16 also indicates that all the groups are statistically similar to each other with 

some statistical variance present in each group. This data is calibrated against Curve-B 

graphed in figure 13. For the left panel graph in figure 16, the ROUT analysis showed 

Q=1.000% with two outliers present, one outlier found in the control group and the other 

outlier in the R-fluoxetine group. One-way ANOVA with outliers revealed no significant 

differences among the mean with a P-value of 0.5772.  

The right panel in figure 16, is a graph re-constructed with two outliers removed. 

The new Evans Blue fluorescence data graphed shows no statistical difference among 
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Figure 16 Assessment of BBB permeability by Evans Blue detection in female cerebellum. Evans Blue 
Fluorescence excited at 620nm and emitted at 680nm. This data is calibrated against Curve-B shown 
in Figure 13. For the left panel, the outlier’s test identified two outliers, one in the control group and 
one in the females treated with R-fluoxetine group, using ROUT analysis of Q=1.000%. One-way 
ANOVA revealed no significant differences among the mean with a P-value of 0.5772. For the right 
panel, this graph has no outliers present as tested using ROUT analysis Q=1.000%. The P-value is 
0.2192, with no statistical significance among differences within the mean according to one-way 
ANOVA statistical analysis. The values are plotted with a wide horizontal bar which represents a 
group mean with standard deviation error bars. (FC-Female Control, FFSA-Female Fluoxetine, 
Simvastatin, Ascorbic Acid, FS-Female S-fluoxetine, FR-Female R-fluoxetine) 
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each other. There are no outliers present as assessed using ROUT analysis with 

Q=1.000%. One-way ANOVA without outliers revealed no significant differences among 

the mean with a P-value of 0.2192. This graph was also calibrated against Curve-B 

shown in figure 13.  

 

 

The graph shown in figure 17 indicates the fluorescence of Evans Blue 

permeation at the blood brain barrier in the cerebellum to study and compare female 

versus male responses to the fluoxetine enantiomers treatment. Interestingly as seen in 
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Figure 17 Assessment of BBB permeability by Evans Blue detection in male and female 
cerebellum. Evans Blue Fluorescence excited at 620nm and emitted at 680nm. This data is 
calibrated against Curve-C shown in Figure 13. For the left panel, the outlier’s test identified one 
outlier in the female group treated with R-fluoxetine, tested using ROUT analysis of Q=1.000%. 
The P-value is 0.4628, with no detected statistical significance among differences within the 
mean according to one-way ANOVA statistical analysis. For the right panel, the outlier’s test 
identified no outliers present using ROUT analysis of Q=1.000%. The P-value is 0.0031 showing 
female S- and R-fluoxetine as statistically significantly different from male R-fluoxetine according 
to one-way ANOVA statistical analysis. The values are plotted with a wide horizontal bar which 
represents a group mean with standard deviation error bars. (FS-Female S-fluoxetine, FR-Female 
R-fluoxetine, MS-Male S-fluoxetine, MR-Male R-fluoxetine)  
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the left panel in figure 17, there is a notable statistical difference present between female 

S-fluoxetine and male R-fluoxetine, confirmed by an unpaired t-test with Welch’s 

correction P-value of 0.0423. It shows that the males administered with an R-enantiomer 

had more Evans Blue fluorescence cross the BBB compared to the S-enantiomer in the 

females. So, it is possible to conclude that the S-enantiomer of fluoxetine holds the BBB 

intact after stroke induction in rats. There was one outlier identified using ROUT’s 

analysis with Q=1.000% in this graph. One-way ANOVA with an outlier, revealed no 

significant difference among the means with P-value of 0.4628. This data is calibrated 

against Curve-C shown in figure 13. 

 The right panel in figure 17 is a re-constructed graph with the outliers removed. 

There is a statistical difference present between female S-fluoxetine and male R-

fluoxetine, confirmed by an unpaired t-test with Welch’s correction P-value of 0.0423. 

Also, there is a statistical difference present between female R-fluoxetine and male R-

fluoxetine, confirmed by an unpaired t-test with Welch’s correction P-value of 0.0407. 

Male S-fluoxetine is not statistically different than any other groups graphed in figure 17. 

This curve did not have any outliers present according to the ROUT analysis with 

Q=1.000%. One-way ANOVA without any outliers present, revealed a significant 

difference among the means with a P-value of 0.0031. Hence, it can be deduced that 

females with S- and R-fluoxetine had significantly less Evans Blue permeation at the 

BBB in the cerebellum compared to male R-fluoxetine, and that the R-fluoxetine in males 

is less resistant to permeate the dye for crossing BBB after its damage due to stroke 

induction. This data is calibrated against Curve-C shown in figure 13. 
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Gene Expression Analysis  

 Real-time polymerase chain reaction by the method of quantification allows us to 

study the gene markers activated after stroke induction to assess different factors such as 

neurogenesis, neuro-inflammation, neuroplasticity, and neuronal cell growth and 

differentiation. Brain tissue collected and homogenized from the peri-infarct region, was 

processed into messenger RNA after removing genomic DNA. Then, the mRNA was 

converted into complementary DNA, which was then transferred into RT-PCR custom-

designed well plates for quantitative real-time PCR analysis which revealed the Ct 

values. A Ct-value is the number of RT-PCR cycles crossing the set threshold value.  For 

example, Arg1 with a Ct-value of 26.2 indicates that many cycles it took for Arg1 to 

reach the set threshold. The gene expression yield is higher when the threshold value is 

crossed by the signal in less number of cycles at a given time. Threshold value was 

manually set the same across all groups tested in this part of study to allow comparison of 

the gene expression. The Ct-values are used for RT-PCR data analysis to yield gene fold-

regulation that is interpretable to deduce conclusions. Gene fold-change is obtained in 

this manner: first, delta Ct-value is calculated between the gene of interest and 

housekeeping gene for each experiment. Then, the average delta Ct-values between 

experiments (replicates) is calculated. Next, the delta-delta Ct-values are calculated using 

the equation: delta Ct experiment – delta Ct control. Then, the fold change is calculated 

as 2^(-delta delta Ct). Fold-change is the normalized gene expression in the sample group 

divided by the normalized gene expression in the control group. Fold-change values 

greater than 1 indicate up-regulation. On the contrary, fold-change values less than 1 
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indicate down-regulation. The housekeeping genes that were used for normalization of 

calculations and comparisons were Hprt1 and Ldha.  

 

 Figure 18 is a picture depicting the custom-made 96-well RT-PCR plate used in 

this part of study. Each gene has one more replicate (total two) on the plate to ensure 

accuracy. Treated groups are compared against the control group, as well as against their 

female or male counterparts. This allows us to compare and contrast the gene markers 

between groups to conclude their contribution in neurogenesis factors.  

 In this part of study, taking the average of replicates of gene markers pass as 

statistically significant if one replicate is above the blue line (marking statistical 

Figure 18 Custom RT-PCR 96-well plate designed to study gene expression. This plate contains primers 
for genes chosen to study microglial subtypes involved in neuro-inflammation, neurogenesis factors, 
and neuroplasticity. Each gene has a duplicate. (Light blue wells – genes of interest, dark blue wells – 
housekeeping genes, red wells – control wells). Control wells include GDC – genomic DNA 
contamination, RTC – reverse transcription control, and PPC – positive PCR control. 
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significance) and the other replicate is slightly below the blue line. If both replicates of 

genes are strictly up-regulated or down-regulated then those results give more 

confidence, while one replicate of the gene up-regulated but other one down-regulated or 

vice-versa gives less confidence.  

 

Figure 19 Volcano Plot comparing RT-PCR gene markers active after stroke between female control 
group and female FSA group. Each gene has one more replicate on well plate. The threshold value was 
kept same across the two groups. Control represents female control group untreated with any 
medication, and Group1 represents female group treated with FSA (fluoxetine, simvastatin, and 
ascorbic acid). Red data points indicate up-regulated gene markers, and green data points indicate 
down-regulated gene markers. Black uncolored data points indicate unchanged gene markers between 
the two assessed groups. The blue horizontal line demarcates statistical significance: data points above 
are statistically significant (P<0.05) and those below are statistically insignificant (P>0.05). Gene 
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markers on both sides outside of the pink vertical lines are considered significant genes which change 
more than 2 fold. Numbers in brackets indicate fold-regulation. 

 
Up-regulated Down-regulated 

Crh*(3.27) 
Crhr1*(3.21) 

 
Camk2g # (2.10, 2.04) 

Fgf9 # (2.04, 2.28) 
Crhbp # (2.37, 3.90) 
Crh # (3.27, 2.85) 

Nell1 # (3.12, 2.49) 
Bdnf # (2.84, 2.01) 

Crhr1 * (2.40) 
Il10ra # (2.04, 1.36) 

Camk2a # (2.34, 1.82) 
Sox2 # (1.88, 2.67) 
Crhr2 # (1.27, 1.63) 

Ldha * (1.22) 
Fos * (1.45) 
Plat * (1.57) 

Tgfb1 # (1.35, 1.85) 
Stat1 * (1.70) 
Creb1 * (1.42) 

Cntfr # (1.82, 1.60) 
Galra1 * (1.69) 

Grip1 # (1.23, 1.22) 
Cbln1 * (1.66) 

Npy1r # (1.98, 1.55) 
Npy2r * (1.32) 

 

Arg1# (-3.25, -2.76) 
 
 

Ldha *(-1.33) 
Il-6 # (-1.64, -1.22) 

Actb *(1.51) 
Nos2 *(-1.59) 
Gmfg *(-1.53) 
Cxcr4 *(-1.21) 
Stat3 *(-1.22) 
GDC *(-1.69) 
Nono *(-1.22) 

Table 6 Gene markers that are up-regulated and down-regulated in the female control group versus 
female FSA (fluoxetine, simvastatin, and ascorbic acid) group. At the top of the table, genes with P-
values less than 0.05 are shown. At the bottom of the table, any gene which changes more than 2 fold is 
also considered a significant change (highlighted in yellow); rest of the gene markers are not 
statistically significant. # denotes both replicates of the gene, and * denotes one of the two replicates 
of the gene. Fold-regulation for each gene marker is indicated in brackets. The blue line demarcates 
statistical significance: gene markers listed above are statistically significant and those below are 
statistically insignificant as far as the P-value goes only.  

 

As seen in figure 19, the female group treated with FSA (fluoxetine, simvastatin, 

and ascorbic acid) for 6 days after surgery until sacrificed on 7th day, is compared against 

the female control group untreated with any of the FDA approved drugs. Both groups 

comprise of six rats each. The graph indicates that both replicates of Arginase1 were 

statistically significant and down-regulated (green), while one replicate each of Crh and 
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Crhr1 were also statistically significant and up-regulated (red). The increase of Crh and 

Crhr1 indicates an increased amount of stress after stroke. A decrease in Arg1 indicates a 

decrease in either M2a or M2c microglia, both of which regulate anti-inflammation. 

Horizontal blue line on the graph divides the above gene markers as statistically 

significant with P-value less than 0.05, and those below are statistically insignificant with 

P-value greater than 0.05. Gene markers plotted on both sides outside of the pink vertical 

lines are significant with changes more than 2-fold. Several growth factors are 

significantly up-regulated, but we also see a down-regulation of Arg1; this suggests that 

either the microglial markers chosen in this project do not correspond to the subtypes of 

macrophages in the periphery, or the increase in Bdnf is not due to microglial 

polarization.  

Table 6 lists the names of gene markers that were up-regulated or down-regulated 

in female FSA group against female control group. Also, # sign in the table denotes both 

replicates of a gene, while * denotes one of the two replicates of a gene. Fold-regulation 

for each gene marker is indicated in the brackets. Significant genes highlighted in the 

table changed more than 2-fold. These genes were up-regulated and include growth 

factors such as Sox2, Fgf9, Bdnf, Nell1; synaptic plasticity markers such as Camk2a and 

Camk2g, stress markers such as Crhbp, Crh, Crhr1; and a cytokine marker, Il10ra. The 

results of the up-regulated genes expressed which were non-significant (P>0.05) include 

M1 microglial marker, Stat1; and other cytokine markers such as Tgfb1, Fos, Camk2a, 

Creb1, Cntfr, Grip1, Il10ra, Sox2 and Cbln1. The up-regulation of Plat, Galra1, Npy1r, 

Ldha, and Crhr2 was also notable.  
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Several non-significantly down-regulated gene markers include Nos2, Il-6, Stat3, 

Gmfg, Cxcr4, Nono, Actb, and Ldha.  

 

Figure 20 Volcano Plot comparing RT-PCR gene markers active after stroke between female control 
group and female S-fluoxetine group. Each gene has one more replicate on well plate. The threshold 
value was kept same across the two groups. Control represents female control group untreated with 
any medication, and Group2 represents female group treated with S-fluoxetine. Red data points 
indicate up-regulated gene markers, and green data points indicate down-regulated gene markers. 
Black uncolored data points indicate unchanged gene markers between the two assessed groups. 
Numbers in brackets indicate fold-regulation. The blue line demarcates statistical significance: data 
points above are statistically significant (P<0.05) and data points below are statistically insignificant 
(P>0.05). Gene markers on both sides outside of the pink vertical lines are considered significant which 
change more than 2 fold. 
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Up-regulated Down-regulated 
 
 

Cbln1 # (2.50, 2.13) 
Camk2g# (1.36, 1.34) 
Ccl11 # (1.42, 1.32) 

Bdnf * (1.21) 
Cntf * (1.24) 
Crh * (1.41) 

Creb1 * (1.25) 
Crhbp # (1.26, 1.76) 
Crhr1 # (1.39, 1.25) 
Crhr2 # (1.22, 1.27) 
Il-1b # (1.42, 1.21) 
I10ra # (1.43, 1.64) 

Galr1 * (1.30) 
Nell1 # (1.22, 1.36) 

Sox2 * (1.35) 
Stat1 * (1.63) 
Npy1r * (1.38) 

Stat6 # (1.58, 1.40) 
Tgfb1 # (1.34, 1.50) 
Plat # (1.39, 1.30) 

Vegfa # (1.30, 1.29) 
Ppih * (1.29) 

 

Arg1# (-2.45, -2.31) 
 

Galr1 * (-1.51) 
Gmfg * (-1.22) 

Il-6 # (-1.24, -1.27) 
Gfra3 * (-1.21) 
Stat3 * (-1.23) 

GDC # (-1.31, -1.31) 

Table 7 Gene markers that are up-regulated and down-regulated in the female control group versus 
female S-fluoxetine group. At the top of the table, significant gene with P-value less than 0.05 is shown. 
At the bottom of the table, any gene which changes more than 2 fold is also considered a significant 
change (highlighted in yellow); rest of the gene markers are not statistically significant. # denotes both 
replicates of the gene, and * denotes one of the two replicates of the gene. Fold-regulation for each 
gene marker is indicated in brackets. The blue line demarcates statistical significance: gene markers 
listed above are statistically significant and those below are statistically insignificant as far as P-value 
goes only.  

 

Figure 20 is a volcano plot indicating the gene expression of the female group 

treated with S-fluoxetine compared against the female control group.  The female control 

group comprises of six rats while the female S-fluoxetine group comprises of 5 rats. The 

graph indicates that both replicates of Arg1 is statistically significant and is down-

regulated (green), which shows a decrease in M2 anti-inflammatory microglia. So, we 

can deduce that administration of S-fluoxetine lowered anti-inflammation by decreasing 
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M2 microglia in the female group. Horizontal blue line on the graph divides the above 

gene markers as statistically significant with P-value less than 0.05, and those below are 

statistically insignificant with P-value greater than 0.05. Gene markers plotted on both 

sides outside of the pink vertical lines are significant with changes more than 2-fold. 

Table 7 is a list of the genes up-regulated and down-regulated for female S-

fluoxetine group compared to the female control group. Cbln1 is a significant gene which 

changes more than 2-fold. Genes that were non-significant and up-regulated include 

microglial M1 markers Ccl11, Il-1b, and Stat1 in addition to M2 markers Tgfb1 and 

Stat6. Others that were notable include Il10ra, growth factors such as Bdnf, Nell1, Sox2, 

Tgfb1, Vegfa, Camk2g, Creb1, Cntf; others such as Plat, Galra1, Npy1r, and Ppih; and 

some stress markers such as Crhbp, Crh, Crhr1, and Crhr2. 

Non-significant down-regulated gene markers include Gmfg, Gfra3, and Galr1; 

and some microglial markers including Il-6, and Stat3.  
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Figure 21 Volcano Plot comparing RT-PCR gene markers active after stroke between female control 
group and female R-fluoxetine group. Each gene has one more replicate on well plate. The threshold 
value was kept same across the two groups. Control represents female control group untreated with 
any medication, and Group3 represents female group treated with R-fluoxetine. Red data points 
indicate up-regulated gene markers, and green data points indicate down-regulated gene markers. 
Black uncolored data points indicate unchanged gene markers between the two assessed groups. 
Numbers in brackets indicate fold-regulation. All of the gene markers assessed between the two groups 
are statistically not significant (P > 0.05), except the gene markers on both sides outside of the pink 
vertical lines are considered significant which change more than 2 fold. 
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Up-regulated Down-regulated 
Cbln1 # (2.03, 2.03) 

Ccl11 * (1.22) 
Crh # (1.63, 1.34) 

Crhr2 # (1.20, 1.46) 
Crhbp * (1.38) 
Galr1 * (1.68) 

Camk2a # (-2.37, -2.16) 
Arg1 * (-1.23) 

Camk2g # (-1.21, -1.33) 
Cntfr # (-1.47, -1.38) 

Creb1 * (-1.21) 
Crhr1 # (-1.43, -1.25) 
Cxcr4 # (-1.40, -1.26) 

Gfra3 * (-1.44) 
Gmfg * (-1.25) 

Nos2 # (-1.45, -1.34) 
Stat3 * (-1.36) 
Stat6 * (-1.20) 
Tgfb1 * (-1.26) 
Stat4 * (-1.26) 
Tnf * (-1.43) 

Ppih * (-1.24) 
Actb # (-1.29, -1.23) 

Nono * (-1.22) 
GDC # (-1.57, -1.57) 

Table 8 Gene markers that are up-regulated and down-regulated in the female control group versus 
female R-fluoxetine group. These gene markers are not statistically significant (P>0.05). Any gene which 
changes more than 2 fold is considered a significant change (highlighted in yellow). # denotes both 
replicates of the gene, and * denotes one of the two replicates of the gene. Fold-regulation for each 
gene marker is indicated in brackets. 

 

Figure 21 depicts a volcano plot of gene markers and their fold-regulation of 

female R-fluoxetine against female control group. Both groups comprise of six rats each. 

Table 8 lists the names of gene markers that were up-regulated or down-regulated. All of 

the gene markers expressed were statistically non-significant with P>0.05, except the 

highlighted genes are significant which change more than 2-fold.  

Significant genes were Cbln1 which is up-regulated, and Camk2a which is down-

regulated. The results of non-significant up-regulated genes expressed included Ccl11, 

Crhbp, Crh, Crhr2, and Galr1. And non-significant down-regulated genes include M2 

microglial markers such as Arg1, Stat3, Stat6, Tgfb1, and M1 markers such as Tnf, Nos2, 

and Stat4. Camk2g along with Creb1 and Cxcr4 are also low. Other notable genes include 

Cntfr, Tgfb1, Crhr1, Gfra3, Gmfg, Nono, Actb, and Ppih.  
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Figure 22 Volcano Plot comparing RT-PCR gene markers active after stroke between female S-fluoxetine 
group and male S-fluoxetine group. Each gene has one more replicate on well plate. The threshold 
value was kept same across the two groups. Control represents female S-fluoxetine group and Group4 
represents male group treated with S-fluoxetine. Red data points indicate up-regulated gene markers, 
and green data points indicate down-regulated gene markers. Black uncolored data points indicate 
unchanged gene markers between the two assessed groups. Numbers in brackets indicate fold-
regulation. The blue line demarcates statistical significance: data points above are statistically 
significant (P<0.05) and data points below are statistically insignificant (P>0.05). Gene markers on both 
sides outside of the pink vertical lines are considered significant which change more than 2 fold. 
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Up-regulated Down-regulated 
Grip1* (1.69) 
Sox2* (1.83) 

 
Bdnf # (2.03, 2.17) 
Nell1 # (2.06, 2.03) 

Camk2a# (2.14, 1.64) 
Camk2g# (1.32, 1.32) 
Cbln1 # (1.53, 1.25) 
Cntfr # (1.26, 1.43) 
Crh # (1.71, 1.57) 

Crhbp # (1.65, 1.47) 
Fgf9 # (1.81, 1.92) 

Crhr1 * (1.54) 
Galr1 # (1.56, 1.36) 
Npy1r # (1.78, 1.56) 

Sox2 * (1.32) 
 

Cd163# (-2.75, -2.56) 
Nos2# (-2.28, -1.94) 

 
Cd40 # (-2.56, -2.36) 
Il-1b # (-2.18, -2.64) 
Il-6 # (-3.35, -3.65) 

Cxcr4 # (-2.42, -1.89) 
Gfra3 # (-2.27, -1.44) 
Gmfg # (-2.09, -1.83) 
Tnf # (-2.39, -1.75) 

Stat1 # (-1.93, -2.01) 
Arg1 * (-1.39) 

Ccl11 # (-1.74, -1.48) 
Cntf * (-1.49) 

Creb1 # (-1.47, -1.40) 
Crhr2 * (-1.73) 
Fos * (-1.45) 

Il-10ra # (-1.43, -1.27) 
Stat3 * (-1.32) 

Stat4 # (-1.84, -1.35) 
Stat6 # (-1.89, -1.50) 
Tgfb1 # (-1.60, -1.55) 
Plat # (-1.27, -1.35) 

Ppih * (-1.37) 
Actb # (-1.42, -1.25) 

Nono * (-1.36) 
GDC # (-1.85, -1.85) 

Table 9 Gene markers that are up-regulated and down-regulated in the female S-fluoxetine group 
versus male S-fluoxetine group. At the top of the table, genes with P-values less than 0.05 are shown. 
At the bottom of the table, any gene which changes more than 2 fold is also considered a significant 
change (highlighted in yellow); rest of the gene markers are not statistically significant. # denotes both 
replicates of the gene, and * denotes one of the two replicates of the gene. The blue line demarcates 
statistical significance: gene markers listed above are statistically significant and those listed below are 
statistically insignificant as far as P-value goes only. Fold-regulation for each gene marker is indicated in 
brackets. 

 

As seen in figure 22, the male group treated with S-fluoxetine is compared against 

the female S-fluoxetine group. Both groups comprise of five rats each. The graph 

indicates two replicates of both Cd163 and Nos2 are statistically significant and down-

regulated (green), while Grip1 and Sox2 are also statistically significant and up-regulated 

(red). Cd163 shows decreased anti-inflammatory microglia, and on the other hand, Nos2 

shows decreased pro-inflammatory microglia. In this case, it cannot be deduced with 



 61 

certainty that which one of the two microglial subtypes was dominating due to S-

fluoxetine treatment in male group compared to female group. Grip1 is a factor involved 

in cell signaling, while Sox2 is implicated in stem cell maintenance, both of which are 

increased. Horizontal blue line on the graph divides the above gene markers as 

statistically significant with P-value less than 0.05, and those below are statistically 

insignificant with P-value greater than 0.05. Gene markers plotted on both sides outside 

of the pink vertical lines are significant with changes more than 2-fold.  

Table 9 is a list of the gene markers that were up-regulated and down-regulated 

when compared the female S-fluoxetine versus male S-fluoxetine groups. Significant 

genes that were up-regulated include growth factors Bdnf and Nell1, and cam-kinase 

Camk2a. Non-significant up-regulated markers included growth factors such as Fgf9 and 

Sox2. Camk2a and Camk2g in addition to Cntfr, Cbln1, Npy1r and stress markers such as 

Crh, Crhr1 and Crhbp were also notable. 

Significant genes that were down-regulated include Cd40, Cxcr4, Gmfg, Gfra3, Il-

1b, Il-6, Stat1, and Tnf. Several genes were non-significant and down-regulated between 

female S-fluoxetine and male S-fluoxetine groups. Most of those gene markers are 

implicated in inflammation including Stat1, Stat4, Arg1, Stat3, and Stat6. Others included 

are Il-10ra, Ccl11, Cntf, Cxcr4, Fos, Gmfg, Gfra3, Tnf, and Tgfb1. Additionally, Creb1, 

Crhr2, Plat, Nono, Actb, and Ppih were also notable.  
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Figure 23 Volcano Plot comparing RT-PCR gene markers active after stroke between female R-fluoxetine 
group and male R-fluoxetine group. Each gene has one more replicate on well plate. The threshold 
value was kept same across the two groups. Control represents female R-fluoxetine group, and Group5 
represents male group treated with R-fluoxetine. Red data points indicate up-regulated gene markers, 
and green data points indicate down-regulated gene markers. Black uncolored data points indicate 
unchanged gene markers between the two assessed groups. Numbers in brackets indicate fold-
regulation. The blue line demarcates statistical significance: data points above are statistically 
significant (P<0.05) and data points below are statistically insignificant (P>0.05). Gene markers on both 
sides outside of the pink vertical lines are considered significant which change more than 2 fold. 
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Up-regulated Down-regulated 
Camk2a# (3.16, 3.98) 

 
 
 
 

Nell1 # (2.48, 3.47) 
Crhr1 # (1.95, 2.40)  
Fgf9 # (1.60, 2.03) 

Bdnf * (1.47) 
Camk2g* (1.73) 

Cntfr # (1.46, 1.74) 
Crh # (1.51, 1.93) 

Crhbp # (1.37, 1.46) 
Crhr2 * (1.28) 
Il-10ra * (1.26) 

Npy1r # (1.28, 1.50) 
Nos2 * (1.34) 
Sox2 * (1.31) 
Stat4 * (1.33) 

Grip1 # (1.27,1.37) 
 

Arg1# (-3.09, -2.66) 
Cd163# (-2.48, -2.21) 

Nono* (-1.77) 
Gfra3* (-2.67) 

 
Cbln1 # (-2.73, -3.47) 
Ccl11 # (-1.55, -2.02) 
Cd40 # (-1.95, -1.50) 
Cntf # (-1.60, -1.31) 

Creb1 * (-1.28) 
Cxcr4 # (-1.56, -1.23) 
Galr1 # (-1.26, -1.23) 

Gfra3 * (-1.96) 
Gmfg # (-1.72, -1.51) 
Il-1b # (-1.94, -1.48) 
Il-6 # (-1.33, -1.24) 

Nos2 * (-1.25) 
Stat1 # (-1.36, -1.64) 

Npy2r * (-1.25) 
Stat6 # (-1.35, -1.30) 

Tnf * (-1.80) 
Plat # (-1.36, -1.29) 
Actb # (-1.50, -1.30) 

Nono * (-1.65) 
Table 10 Gene markers that are up-regulated and down-regulated in the female R-fluoxetine group 
versus male R-fluoxetine group. At the top of the table, genes with P-values less than 0.05 are shown. 
At the bottom of the table, any gene which changes more than 2 fold is also considered a significant 
change (highlighted in yellow); rest of the gene markers are not statistically significant. # denotes both 
replicates of the gene, and * denotes one of the two replicates of the gene. The blue line demarcates 
statistical significance: gene markers listed above are statistically significant and those listed below are 
statistically insignificant as far as P-value goes only. Fold-regulation for each gene marker is indicated in 
brackets. 

 

As seen in figure 23, the female group treated with R-fluoxetine is compared 

against the male group treated with R-fluoxetine. The female R-fluoxetine group 

comprises of six rats while the male R-fluoxetine comprise of five rats. The graph 

indicates two replicates of Arg1 and Cd163, and one replicate of Gfra3 and Nono are 

statistically significant and down-regulated (green), while two replicates of Camk2a is 

also statistically significant and is up-regulated (red). Both Arg1# and Cd163# show a 

decrease in M2 anti-inflammatory microglia in male R-fluoxetine compared to their 

female counterpart. Hence, it can be deduced with certainty that the R-fluoxetine in male 
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group lowered anti-inflammatory microglia compared to that in female group. Gfra3 

affects to decrease glial cell-derived neuro-trophic factor. Nono is implicated in gene 

transcription. The up-regulation of Camk2a shows increased cellular signaling due to 

increase in calcium release. Horizontal blue line on the graph divides the above gene 

markers as statistically significant with P-value less than 0.05, and those below are 

statistically insignificant with P-value greater than 0.05. Gene markers plotted on both 

sides outside of the pink vertical lines are significant with changes more than 2-fold. 

 Table 10 lists the names of gene markers which were up-regulated and down-

regulated in the comparison of male R-fluoxetine group against female R-fluoxetine 

control group. Significant up-regulated genes include growth factors such as Nell1 and 

Fgf9, and a stress marker Crhr1. Non-significant up-regulated genes have several growth 

factors involved. Up-regulated gene markers include Bdnf, Cntfr, Fgf9, Sox2, Crh, Crhr1, 

Crhbp, and Crhr2. Others also notable are Stat4, Nos2, Il-10ra, Npy1r, Camk2g, and 

Grip1.  

 Significant down-regulated markers include two genes: Cbln1, and Ccl11. Non-

significant down-regulated genes include microglial markers such as Il-1b, Il-6, Ccl11, 

Nos2, Stat1, Stat6, and Tnf. Also notable were Cd40, Cntf, Npy2r, Actb, Creb1, Cxcr4, 

Galr1, Gfra3, Gmfg, Plat, and Nono.  
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Figure 24 Volcano Plot comparing RT-PCR gene markers active after stroke between female S-fluoxetine 
group and female R-fluoxetine group. Each gene has one more replicate on well plate. The threshold 
value was kept same across the two groups. Control represents female S-fluoxetine group, and Group3 
represents female group treated with R-fluoxetine. Red data points indicate up-regulated gene 
markers, and green data points indicate down-regulated gene markers. Black uncolored data points 
indicate unchanged gene markers between the two assessed groups. Numbers in brackets indicate fold-
regulation. The blue line demarcates statistical significance: data points above are statistically 
significant (P<0.05) and data points below are statistically insignificant (P>0.05). Gene markers on the 
left of the pink vertical line are considered significant which change more than 2-fold.  
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Up-regulated Down-regulated 
Arg1# (1.99, 1.94) 

 
Crh * (1.24) 

Galr1 # (1.50, 1.29) 
Gfra3 * (1.23) 
Il-6 * (1.24) 

Npy2r * (1.27) 
 

Ppih# (-1.47, -1.43) 
 

Camk2a# (-2.57, -2.29) 
Camk2g# (-1.65, -1.79) 

Cbln1 * (-1.23) 
Ccl11 * (-1.49) 
Cd163 * (-1.33) 
Cd40 * (-1.33) 
Cntf * (-1.36) 

Cntfr # (-1.60, -1.57) 
Creb1 # (-1.33, -1.40) 
Crhr1 # (-1.79, -1.73) 
Cxcr4 # (-1.48, -1.46) 

Gfra3 * (-1.26) 
Il-1b # (-1.26, -1.59) 

Il-10ra # (-1.71, -1.79) 
Nos2 # (-1.55, -1.50) 
Nell1 # (-1.34, -1.51) 

Npy2r * (-1.24) 
Sox2 # (-1.47, -1.35) 
Stat1 # (-1.55, -1.58) 

Npy1r * (-1.31) 
Stat4 # (-1.28, -1.41) 
Stat6 # (-1.47, -1.68)  
Tgfb1 # (-1.69, -1.75) 
Tnf # (-1.35, -1.47) 
Plat # (-1.27, -1.29) 

Grip1 # (-1.20, -1.24) 
Vegfa * (-1.21) 
Nono * (-1.23) 

GDC # (-1.20. -1.20) 
Table 11 Gene markers that are up-regulated and down-regulated in the female S-fluoxetine group 
versus female R-fluoxetine group. At the top of the table, genes with P-values less than 0.05 are shown. 
At the bottom of the table, any gene which changes more than 2 fold is also considered a significant 
change (highlighted in yellow); rest of the gene markers are not statistically significant. # denotes both 
replicates of the gene, and * denotes one of the two replicates of the gene. The blue line demarcates 
statistical significance: gene markers listed above are statistically significant and those listed below are 
statistically insignificant as far as the P-value goes only. Fold-regulation for each gene marker is 
indicated in brackets. 

 

As seen in figure 24, the female group treated with S-fluoxetine is compared 

against the female R-fluoxetine group. The female S-fluoxetine group comprise of five 

rats, while the female R-fluoxetine group comprises of six rats. The graph indicates both 
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replicates of Ppih as statistically significant and down-regulated (green), while both 

replicates of Arg1 is also statistically significant and is up-regulated (red). Decreased 

Ppih indicates lowered pre-mRNA splicing during transcription, while increased Arg1 

suggests an increase in M2 anti-inflammatory microglia. Hereby, we can interpret that R-

fluoxetine treatment increased anti-inflammation due to up-regulation of M2 microglia in 

the female group. Horizontal blue line on the graph divides the above gene markers as 

statistically significant with P-value less than 0.05, and those below are statistically 

insignificant with P-value greater than 0.05. Gene markers plotted on left side of the pink 

vertical line are significant with changes more than 2-fold.  

Table 11 lists the names of gene markers which are up-regulated and down-

regulated in the comparison of female S-fluoxetine against female R-fluoxetine. Non-

significant up-regulated gene markers include Crh, Il-6, Galr1, Gfra3, and Npy2r.  

 Camk2a is significant with a change of more than 2-fold and is down-regulated. 

Others are non-significant. Such down-regulated gene markers include microglial 

markers such as Il-1b, Nos2, Tnf, Ccl11, Stat1, Stat4, Cd163, Tgfb1 and Stat6. Others 

include Il-10ra, Cd40, Camk2g, Creb1, and Cxcr4. Additionally, notable genes are 

Grip1, Cntf, Cntfr, Vegfa, Nell1, Gfra3, Cbln1, Npy1r and Npy2r, Crhr1, Sox2, Tgfb1, 

Plat, and Nono.  
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Figure 25 Volcano Plot comparing RT-PCR gene markers active after stroke between male S-fluoxetine 
group and male R-fluoxetine group. Each gene has one more replicate on well plate. The threshold 
value was kept same across the two groups. Control represents male S-fluoxetine group, and Group5 
represents male group treated with R-fluoxetine. Red data points indicate up-regulated gene markers, 
and green data points indicate down-regulated gene markers. Black uncolored data points indicate 
unchanged gene markers between the two assessed groups. Numbers in brackets indicate fold-
regulation. The blue line demarcates statistical significance: data points above are statistically 
significant and data points below are statistically insignificant as far as the P-value goes only. Gene 
markers on both sides outside of the pink vertical lines are considered significant which change more 
than 2 fold. 
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Up-regulated Down-regulated 
Nos2* (1.74) 

 
 
 

Il-6 # (2.92, 3.65) 
Cd40 * (1.41) 
Crh * (1.52) 

Crhr2 # (1.64, 1.39) 
Fos # (1.37, 1.54) 

Stat4 # (1.45, 1.27) 
GDC # (1.30, 1.30) 

Sox2# (-1.88, -1.95) 
Nono* (-1.97) 
Grip1* (-1.49) 

 
Cbln1 # (-5.15, -4.56) 
Bdnf # (-1.66, -1.60) 

Camk2a* (-1.74) 
Camk2g# (-1.84, -1.36) 
Ccl11 # (-1.32, -1.47) 

Cd163 * (-1.20) 
Cntf # (-1.45, -1.33)  
Cntfr # (-1.38, -1.29) 
Crhbp # (-1.40, -1.28) 
Galr1 # (-1.28, -1.34) 

Il-10ra * (-1.22) 
Gfra3 * (-1.52) 

Npy1r # (-1.56, -1.36) 
Stat1 * (-1.32) 

Plat # (-1.36, -1.23) 
Stat6 * (-1.32) 
Ppih * (-1.35) 
Actb * (-1.24) 

Nono # (-1.50, -1.97) 
Table 12 Gene markers that are up-regulated and down-regulated in the male S-fluoxetine group versus 
male R-fluoxetine group. At the top of the table, genes with P-values less than 0.05 are shown. At the 
bottom of the table, any gene which changes more than 2 fold is also considered a significant change 
(highlighted in yellow). Rest of the gene markers are not statistically significant. # denotes both 
replicates of the gene, and * denotes one of the two replicates of the gene. The blue line demarcates 
statistical significance: gene markers listed above are statistically significant and those listed below are 
statistically insignificant as far as the P-value goes only. Fold-regulation for each gene marker is 
indicated in brackets. 

 

As seen in figure 25, the male group treated with S-fluoxetine is compared against 

the male R-fluoxetine group. Both groups comprise of five rats. The graph indicates 

Sox2, Nono, and Grip1 as statistically significant and are down-regulated (green), while 

Nos2 is also statistically significant and is up-regulated (red). Decreased Sox2 indicates 

lowered stem cell maintenance, while Grip1 affecting cellular signaling and Nono 

affecting the gene transcription. Increased levels of Nos2 indicates more of the M1 pro-

inflammatory microglia present in the male R-fluoxetine group compared to their S-
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fluoxetine counterpart. Horizontal blue line on the graph divides the above gene markers 

as statistically significant with P-value less than 0.05, and those below are statistically 

insignificant with P-value greater than 0.05. Gene markers plotted on both sides of the 

pink vertical lines are significant with changes more than 2-fold.  

 Table 12 lists several gene markers that are up-regulated and down-regulated in 

the comparison of male S-fluoxetine versus male R-fluoxetine groups. Il6 is significantly 

up-regulated indicating either M1 pro-inflammatory or M2b anti-inflammatory microglial 

activation. Other markers were non-significant and up-regulated including Crh, Crhr2, 

Stat4, Cd40, and Fos.  

 Cbln1 is significant and down-regulated with change of more than 2-fold. Others 

are non-significant and down-regulated which include growth factors such as Bdnf, Cntf, 

Cntfr, and Npy1r; cam-kinases such as Camk2a and Camk2g; others such as Galr1, 

Gfra3, Actb, and Il-10ra; and additionally microglial markers such as Stat11, Ccl11, 

Cd163, and Stat6. Also down-regulated were markers such as Crhbp, Plat, Nono, Ppih.  

Gene Markers of Microglial Subtypes 

 Microglia are brain resident macrophages which are activated upon stroke to 

prevent further neurological damage. In that process, four subtypes of microglia are 

studied in this project from the peri-infarct region to understand their role in 

inflammation. The M1 subtype is pro-inflammatory microglia, while the M2 subtype is 

an anti-inflammatory microglia. M2 subtype comprises of three categories: M2a, M2b, 

and M2c, where M2a and M2c are strictly non-inflammatory, while M2b qualifies as a 

pro-inflammatory with majority of its gene markers except for one gene marker of 

Interleukin-10 (Il-10) that puts it into the M2 anti-inflammatory microglial subtype. In 
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this part of study, Ct-values obtained from real-time polymerase chain reaction are 

plotted to simply compare and contrast the gene markers of certain subtype of microglia 

at a given time in the cycle. Threshold was manually set the same across all groups in all 

RT-PCR plates that were tested.  

For the purpose to purely identify which microglia is or are activated after stroke, 

they are plotted in graphs in figure 26. Visible in all four graphs, all four microglial 

subtypes were present after stroke induction, and they are all expressed in the same linear 

proportion range of Ct. This part of project is simply carried out to assess which proposed 

microglial subtypes participate in the brain peri-infarct region to induce pro-inflammation 

and/or anti-inflammation. Refer to the volcano plots in the Gene Expression Analysis 

section to discover whether or not the treatment of FDA approved drugs activate or 

inhibit the response of any of the four microglial subtypes demonstrated in the following 

graph, with any remarkable change in Ct-values.  
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Control Group 

 

Figure 26 Microglial gene markers (M1, M2a, M2b, M2c) distinguished in the Control group 
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IV. DISCUSSION  

Motor Functional Analysis 

Contralateral functional deficit of greater than or equal to 20% was required 

criteria to include animals in the analysis of motor function. Endothelin-1, a potent 

vasoconstrictor was introduced into the right hemisphere of brain to induce stroke in 

aged, 10-12 months old Sprague Dawley rats. The resulting stroke in the forelimb motor 

cortex of the right hemisphere in Sprague Dawley rats made their left (contralateral) side 

deficient compared to their pre-stroke function. Six different groups were treated with 

FDA approved drugs: female FSA (fluoxetine, simvastatin, ascorbic acid) group 

(abbreviated FFSA), male (MS-fluox) and female (FS-fluox) groups with S-fluoxetine 

(and simvastatin plus ascorbic acid), male (MR-fluox) and female (FR-fluox) groups with 

R-fluoxetine (and simvastatin plus ascorbic acid), and female control (FC) group 

(placebo, no drugs). Average contralateral baseline function deficit in each group resulted 

as follows: FC – 72%, FFSA – 84%, FS-fluoxetine – 80%, FR-fluoxetine – 77%, MS-

fluoxetine – 54%, MR-fluoxetine – 57%. No statistically significant difference was noted 

between the female Montoya groups (FC, FFSA, FS-fluoxetine, and FR-fluoxetine) or 

between the male Montoya groups (MS-fluoxetine and MR-fluoxetine). There does 

appear to be a difference between males and the females, but that was probably because 

the males had a larger infarct volume. In this project, we were only interested in baseline 

contralateral function to indicate that stroke did occur by ensuring their motor function 
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was reduced; we were not interested in their motor functional recovery however because 

that would require prolonged treatment with drugs, whereas, we had to sacrifice the rats 

on 7th day in order to study gene expression of microglial subtypes and growth factors 

involved early in the disease stages. We did not examine the infarct volume in these 

animals, as we excised the peri-infarct region for our gene expression studies. Although 

some rats in certain groups were excluded due to failure to pass the criteria for the motor 

functional study, they are all included in the Evans Blue analysis and gene expression 

studies to follow because of the confirmed presence of an infarct in the right hemisphere.   

Evans Blue BBB Permeability 

 Evans Blue dye permeability in the cerebral cortex (P=0.0041) as well as in the 

cerebellum (P=0.0423) of female group treated with S-fluoxetine was significantly less 

compared to male group treated with R-fluoxetine. Within the male rats, Evans Blue 

permeability in the cerebral cortex (P=0.0045) was significantly reduced in the presence 

of the S-fluoxetine compared to the R-fluoxetine. Therefore, the S-fluoxetine appears to 

tighten the blood brain barrier in both males and females, while the R-fluoxetine data in 

males show an enhanced permeability. There is also a statistical difference present in the 

cerebellum of female R-fluoxetine compared to male R-fluoxetine, as confirmed by an 

unpaired t-test with Welch’s correction (P=0.0407). This allows us to deduce that S-

fluoxetine tightens the blood brain barrier (BBB), preventing its disruption in the male 

and female group while R-fluoxetine allows the dye to cross the BBB. Since the R-

fluoxetine shows a significant increase in the BBB permeability in female versus male 

group, our data suggests that the R- fluoxetine is less effective to guard the BBB against 

damage following stroke compared to S-fluoxetine in both sexes. However, we did not 
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see a statistical difference in Evans Blue permeation when S-fluoxetine was compared to 

R-fluoxetine in females, but that may have been due to limited perfusion time for the 

Evans Blue (see below).  

In this experiment we had very limited exposure to Evans Blue in the circulation 

before it was washed out, which has complicated interpretation of the results. The 

trichloroacetic method of Evans Blue assay applied in this project to study its 

permeability has been previously confirmed to be working in limited rat tissue samples in 

vivo and in vitro in small rodent models [56]. 

So, why is there a difference between the R and S enantiomers of fluoxetine in 

only some but not all of the male and female groups. As mentioned above, we saw a 

permeability difference between male groups but not between female groups. One 

explanation could be due to the fact that animals were perfused with Evans Blue dye for 

less than 10 minutes, which is considerably a short period of time. Instead, longer 

perfusion for approximately 10 to 30 minutes would probably make a difference in 

allowing permeation at the BBB in all groups of rats tested. In other literature in the field, 

a two hour Evans Blue perfusion was used when evaluating if the drug etoposide can 

prevent blood brain barrier disruption in Sprague Dawley rats [81]. An Evans blue study 

in 8 months old CD1 mice perfused for 3 hours shows 10mg/kg fluoxetine treatment 

blocked BBB disruption in the Hippocampus after ischemia and also prevented 

infiltration of macrophages to inhibit inflammatory mediators after injury [82].  

Another explanation could be due to the drugs working along different pathways 

in male and female Sprague Dawley rats, showing a gender difference response. 

Fluoxetine has been shown in adult mice to have some gender differences in alterations 
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of neuronal cell proliferation and survival in multiple regions of the brain [83]. We also 

see some statistical differences between female and male rats exposed to the same drugs 

post-stroke in our analysis of gene expression differences.  

 Gene Markers of the Microglial Subtypes 

 Our results show there is a notable difference between the effects of 

administration of R- and S-enantiomers of fluoxetine on microglial subtypes genes 

expressed in male and female Sprague Dawley rats. Our results indicate that the R-

fluoxetine treatment in female group increased anti-inflammation by up-regulating M2 

gene expression (both replicates of Arg1 suggesting M2a or M2c subtype), while that in 

male group increased pro-inflammation by up-regulating M1 microglial gene expression, 

as when both are compared within their own gender with S-fluoxetine. The treatment of 

R-fluoxetine in male compared against female showed a strong decrease in anti-

inflammation by down-regulating M2 microglial gene markers (both replicates of Arg1 

and Cd163 suggesting M2c subtype). Our results also indicate that the FSA and S-

fluoxetine treatment in female groups up-regulated several growth factors contributing to 

neurogenesis after stroke, however, the results were statistically insignificant in the S-

fluoxetine treatment group; we might try increasing our animal numbers in the next tests 

to see if we can gain significance. R-fluoxetine treatment in female compared against 

female S-fluoxetine, showed down-regulation of growth factors, which again was not 

statistically significant in these preliminary studies.  

Several growth factors are significantly up-regulated, but we also see a down-

regulation of Arg1; this suggests that either the microglial markers chosen in this project 

do not correspond to the subtypes of macrophages in the periphery, or the increase in 
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Bdnf is not due to microglial polarization. Some of the genes are linked such as Npy1r, 

Bdnf, and stress markers, which suggests a possibility that Bdnf may be up-regulated 

through Orexin pathways distributed in a rat brain [84]. Or it may be because microglial 

markers are possibly be showing sex and age dependent changes.  

 Most studies in the field have not looked at differences in the microglial response 

to stroke for both male and female rats. For example, a study that first identified that M1 

and M2 subtypes have different functions in neurodegenerative disease, was only 

performed in males [85]. In this study, the M1 subtype is triggered at the end stage of the 

disease when the M2 therapeutic subtype is suppressed. The M1 subtype therefore is 

widely known as the terminal inflammatory microglia that destroys the tissue, while the 

M2 subtype provides healing immune markers at the site of injury to salvage and recover 

from persisting neurological damage. In a stroke, however, we expect to see most of the 

damage and inflammatory microglia infiltration beginning 24 hours after stroke 

induction. So, in this study, by waiting for 7 days after stroke, any M1 microglia in our 

control and treated animals may have cycled into M2 types, so that we don’t see distinct 

drug effects on control versus fluoxetine treatments.  

Other work in the field has also found that M2 subtype microglia can be pro-

tumorigenic in neurofibromatosis and that macrophages had a direct effect on 

neurofibroma tumor formation and growth [86]. Therefore, it might not be beneficial to 

keep patients on a drug that promotes M2 microglia for a long period of time, but this 

would have to be investigated with longer periods of recovery.  

It is also possible that the inflammatory related responses occurring at early stages 

in an animal model dramatically progressed and modulated (activated or inhibited) at 
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advanced stages in the disease. It has been shown in 10 week old C57BI/6 male mice that 

a specific phenotype of microglia activation presented distinct spatial and temporal 

features meaning it depends on surrounding micro-environmental signals that can change 

over time. This study thereby showed that microglial subtypes are cycle dependent and 

their response may evolve with time and location [87]. Another study reveals polarization 

of M2a microglia phenotype by Il-4 depends on specific area of the brain, showing 

reduced M2a response in striatum compared to frontal cortex [74].  In this study, Il-4 was 

injected centrally in the third cerebral ventricle of mice brain to induce polarization. Note 

that all of the ventricles are connected in the brain, and the general flow is toward the 

anterior cortex, so any drug injected into the ventricle would be expected to have its 

strongest effect in the anterior cortex.  

 It has been recently discovered that differences in microglia and cytokines 

produced are crucial for sexual differentiation of brain and behavior in early development 

in Sprague Dawley rats. This study proves a sex-specific brain development due to 

testosterone up-regulating the pro-inflammatory molecule called prostaglandin-E2, which 

is released from microglia [88]. We also see some sex differences in the brain’s response 

to certain drugs, (see volcano plots), where a particular type of microglia is either up or 

down-regulated. These differences may be due to the “masculinization of the brain” seen 

in Dr. McCarthy’s lab, which appears to be based on microglial differences rather than 

direct hormone differences [88]. 

 There is an indication in our results of down-regulated M1 microglial gene 

markers including Tnf-alpha, Il-6, Il1-beta, Ccl11, Stat1, Stat4, and Nos2 showing 

decreased pro-inflammation due to R-fluoxetine; however, these results were statistically 
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insignificant in this preliminary data. A number of other studies in the field do affirm 

down-regulated pro-inflammation genes. A 2015 study indicates fluoxetine and S-

citalopram caused down-regulation of M1 and up-regulation of M2 microglial activation 

to modulate anti-depressant effects. This was measured using real-time PCR, as was our 

study, but performed in vitro microglial cultures [64].  

Another in-vitro study showed that fluoxetine significantly inhibited TNF-alpha, 

nitric oxide (NO), and Il-6 thereby producing anti-inflammatory effects, which again is 

similar to our finding [89]. However, an in-vitro study is not strictly comparable to an in-

vivo study due to the fact that fluoxetine gets metabolized in vivo to a nor-fluoxetine 

form. The S-norfluoxetine form is active, while the R-norfluoxetine form is not, and our 

previous work shows that norfluoxetine can stay elevated in the brain over a week after 

delivery [15].  

Another microglial cell culture study indicates fluoxetine is able to inhibit 

microglial Tnf-alpha and NO production, mediating anti-inflammatory effects through 

cAMP signaling pathway [71]. Certainly, this was not the case discovered in our results 

performed in vivo. Our results have shown that Creb1, which is activated by the cAMP 

pathways was up- or down-regulated similar to the pro-inflammatory markers results in 

the groups tested. It was discovered on the same side of up- or down-regulation as for the 

pro-inflammatory M1 markers. This contradiction is probably due to the fluoxetine 

metabolism in vivo.  

A BV2 microglial cell culture demonstrates fluoxetine significantly inhibited Tnf-

alpha, Il-6, and NO from LPS-activated microglia [90].  Another in vitro study confirms 

fluoxetine significantly inhibited Tnf-alpha, Il-1beta, and NO which are pro-
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inflammatory cytokines, thereby mediating neuro-protection. Both R- and S- enantiomers 

of fluoxetine were tested and showed microglia-dependent neuroprotection [66]. Both 

enantiomers of fluoxetine are active, so no real differences would be expected in vitro.  

A study in male Wistar rats indicates pro-inflammatory Il1-beta reduction in the 

pre-frontal cortex by fluoxetine is how it exerts its anti-inflammatory properties [91]. 

This is also identified in our results that the R-fluoxetine in male group compared to 

female control group, and both R- and S-fluoxetine in female group compared to male 

and female control groups, showed down-regulation of Il1-beta. This particular cytokine 

is a primary key factor which recruits other M1 microglial gene markers to induce pro-

inflammation, therefore, if Il1-beta is decreased, then certainly pro-inflammation is 

decreased all together, particularly due to R-fluoxetine as discovered in our present study.  

We also see a significant up-regulation of Cerebellin-1 (Cbln1) in female groups 

treated with both fluoxetine enantiomers. This particular cerebellum-specific protein is 

involved in controlling neuroplasticity and synaptic structure by playing a role in 

neuronal signaling pathway [92]. It is implicated in pre-synapse formation at the axon 

terminals which form axodendritic synapses in striatal medium spiny neurons [93]. This 

may also aide in stabilizing the active zone in sub-ventricular region focused in our study 

where neuronal signaling can be passed from dendrites to axon.   
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V. CONCLUSION AND FUTURE STUDIES 

While the fluoxetine (Prozac) in our drug combination has been beneficial to 

improve neurogenesis in our stroke studies, our results suggest that the S-enantiomer of 

fluoxetine may be more beneficial therapeutically. The blood brain barrier showed less 

permeability to Evans Blue dye due to S-fluoxetine, which may possibly have been 

implicated in tightening the BBB compared to the R-enantiomer. In future studies on the 

Evans Blue permeability across the BBB, we shall consider increasing the time allowed 

for perfusion (longer than 10 minutes allowed in this preliminary study); this may 

possibly enable us to see perfusion across all animal groups we had chosen for the 

analysis.  

In the gene expression studies, our results indicated that the S-enantiomer of 

fluoxetine up-regulated neurogenesis growth factors and neuroplasticity factors compared 

to R-fluoxetine. Also, our chosen neuro-inflammatory cytokine markers were also 

notably present in this part of the project, which indicates a possible role of fluoxetine 

enantiomers in neuro-inflammation after stroke. In future studies on the gene expression, 

we might gain more significance across the groups studied by increasing the number of 

male and female animals; this would enable us to identify significant gene markers that 

could be targeted for therapeutic treatment after stroke.  
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