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                                                                                ABSTRACT 

Alhanghari, Mofeda Abdussalam. M.S., Microbiology and Immunology Graduate Program, 

Wright State University, 2016. The Anti-Apoptotic Effect of HSV-1 on Murine Macrophages: 

RAW 246.7 murine macrophage cell line. 

Herpes simplex virus type 1 (HSV-1) is a worldwide pathogen that affects humans and 

has the ability to establish a latent state of infection in the sensory nerve ganglia after primary 

infection of epithelial cells (Boutell and Everett, 2003). HSV-1 is a very contagious virus, which 

can be transmitted from person to person and cause cold sores in the infected person. Rarely, 

infection can lead to more serious complications, such as encephalitis.  Most HSV-1 infections 

usually occur in childhood with lifelong potential for symptomatic or asymptomatic viral 

shedding episodes (Looker et al., 2015).  HSV- 1 infects 60%–80% of people throughout the 

world (Cunningham et al., 2006). The purpose of this study was to examine the anti-apoptotic 

effect of HSV-1 on polarized and un-polarized RAW 246.7 murine at 4, 12, and 24 hours.  We 

found that viability of M1 macrophages was significantly decreased compared to control cells at 

4 hours (p-value<0.016), 12 hours (p-value<0.001), and 24 hours (p-value<0.001). Virus-

infected M1 macrophages showed a significant increase in cell viability compare to uninfected 

M1 macrophage at 24 hours (P = 0.025). The percentage of late apoptotic cells in all cell groups 

(M0, M1, and M2) exhibited a significant decrease after infection with HSV-1 at 4 and 24 hours.  
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1. Introduction 

 

HSV-1, also known as human herpes virus -1 (HHV-1), is a large enveloped virus with a 

double stranded DNA genome from 120 to 230 kbp which encodes about 84 proteins (Zolini, et 

al., 2014). HSV-1 belongs to herpesviridae family that can be divided into three subfamilies 

(alpha, beta, and gamma); all herpviruses share common characteristics in their structure, 

replication cycle, and gene expression (Nishiyama, 1996). HSV-1 is a neurotropic herpes virus 

that can initiate infections in the stratified squamous epithelial tissue in the oral mucosa, cornea, 

conjunctiva, and skin. It can cause cutaneous disease on the mouth, face, or genitalia, and, rarely 

meningitis or encephalitis (Fan et al., 2014). Upon primary infection, the virus infects sensory 

neurons and establishes a latent infection. HSV-1 can be reactivated and migrates from the 

sensory neuron body to site of infection (Krug, 2004).   

Host immune responses toward HSV-1 include both innate and adaptive immune 

responses. Innate immune response is mediated by white blood cells such as macrophages, 

dendritic cells, and neutrophils. These cells function in phagocytosis as well as produce a variety 

of inflammatory mediators and cytokines (Zolini et al., 2014). Adaptive immune response 

toward HSV involves the cellular response and is mediated by CD4+ and CD8+ T cells while the 

humoral response mediated by B cells and antibodies (Egan et al., 2013). Macrophages are a 

critical component of the innate immune system and have an important role in the host defense 

mechanism and in inflammation. Additionally, these cells have other functions beside host 

defense; they play a role in tissue remodeling (Sica and Mantovani, 2012).  Macrophages are 

involved in defense against virus infection by two ways. First, they destroy the cells that are 

infected by the virus and this is called extrinsic resistance. The second mechanism involves 
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macrophages inhibiting virus replication within phagocytic vacuoles and this mechanism is 

called intrinsic resistance (Morahan et al., 1980). Macrophages respond to different signals and, 

depending on these signals, they differentiate into classical M1 activation, or alternative M2 

activation. M1 macrophages are activated by Toll like Receptor (TLR) ligands, interferon (IFN- 

γ) (Sridharan et al., 2015), or lipopolysaccharide (LPS) (Ebtekar et al., 2006), whereas alternative 

M2 macrophages are activated by interleukin (IL-4), IL-13, or IL-10. /Interleukin-13 (Sridharan 

et al., 2015). However, M2 macrophages can be divided into M2a, M2b, or M2c that can be 

activated by different signals (Sridharan et al., 2015). Macrophages play a key role in the 

pathogenesis of endotoxic shock by producing NO and TNF-α, molecules, which can induce 

apoptosis in different cell types, including macrophages themselves (Soler et al., 2001). 

Apoptosis is distinguished by DNA fragmentation, chromatin condensation, and cell shrinkage 

(Aramaki et al., 1999). Most of the time, apoptosis is accomplished by activating a set of 

proteolytic enzymes called caspases. Apoptosis is utilized as a defense mechanism by 

eliminating the infected cells, which may be harmful if they survived (Lawen, 2003). This 

process can be induced in susceptible cells by different and normal physiological stimuli as well 

as harmful ecological conditions (Ramamoorthy and Tizard, 1998). Apoptosis acts as an 

extremely efficient defense mechanism against virus infection. Apoptosis helps to remove virus 

proteins and nucleic acid from the infected host (An et al., 1999). However, HSV-1, as other 

huge DNA-containing viruses, utilizes various viral resistance systems that collaborate to avert 

unexpected death of the host cell prompted by an assortment of intracellular and extracellular 

signals. The infection alonge increases the yield of viral offspring after lytic contamination of 

target cells.   HSV-1 proteins can induce apoptosis as an immediate reaction of the host cell to 

infection (cell- autonomous apoptosis) (Raftery et al., 1999).  
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2. Literature background                                             

2.1 Structure of HSV-1 

HSV-1 is large complex virus (Lau & Crump, 2015). HSV-1 virion composed of four 

components: (1) dense core containing viral DNA contains at least 152 Kilo base pairs (kbp)  

organized into two exceptional groupings assigned as UL (unique long) and US (unique short), 

both of which are flanked by repeated  components, (2) an icosahedral capsid which consist of 

162 capsomeres (Whitley et al., 1998), (3) tegument which surrounds the capsid, consists of 

more than twenty different proteins that have an important function after the virus enters the cell 

(Kelly et al., 2009), and (4) envelope which is surrounded by capsid-tegument structure and 

consists of at least 10 glycosylated and many non-glycosylated viral proteins, lipids, and 

polyamines (Whitley et al., 1998). The assembly of HSV-1 particles occurs at the intracellular 

membrane to produce infectious virions, which can be released from the cell by secretion (Lau 

and Crump, 2015).   

2.2 HSV-1 Entry and replication 

HSV-1 infects several types of cell, but the major target cells during the primary infection 

are epithelial and nerve cells. HSV-1 can enter into the cell by one of two mechanisms fusion or 

endocytosis (Rahn et al., 2011). Five viral glycoproteins are important for HSV-1 to enter the 

cell: gC, gB, gD, gH, and gL. First, glycoprotein C (gC) and glycoprotein B (gB) initiate virus 

attachment by binding to cell surface proteoglycans which facilitate subsequent binding to co-

receptor, then gD glycoprotein binds specifically to one of the primary entry receptors: nectin-1 

and/or herpes virus entry mediator (HVEM) (Giovine et al., 2011); (Peterman et al., 2015). The 

gD-receptor interaction initiates the process that ultimately leads to gB-mediated membrane 
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fusion. gH and gL form a heterodimer and are important for entry, but their function in entry is 

not clear. They probably act as a bridge between gD and gB and/or bind to cellular receptors 

(Fan et al., 2014). Following attachment, the virus enters into the cell and releases a DNA-

containing capsid with part of the tegument layer into the cytoplasm, which is after that 

transferred to the nuclear pore complex. At this point the genome is injected through nuclear 

pore complex into the nucleus (Mettenleiter et al., 2009). Immediate early genes are the primary 

set of gene expressed, which work as a trans-activator for a second set of virus transcript genes 

called early genes. For the most part proteins these genes encode required in viral genome 

replication. Lastly, the late genes mainly encode the virus structural components. Before the 

beginning of DNA replication there is a small set of late genes that is transcribed. Yet the really 

late genes are transcribed after the beginning of DNA synthesis (Boehmer and Lehman, 1997).    

HSV-1 DNA replication takes place in the nucleus of the host cell.  The linear genome in 

the nucleus replicates and circularizes by a rolling-circle mechanism. As a result, concatemers 

are split into monomers through the assembly of nucleocapsids. The fully developed DNA 

consisting of capsids bud through the inner lamella of the nuclear membrane. Throughout this 

process, the tegument, and a first form of the envelope are obtained. Then, the enveloped virions 

assemble in endoplasmic reticulum, and the mature virion is transported through the trans-Golgi 

network, where the envelope acquires its last composition and posttranslational adjustments of 

the glycoprotein (Nishiyama, 1996). 

Herpes simplex virus type 1 (HSV-1) can enter cells via endocytic pathways or direct 

fusion at the plasma membrane depending on the cell line and receptor (Nishiyama, 1996). 

During the primary infection, HSV-1 uses the epithelial cells as the initial gate of entry and 

spreads through the epithelium. Then, the virion can infect the terminal ends of the sensory 
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neurons. HSV migrates to the neuronal cell body by retrograde process at that point the virus 

stop replication process to establish a latent infection. Following reactivation, HSV-1 can travel 

back to the first site of infection by anterograde axonal flow, and from there it spreads to infect 

the epithelial cells which often leads to lesion, and in some cases the HSV-1 travels to the central 

nerves system to cause encephalitis. Reactivation is normally related with stress factors such as 

immunosuppression, light exposure, hormonal alterations, and ultra-violate (Zolini et al., 2014).  

2.3 Immune response to HSV-1 

 The host immune response toward HSV-1 includes both innate and adaptive immune response 

(Zolini at el., 2014). 

2.3.1 Innate immunity to HSV-1 

Host defense against any microbial pathogen is started by the innate immune system 

through   pattern recognition receptors (PRRs). Pattern recognition receptors (PRRs) distinguish 

pathogen-associated molecular patterns (PAMPs) and activating host defense through the 

production of pro-inflammatory cytokines, tumor necrosis factor, and antiviral INF-α/β. There 

are various pattern recognition receptors (PRRs) included in the detection of HSV-1 which 

promote the activation of the immune response including Toll like receptors, retinoid acid 

inducible gene-I (RIG-I)-like receptors (RLRs), and DNA receptor. Even though viral RNA and 

glycoproteins can serve as pathogen-associated molecular patterns (PAMPs), the most common 

PAMP recognized by these PRRs is the HSV-1 genomic DNA (Egan et al., 2013). The 

identification of the HSV-1 involves:  viral glycoproteins which are recognized by TLR2, HSV 

viral DNA recognized by TLR9 in the endosomes or by RNA polymerase III or potentially DAI 

in the cytosol, and finally the identification of virally-derived double-stranded (ds)RNA by RLRs 

(figure 1). However, to increase the antiviral immune response the cells have to identify the virus 
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and stimulate a cascade of signaling pathways involving: mitogen-activated protein kinase 

(MAPK) pathways, IFN regulatory factors (IRFs), and nuclear factor Kappa B.  

            

          TLR2 

                                  Genomic DNA                         

 dRNA   

                                     RNA polymerase ш                                                                                          

CYTOPLASM                                                                                                                       RLR          

                                                    

 

 

 

       

                     NUCLEUS 

                

Figure 1:  Recognition of HSV-1 and stimulation of antiviral and pro-inflammatory responses 
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The production of antiviral substances including nitric oxide and defensins, and in 

particular the secretion of IFNs and chemokines, is the primary response in HSV-1 infected cells. 

The point of innate immune response initiation is to restrict the virus proliferation, and to destroy 

the pathogens. The produced substances stimulate and activate immune cells and as a result 

assist the organization of antiviral response successfully. Innate immune response is mediated by 

white blood cells such as natural killer cells, dendritic cells, and macrophages. These cells 

function in phagocytosis as well as produce different inflammatory mediators and cytokines 

(Zolini et al., 2014). In HSV infection, NK cells that release IFN-γ have an anti-viral effect. This 

effect inhibits the viral replication (Lucin et al., 1994). Virus-infected cells can be distinguished 

and effectively killed by NK cells through two immune processes; the first one is opsonization of 

specific virus antibodies followed by interaction with Fc receptors, and the other one involves a 

recognition of viral antigen by MHC (Fitzgerald-Bocarsly et al., 1991). Additionally, during 

Infection with HSV can lead to a downregulation of MHC class I expression (Hill et al., 1995), 

as a result infected cells are more susceptible to be killed by NK. Dendritic cells (DCs) produce 

pro-inflammatory cytokines, engulf antigen, and show viral peptides to adaptive immune system 

cells. To activate the adaptive immune response, the innate immune response limits viral 

replication in the periphery and presents antigen to the naive lymphocytes. Monocytes travel to 

the site of HSV-1 infection and differentiate into tissue macrophages that phagocytose released 

virions and apoptotic epithelial cells. Macrophages also function as professional antigen 

presenting cells APCs that present viral proteins to the cells of the adaptive immune system 

(Egan et al., 2013). At the terminals of sensory neurons (Kodukula et al., 1999), activate 

macrophages decrease viral replication until the immune response of the adaptive system. 

Macrophages can be activated by infected cells such as epithelial cells that produce type I IFNs 
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and other chemotactic components. After the macrophages are activated, they produce 

inflammatory molecules such as nitric oxide (NO), IFNs type I, tumor necrosis factor-a (TNF-a), 

C-C motif chemokine 5 (CCL5; RANTES), and IL-6. Nitric Oxide (NO) production occurs 

through the action of the enzyme called inducible nitric oxide synthase. This enzyme is activated 

by IFN-γ produced by NK cells in the initiation of the infection, and by T cells (CD8+ T, CD4+ 

T, and γδ T cells) later in infection (Egan et al., 2013).    

2.3.2 Adaptive immunity to HSV-1 

 

Adaptive immune response toward HSV involves the cellular responses mediated by 

CD8+ and CD4+ T cells and the humoral response mediated by B cells and antibodies. In HSV-1 

infection, CD8+T cells are activated in the lymph node and then migrate to the infection site to 

destroy virus-infected cells (Coles et al., 2002); (van Lint et al., 2004).  CD8+T cells play an 

important role in both antiviral responses at the primary site of infection and in latent infection of 

the sensory neurons. CD8+ T cells produce and release IFN-γ as a response to viral infection. 

IFN-γ enhances the Th1 immune response, prevents virus replication, stops the cell cycle as well 

as enhances virus peptide presentation. IFN-γ stimulates expression of immune proteosomal 

subunits, and promotes viral peptides loading onto MHC class 1 molecules in the endosome. 

Additionally, IFN-γ promotes the MHC II pathway for antigen presentation by increasing 

expression of MHC class II molecules by professional and non-professional antigen-presenting 

cells (Egan et al., 2013). CD4+ T cells participate in the development of a specific humoral 

immune response. Together CD4+ and CD8+ T cells play a major role in antiviral immunity 

directly by their cytolytic characteristics or indirectly by their production of immunologically 

active cytokines (Schmid and Mawle, 1991). Antibody activity for a number of viral proteins 

includes antibodies specific for tegument proteins, glycoproteins, and capsid proteins (Ashley et 
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al., 1985); (Ashley et al., 1994). Antibodies have two ways to control the virus replication: 

through neutralizing free viral particles, and through killing virus-infected cells by complement-

mediated cytotoxicity or antibody-dependent cell- mediated cytotoxicity (ADCC). The ADCC 

mechanism has been demonstrated as an important component of antiviral defense versus HSV 

infections, particularly in immunocompromised individuals and neonates (Kohl, 1991).   

2.4 Macrophages functions and polarization  

 

In addition to the resident tissue macrophage, the precursor of blood-borne macrophages 

are the circulating monocyte, which can pass the endothelium of the blood vascular to 

differentiate into macrophages in the peripheral tissue to be activated in different ways by 

exogenous or endogenous factors (Vogel et al., 2014). Macrophages are professional phagocytes 

that internalize large particles like dead cells or micro-organisms (Petermann et al., 2015). 

Macrophages are activated and their killing ability enhanced by soluble mediators produced by T 

cells such as IFN-γ. Macrophages accomplish two main functions in immunity, an innate and an 

adaptive function. Through effective ingestion and destruction, the pathogens are eliminated 

from the blood, and second, the present antigens on the cell surface which initiate an adaptive 

immune response. These events involve the production of cytokines, chemokines or reactive 

oxides (Mercer and Greber, 2013). These cytokines and chemokines activate other cells in the 

innate and adaptive immune system (Tripathi et al., 2008) as well as regulate T cell activity and 

inflammation in response to the pathogen (Mercer and Greber, 2013). 

Macrophages play an important role in the innate immune system in the absence and 

presence of antigens by secreting a number of cytokines and chemokines. These cytokines and 

chemokines activate other cells in the innate and adaptive immune system (Tripathi et al., 2008). 

Macrophages play an important role in the immune system as a first line defense against a 
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variety of bacteria, viruses, and other micro-organisms (Bell et al., 2013). Macrophages respond 

to various signals and, depending on the signals, macrophages differentiate into classical M1 

cells (activated by TLR ligands and IFN- γ), or alternative M2 cells (activated by IL-4/IL-13). 

Classically activated or M1 phenotype cells (Sridharan et al., 2015), develop when 

macrophages interact with microbial products such as lipopolysaccharide (LPS) and pro-

inflammatory signals such as Interferon- γ, that induce the M1 phenotype (Ebtekar et al., 2006). 

M1 macrophages have a high capacity to present antigens, as well as activate Th1 cells to 

produce pro-inflammatory cytokines (INF- γ and IL-2) in response to intracellular pathogens. 

M1 cells play a role of preventing the growth of infections by maintaining high level of iron to 

limit the availability of micro-environmental iron that require bacteria for growth (Raftery et al., 

1999). However, these cells have harmful effects on the neighboring cells in the micro-

environment as a result of increasing pro-inflammatory response and producing toxic oxygen 

intermediates (Sica and Mantovani, 2012). 

Alternatively activated or M2 phenotype macrophages, develop when the macrophage 

receives signals such as Interleukin-4(IL-4) or Interleukin-13 from mast cells, basophils, and 

other granulocytes (Sridharan et al., 2015). M1 macrophages express scavenger, and mannose 

receptors (CD206), and release anti-inflammatory cytokines such as IL-10. In contrast to M1, 

M2 cells function in tissue remodeling by maintaining a high level of iron export. M2 

macrophages can be divided into   M2a, M2b, or M2c that can be activated by different signals. 

M2a is activated by IL-4 and IL-13, whereas M2b activated by toll like receptor (TLR) and 

immune complexes. However, both M2a and M2b initiate Th2 lymphocyte anti-inflammatory 

responses by producing IL-10, IL-1ra, and IL-6. M2c is activated by IL-10 and functions in 
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tissue remolding as well as suppression of inflammatory immune reaction by producing 

transforming growth factor-β (TGF-β) and IL-10 (Sridharan et al., 2015). 

2.5 Apoptosis  

 

Macrophages exert a significant function in the pathogenesis of endotoxin shock by 

producing NO and TNF-α, which can induce apoptosis in different cell types, including 

macrophages themselves (Soler et al., 2001). Unlike necrosis, which is uncontrolled cell death 

caused by a pathogen, apoptosis is a physiologically controlled mechanism. Necrotic cell 

products induce inflammation and stimulate signals whereas the rest of apoptotic cells are 

removed by phagocytosis without stimulating additional inflammatory signals (Lawen, 2003). 

Apoptosis is distinguished by DNA fragmentation, chromatin condensation, and cell shrinkage 

(Aramaki et al., 1999). Most of the time, apoptosis is accomplished by activation of set of 

proteolytic enzymes called caspases. The caspases are synthesized as inactive precursor 

molecules called procaspases. When the N-terminal pro-domain is cleaved from the precursor 

molecule, the active caspases are ready to cleave their substrates. Caspases are involved in 

cascades that are released in response to pro-apoptotic signals and cleave a set of protein, leading 

to cell death. Apoptosis can be triggered by extracellular signals (extrinsic pathway) or 

intercellular signals (Intrinsic pathway). Extrinsic pathway is initiated by sub group of tumor 

necrosis factor superfamily receptors (TNFRs) such as TNFR, Fas, and TRAIL. Activating these 

so-called death receptors by binding to cognate ligands recruits adaptor molecules that enable the 

binding, self-cleavage, and activation of procaspase 8, which subsequently leads to the cascade 

of events culminating in the activation of the effector caspases, typically caspase 3. The active 

caspase 3 functions to cleave a number of death proteases that lead to the characteristic apoptosis 

including DNA fragmentation, nuclear fragmentation, and other morphological and biochemical 
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changes. The intrinsic pathway is regulated by mitochondria, and can be activated by different 

stress events such as virus infection, cytotoxic drugs, or oxidative stress.  Apoptotic signals are 

transmitted to the mitochondria and subsequent release of cytochrome c. releasing cytochrome c 

from the mitochondria resulting in a form called apoptosome by binding cytochrome c to 

apoptosis activating factor-1 protein (APaf-1). The apoptosome activates pro-caspase 9, which 

subsequently activates caspase 3 (Schultz et al., 2003) (Figure 2).    

 Apoptosis or programmed cell death is a critical process in the homeostatic maintenance 

of multicellular organisms. Apoptosis eliminates the infected cells, which may be harmful if they 

survived (Lawen, 2003). This process can be induced in susceptible cells by a variety of 

physiological stimuli as well as harmful ecological conditions (Ramamoorthy and Tizard, 1998).  

Apoptosis acts as an extremely efficient defense mechanism against virus infection. Apoptosis 

helps to remove virus proteins and nucleic acids from the infected host. There are two types of 

apoptotic stimuli that induce apoptosis in the virus-infected cells (An et al., 1999). Firstly, virus- 

infected cells go through apoptosis by presenting viral peptides on the cell surface with major 

histocompatibility antigens (O'Brien, 1998), which can be recognized by cytotoxic cells such as 

natural killer cells (NKs), and cytotoxic T cells. Secondly, virus-infected cells go through a cell 

autonomous apoptosis without attack by the immune cells (An et al., 1999). However, HSV-1, 

like other huge DNA-containing viruses, utilizes various viral resistance systems that collaborate 

to avert unexpected death of the host cell prompted by an assortment of intracellular and 

extracellular signals. The infection alonge increases the yield of viral offspring after lytic 

contamination of target cells.   HSV-1 proteins can induce apoptosis as an immediate reaction of 

the host cell to infection (cell- autonomous apoptosis) (Raftery et al., 1999).  
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Figure 2:  Intrinsic and extrinsic pathways of apoptosis. The intrinsic pathway is regulated by 

mitochondria and can be activated by different stress events. such as virus infection, cytotoxic drugs, or 

oxidative stress.  Apoptotic signals are transmitted to the mitochondria and subsequent release of 

cytochrome c. releasing cytochrome c from the mitochondria resulting in a form called apoptosome by 

binding cytochrome c to APaf-1 protein. The apoptosome activates pro-caspase 9, which subsequently 

activates caspase 3. The extrinsic pathway is induced by binding death ligand such as Fas to death 

receptor and recruit adaptor molecule FADD which activate procaspase 8 and subsequently activate 

caspase 3 which lead to apoptosis.  
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2.6 Apoptosis detection    

       A number of methods have been expanded to detect apoptosis; each method depends on 

assessment of specific features related with cell death (Fink et al., 2005). The activation of 

caspases can be assessed by using fluorescent, colorimetric and luminescent substrates that are 

added to cells. Cleavage of caspases can be detected by western blots and ELISAs. Changes of 

the mitochondrial membrane permeability is indicated by using fluorescent dyes such as JC-1, 

rhodamine 123, and TMRE, which accumulate in healthy mitochondria. Releasing cytochrome c 

from mitochondria (early stage of apoptosis) is assessed by immunoblotting, and flow cytometry. 

DNA fragmentation can be detected by gel electrophoresis, ELISA, and TUNEL {terminal UTP 

nick end labeling, which marks the DNA cleavage by using terminal deoxynucleotidyl 

transferase (TdT)}. Loss of membrane integrity during early phase of apoptosis is associated 

with exposure of phosphatidylserine to the outer side of the cell. FITC conjugated Annexin V is 

a phospholipid and calcium binding protein that combined with Pi, and bind to 

phosphatidylserine. This is assessed by using flow cytometry to detect apoptotic cells in early 

stages from the apoptosis (Cobb, 2013). 

 Annexin V (AV) was first known as a vascular protein with a strong effect against 

coagulant. It belongs to a multigene family of proteins recognized by a sequence motif named 

the endonexin loop. Annexin V, a calcium-dependent, phospholipid-binding protein, 

characteristically attaches to phospholipids in a Ca2+ dependent manner.  Annexin V binds 

especially to phospholipid species such as phosphatidylserine (PS). In normal cells PS, is located 

in the inner surface of the plasma membrane. During cell death, PS is translocated to the external 

layer of the membrane. This happens in the early periods of apoptotic cell death during which the 

cell layer itself stays intact (Vermes et al., 1995). 
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Propidium iodide (PI) is widely used in conjunction with Annexin V to figure out 

whether cells are viable, apoptotic, or necrotic through changes in plasma membrane integrity 

and permeability. The Annexin V /PI assay is a usual method to detect apoptotic cells. PI is 

utilized more regularly than other nuclear stains since it is efficient, stable and a good detector of 

cell viability. PI does not stain live or early apoptotic cells because of the existence of an intact 

plasma membrane. In late apoptotic and necrotic cells, reduction on the integrity of the plasma 

and nuclear membranes permit PI to go through the layers, enter into nucleic acids, and show red 

fluorescence (Rieger et al., 2011).    
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3. Specific aims and hypothesis 

M1 activated macrophages produce cytotoxic molecules such as TNFα, ROS, and NO which can 

cause apoptosis and cell death.   

I hypothesized that HSV-1 has an anti-apoptotic effect on murine RAW 246.7 macrophages.  

The goals of this study were: 

 To examine cell viability of un-polarized and polarized murine RAW 246.7 macrophages 

for 4, 12, 24 hours (trypan blue). 

 To analyze cells for apoptosis using annexin V staining of un-polarized and polarized 

murine RAW 246.7 macrophages for 4, 12, 24 hours (Flow cytometry). 
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4. Materials and Methods: 

4.1 Cell Line and cell culture conditions 

 

 RAW 264.7 is Abelson murine leukemia virus-induced tumor derived from an adult 

male BALB/C mouse, and was obtained from the American Type Culture Collection (ATCC, 

Manassas, VA). RAW 264.7 cells were cultured in Dulbecco's Modified Eagle's Medium 

(DMEM, HyClone) supplemented 10% Fetal Bovine Serum (FBS) and 1% 

penicillin/streptomycin at 37 °C in a 5% CO2 humidified incubator. 

4.2 Polarization treatment  

 

RAW 264.7 macrophages were grown to approximately 80% confluency, at which time 

the polarization treatment was administered. To induce the M1 phenotype RAW 264.7 

macrophages were treated with IFN-γ (20 ng/mL) and LPS (100 ng/mL) for 4, 12, and 24 hours; 

IL-4 (20 ng/mL) was used to induce the M2 phenotype. After 4, 12, and 24 hours cells were 

removed by pipette from the cell culture flasks for further analyzed. The murine cytokines (IFN-

γ and IL-4) were purchased from (Rocky Hill, NJ); LPS was purchased from (Redmond, WA). 

 4.3 Cell viability   
 

RAW 264.7 were grown to approximately 80% confluences. They were treated with IFN-

γ (M1), and LPS or IL 4 (M2) for 4, 12, and 24 hours with and without infection. Untreated cells 

used as a control. After 4, 12, 24 hours, cells were transferred to centrifuge tubes and pelleted in 

a table tope centrifuge at 1500 rpm (4˚C) for 5 minutes. The supernatants were discarded and 

pellets were re-suspended in 1 ml of fresh medium. Trypan blue dye (Fisher Sciences, Pittsburgh, 
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PA) was used to perform the trypan blue exclusion test and viable cells were counted using 

hemocytometer. The following equation was used to estimate the cell viability. 

 Cell Viability (%) = total viable cells (unstained) ÷ total cells (stained and unstained) ×100 

4.4 Plaque assay  

 

HSV-1 (Syn 17+ strain) (obtained initially from Dr. Nancy Sawtell,Children's Hospital 

Medical Center, Cincinnati, OH) was propagated in Vero cells. The Vero cells were grown in 

100 mm culture dishes as a monolayer and, at 90-100% confluency, cells were infected with 

HSV-1 at 0.1 MOI. Cytopathic effect (cells rounding and detaching from the bottom of the dish) 

appeared by microscopic examination 3-5 days post-infection. Then, the cells were harvested and 

the medium was stored as virus stock in 200 μl aliquots at 80°C.     

5.5 Flow cytometry and Annexin v FITC/PI double staining 

 

Cells were grown to approximately 80% confluency in cell culture flasks, at which point 

M1 or M2 treatment was administered with or without virus. After 4, 12, 24 hours of treatment, 

cells were removed and centrifuged at 1500 revolutions per minute (4˚C) for 5 minutes. After 

centrifugation the supernatant was aspirated and the cell pellet was resuspended using 1 mL of 

complete growth medium. A hemocytomter was used to obtain viable cell counts; one million 

cells were utilized for each sample.  

Annexin V staining to detect apoptosis:  one million cells were placed in 1.5 ml 

centrifuge tubes and washed two times with cold cell staining buffer (Biolegend) and then 

resuspended in Annexin V binding buffer.  After that, 100 μL of cell suspension was transferred 

to a 5 ml test tube. Then 5 μL flourochrome conjugated annexin V and 10 μL of PI solution were 

added. The cells were gently mixed and incubated for 15 min in room temperature in the dark. 
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Then 400 μL of annexin V binding buffer was added to each tube. The samples were analyzed 

using an Accuri C6 flow cytometry. The flow cytometry data was gated by using cytospec 

software from Purdue University (http://www.cyto.purdue.edu/Purdue_software) .  

Table: Stains and buffer concentrations used to show apoptotic cells using flow 

cytometry 

Stain/Buffer Concentration/Dilution Company 

FITC-Annexin v                                 5 μL/million cells Biolegend 

Propidium iodide (PI) 10 μL/million cells Biolegend 

Cell staining buffer  0.5ml/million cells Biolegend 

Annexin v binding buffer 500 μL/million cells Biolegend 

 

Statistical Significance 

All experiments were repeated three times. The statistical significance between testing and 

control experimental groups was analyzed by one way ANOVA (Sigma Plot 12.0, YSTAT). 

 

 

 

 

 

http://www.cyto.purdue.edu/Purdue_software
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5. Results 
  

5.1 RAW 246.7 Cell viability prior to and after HSV-1 infection 

 

  RAW 642.7 macrophages were treated with IFN-γ/LPS (M1) or IL-4 (M2) for 4, 12, and 

24 hours, and the cells stained with trypan blue to determine the number of live cells versus dead 

cells. Cell viabilities for M1 and M2 were compared with untreated cells (control). At 4 hours 

following polarization, M1 macrophages showed a slight decrease of 13.65% (p-value<0.016) in 

cell viability following IFN-γ/LPS treatment. M2 macrophages experienced a slight, non-

significant, decrease of 3.35% (p-value =0.33) in cell viability following treatment with IL-4 

compared to control.  M2 showed a decrease of 10.3% (p-value<0.037) in cell viability 

compared to that seen for M1 cells (Figure 3A). At 12 hours following polarization, M1 

macrophages showed also a significant decrease of 14.6% (p-value<0.001) in cell viability 

following treatment IFN-γ/LPS treatment. M2 macrophages had a slight non-significant decrease 

of 3.06% (p-value=0.18) in cell viability following treatment with IL-4 (Figure 4 A).  At 24 

hours following polarization, M1 macrophages showed a significant decrease in viability of 

71.4 %( p-value<0.001) while M2 macrophages showed a small, non-significant reduction of 

4.46% (p-value=1.1) (Figure 5A). 

At 4 hours following polarization and HSV-1 infection, M1 macrophages exhibited a 

significant decrease of 12.84% (p-value<0.001) in cell viability compared to virus infected 

control cells. In contrast, M2 macrophages did not show a significant decrease in cell viability 

(1.36 % p= 0.084) (Figure 3B).  At 12 hours following polarization and HSV-1 infection, M1 

macrophages showed a significant reduction of 15.01 % (p-value<0.001) in cell viability 

compared to virus infected control cells. M2 macrophages did not display a significant difference 
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compared to infected control cells (Figure 4B). At 24 hours following polarization and HSV-1 

infection, M1 macrophages displayed a significant decrease in cell viability of 53.12 %( p-

value<0.001) when compared virus-infected control cells. M2 macrophages showed a non-

significant slight reduction in viability of 5.9% (p= 0.354) (Figure 5B).                     

5.2 Detection of apoptosis with annexin V in 246.7 RAW cell prior to and after HSV-1 

infection 

 

RAW 642.7 macrophages were treated with IFN-γ/LPS (M1) or IL-4 (M2) for 4, 12, and 

24 hours, and the cells were stained with FITC-annexin V and PI double staining to detect 

apoptosis stages. At 4 hours after polarization and HSV-1 infection. There were significant 

decreases in AV+/PI+ cell populations (late apoptosis) after infection with HSV-1 in all cell 

groups (M0, M1, and M2).  There were no statistically significant differences in necrotic cells in 

all macrophage cell groups. In early apoptotic cells there were significant decreases after HSV-1 

infection in M2 and M0 macrophages while in M1 there was no statistical significantly 

difference between infected and uninfected M1 macrophages (Figure 6). At 12 hours following 

polarization/infection with HSV-1, there was a significant increase in late apoptosis percentage 

in M0 and M1 infected cells compare to uninfected M0 and M1, while in M2 there were no 

significant differences in late apoptosis percentage between infected and uninfected M2 

macrophages. There were significant decreases in the percentage of necrotic cells in virus 

infected M1 and M2 macrophages while there was not a significant difference between infected 

and uninfected M0 cells. In early apoptotic cells there were no significant differences between 

infected and uninfected M0 and M1 macrophages whereas M2 macrophages showed a 

significant decrease in necrotic cell percentage after infection with HSV-1 (Figure 7). At 24 

hours following polarization/ and HSV-1 infection, there were statistically significant differences 
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in late apoptosis after and before infection with HSV-1; all cell groups (M0, M1, and M2) 

experienced significant decreases percentage of cells in late apoptosis after infection with HSV-1. 

There were not statistically significant differences in necrotic cells in any macrophages groups. 

M0 and M1 macrophages displayed a decrease in early apoptotic cell percentage after HSV-1 

infection, while there was no result showed in infected and uninfected M1 macrophages (Figure 

8). 
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Figure 3: Percentage of viable cells following polarization treatment 4H. A)  M1 cells experienced a 

decrease (13.65% (p-value<0.016)) in cell viability following INFγ/LPS treatment. M2 macrophages had 

a slight decrease (3.35% p-value =0.33) in cell viability following treatment with IL-4. B) Percentage of 

viable cells following polarization and HSV-1infection at 4H, M1 macrophage exhibited a significant 

decrease with 12.84% (value<0.001) in cell viability compared to virus infected control cells. M2 

macrophage showed an inconsiderable decrease with 1.36 %( p= 0.084). (ns= not significant, **=p-

value<0.01, = p-value<0.001) 



 

24 
 

    

                                      

Figure 4: Percentage of viable cells following polarization treatment 12H. A) M1cells experienced a 

decrease (14.6% p-value<0.001) in cell viability following INFγ/LPS treatment. M2 macrophages had a 

slight decrease (3.06% p-value=0.18) in cell viability following treatment with IL-4. B) percentage of 

viable cells following polarization and HSV-1 infection at 12H, M1 macrophage showed a significant 

reduction with 15.01 %( p-value<0.001) compared to virus infected control cells. (ns= not significant, 

**=p-value<0.01,  = p-value<0.001)   
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Figure 5: Percentage of viable cells following polarization treatment 24H A) M1 cells experienced a 

decrease (71.4 %p-value<0.001) in cell viability following INFγ/LPS treatment. M2 macrophages had a 

slight decrease (4.46% p-value=0.1) in cell viability following treatment with IL-4. B) percentage of 

viable cells following polarization and HSV-1 infection at 24 H, M1 macrophage displayed a significant 

result with 53.12 %( p-value<0.001) when it compared to viability of virus-infected control cells. M2 

macrophage showed a slight reduction with 5.9% (p= 0.354). (ns= not significant, **=p-value<0.01, = p-

value<0.001)                   
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Figure 6: Annexin v staining of polarized and non-polarized after 4H without HSV-1 infection and with h 

infection. A) shows the percentage of necrotic cells, late apoptotic cells, and early apoptotic cells prior and after 

infection with HSV-1 on M0 macrophages(untreated cells).B) shows the percentage of necrotic cells, late 

apoptotic cells, and early apoptotic cells prior and after infection with HSV-1 on M1 macrophages(treated with  

INFγ/LPS).C) shows the percentage of necrotic cells, late apoptotic cells, and early apoptotic cells prior and after 

infection with HSV-1 on M2 macrophages (treated with IL-4). (ns= not significant, =p-value<0.05,**=p-

value<0.01, = p-value<0.001)                   
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 Figure 7: Annexin v staining of polarized and non-polarized after 12 H without HSV-1 infection and with 

HSV-1 infection. A) Shows the percentage of necrotic cells, late apoptotic cells, and early apoptotic cells 

prior and after infection with HSV-1 on M0 macrophages. B) Shows the percentage of necrotic cells, late 

apoptotic cells, and early apoptotic cells prior and after infection with HSV-1 on M1 macrophages. C) 

Shows the percentage of necrotic cells, late apoptotic cells, and early apoptotic cells prior and after 

infection with HSV-1 on M2 macrophages. (ns= not significant, =p-value<0.05,**=p-value<0.01, = p-

value<0.001)                   
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 Figure 8: Annexin v staining of polarized and non-polarized after 24H without HSV-1 infection and with 

HSV-1 infection. A) Shows the percentage of necrotic cells, late apoptotic cells, and early apoptotic cells 

prior and after infection with HSV-1 on M0 macrophages. B) Shows the percentage of necrotic cells, late 

apoptotic cells, and early apoptotic cells prior to and after infection with HSV-1 on M1 macrophages.C) 

shows the percentage of necrotic cells, late apoptotic cells, and early apoptotic cells prior to and after 

infection with HSV-1 on M2 macrophages. (ns= not significant, =p-value<0.05, **=p-value<0.01, = p-

value<0.001)                                 
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6.  Discussion and Future Directions 

In the current study we found that HSV-1 has anti-apoptotic effect on RAW 246.7 

macrophages. RAW 246.7 were polarized to either the M1 or M2 phenotype. By using trypan 

blue exclusion to detect cell viability, the results revealed that uninfected and infected M1 

macrophages showed a significant decrease in cell viability compared to uninfected and infected 

M2 and M0 (control) macrophages after 4 hours, 12 hours, and 24 hours of treatment. Whereas 

uninfected and infected M2 macrophages did not display a significant reduction in cell viability 

compare to uninfected and infected M0 (control) macrophages after 4, 12, and 24 hours of 

treatment. Infected M1 macrophages displayed an increase in cell viability compare to 

uninfected M1 macrophages after 24 hours of treatment. The reduction of cell viability in M1 

macrophages may result from the activation and stimulation of the inducible nitric oxide 

synthase (iNOS) transcription, which can lead to produce high concentration of NO. High level 

of NO can make macrophages receptive to apoptosis (Seminara et al., 2007). Additionally, M1 

macrophages regulate the transcription of many genes involving nitric oxide synthase-2 and 

phagocyte oxidase that are related with reactive oxygen species (ROS) production that can lead 

to cell death in macrophages (Bell et al., 2013). For the flow cytometric analysis by using 

Annexin V and propidium iodide, we observed that the percentage of late apoptotic cells 

decreased in polarized and un-polarized macrophages after infection with HSV-1 at 4 hours and 

24 hours. At 12 hours, M2 macrophages showed a slight increase in late apoptotic cell 

percentage after HSV-1 infection. The anti-apoptotic effect of HSV-1 on RAW 246.7 

macrophages may result from the pro-inflammatory cytokines (IFN) suppression. Viral 

Immediate early genes for ICP4, and ICP27 that express on Vp16 decrease the stability of 

mRNA to express pro-inflammatory cytokines (Mogensen et al., 2004). During HSV-1 primary 
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infection mitogen-activated protein kinase (MAPK), IFN regulatory factors (IRFs), and nuclear 

factor Kappa B signaling are activated to produce pro-inflammatory and cytokines. ICP27 

inhibits the induction of IFN and cytokines through inhibition of IRFs and NF-κB activation 

(Melchjorsen et al., 2009). ICP27 inhibits apoptosis indirectly through inducing early and late 

anti-apoptotic gene products. The early gene products that suppress apoptosis are glycoprotein D 

(gD), Us3 protein kinase, and ribonucleotide reductase 1 (R1). gD binds to its receptor, which is 

a member of TNF family receptor, and is able to activate NF-κB signaling pathway. gD-

mediated inhibits Fas-induced apoptosis and enhance the expression of anti-apoptotic genes. Us3 

inhibits apoptosis through its action to phosphorylate pro-apoptotic proteins (Bid and Bad) and 

prevents their function to induce apoptosis. Also, Us3 can prevent intrinsic apoptosis process by 

inhibiting the release of cytochrome c from mitochondria. R1 inhibits apoptosis induced by 

TNFα and Fas ligand through its binding to caspase 8 effector death domain and blocking the 

activation of caspase 8 (Xiaoliang and Sudan, 2016).   

Our observations (figure 6, 7, and 8) show that after HSV-1 infection there was a decrease in 

the percentage of apoptotic cells at 4 and 24 hours, while the percentage of apoptotic cells 

increased at 12 hours. The increase and the decrease in the percentage of apoptotic cells may 

result from an apoptotic balance between viral and cellular factors at early stages from HSV-1 

infection, early immediate gene expression induces apoptosis. The cellular caspases and hTERT 

help to induce apoptotic process. At late stages from HSV-1 infection, early and late anti-

apoptotic viral genes inhibit apoptosis process. The cellular factors p53, Bcl2 family are blocking 

apoptosis during viral infection (Marie and John, 2009).  

As we mentioned previously, the anti-apoptotic effect of HSV-1 may result from the 

suppression of IFN- γ so, in the future studies it would be very helpful to study the changes of 
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IFN signaling pathway prior to and during HSV-1 infection on 246.7 RAW macrophages. The 

DNA microarray method would be useful to study the effect of viral infections on the regulation 

of IFN gene expression. Using the DNA microarray method would allow us to study the cellular 

gene expression such as the MAPK, IRF, and nuclear factor kappa B gene expression that are 

responsible for producing cytokines and IFN as an innate immune response of viral infections. 

For example, to study the changes in IFN signaling pathway in RAW 246.7 macrophages prior to 

HSV-1 infection, we would treat the cells by IFN-α and IFN-β at different time points (4, 8,18, 

and 24 hours) to differentiate early and late gene expression changes. Then to examine the effect 

of individual viral gene expression on IFN-regulated gene expression, we would add the HSV-1 

(MOI=0.1) at the time of adding IFN treatment (at 4, 8, 18, and 24 hours). Following this step, 

DNA microarray analysis would be used on RAW 246.7 macrophages in two different 

conditions prior to and after virus infection. After that, we could compare the cellular gene 

expression patterns before and after HSV-1 infection to determine which viral genes have an 

effect on the IFN signaling pathway. Also, it would be beneficial to compare the anti-apoptotic 

effect of HSV-1 on 246.7 RAW macrophages with other immune cells, such as natural killer 

cells and dendritic cells or other type of macrophages such as J777, to see if the anti-apoptotic 

effect of HSV-1 cell type is dependent or has the same effect on other cells. by determining cell 

viabilities directly by using trypan blue exclusion and by flow cytometry by using Annexin V 

and propidium iodide to detect apoptotic and necrotic cells.  

 

   

https://en.wikipedia.org/wiki/IFN-%CE%B1
https://en.wikipedia.org/wiki/IFN-%CE%B2
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