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ABSTRACT 

 

 

Albati, Amal Abdulah. M.S. Department of Biochemistry and Molecular Biology, Wright 

State University, 2015. Purification of Recombinant Np63and Characterization of 

Peptide Binding  
 

Np63, the primary p63 isoform of the p53 transcription factor family, is a proto-

oncogene implicated in non-melanoma skin cancers. Expressed in the basal layer of the 

epidermis, Np63 promotes cell survival and proliferation. Inhibition of this protein 

could potentially be beneficial in non-melanoma skin cancer patients.  

The first goal of this project was the purification of recombinant Np63 in 

Escherichia Coli. Recombinant Np63 was expressed as GST-Np63 followed by GST 

cleavage using GST trap affinity column chromatography yielding pure Np63 The 

second objective of this project was to test the binding capabilities of peptides previously 

identified by phage display to Np63. Six 12-mer peptides were previously identified by 

phage display using filamentous phage M13 followed by biopanning and amplification of 

target bound peptides. The amplified pools were sequenced and studied. In this study, the 

identified peptides were linked to biotin, the affinity and specificity of these peptides was 

evaluated using two different methods, streptavidin Dynabeads and ELISA. Through these 

methods, the biotinylated peptide P5 was found to be the most specific peptide to bind 

Np63. Future results utilizing these techniques may reveal promising therapeutic agents 

for the treatment of non-melanoma skin cancer.  
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I. INTRODUCTION 

 

A.  P63 AND ITS ROLE IN EPIDERMAL DEVELOPMENT 

The skin protects the body from ultraviolet radiation, microorganisms and 

dehydration (Vanbokhoven et al, 2011). The major compartments in the skin are the dermis 

and the epidermis. The latter is multilayered and is important to form the skin barrier (Candi 

et al, 2006). Symmetric division in the basal layer of the epidermis generates new 

keratinocytes. Some keratinocytes divide asymmetrically and separate from the basal layer 

to undergo differentiation and generate cornified cells. Disruption of this controlled process 

causes pathological conditions such as inflammation, disruption of the skin barrier and 

cancer (Vanbokhoven et al, 2011). The p63 transcription factor, a p53 family member, 

plays important roles in epidermal morphogenesis (Candi et al, 2006; Pellegrini et al, 2001; 

Perez & Pietenpol, 2007). Studies have shown the importance of the p63 in development, 

apoptosis and tumorigenesis (Caserta et al, 2006; Dotsch et al, 2010; Schavolt & Pietenpol, 

2007; Trink et al, 2007). Mutations in p63 lead to limb and skin defects in humans. p63 

knock out mice show several abnormalities such as truncated limbs, absence of hair, teeth, 

nails, and neonatal death due to dehydration (Candi et al, 2006; Caserta et al, 2006; Dotsch 

et al, 2010; Marinari et al, 2009; Restelli et al, 2015)  

The human p63 gene is located on chromosome 3q28 and contains 16 exons. It is 

structurally homologous to the p53 tumor suppressor gene, but does not function as a 
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classical tumor suppressor gene. The homology between p53 and p63 is mainly present in 

a shared N-terminal transactivation domain (TA), a C-terminal oligomerization domain 

(OD) and a central DNA binding domain. p63 is expressed in multiple isoforms which 

perform different functions, thus resulting in a complex contribution to tumorigensis (Moll 

& Slade, 2004). As shown in Figure 1, all p63 isoforms contain a DNA-binding domain 

and an oligomerziation domain. p63 isoforms either contain a full-length transactivation 

(TA) domain or a truncated N-terminal transactivation version (denoted N). The 

expression of p63 is initiated from two different transcriptional start sites denoted P1 and 

P2 which generate two different p63 isoforms: TAp63 isoforms which includes a full-

length N-terminal transactivation domain (TA) and Np63 versions which contains a 

short unique N-terminal domain (Caserta et al, 2006; Dotsch et al, 2010; Marinari et al, 

2009; Moll & Slade, 2004; Vanbokhoven et al, 2011; Yang et al, 1998). Full length or 

truncated (,) isoforms are generated by alternative 3′-end splicing (Courtois et al, 2004; 

Dotsch et al, 2010; Yang et al, 1998). -isoforms contain a sterile alpha motif (SAM) 

domain which mediates protein-protein interactions and a trans-inhibitory domain (TI) 

which blocks the transactivation by covering a few residues on the N-terminal TA domain 

(Caserta et al, 2006; Dotsch et al, 2010; Marinari et al, 2009; Moll & Slade, 2004; 

Vanbokhoven et al, 2011; Yang et al, 1998). Np63 is primarily expressed in the basal 

layer and downregulated in keratinocytes (Guo & Mills, 2007; Koster et al, 2004; Moll & 

Slade, 2004; Vanbokhoven et al, 2011). Both TAp63 and Np63 isoforms are conserved 

in human and mice. 
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Figure 1: Gene architecture of p63 isoforms. Alternative promotors (P1, P2) and 

alternative splicing (, , ) are indicated. All p63 isoforms consist of TA, DBD and OD 

domains. The  isoforms contain SAM and TI domains. Alternative promotor usage P1 

and P2 gives rise to transactivation isoform (TA) and N-terminal truncated (N) isoform 

respectively. 
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B.  P63 AND ITS ROLE IN CANCER 

p63 is involved in the regulation of development, proliferation, tissue regeneration, 

morphogenesis, cell adhesion and cell signaling (Pellegrini et al, 2001; Perez & Pietenpol, 

2007; Vanbokhoven et al, 2011). The TA and N p63 isoforms have opposing roles in 

blocking or enhancing proliferation, and inducing or blocking cell death, but the 

mechanism by which these isoforms elicit their various functions is not currently fully 

understood.  

p63 function is frequently lost or amplified in human cancer (Flores, 2007; Leonard 

et al, 2011; Trink et al, 2007). The p63 locus is frequently amplified in squamous cell 

carcinoma (Deyoung & Ellisen, 2007; Guo & Mills, 2007). Np63, the major isoform 

expressed in the suprabasal cells of the epidermis (Carroll et al, 2006; Moll & Slade, 2004; 

Pellegrini et al, 2001), is found to be amplified in various squamous cell carcinomas 

including head, neck and lung (Crook et al, 2000; Flores, 2007; Trink et al, 2007). Further, 

studies have shown that Np63 inactivates p53. Np63 promotes cell proliferation by 

downregulation of p53 target gene p21 (Deyoung & Ellisen, 2007; Flores, 2007; Trink et 

al, 2007). It was also shown that Np63 preventing cell apoptosis through binding to the 

p53 response elements in p21 and 14-3-3σ (Westfall et al, 2003). 

C.  PHAGE DISPLAY 

Phage display is a laboratory technology first described by George P. Smith in 1985 

(Zwick et al, 1998) which is used to determine the interaction partners of a given protein. 

It is a potent technique that identifies new functions for peptides, and hence it is an 

important tool used in drug discovery. In this approach, a library of phages is generated 

which express a diversity of exogenous peptides. The filamentous phage M13 is the most 
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used bacteriophage to produce random display peptides library. The library is then utilized 

to identify specific peptide ligands which bind a specific target (Barbas, 1993; Pande et al, 

2010; Smith & Petrenko, 1997). The foreign DNA fragment that encodes different peptides 

is inserted into the filamentous phage genome. Then, the expressed peptides are fused on 

the surface of the coat proteins of the phage.  

Screening for the specific target binding peptides is done by a process called 

biopanning.  Biopaning is performed by exposing enriched phage clones to the 

immobilized desired target followed by washing off unbound peptides. Next, the target 

bound peptides are eluted and amplified followed by repeating biopanning process three to 

six times. Then, each clone is characterized by DNA sequence to identify target bound 

peptides (Figure 2). Phage display has been used to identify new protein-protein, protein-

peptide, and protein-DNA interactions (Azzazy & Highsmith, 2002; Pande et al, 2010; 

Sergeeva et al, 2006; Smith & Petrenko, 1997; Takakusagi et al, 2010; Takami et al, 2011).  

Phage display has been applied in different studies such as identification of 

peptides, antibodies, and vaccines (Dai et al, 2014; Kang et al, 2013; Ladner et al, 2004; 

Loi et al, 2013; Portefaix et al, 2002; Smith & Petrenko, 1997; Takami et al, 2011; 

Uchiyama et al, 2005; Wang et al, 2013; Winter et al, 1994).Using phage display, it is 

possible to identify peptides with high affinity and specificity to a target protein. These 

peptides can be used as drug candidate to inhibit the activity of target protein (Ladner et al, 

2004). In our laboratory, it was used to identify six peptides that bind to Np63. In this 

study, two methods were used to determine if the identified peptides have the capacity to 

bind Np63 using biotinylated peptides bound to either streptavidin Dynabeads pull 

down or 96-well streptavidin-based ELISA assays.  
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Figure 2: Schematic showing steps in screening a phage library to select p63 specific 

peptides by biopanning. The biopanning process starts with target immobilization. The 

unbound target is then washed off followed by elution of target bound phages. The eluted 

phages are amplified and the biopanning process is repeated three to four times under 

stringent conditions following which the phages are analyzed by DNA sequencing to 

identify the sequence of the target binding peptides.  
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D.  RATIONALE AND SPECIFIC AIMS 

Np63 isoform of p63, is overexpressed in many cancers, and has oncogenic 

activity due to its ability to induce cell proliferation and inhibit cell apoptosis (Ram Kumar 

et al, 2014). This dissertation describes the identification of novel peptides which bind to 

Np63 by phage display technology. Phage display technology has been used to show 

that peptides which bind specifically to the oncogenic peptide MDM2 can be used to target 

its function and prevent its binding to p53 (Bottger et al, 1996). Another phage display 

study demonstrated the ability of peptide P12 to bind to fibroblast growth factor (FGF8b), 

and interrupt binding to its receptor (Wang et al, 2013). 

In this dissertation research, we completed two specific aims. First, recombinant 

Np63 was produced in Escherichia coli bacteria and purified using column 

chromatography. Second, the recombinant protein was used to evaluate the binding of 

peptides P1 through P6 identified by phage display to both recombinant and transfected 

Np63 in vitro. 

The research presented herein suggests that chosen peptides P3, P5 and P6 may be 

used to target endogenous Np63 and modulate its oncogenic function.  Further testing 

is needed to determine the therapeutic potential of these peptides in treating squamous cell 

carcinoma and other p63-mediated malignancies. 
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II. MATERIAL AND METHODS 

A. Recombinant ∆Np63α preparation 

Np63 cloned into the pGEX vector was a generous gift from Dr. Basu (Restelli et al, 

2015). Np63 was expressed as a GST tagged-Np63 in Rosetta Escherichia coli and 

grown in Difco LB Broth, Miller (Luria-Bertin) in the presence of 100 g/ml ampicillin, 

25 g/ml chloramphenicol and 1mM glucose. A fresh 100 ml starter culture was incubated 

overnight at 37oC at a shaking speed of 250 rpm and used to inoculate four large scale 500 

ml cultures. When the cultures reached an optical density of 1 at 600nm (O.D₆₀₀), 1 OD 

equivalent of uninduced culture was collected and pelleted for induction of recombinant 

GSTNp63 by adding 1mM isopropyl β- D -1thiogalactopyranoside (IPTG) (Life 

technologies, cat # 15529-019). The cultures were incubated for 3.5 hours following 

induction and collected by centrifugation at 5,000 rpm for 10 minutes. Another 1 OD 

equivalent of induced cells was collected following centrifugation at 15,000 rpm for 5 

minutes. Phenylmethanesulfonyl fluoride (PMSF) (sigma Product # P7626) was added to 

the pellet at a final concentration of 0.5mM and the cells were frozen at -80oC until the day 

of purification (Figure 3A). The remaining cells were frozen as cell pellets for additional 

large scale preparations.  

Small scale test for GST-Np63 induction was performed as follows: 1 OD equivalent 

pellets from both uninduced and induced samples were resuspended in 100 l 1X L&C  
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Figure 3: Np63 purification workflow. A) A 100 ml starter culture was incubated 

overnight at 37ºC. The next day, the 100 ml starter culture was inoculated into a two liter 

culture and incubated at 37ºC until the optical density reached 1. A 1OD equivalent aliquot 

was collected and the rest of the culture was induced by IPTG and incubated for additional 

3.5 hours. A 1 OD equivalent sample of induced cell aliquot was collected and the rest was 

spun and frozen at -80ºC. B) Expression of GSTNp63 in 1 OD equivalent of uinduced 

and induced cells. Both culture samples were lysed in 1X L&C lysis buffer followed by 

sonication. A 20 microliter aliquot of whole cell extract was collected and the rest was spun 

for 5 minutes at 15,000 rpm speed. Supernatants (soluble fraction) were collected and the 

pellet (insoluble fraction) was resuspended using 1X L&C. 20 l induced and uninduced 

samples were run on an SDS gel and stain with Coomassie Blue staining. C) After 

confirmation of expression of GST-Np63, the large scale frozen pellet was resuspended 

in 1X L&C and homogenized three times using an EmulsiFlex-C3 cell homogenizer. The 

cell lysate was then clarified at 10,500 rpm, filtered and purified by GST trap affinity 

chromatography. 
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lysis buffer (2X L&C: 40mM Tris pH 8.0, 600mM NaCl, 20% glycerol). The resuspended 

cell pellets were sonicated three times for 15 seconds each and an aliquot of the whole cell  

extract was collected from both induced and uninduced samples. Next, the samples were 

centrifuged at 15,000 rpm for 5 minutes and the supernatant was collected as the soluble 

fraction. The insoluble fraction (pellet) was resuspended in 100 l of 1XL&C lysis buffer. 

20 l of whole cell extract, soluble and insoluble fractions from uninduced and induced 

conditions were run on 10% SDS gel after in 1X loading dye. GST-Np63 expression 

was detected following staining the gel with instant blue stain (Expedeon, Product# 

140904001) (Figure 3B) Following confirmation of induction on a small scale, frozen cell 

pellets from large scale preparations were thawed and resuspended in 100 ml 1X L&C 

buffer containing Protease Inhibitors Cocktail (PIC), homogenized three times using a 

Emulsiflex cell homogenizer (Avestin, Inc.) for 25 minutes, and spin-clarified by 

centrifuging the lysate at 10,500 rpm at 4oC for 30 minutes. The supernatant then was 

filtered through a 0.45 μm pore PES Filter (Figure 3C). 

Recombinant GST-Np63 protein was purified from contaminating proteins using 

GSTrap FF affinity columns (GE health care life science, product code 17-5130-01). The 

principle of column chromatography is shown in Figure 4A and 4B. In preparation for 

affinity purification, capillaries were rinsed at maximum speed with dH₂O and washed 

with 1X L&C buffer. A 1ml column was then installed and equilibrated with 1X L&C 

buffer at a flow rate of 1 ml/min. Next, the supernatant was loaded at a flow rate of 0.5 

ml/min and washed with 1X L&C overnight at flow rate of 0.5ml/min at 4oC. The column 

was then equilibrated in PreScission buffer (50mM Tris HCl, 150mM NaCl, 1mM EDTA 

1mM DTT, pH 8.0), followed by equilibration in PreScission protease dissolved in  
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Figure 4: GST-Np63 purification schematic. A) In column digestion: GST-Np63 

was loaded onto a GST affinity column followed by 16 hours incubation with PreScission 

protease, resulting in pure Np63. B) In vitro digestion of GSTNp63: GSTNp63 

was loaded to the column following by elution of GST-Np63 using reduced glutathione. 

This step was followed by mixing GST-Np63  and PreScission enzyme in an overnight 

incubation.  
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PreScission buffer and incubation for 16 hours. The bound GST tagged Np63 was 

collected manually by injecting 1 ml of 10mM reduced glutathione (Sigma-aldrich, 

Product# G4251). GST tagged Np63 was further concentrated and size selected by 

spinning the protein in a 50KD cutoff Amicon filter unit using a Sorvall Legend T/RT 

centrifuge. In vitro digestion of GST tagged Np63 was performed with PreScission 

Protease in 1.7 ml Eppendorf tubes by incubating overnight (approximately 16 hours) at 

4oC. Next, a second round of size selection was performed in a 50KD cutoff Amicon filter 

unit using a Sorvall Legend T/RT centrifuge. Purity of the recombinant Np63 was 

evaluated on a 10% SDS gel stained with Instant blue stain (Expedeon, Inc., catalog # 

ISB1L). 

 

B. Quantitation of recombinant Np63 

Protein concentration was determined by comparing samples against known 

concentrations of 1mg/ml bovine serum albumin solution ranging from 0.1 g to 2g per 

lane. Both standard BSA and diluted Np63 (5 l Np63 diluted in 13 l of sterile 

distilled) were mixed with 2 µl 10X loading dye (0.5M DTT, 10% SDS, 0.5M Tris pH=8, 

50% glycerol, 0.2% bromophenol blue). The sample were heated at 97ºC for 10 minutes 

and then run on a 10X SDS-PAGE gel. Purified Np63 protein was detected by staining 

the gel with Coomassie blue stain (0.1% Coomassie brilliant blue, 10% acetic acid, 50% 

of 95% ethanol, 40% H2O) at room temperature for 1 hour. Coomassie destaining solution 

(7.5% acetic acid, 20% methanol, 72.5%H2O) was added to the gel and incubated from 15 

minutes to overnight at 4ºC as needed to visualize the protein bands. Np63 concentration 
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was measured by densitometry using Multi Gauge software and plotting against a standard 

curve generated by the density of BSA standards. 

C.  Western blots 

Purified Np63 was run on a 10 % SDS-PAGE followed by transfer onto 

Immobilon-P PVDF membrane (Millipore Corporation, Billerica, MA) using transfer 

buffer (25mM Tris, 192mM glycine, 20% methanol and PH 8.3) at 0.35A for 60 minutes 

using transblot system (Bio-Rad). The blot was then blocked using 5% nonfat dry milk 

made in 1X Tris-Tween 20 buffer saline (1X TTBS: 50mM TRIS-Cl, 150mM NaCl, pH 

7.6) for 1h at room temperature. Np63 was detected using the following anti-p63 

antibodies: polyclonal H-129 (1:1000), monoclonal 4A4 (1:4000) and monoclonal N2C1 

(1:2000) (Santa Cruz biotechnology, Inc.) followed by incubation in the respective 

secondary antibody (1:2500 dilution of anti-mouse-HRP catalog # W4011 or anti-rabbit 

IgG catalog # W402B-HRP, Promega Corp.). Membranes were washed three times with 

1X TTBS for 15 minutes each and then submerged in Super-signal West Pico 

Chemiluminescent substrate (Pierce, Rockford, IL) for 1 minute. Chemiluminescence was 

quantified using the Fuji Film LAS 4000 image reader (Fuji Medical System USA, Inc.). 

D.  Synthesis of biotinylated Peptides 

Six 12-mer peptides (Table 1) were identified by a previous lab member (Dr. 

Pavyluk) using a Ph.D.-12 phage display peptides library kit (New England Biolabs, 

Beverly, MA, USA). These sequences were synthesized by Genscript USA, Inc. as biotin 

conjugated peptides. Each peptide vial (0.5mg pellet) was spun and reconstituted in 5000 

μl Sterile PBS/0.01% Tween 20. The concentration of peptides used in the assay was 50 

pmol.  
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Table 1: Sequence and molecular weights of biotin conjugated peptides identified by 

phage display.  

 

 

 

 

  

Phage Amino acids sequence Mwt (Dalton)

P5 KPFHHHQMHLANGG(lys){biotin} 1965.28

P6 HHYNWNLPWLMSGG(lys){biotin} 2066.38

P3 SSAHWRHFNWNLGG(lys){biotin} 2023.25

P4 VIAMDNYNGTTRGG(lys){biotin} 1823.07

P1 SLYHQYVTVMMHGG(lys){biotin} 1977.34

P2 HVVKQAMSNNMMGG(lys){biotin} 1858.25



20 

E. Binding of Np63 to Np63 specific peptides identified by phage display using 

Streptavidin conjugated Dynabeads 

Streptavidin M-280, M-270, Myone C1 and Myone T1 Dynabeads (Life Technologies, 

trial kit catalog # 65801D) were tested for use in binding studies. The streptavidin 

Dynabeads were washed with 0.01% PBS / Tween 20 followed by incubation with 50 and 

100 pmol biotinylated peptides for 4 hours. Next, the beads were captured using DynaMag 

magnet separation (Life Technologies, Inc.) followed by washing 3 times with 0.01% PBS 

/ Tween 20. The beads were then resuspended again with 0.01% PBS / Tween 20 buffer, 

incubated with 14.38 pmol Np63 protein and incubated overnight at 4oC. The beads 

were collected using magnetic capture (as before), resuspended and washed with 0.01% 

PBS / Tween 20 buffer in three 10-minute washes. The beads were then resuspended and 

run onto 10 % SDS-PAGE gel and immunoblotted with a polyclonal H-129 p63-specific 

antibody as previously described (1:1000). 

 

F. Enzyme-linked immunosorbent assay (ELISA) 

The 6 different peptides (200 pmol) dissolved in Tris-buffered saline washing buffer 

(25mM Tris, 150mM NaCl, 0.1% BSA, 0.05% Tween 20, pH 7.2) were coated onto 

Streptavidin High Binding Capacity Coated 96-well Plate (Pierce, catalog #15500) and 

incubated overnight at 4oC. Excess unbound peptides were removed by washing the wells 

3 times. Different concentrations of Np63 were then added to each well in a total volume 

of 100μl of washing buffer. After incubation for 2 hours, the wells were washed three times 

with washing buffer. The bound Np63 was then incubated with Np63 specific 

antibodies, H-129 (1:1000), or N2C1 (1:2000) for 1 hour followed by three washes and 
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incubation for an additional 1 hour with anti-rabbit IgG conjugated with horseradish 

peroxidase (1:2500) (Promega Corporation, catalog # W4011). After three washes, 100l 

of substrate 3, 3´, 5, 5´- tetramethyl-benzidine (1-Step Ultra TMP-ELISA, Thermo 

Scientific, catalog # 34028) was added per well and the plate was incubated for 20 minutes. 

The reaction was terminated by adding 100l / well of 2M H₂SO₄. The absorbance was 

measured at 450nm using a Safire monochromator microplate reader (Tecan Group Ltd.). 

Biotinylated peptides and GST were used as negative controls in the experiment. 

 

G. Transfections 

Human lung carcinoma H1299 cells were seeded at 3 x 105 per well. Next day, cells 

were transfected overnight with increasing concentrations of Np63 expression plasmid 

or empty vector control using Lipofectamine 2000 (Life Technologies, Inc., catalog # 

11668019). At 24h post-transfection, cells were washed with 1X PBS, harvested with a 

25% trypsin-ETDA solution and transferred and pelleted in Eppendorf tubes. Whole cell 

extracts were made by resuspending cell pellets in 100 μL of phosphate inhibitor buffer 

(PhIB) (50mM Tris pH 8, 120mM NaCl, 5mM EGTA, 1mM EDTA, 5mM sodium 

pyrophosphate decahydrate, 10mM NaF, 30mM para-nitro phenyl phosphate, 1mM 

benzamidine, 0.1%NP-40, and 1X sodium vanadate) plus 1% protease inhibitor cocktail 

(PIC) (Sigma-Aldrich Co.). Samples were vortexed in the PhIB and PIC every ten minutes 

for a total of 40 minutes while on ice and then centrifuged for 5 min at 14,000 rpm at 4°C. 

Protein concentration was determined using Pierce BCA reagent (Life Technologies, Inc., 

catalog # 23228) in a 96-well plate format. BCA standard curve was generated using 

Bovine Serum Albumin (BSA) in PBS at concentrations ranging from 1 g to 13 g. To 
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determine sample concentrations, 1 l of sample was added to 99 l of sterile distilled 

water for use in the BCA protein assay. To each well (standard or sample) 100l of BCA 

reagent was added and the plate was incubated at 37°C for 15 minutes. Absorbance was 

measured using a Synergy H1 microplate spectrophotometer (BioTek Instruments, Inc.) at 

562 nm and the protein concentration was calculated using a BSA standard curve.  
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III. RESULTS 

A.  Full length Np63 protein purification: 

i. Development of recombinant methodology to express Np63 protein: 

Recombinant Np63 protein was successfully purified using a GST-tag based 

purification strategy.  The initial (pilot) GST-Np63 purification was performed using 

uninduced and induced 1OD equivalent of bacteria collected from two liter culture induced 

using a 3.5 hour incubation with IPTG.  Assessment of GST-Np63 expression by 

Coomassie Blue stained 10% SDS-PAGE gel indicated induction of a 100KD band 

corresponding to the expected molecular weight for GST-Np63 (Figure 5). 

ii. Large scale purification of Np63: After GST-Np63 expression was 

confirmed in the pilot purification, we proceeded to purify Np63 from a two liter cell 

culture. GST-trap affinity chromatography was utilized to capture the GST-Np63 fusion 

protein and subsequently cleave the GST tag. In order to obtain pure Np63 protein, 

elution was performed using PreScission protease as shown in the first two lanes (Figure 

6). The third and fourth lanes demonstrate abundant levels of GST-Np63 and Np63 

were eluted with reduced glutathione.  This suffested that in-column digestion with 

Precission protease did not effectively elute untagged Np63. GST-Np63 was also 

subjected to in vitro digestion with PreScission protease by mixing the GST-Np63 with 

the appropriate amount of PreScission protease. The cleavage of GST was confirmed by 

Coomassie Blue staining which was indicated by an increase in the 73kDa protein and loss 

of the 100kDa GST-Np63 band (Figure 7).  
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Figure 5 : Coomassie Blue staining gel demonstrates IPTG induction of recombinant 

GSTNp63 (No IPTG or IPTG). Arrow indicates increased levels of GST-Np63 

was observed in the whole cell extracts and in the insoluble fraction, but not in the soluble 

fraction of IPTG induced sample.  
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Figure 6: Large scale purification of GST-Np63 followed by digestion with 

PreScission protease to cleave GST. Two different aliquots of preparations eluted by 

PreScission protease followed by reduced glutathione were loaded onto the gel. The 

majority of Np63 was found in the fraction eluted by reduced glutathione. 
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Figure 7: An aliquot of GST- Np63 was subjected to in vitro digestion by 

PreScission protease for GST cleavage. Digested proteins were loaded onto an SDS-

PAGE gel and stained with instant Coomassie Blue stain indicate efficient cleavage of GST 

(first 2 lanes).  GST-Np63 was used as a control. 
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Size selection performed using a 50 kDa cutoff Amicon filter successfully removed 

non-specific contamination from the crude recombinantNp63 sample. As shown in 

Figure 8, size-selection removed most of the non-specific bands from the crude Np63 

and GST-Np63.  

B. Quantitation of Np63:  

Recombinant Np63 was quantified by densitometry against a standard curve of 

Bovine Serum Albumin (BSA). BSA standards from 0.1 g to 2 g were run alongside 

Np63and the gel was stained with instant blue stain and analyzed using Multi-Gauge 

(Figure 9A). The concentration of Np63 was calculated using the BSA standard curve 

(Figure 9B) and found to be 116 ng / l. 

C. Detection of the lower band in recombinant Np63 sample: 

In order to evaluate the possibility that the lower band in Figure 8 not a breakdown 

product of p63 or a heat-shock protein, we performed the following experiments: First, the 

recombinant Np63 sample was treated with ATP during column purification to remove 

the band if it was a heat shock protein. (ATP is known to cause conformation changes in 

heat shock proteins.) Figure 10 showed that migration of the lower band was not affected 

by the addition of ATP, thus indicating that is was likely not a heat shock protein.  

Immunoblot analysis was performed using three independent Np63 specific 

antibodies (4A4, N2C1, H-129). The lower band was not detected by these antibodies, thus 

indicating that the lower band was not a degradation product of Np63 (Figure 11). 

Finally, an anti-GST antibody was utilized to determine if the lower band was GST. 

Western blot analysis showed that lower band was detected as GST (Figure 11B). Mass 

spectrometry confirmed that lower band was GST (data not shown). 
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Figure 8: Size selection performed on Np63to remove nonspecific contamination. 

Following the GST trap column chromatography, size selection was performed using a 50 

KD cut-off Amicon filter to discard bands lower than 50 KD. 
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Figure 9: Quantitation of Np63 using a bovine serum albumin standard. A) 

Increasing amount of BSA standard (0.5g-2g) and 5 l of recombinant Np63 were 

subjected to SDS-PAGE. B) Band density of standard BSA dilutions were used to quantify 

the amount recombinant Np63 concentration. 
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Figure 10: ATP treatment performed during the column affinity purification of 

Np63.  The sample was applied to the column, equilibrated in wash buffer, and ATP 

was applied followed by sample elution. PreScission protease added and incubated 

overnight.  This treatment would be expected to remove the lower band if it was a heat 

shock protein, but no effect was observed indicating the lower band was not likely a heat 

shock protein. 
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Figure 11: Detection of Np63 using three specific antibodies (4A4, N2C1, H-129) 

and confirmation of lower band identity using an anti-GST antibody. A) An aliquot of 

recombinant Np63, whole-cell extract from HaCat cells (expressing endogenous 

Np63 as a positive control, and GST were incubated with Np63 specific antibodies 

and resolved on a 10% SDS-PAGE gel. Coomassie stained Np63 was used as a control, 

and whole cell extract from HaCat cells were used as positive control for Np63 Lack 

of detection of a lower band using three anti-specific Np63 antibodies indicated that the 

lower band is not a degradation fragment of Np63. B) Immunoblot analysis of 

recombinant GST, whole-cell extract from HaCaT cells and recombinant Np63using 

an anti-GST antibody to demonstrate that the lower band was GST.  
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D. Confirmation of Np63 specific binding to peptides to Np63 by Dynabead 

assay:  

The ability of six biotinylated peptides to bind to Np63 was first examined using 

a Dynabead assay system, where the streptavidin beads bind biotinylated peptides. 

Immunoblot analysis using p63-specific antibody indicated that binding of Np63 to the 

peptide. Figures 12A and 12B show a western blot probed with H-129 antibody for the six 

biotinylated peptides bound to Np63 using streptavidin M-280 Dynabeads. Two 

different concentrations of each of the selected peptides were incubated with recombinant 

Np63. In Figure 12A, loading the beads and Np63 protein as a negative control 

resulted in appearance of Np63 band in absence of peptide, indicating nonspecific binding 

of Np63 to M-280. In another experiment, no Np63 band was observed in the 

negative control (Figure 12B), and biotinylated P5 and P6 showed specific binding to 

Np63 compared to M-280 and Np63 alone (Figure 12B).  Concerns about non-

specific binding of the M-280 Dynabeads to Np63prompted further analysis with 

different Dynabead styles.  The manufacturer stated binding capacities are listed in Table 

2. 

Various streptavidin Dynabeads with low-level non-specific binding to Np63 

were tested; M-270, Myone C1 and Myone T1. The six specific biotinylated peptides and 

four non-specific biotinylated peptides to Np63 (NE1, NE2, L4, L5) were tested using 

M-270. As shown in Figure 13, western blot analysis showed non-specific binding of 

Np63 to M270 Dynabeads. Furthermore, three of biotinylated non-specific peptides to 

Np63 (NE1, NE2, L5) showed positive binding. 
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Figure 12: Binding of biotinylated peptides to recombinant Np63 using 

streptavidin M-280 Dynabeads. A) Either 50 or 100 pmol concentrations of each of four 

biotinylated peptides (P1, P2, P3, P4) were incubated with streptavidin M-280 Dynabeads 

followed by the addition of recombinant Np63. B) Either 50 or 100 pmol concentrations 

of biotinylated peptides (P5, P6) were incubated with streptavidin M-280 Dynabeads 

followed by addition of Np63. Np63 alone was used as a positive control. 

Streptavidin M-280 Dynabeads alone and in the presence of Np63 were used as negative 

controls. 
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Table 2: Binding Capacity of four different streptavidin Dynabeads 

 

 

  

P1 P2 P3 P4 P5 P6

pmol pmol pmol pmol pmol pmol

M280 50 pmol 50.57 53.8 49.4 54.9 50.9 48.4

M270 50 pmol 50.57 53.8 49.4 54.9 50.9 48.4

Myone C1 100 pmol 101.2 108 98.9 110 102 96.8

   Myone T1 100 pmol 101.2 108 98.9 110 102 96.8

Binding Capacity/ 25 μl beadsBEADS
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Figure 13: Binding of different concentrations of biotinylated peptides to 

recombinant Np63 using streptavidin M-270 Dynabeads. Each biotinylated peptide 

(P1, P2, P3, P4, P5, P6) was incubated with streptavidin M-270 Dynabeads followed by 

the addition of recombinant Np63 Np63 was used as positive control. Np63 non-

specific biotinylated peptides (NE1, NE2, L4, L5) were used as negative controls. 

Streptavidin M-270 Dynabeads alone and in the presence of Np63 were also used as 

negative controls.  
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The third streptavidin Dynabeads utilized in the binding study was Myone C1. 

Western blot analysis using H-129 specific Np63 antibody revealed that there is non-

specific binding of Np63 to Myone C1 Dynabeads (Figure 14A, 14B).  

Finally, Myone T1 streptavidin Dynabeads were utilized to examine the binding of 

biotinylated peptides to Np63. However, there was also nonspecific binding of Np63 

to Myone T1 Dynabeads as shown with other streptavidin Dynabeads (Figure 15).  

E. ELISA confirmation of Np63 specific binding to peptides to Np63 by 

streptavidin: 

Binding affinity of biotinylated peptides to recombinant Np63 was examined 

using a streptavidin coated plate approach. An indirect ELISA was performed to identify 

the most specific peptide to bind toNp63 (Figure 16). The indirect ELISA utilizes both 

a primary antibody (e.g. rabbit anti-p63) and a secondary conjugated antibody (e.g. goat-

anti-rabbit-HRP) to deliver enhanced sensitivity over the single antibody detection used in 

direct ELISAs.  In the indirect ELISA, the use of multiple antibodies results in signal 

amplification and improved overall assay sensitivity.   

Two different Np63 specific antibodies were used. First, polyclonal H-129 

antibody was used against Np63. As shown in Figure 17, two concentration of Np63 

were incubated with fixed concentration of peptides. The fold increase over Np63 alone 

(Y-axis) in presence and absence of peptides is shown. P2 showed a higher fold change 

compares to Np63 alone. P3, P5 and P6 showed the highest fold change in presence of 

Np63, suggesting that they have the highest affinity to bind to Np63. However, P1 

and P4 fold change did not change in presence of both P4 and Np63, suggesting that P4 
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had the weakest affinity to bind to Np63. The nonspecific peptide L4 was used as a 

negative control which showed no change in fold change in presence of Np63.  
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Figure 14: Binding of biotinylated peptides to recombinant Np63 using 

streptavidin Myone C1 Dynabeads. A) Two concentrations of each biotinylated peptides 

(P1, P2, P3, P4) were incubated with streptavidin Myone C1 Dynabeads followed by the 

addition of recombinant Np63. B) Two concentrations of biotinylated peptides (P5, P6) 

were incubated with streptavidin Myone C1 Dynabeads followed by addition of Np63. 

Np63 was used as positive control. Streptavidin Myone C1 Dynabeads alone and in the 

presence of Np63 were used as negative controls. 
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Figure 15: Binding of biotinylated peptides to recombinant Np63 using 

streptavidin Myone T1 Dynabeads. Each biotinylated peptide (P1, P2, P3, P4, P5, P6) 

was incubated with streptavidin Myone T1 Dynabeads followed by the addition of 

recombinant Np63. Np63 was used as positive control. Np63 non-specific 

biotinylated peptides (NE1, NE2, L4, L5) were used as negative controls in addition to 

Streptavidin Myone T1 Dynabeads alone and in the presence of Np63 
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Figure 16: Schematic diagram showing the principle of the indirect ELISA assay. 

Biotinylated peptides were incubated in 96 well streptavidin-coated plate overnight. Excess 

peptides were washed away, followed by incubation with Np63. Np63 specific 

primary antibodies were then added and allowed to incubate for 45 minutes. Next, an HRP 

conjugated secondary antibody was added and allowed to incubate for 45 minutes. The 

color was developed using TMB and the intensity was read at wavelength 450nm. 
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Figure 17: Binding of biotinylated peptides (P1, P2, P3, P4, P5, P6) to Np63 using 

a polyclonal antibody (H-129).  Graphs display fold-change over Np63 as determined 

using ELISA assays with two concentrations (+ = 1.73pmol, ++ = 4.32pmol) of Np63 

alone and with 200 pmol biotinylated peptides. The non-specific biotinylated peptide (L4) 

was used as negative control. ELISA measurements were performed in triplicate. Error 

bars indicate standard deviations. Error bars represent standard deviation between 

triplicates. *=p≤0.05 compare to Np63 at 1.73pmol and # =p≤0.05 compare to 

Np63 at 4.32pmol. NS= non-significant compare to Np63. 
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Finally, we examined the binding of peptides to Np63 utilizing monoclonal antibody 

(N2C1). The results (Figure 18) were similar to those obtained using the polyclonal 

antibody. P3, P5, P6 and P2 showed high fold change over Np63. Repeated experiments 

also indicated that P3, P5 and P6 have the highest affinity to bind to Np63 (data not 

shown)

Since the recombinant Np63 sample had residual GST contamination, we tested 

if the GST interfered with binding to the biotinylated peptides using an indirect ELISA. 

Testing indicated that there was no binding interference from residual GST (Figure 19). 

The fold change of GST is shown on the Y-axis, and the data is plotted relative to GST 

alone and in presence of peptides (Figure 19). Overall, the ELISA experiments and those 

described previously showed that P5 has the highest affinity to bind to Np63. Thus, 

further experimentation was completed using biotinylated peptide P5.  

A dose dependent study was performed using an ELISA approach to identify the 

binding capacity of P5 to bind to Np63. A graph of increasing concentrations of P5 and 

constant concentration of Np63 was drawn to identify the binding capacity of P5 to 

Np63 as shown in Figure 20A. Biotinylated peptide P5 binding toNp63 was 

increased as its concentration increased until reached the saturation at 125 pmol of B-P5. 

A dose-dependent assay of Np63 (Figure 20B) indicated that the saturation reached at 

2.4 pmol Np63. The dose dependent assay was repeated for each new Np63 

preparation. P-value and the fold changes for both antibodies are shown in table 3. 

  



56 

 



57 

Figure 18: Binding of biotinylated peptides (P1, P2, P3, P4, P5, P6) to Np63 using 

a monoclonal antibody (N2C1).  The fold-change over Np63 indicated was determined 

by ELISA assay using with two concentrations (+ = 1.73pmol, ++ = 4.32pmol) of Np63 

alone and with 200 pmol biotinylated peptides. Non-specific biotinylated peptide (L4) was 

used as negative control. Error bars represent standard deviation between triplicates. 

*=p≤0.05 compare to Np63 at 1.73pmol and # =p≤0.05 compare to Np63 at 

4.32pmol. NS= non-significant compare to Np63. 
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Table3: fold changes and P.values calculation for six biotinylated peptides.  

Fold Change P.value fold Change P.value

P1 1.82 0.001 2.6 0.0003

P2 3.53 0.0003 3.92 2.07E-06

P3 5.72 0.0006 3.13 0.001

P4 1.34 0.004 2.29 0.0004

P5 7.22 7.08E-06 6.83 9.62E-06

P6 5.7 0.0001 5.19 1.68E-05

H-129 N2C1
Peptide
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Figure 19: Detection of binding of biotinylated peptides (P1, P2, P3, P4, P5, P6) to 

GST. The fold-change over GST was determined using an ELISA assay with GST alone 

and after incubation with biotinylated peptides. Error bars represent standard deviation 

between triplicates. *=p≤0.05 compare to GST at 1.75 pmol. NS= non-significant compare 

to GST at 1.75pmol. 
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Figure 20: Dose dependent assay of B-P5 and Np63. A) Fold-change over Np63 

alone and in the presence of increasing concentrations of B-P5 display the saturation 

concentration of B-P5 to bind to Np63.Error bars represent standard deviation between 

triplicates. *=p≤0.05 compare to P5. B) Fold-change over B-P5 alone and in the presence 

of increasing concentrations of Np63 showing the saturation concenration 

ofNp63Error bars represent standard deviation between triplicates. *=p≤0.05 compare 

to Np63 
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Finally, we examined the binding of biotinylated P5 to transfected 

Np63incells using streptavidin coated plate using ELISA. Figure 21 shows the 

fold change over biotinylated peptide P5 (Y-axis) relative to vector transfected cells and 

Np63 transfected cells in the presence of biotinylated peptide P5. As expected, an 

increase in the fold change of Np63was observed in the presence of B-P5 but not for 

empty vector.  
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Figure 21: Binding of biotinylated peptides P5 to Np63 compare to empty vector. 

Y-axis represents fold change over B-P5 related to Np63 and empty vector in presence 

of biotinylated peptides in all cases. Error bars represent standard deviation between 

triplicates. *=p≤0.05 compare to empty vector.  
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IV. DISCUSSION 

  

It is well recognized that peptides can serve as receptor agonists, antagonists or 

modulators of protein biological function (Smith & Petrenko, 1997). In cancer, many genes 

are involved in the tumor growth, making it difficult to identify upstream regulators for a 

given gene of interest. Here we utilized phage display technology (Wilson & Finlay, 1998) 

to identify upstream modifiers of oncogenic Np63 function. This approach was 

performed to focus on the peptide-protein interactions to examine the affinity of specific 

peptide(s) which bind to the protein and affect its function. The foundation of this approach 

was to prepare pure recombinant Np63 and to utilize peptide phage display technique 

to find specific peptide binders.  

Many studies have shown the effectiveness of peptides, identified by phage display, 

to modulate or regulate protein function. (Shen et al, 2013) used phage display to identify 

a peptide which serves as a ligand for prostate-specific membrane antigen (PMSA) in 

cancer cells. Another group using phage display to identify a novel peptide called AP8 

which is expressed in breast cancer which binds to the acidic fibroblast growth factor 

(aFGF) and correlates with disease grade via a direct interaction with fibroblast growth 

factor receptors (FGFRs). Functional analysis indicated that AP8 functions as an aFGF 

antagonist by preventing aFGF binding to its receptor which inhibits aFGF-stimulated cell 

proliferation (Dai et al, 2014).  
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In this study, we designed a purification strategy which facilitated the successful 

purification of recombinant Np63 sufficient for use in subsequent binding studies. The 

method yielded abundant amount of soluble protein, but retained residual GST 

contamination.  

Our lab previously identified a selection of phage-peptides that bind to the Np63 

protein. This project demonstrated the functional binding of these peptides to Np63 and 

recombinant Np63. The candidate peptides were synthesized as biotinylated peptides 

and in vitro testing using several types of Dynabeads with different binding capacity to 

validate binding of these peptides to Np63However, we were unable to confirm the 

binding of the peptides to Np63 due to non-specific binding between Np63 and all 

styles of Dynabeads tested Manufacturer guidelines suggested that Dynabead size or 

concentration may correlate with the degree of non-specific binding  (i.e. using smaller 

diameter or fewer beads would help to reduce non-specific binding).  Accordingly, 

different diameter Dynabeads used in the assay this study, but our data did not support the 

contention that smaller beads resulted in lower levels of nonspecific binding. However, a 

fixed amount of Dynabeads were used regarding their diameter differences, and it remains 

possible that improved results could be obtained by reducing the number of beads used in 

the assay.  Reduction of nonspecific binding is frequently achieved by adding BSA or 

Tween 20 to the reaction mixture per manufacturer recommendations,  but both were 

ineffective at reducing the non-specific binding (data no shown).  It is also possible that 

the observed non-specific binding could be overcome by pre-blocking the beads before 

Np63 addition. This would serve to reduce nonspecific hydrophobic interactions.    
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The Dynabead assay suggested that some of the candidate peptides bound 

specifically to Np63, particularly P5 and P6. An alternate streptavidin coated plate 

ELISA strategy was performed to clarify the specificity of binding of these peptides to 

Np63. The ELISA showed that the P3, P5 and P6 peptides bind to Np63 with higher 

affinity than the other peptides. P5 bound to Np63 with the highest affinity, and was 

thus selected for further evaluation to test the specificity and the affinity of P5 binding to 

Np63 

If the peptide binding affinity to Np63 is determined, a recognition site may be 

identified which may reveal the specific function of the P5 peptide. It is possible the P5 

peptide is involved in targeting Np63 for degradation or may blunt its signaling by 

altering the functional confirmation of Np63. The peptide could inhibit protein 

oligomerization and retain the protein in an inactive form (Cardinale et al, 2011) in a 

manner similar to that observed by the interaction with the oncogenic Head Shock Protein 

(gp96).  Gp96 binding causes a confirmation change in Np63 which increases binding 

to the HER2 receptor and prevents Np63dimerization; thus, the signaling pathway is 

terminated leading to the degradation of HER2, decreased cell growth and increased 

apoptosis (Li et al, 2015).   

Future work will focus on the targeting and internalization of the specific peptide 

and thorough an evaluation of the ability of the peptide to modulate the oncogenic effect 

of Np63such as examination of the peptide binding affinity to Np63 and an analysis 

of the effect of peptide binding to Np63 Further, the activity and affinity of P5 peptide 

will be determined using kinetic assays. Finally, the in vivo efficacy of P5 in modulating 
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Np63 could be investigated, but testing would require modification of the peptides to 

produce cell permeable peptides inhibitors. This study would first reqire that the candidate 

peptides be modified to allow cell membrane penetration. One possible modification 

includes conjugating the peptides with adapters effective in penetratint the cell membrane 

such as those used in the cell penetrating peptides system (CPP). The CPP is proven to 

successfully penetrate the cell membrane; however, the ability of the CPP to a target a 

linked peptide is not fully elucidated. In addition, another possible modification to allow 

cell membrane penetration is by modifying the peptides with membrane-translocating 

moieties that increase their hydrophobicity and facilitate cellular entry. 

In conclusion, the data presented herein illustrates the effectiveness of phage 

display libraries in the search for new peptide based lead structures designed to mimic or 

inhibit therapeutically important protein-protein interactions or targeting a specific protein 

for degradation. 
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