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ABSTRACT

Fox, Elizabeth Lynn. M.S. Department of Psychology, Wright State University, 2015.
Cognitive Analysis of Multi-sensor Information.

Multispectral imagery can supply an observer with different components of information
to, in combination, lead to critical decisions. Human observers can be presented with two
fusion techniques: 1) cognitive fusion presents the two sensor images within 5 degrees of
visual angle and 2) algorithmic fusion aims to enhance image quality by combining
relevant information from two individual sensor images into one composite image.
Researchers have used methods such as comparing performance across different
algorithms or comparing algorithmic fusion to a single-sensor image. However,
cognitive fusion is a technique that provides all of the sensor information and, if utilized
efficiently, may yield better performance than algorithmic fusion. I used a cognitive
framework, systems factorial technology (Townsend & Nowaza, 1995) to test specific
underlying mechanisms of information processing across both fusion techniques in two
discrimination tasks. The results of my Experiments demonstrate that the efficiency of
processing sensor information is just as good for cognitive fusion as algorithmic fusion
across both discrimination tasks. Future research with multi-sensor displays should not
disregard the potential benefits that displaying all of the available information may have

over the algorithmic interpretations of important information.
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1. INTRODUCTION

Information from various parts of the electromagnetic spectrum is beneficial for
determining different types of environmental information. For example, visible imagery (Figure
1A) is best for detecting edges and fine details, long-wave infrared (LWIR) imagery (Figure 1B)
is useful for detecting heat information (e.g., occluded heat producing objects such as a person
behind a bush), and near infrared (night vision) can pick up detail in conditions with low
illumination. Together, the LWIR and visible sensors can supply the operator with
complementary information and aid in a task such as determining a target (e.g., person) location
relative to an object in the scene (Toet, IJspeert, Waxman, & Aguilar, 1997).

Algorithmic image fusion aims to enhance image quality by combining relevant
information from two individual sensor images into one composite image. It offers two
substantial benefits: 1) it restricts the amount of visual information the operator must attend to;
and 2) the resultant image may possess emergent features not found in either single image alone
{Krebs & Sinai, 2002; Leckie, 1990). However, when an observer is presented with
algorithmically fused imagery, he or she must rely on the algorithm to correctly identify
important features because the total available information is condensed into one image. This
caveat of limiting the information given to the observer suggests another way to display multi-
sensor information: cognitive fusion. Cognitive fusion gives the operator the responsibility of
extracting and combining relevant sensor information rather than relying on the image fusion
algorithm. To allow for cognitive fusion, two sensor images can be presented next to one
another, giving the observer all of the information from each sensor. [ use cognitive fusion to
describe performance with separate images, not necessarily a cognitive or perceptual process.

Any redundancy across the sensors could yield performance improvement compared to



individual or algorithmic sensor presentation (Duncan, 1980; Kahneman, 1973). Alternatively,
cognitive fusion could hinder performance because the participant may be unable to attend to
both sensor images.

Algorithms can use transforms such as Laplacian pyramid or wavelet. A pyramid
transform (e.g. Laplacian) utilizes several band-pass filters to down sample each sensor image
resulting in a series of images at different resolution qualities. Then each component image is
interpolated (expand in size) and combined into a composite image using a linear transform
(Blum, 2006). Figure 1C is an example of Laplacian pyramid fusion of the individual LWIR and
visible images. Alternatively, the discrete wavelet transform (DWT) passes a series of wavelets
(oscillating functions) across the image and combines them to get a composite fused image.
Variations of the DWT can provide additional edge and line contour information (Blum, 2006;

Smeelen, Schwering, Toet, & Loog, 2014).

A. B. C.
Figure 1. An example of a visible (A), long-wave infrared (B), and the combination of 1A and

1B using the Laplacian fusion algorithm (C). I used these images for the discrimination task in

Experiment 1 (discussed in later sections).

To date, research has focused on ranking various fusion algorithms and identifying the

specific tasks for which a particular algorithm or set of sensors yields best image quality



statistics. Researchers have used methods such as comparing performance across different
algorithms or comparing algorithmic fusion to a single-sensor image. Previous research has lead
to inconclusive evidence across experiments assessing algorithmic fusion using both objective
computer vision metrics and basic human performance measures (Essock, Sinai, DeFord,
Hansen, & Srinivasan, 2010; Krebs & Sinai, 2002; Krebs, Xing, & Ahumada, 2002; McCarley &
Krebs, 2000). On the other hand, cognitive fusion has received no attention relative to image
fusion research. Discussion of whether data fusion is appropriate as opposed to presenting an
observer with all of the available information is discussed with display design (Klein, Moon, &
Hoffman, 2006A, Klein, Moon, & Hoffman, 2006B). But, this has not been explored with
multisensor information and is a necessary step forward.

Additionally, in order for me to make any hypotheses about why humans may perform
better or worse with a specific fusion type or set of sensors I must establish an understanding of
how humans process multi-sensor information. Using a cognitive framework based on specific
model assumptions I can indicate properties such as: changes in an individual’s cognitive
processing speed across single and multi-sensor information, whether multi-sensor information is
processing simultaneously or sequentially, how much information is needed to make a decision
and if an interaction between sensor processes occur. I can make specific hypotheses about how
humans are processing multi-sensor information and suggest remedies to correct for inefficient
processing by identifying these cognitive properties.

In the experiments reported here, I used a mathematical approach to analyze the
underlying cognitive processes of the two types of multi-sensor displays. I completed a full
analysis of two display types, one using a single image comprised of multiple sensors

(algorithmic fusion) and one using two single-sensor images next to one another (cognitive



fusion). 1 also completed the analyses across two task types, discrimination and a more difficult
task, visual search with discrimination.
1.1 Previous Research

Computer vision research has demonstrated the benefits of algorithmic fusion above
single-sensor displays in domains such as concealed weapon detection (Uner, Ramac, Varshney,
& Alford, 1997), remote sensing (Wald, Ranchin & Mangolini, 1997), medical diagnosis, and
military surveillance. However, no consistent evidence has supported the use of one particular
algorithm or set of sensors across all domains (Blum, 2006; Dong & Zhuang, 2009). Computer
vision techniques require no equipment or complex organization and therefore are thought of as
easier to collect and control than human evaluation. Such techniques measure preservation of
edge information in a fused image at the individual pixel level (Xydeas & Petrovi¢, 2000), the
local 8 x 8 pixel grid level (Piella & Heijmans, 2003), or the global image level (Petrovié &
Xydeas, 2004; Qu, Zhang, Yan, 2002). In final evaluation stages, these metrics must be
validated against a “ground truth,” or human testing, before they can be applied the field.
Therefore, human evaluation is critical for image assessment even though it is deemed as “heavy
in organizational and equipment requirements with strict test conditions” (Petrovié, 2007).

No optimal fusion image is available to compare various methods of algorithmic fusion
and metrics do not provide information of perceptual quality of the image. Rather metrics only
provide a quantitative assessment of the amount of information from each single-sensor image
that is represented in the final composite image (Smeelen et al., 2014). Subjective user
experience metrics like overall preference or comfort along with perceptual exploration can lead
to a more comprehensive evaluation of image displays (Petrovi¢, 2007). But such analyses

demand human assessment and are usually an afterthought evaluation (Toet, Hogervorst,



Nikolov, Lewis, Dixon, Bull, & Canagarajah, 2010).

Researchers stress the need for human operators in the interface design process because
machines alone cannot account for unexpected situations (Blasch & Plano, 2005). For example,
pilots reported they primarily used the algorithmically fused display but were more confident in
their decisions by having the ability to switch between the individual sensors using flight tasks
(Ryan & Tinker, 1995). Subjective and basic human performance measures (speed, accuracy)
are the primary human evaluation techniques for image quality assessment (Sims & Phillips,
1997).

Subjective measures included asking participants to rank multi-sensor images from
several fusion algorithms based upon their impression and comfort (Krishnamoorthy & Soman,
2010; Petrovi¢, 2007, Ryan & Tinker, 1995, Steele & Perconti, 1997). Performance measures
involved visual tasks focused on evaluating algorithmic fusion advantages in target detection,
orientation, and recognition for domains like aviation (Steele & Perconti, 1997; Ryan & Tinker,
1995) and scene surveillance (Toet & Franken, 2003; Toet et al., 1997).

To date, human performance based research has shown both improvements and
decrements with algorithmically fused imagery relative to a single individual sensor. Several
researchers suggest these differences in performance may resuit from methodological changes
(Ahumada & Krebs, 2000; Essock, Sinai, McCarley, Krebs, & DeFord, 1999; Steele & Perconti,
1997), various task descriptions (Essock, Sinai, DeFord, Hansen, & Srinivasan, 2010; Krebs &
Sinai, 2002; Krebs, Xing, & Ahumada, 2002; McCarley & Krebs, 2000) and alternative fusion
algorithms or sensor combinations (McCarley & Krebs, 2000). Therefore, researchers have
invested efforts to determine what factors of aigorithmic image fusion may facilitate better

performance. Additionally, several researchers have looked into the use and benefits of color



fusion (e.g., Toet, de Jong, Hogervorst, & Hooge, 2014; McCarley & Krebs, 2006; Sinai,
McCarley, Krebs, & Essock, 1999, Toet et al., 1997; Steele & Perconti, 1997) but for the scope
of this thesis, I will focus only on gray scale fusion.

A unique method using human identified important information was developed to assess
transfer of information from the individual sensor images to the composite image (Toet et al.,
2010) The participants were given several images and instructed to draw detailed contours of
important features within each image. The drawings were used as a reference to measure the
extent that the algorithmically fused image included the meaningful information from each
single-sensor image, as indicated by the participants. This technique allowed the human to
define important features rather than merely using rate of information transfer to the composite
image from each single-sensor image (i.e., computer vision metrics). Nonetheless, this puts the
weight of important information on the items in the image that have clear edges to outline rather
than the information that may allow the participant to complete a more real-world task. By
asking participants to identify important features relative to a real-world task can yield
conclusions about what types of information the observer uses for a specific task and the transfer
of the defined important features to the composite image.

Another method of assessment is to force observers to use specific features of each
single-sensor image to make a correct response choice. Then, compare human performance with
the composite image to performance of single-sensor images. In a well-designed study, Toet et
al. (1997) instructed participants to report the position of a person relative to a naturally
occurring object or bound such as a fence, tree, and pathway. Participants indicated whether the
person was in front of or behind the object. The algorithmically fused image gave additional

information about the spatial layout of the scene by supplying complementary information of



edge and heat information from individual sensor images. However, the study was designed to
demand processing of both the LWIR and visible image in order to make a correct response. The
visible image was used to determine where the path, tree or fence was located and the LWIR
image gave additional heat information to accurately locate the target. Steele and Perconti (1997)
suggested that LWIR images alone (compared to visible alone or a composite LWIR and visible
image) are best for target detection tasks. A single LWIR image often allows for rapid, accurate
detection of heat-emitting objects (e.g., people). In several investigations of detection tasks,
LWIR images outperform visible or algorithmically fused images (Steele & Perconti, 1997; Toet
et al., 1997; Krebs & Sinai, 2002). For all variations of the relative position task, participants
achieved accuracy improvements with algorithmically fused images (Toet at al., 1997).
Furthermore, simply comparing single sensor to multi-sensor information when both sources are
needed to achieve high accuracy does not allow for an alternative outcome. Such a study would
benefit from comparing multi-sensor information presented with algorithmic fusion compared to
presentation of all the available information simultaneously (i.e., cognitive fusion).

In a similar study, Krebs and Sinai (2002) used three types of tasks to examine the
change of multisensor fusion benefits as task difficulty increased. In the “easier” person and
vehicle detection tasks, participants performed no better with multi-sensor images than single-
sensor images. As predicted the benefits of algorithmic fusion increased as difficulty increased in
a global scene orientation and a scene recognition task. As the task difficulty increased across
these studies, the amount and quality of useful information from each sensor also may have
changed. In the detection tasks, information from the LWIR image was sufficient to make a
decision given that heat information is shown to benefit in detection tasks. The task

manipulations may not necessarily be an increase in cognitive or physical difficulty rather a



change in what information is important from each individual sensor to make a decision. For the
detection tasks unique heat information is important, but with global image orientation and scene
recognition tasks the holistic image detail and consistency of illumination may be more
informative. A more systematic approach is necessary to make comparisons in human
performance across difficulty levels or tasks. Again, this study would benefit in comparing
multi-sensor algorithmic fusion to cognitive fusion rather than solely to single-sensor images.

Another application of multi-sensor fusion was investigated to aid in driver detection of
nighttime road hazards under various levels of difficulty. McCarley and Krebs (2000) combined
LWIR and visible sensors and asked participants to detect pedestrians in the visual field at
various visibility levels (i.e., low, moderate, and high). In contrast to Krebs and Sinai (2002) the
manipulation of difficulty was more systematic with oncoming traffic headlights either turned off
(low illumination), on low beam (moderate illumination), or high beam ¢high illumination). The
task remained the same and all other environmental information was not manipulated. They
found algorithmic fusion benefits at a moderate level of visibility while maintaining performance
equal to visible sensors alone with high visibility. However, with low illumination fusion,
reaction times with algorithmic fusion were slower than with visible-only imagery. The benefits
of image fusion vary with the quality of the input images (McCarley et at., 2000). Again,
algorithmic performance was compared solely to individual sensor performance and even more
specific to this study, only to visible sensor performance.

In a later follow-up study, McCarley and Krebs (2006) used a multidimensional signal
detection approach, General Recognition Theory (GRT; Ashby & Townsend, 1986), to
understand how the perception quality of each input image affect one another. They found the

contrast manipulation in one sensor changed the perception of contrast in the alternative.



Therefore, algorithmic image fusion may demonstrate a tradeoff of perceptibility of single-band
information (McCarley & Krebs, 2006). For example, given a single fused image, the quality of
information in a visible image will alter the perception of information from the LWIR image.
The use of GRT allows for understanding of some cognitive properties involved in
algorithmically fused imagery, However, there are benefits to understanding more underlying
cognitive properties about both cognitive and algorithmic fusion techniques of multi-sensor
information rather than solely algorithmic fusion.

1.2 Present Study

Previous conclusions about the use of image fusion were inconsistent with no clear
understanding for what experimental manipulations caused performance changes and why
changes occurred. [ will use a cognitive framework to test specific underlying mechanisms.
This is a valuable step forward because I can determine how and why performance changes
across systematic experimental manipulations. Fast and accurate responses are desired in multi-
sensor tasks. Therefore, if decreases in performance are found with multi-sensor information, I
can diagnose what processes are inefficient and suggest how to improve or alter processing to
yield better performance. I can only suggest remedies by first understanding the properties of
basic multi-sensor information processing across a few closely related experimental
manipulations.

In the current study, I used two fusion techniques and two task difficulty levels. 1
examine algorithmic and cognitive fusion in left/right discrimination and left/right discrimination
with spatial uncertainty tasks. My hypotheses were based on previous research and a brief pilot
study.

1.3 Hypotheses



In pilot studies I investigated cognitive processing of a Landolt C (Figure 2). I found less
efficient processing (decrease in performance) of LWIR and visible information with multi-
sensor imagery. Also I found information was processed simultaneously and responses were
made based on whichever sensor finished processing first. In the current studies, I expect to see
improvements in processing mechanisms due to more difficulty imagery (Krebs et al., 2002).
Based on the findings of perceptual nonseperability of single-sensor information (McCarley and
Krebs, 2006), I also predict that information from each sensor is processed simulitaneously with
high interdependence in algorithmically fused images. Here I give a general outline of my
hypotheses. | provide hypotheses for specific properties of information processing of multi-
sensor information in the Analyses subsection of the General Method. Below is a general
understanding for what I expect. Later, I explain the mathematical approach I use and indicate

what specific cognitive properties relate back to the hypotheses stated below.

Figure 2. Multi-sensor Landolt C comprised of both visible and LWIR information. These
stimuli were used in pilot studies. Distribution A: Approved for public release; distribution

unlimited. 88ABW Cleared 01/21/2014; 88ABW-2014-0191.
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1. With a discrimination task I predict efficiency decrements with multi-sensor information
for both algorithmic and cognitive fusion with algorithmic fusion significantly worse than
cognitive fusion.

1A. 1 also predict that cognitive and algorithmically fused image information is processed
simultaneously; however, I predict a highly interactive structure (coactive; discussed
further in later sections) for algorithmically fused information processing.

2. In a second experiment with a discrimination task with target location uncertainty, I
predict more efficient cognitive mechanisms with both multi-sensor fusion techniques.

2A. 1 also predict the structure of information processing to be consistent with the

discrimination task (Hypothesis 1A).
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2. GENERAL METHOD

2.1 Overview

In the experiments reported here, I used the double factorial paradigm (Townsend &
Nowaza, 1995; Houpt, Blaha, MclIntire, Havig & Townsend, 2014), a paradigm developed to
capture the underlying cognitive processes of multiple sources of information. I describe the
statistical framework and corresponding paradigm in following subsections. I investigated
processes of two sensors across two fusion techniques and two task difficulty levels, a 2x2x2
mixed design. The two fusion techniques, algorithmic and cognitive, were explained previously.
The tasks are explained in the respective Experiment method section.
2.2 Participants

I recruited 10 students (6 male, 4 female) attending Wright State University for this
study. Participants’ ages ranged from 20 to 37 years (M = 25 years). All participants self
reported right-handedness, normal or corrected to normal vision, normal color vision, and no
difficulties reading English. All 10 participants completed 5 sessions for each experiment:
Experiment 1 and Experiment 2. Participants were compensated $8 per session with a $2 per
session completion bonus: $8 + $2 bonus x 10 days = $100 in total.
2.3 Materials

Stimuli were presented using PsychoPy (Peirce, 2009) on a 20-inch Sony Trinitron
monitor. Similar to the procedures in Bittner, Schill, Blaha, and Houpt (2014), stimuli were
randomly selected within sensor type and target type from a set of 20 to avoid additional cues
from artifacts of sensor noise. Therefore, I selected 10 sensor images that slight varied from one
another for each response option (left or right) within the 2AFC task in both Experiment I and

Experiment 2. For example, in Experiment 1 I selected 5 images of a man pointing left and a 5
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pointing right for both LWIR (Figure 3A) and visible (Figure 3B) imagery. In addition, I
selected 5 images of another man pointing left and 5 pointing right that varied in appearance
from the previous man for both LWIR {Figure 3C) and visible (Figure 3D) imagery. The stimuli
varied across Experiment 1 and Experiment 2 so various examples of each are shown in the
respective Experiment method sections later in the document. The sensors and fusion techniques
are described below.

2.3.1 Image Collection. TNO Defense located in Soesterberg, Netherlands constructed
the TRICLOBS 3-band night vision system consisting of two digital image intensifiers (Photonis
ICU’s) and an uncooled long-wave infrared microbolometer (XenICS Gobi 384). The night
vision sensor suite registers visual (400-700 nm), near infrared (700 — 1000 nm) and long-wave
infrared (8-14 pm) bands of the electromagnetic spectrum. The optical axes of the three cameras
were aligned using two dichroic beam splitters (ITO filter to reflect the LWIR part of the
incoming radiation into the thermal camera, and a B43-958 hot mirror to split the transmitted
radiation into a visual and NIR part). The registration of the individua! images therefore requires
only a minimal amount of computational effort. Software has been developed to register the
signals from all 3 cameras simultaneously, display the images, and write them to a hard disk
(Toet, 2013; Toet & Hogervorst, 2009). The raw imagery was handed over to Dr. Alan Pinkus
(WPAFB, Dayton, Ohio). Additional simple image registration was conducted at AFRL.
Distribution A: Approved for public release; distribution unlimited. 88ABW Cleared

11/18/2014; 88ABW-2014-5325.
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C. D.
Figure 3. Examples of the two individuals pointing right used for stimuli in Experiment 1.

Images consist of each individual point right with LWIR imagery (3A and 3C) and visible
imagery (3B and 3D).

2.3.2 Sensors. | used imagery from two sensors, visible and long-wave infrared (LWIR).
There are numerous sensors to investigate but I will focus only on two for my study. I chose
visible and LWIR because of the contrast in the type of information each one holds. As 1
mentioned in the introduction, visible images display detail of features while LWIR highlight
heat information. When presented together the sensors can potentially improve performance in

detection and discrimination tasks (Krebs & Sinai, 2002; Toet et al., 1997).
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2.3.3 Fusion. I used two types of fusion techniques, algorithmic and cognitive.
Algorithmic fusion attempts to combine important features from each sensor into a single image.
I used the Laplacian Pyramid Transform (LPT) to combine visible and LWIR information into
one composite image. The LPT is a pixel-level, pyramid based algorithm. Subjective and image
quality assessments support the use of LPT (Petrovi¢, 2007). The algorithmic images were
always presented in the center of the screen. Cognitive fusion presents both single-sensor images
within 5 degrees of visual angle. The images are presented directly to the left and right of center
screen.

2.3.4 Stimulus Manipulation. One manipulation requirement of the cognitive
framework I used is to speed up and slow down the processing of sensors’ information. [ further
explain these details in the proposed Analyses subsection below. I used the QUEST
psychometric method (Watson & Pelli, 1983} at the start of each session, excluding Day 1 of
each experiment, to slow down the processing of each single-sensor image. This method
systematically manipulated the amount of random noise added to the stimulus for 120 trials.
Upon completion, the block returned an estimate of the amount of noise necessary to obtain 90%
accuracy. This procedure was conducted for each sensor in independent, randomly ordered
blocks. Next, I copied the original stimulus set and added an amount of random Gaussian noise
equivalent to the psychometric estimation value. An example of a LWIR image (Figure 4A) with
noise is shown in Figure 4B and a visible image (Figure 4C) with noise is shown in Figure 4D.
These images (Figure 4B and 4D) represented stimuli intended to slow down the cognitive
processing of the sensor information. I accounted for daily individual variability by estimating

noise values for each person at the start of each session.
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Each combination of original stimuli (high salience or H) and stimuli with noise (low
salience or L) were used in the following block of trials to systematically speed up and slow
down processing of each single-sensor: HLwir + Huisible, HLwir + Luisibles Lewir + Hyisible, and
Liwir + Lyisible. This procedure was done every session after the two psychometric blocks. For

algorithmically fused trials, the stimulus noise was added before fusing the two images together.

C. D.
Figure 4. An example of a LWIR image (A) with Gaussian noise (B) and a visible image (C)

with Gaussian noise (D) used in Experiment 1.
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2.4 Procedures

Participants had 10 days of 1-hour experimental session. Five sessions were dedicated to
each experiment: Experiment 1 and Experiment 2. Session 1 and 6 had 6 blocks of trials to test
Hypotheses 1 and 2, each session was 50 minutes in total (Figure 5). The remaining sessions (2-
5, 7-10) consisted of two psychophysical blocks (10 minutes) and a third 45-minute block testing
Hypotheses 1A and 2A (Figure 6). The blocks within the first session were pseudo-randomized
and the remaining sessions alternated between algorithmic (A) or cognition (C) fusion. Specific
numbers of trials are tailored for my planned analyses and discussed in further detail in following

subsections.

Day 1 . . .
LWIR, Visible, Multi-sensor Trials (360)

= Cognitive Fusion LWIR Trials (120)

Visible Trials (120)

LWIR, Visible, Multi-sensor Trials (360)

~— Algorithmic Fusion LWIR Trials (120)

Visible Trials (120)

Figure 5. On Day 1 of each Experiment participants complete all 6 experimental blocks with
order of cognitive and algorithmic fusion randomized and the 3 blocks within each in a
randomized order. Beside the name of each is the number of trials for the respective

experimental block.
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Day 2-4, 6-10

. . QUEST - Visible (120) ) . .
Cognitive Fusion: } High and Low Salience Trials (1080)

T -LWIR (120
OR QUES (120)
Algorithmic Fusion: QUEST - Visible (120) High and Low Salience Trials (1080)
QUEST - LWIR (120

Figure 6. On experimental session 2-4 and 6-10 the fusion techniques alternated and the one that
came first was randomly chosen. Two QUEST blocks were randomly ordered and upon
completion of both, a block of trials with all possible combinations of high and low salience
stimuli was completed. More detailed explanation of trials is in subsequent sections.

2.4.1 Stimulus Presentation. On every trial a localization box (Figure 7 & Figure 8) was
presented for a random interval of time between 400 and 500ms followed by the stimulus, The
stimulus was displayed for 250 msec. In an algorithmic fusion block one image was randomly
selected and always presented in the middle of the screen (Figure 7). In cognitive fusion blocks
LWIR-only and visible-only trials displayed one image randomly placed to the left or right of the
center (Figure 8). Figure 8 illustrates a cognitive fusion trial when both sensors were presented.
Sensor presentation was also randomly placed to the left or right of the center for multi-sensor
presentation. The stimuli for cognitive fusion trials were displayed within 5 degrees visual angle
to ensure no saccade was necessary for perceptual processing of the information. A blank screen
was presented for 1750msec to leave a sufficient amount of time for response (2 seconds in

total). No trial feedback was given.
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Visible

400 - 500 msec 1750 msec

Multisensor

250 msec
Figure 7. Example of an algorithmic fusion trial. A localization box for a random interval

between 400-500msec was followed by the presentation of a visible-only (top-middle image),
LWIR-only image (center-middle), or multi-sensor image (bottom-middle) for 250msec. All

images were presented in the center of the screen.
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Visible

400 - 500 msec
S
I

1750 msec

______

Figure 8. Example of a cognitive fusion trial. Two localization boxes were presented for a
random interval between 400-500msec and followed by the presentation of a visible-only (top-
middle image), LWIR-only image (center-middle), or multi-sensor image (bottom-middle) for
250msec. All images were presented within 5 degrees of visual angle with each randomly placed
to the left and right of center screen.
2.5 Analyses

I used measures of Systems Factorial Technology (Townsend & Nowaza, 1995) to
investigate cognitive mechanisms of multi-sensor information. This framework supplies
information about important cognitive properties including workload capacity, independence,
architecture, and stopping-rule. Workload capacity refers to the change in processing rate of
each sensor going from single to multi-sensor presentation. Independence is the degree to which
the sensor information interacts. Architecture is the spatio-temporal organization of sensor

processing, whether processing is simultaneous or sequential. Stopping-rule refers to whether
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one or both sensors are finished processing when a response is made. One statistical measure of
SFT, the capacity coefficient, is used to examine workload capacity and independence. Two
additional measures, the survivor interaction contrast (SIC) and mean interaction contrast (MIC),
are used to observe unique architecture and stopping-rule response time signatures. The double
factorial paradigm (DFP) is methodology developed to ensure appropriate manipulations for
computing measures of SFT. [ describe each measure of SFT and the DFP below.

2.5.1 Capacity Coefficient. The capacity coefficient is the ratio of observed
performance with multi-sensor information to the predicted, model-based performance (Equation
1). The model prediction is the sum of performance with each single-sensor image. The model
prediction is an individual level baseline and assumes unlimited capacity, independent, and
parallel processing (UCIP). Unlimited capacity is evidence of no change in processing rate of the
individual sensors for multi-sensor presentation. Independent processing indicates no cross talk
or facilitation between sensor information. Parallel model predictions support simultaneous
processing of all sensor information.

A cumulative hazard function represents overall performance for a given trial type
(visible-only, LWIR-only, and multi-sensor). A cumulative hazard function, H(#), indicates the
amount of processing completed at a given time (f). The capacity coefficient ratio is a function
of the amount of processing completed for multi-sensor trials to the amount of processing a
UCIP model would predict at any time, ¢. The capacity coefficient assuming only one source of

information must be finished processing (i.e., OR processing) is defined as:

Hmulti—unsor(t)
Cor (t) Hyisitie ()+HLwir ()’ v

The numerator is the cumulative hazard function of multi-sensor trials and the denominator is the

summation of the integrated hazard functions of visible-only and LWIR-only trials. If all
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assumptions are satisfied, the ratio equals 1, C(t) = 1. If one or more assumptions are violated,
the ratio is greater than 1 (super capacity) or less than 1 (limited capacity).

Based on my general hypotheses, | outline the corresponding capacity coefficient results |
expect to find:

1. A limited workload capacity for both fusion types in a simple discrimination task.

2. In a more complex, visual search with discrimination task, I predict improvements in
capacity from the simple task. Therefore, 1 predict unlimited or super workload capacity
for both cognitive and algorithmic fusion.

2.5.2 Survivor Interaction Contrast. The SIC examines the interaction between two
sources of information when slowing down and speeding up cognitive processing (Equation 2). I
add random noise to each sensor to effectively slow down and speed up processing rates. The
salience manipulation must satisfy the assumptions of selective influence to affect only the speed
of processing for the respective sensor information. Assumptions are tested using Kolmogorov-
Smirnov (K-S) test and the following statistical tests must indicate significance with alpha = .05:

SuH < Sur, SHL < 8L, Sun < Stu, Stu < Sy (Figure 9).
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Exp1, Cognitive Fusion - Subject 4
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Figure 9. Ordering of survivor functions that satisfy all assumptions of selective influence. The
red line represents the fastest distribution when both sources have high salience (Syy) and the
blue line represent the slowest distribution when both sources have low salience (Si.). The
purple dashed lines represent the two variations of high and low salience in each source (Sy. and
SLu).

If selective influence holds, the SIC will indicate one of five classes of models. Positive
and negative SIC deviations from zero are tested using the Houpt-Townsend statistic (Houpt &
Townsend; 2010) and are used to classify the unique processing model (see Figure 10). The
Houpt-Townsend statistic is not computed for those violating assumptions of selective influence.
Parallel-AND indicates both visible and LWIR information is processed simultaneously and to
completion before a response is made. With a Parallel-OR model all information is processed

simultaneously but only the information from the fastest sensor channel is used to make a
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decision. Serial-AND models process visible and LWIR information sequentially and all
processing is completed before a response is made. Serial-OR models process information
sequentially but only one type of sensor information is used to make a decision. A coactive
model does not have a particular stopping rule. Rather both of the sensors are processed
simultaneously and information pools together to reach one decision threshold.
Each structural model demonstrates a distinct distributional signature after computing the

SIC. The SIC is defined as:

SIC() = [SLo () — SLu(®] — [SuL () — Suu(t)]. ()
If underlying processes are serial then the mean area under the curve is zero. If processing is
parallel then the mean area under the curve is different from zero (positive or negative). The
distinction between parallel and serial models is tested using the mean interaction contrast
(MIC). This measures is comparable to the SIC but returns a mean contrast value rather than a
function. It is defined as:

MIC(¢) = [My — Myl — [My — Myu]. (3)

The MIC alone is not sufficient to detect variations of parallel and serial models. Therefore, I
used the Houpt-Townsend statistic to detect significantly positive (D+) or negative (D-)
deviations from zero in the SIC function. Qur alpha level is .33 because the null hypothesis is
zero and could otherwise favor a serial-OR signature (Houpt, 2014). If cognitive mechanisms
utilize a parallel-AND model then the SIC is all negative (significant D-, MIC < 0), parallel-OR
results in an all positive SIC (significant D+, MIC > 0), and serial-OR models result in a flat SIC
(MIC = 0). Both a serial-AND and coactive model result in an SIC that is first negative then

positive (significant D+ and D-). MIC is useful to further distinguish between serial-AND and
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coactive processes. For the coactive model is a variation of parallel processing (MIC > 0) while a
serial-AND model indicates MIC = 0.

A hierarchical Bayesian analysis can estimate a full posterior distribution for both group
and individual level inferences of parallel and serial models (Houpt & Fifi¢, 2013). The model
allows for analysis with a fewer number of trials/participants than required for SIC statistics to
draw meaningful conclusions of underlying processing mechanisms. I ensure a sufficient burn in
period for Markov-Chain Monte Carlo sampling to obtain convergence across all chains and
adequate measures of effect size and adjustment for autocorrelation across all participants. An
adequate measure of effect size is a Gelman-Rubin statistic of 1.10 or smaller (Gelman & Rubin,
1992). The model assumes inverse-Gaussian response time distributions. Prior distributions are
defined as MIC = 0 as the most likely model (50%) while MIC > 0 and MIC <0 are less likely
with equal probability (25%). This prior was used based on the possible classes of models, serial-
OR or serial-AND is MIC = 0, parallel-OR is MIC > 0, and parallel-AND is MIC < 0.

FParalld Sexial

N
VLV
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I

Figure 10. Five distinct model distribution signatures including parallel-AND (top left), parallel-

AND

OR (bottom left), serial-AND (top right), serial-OR (bottom middle), and coactive (bottom

right).
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To further elaborate on the predictions discussed in the Hypotheses section I describe
how each relates to specific SIC signatures:
1A. For the simple discrimination task I predict simultaneous processing of sensor
information with a cognitive fusion display. I hypothesize only one sensor will
finish processing before a decision is made, parallel-OR processing. For
algorithmically fused imagery, I predict to find a coactive cognitive architecture.
2A. For the more complex visual search with discrimination task, I hypothesize to find
the same cognitive architecture described in Hypothesis 1A (above).

2.5.3 Double Factorial Paradigm. My experimental paradigm must manipulate
workload for the capacity coefficient and salience for the SIC. Two condition types are required
for estimating the UCIP model prediction and computing a ratio of the baseline model to multi-
sensor performance comparison: a condition with all sensor information present (HH or multi-
sensor trials) and individual sensor trials (@H or visible-only and H@ or LWIR-only). The
salience manipulations change processing speed of the different sensors to infer about temporal
arrangement. The salience manipulations must satisfy the assumptions of selective influence to
only affect the speed of processing for the respective sensor information. Therefore, the survivor
function of multi-sensor information with no noise (Syy) must be the fastest and the survivor
function of multi-sensor information with noise added to both sensors {S.1.) must be the slowest,
Sun < {Sur, Stu} < StL. The processing speed of each sensor was factorially manipulated
according to DFP guidelines outlined in a recent article (Houpt, Blaha, McIntire, Havig,
Townsend, 2014). Each trial type is shown in Table 1. Table 2 indicates the specific trials
presented on the first day of each Experiment to test Hypotheses 1 and 2. Table 3 indicates the

full double factorial paradigm to make conclusions about Hypotheses 1A and 2A. The numbers
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within each box represent the number of trials for each combination of sensor images. In the full
factorial paradigm trials are balanced using methods that suggest presenting multi-sensor,

visible-only, and LWIR-only images for the same number of trials (Houpt et al., 2014).

Table 1. Double factorial paradigm. Each element identifies the salience level for LWIR and
visible sensors (i.e. H;L: = high salience LWIR and low salience visible). In this design, at least

one signal was present for each trial so there were no Absent-Absent trials.

Visible (2)
Salience | High | Low | Absent{@®)
= | High HiHa [ Hila | Ha@s
°§‘ Low LH; [ L | L@,
-l

Absent(@) | @:H: | Gils X

Table 2. Specific trials presented on the first day of each experiment to test Hypotheses 1 and 2.

120 trials of visible-only, LWIR-only, and multi-sensor images were completed.

Visible {2)
= High @
°§= High | 120 | 120
= | g 120 X

Table 3. The full double factorial paradigm to make conclusions about Hypotheses 1A and 2A,
All multisensor combinations of high and low salience were each presented 180 times and while

each single-sensor high and low salience stimuli were presented on 360 trials.

Visible (2)
Salience | High | Low | Absent(@®)
o | High 180 | 180 | 360
°§‘ Low 180 | 180 | 360
p |

Absent{@} | 360 | 360 X
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3. EXPERIMENT 1
3.1 Methods

Experiment 1 was always the first 5 days of participation. All 5 sessions involved a
left/right discrimination task.

3.1.1 Procedures. Participants were asked to discriminate whether a person’s arm was
pointing left or right (Figure 3A-3D). If the participant determined left, they pressed the left
mouse button, if right, they pressed the right mouse button. The participants were told to perform
the task as quickly and accurately as possible and were informed they must achieve at least 90%
accuracy to order for me to conduct any further analyses.

3.2 Results

A summary of capacity coefficient and SIC results across both algorithmic and cognitive
fusion for the discrimination task in Experiment 1 for each participant is listed in Table 19. The
following sections address the results of several measures that test my hypotheses.

3.2.1 General Analyses. Participant 1 did not achieve 80% accuracy in all conditions are
therefore was not included in the capacity analyses of cognitive fusion multi-sensor information.
Summary statistics of response time and accuracy are outlined for each participant for visible-
only (Table 4), LWIR-only (Table 5) and multi-sensor (Table 6) in the algorithmic fusion block
and for each participant in the cognitive fusion block (Table 7-9). Group response time statistics
are provided in Table 10 and Figure 11. Using a Bayesian linear model there is barely
mentionable evidence for a main effect of fusion type (algorithmic, cognitive) and subject over a
model with main effects of sensor (visible-only, LWIR-only, multisensor) and subject, BF =

1.15.
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A one-way ANOVA was conducted for each sensor and fusion type to test response time
variability within each set of 10 images across all participants. Analysis of variance showed that
the effect of individual image was not significant across visible-only F(19,1180) = 1.19, p =0.26,
or LWIR-only images, F(19,1180) = 1.49, p = 0.08 when presented in the center of the screen
(algorithmic fusion condition). With cognitive fusion presentation (left or right of center screen)
analysis of variance showed significant effect of image across LWIR-only, ¥(19,1180) =3.52,p
<.05, but not with visible-only images, F{19,1180) = 1.39, p = 0.12. Significant effects of

image were shown for images chosen for algorithmic fusion, £(19,1180) =3.42, p <.05.

Table 4. Individual mean and standard deviation of response time and accuracy for the visible-

only trials within the cognitive fusion-capacity block in Experiment 1.

Response Time Accuracy
Participant M SD M SD
1 476.59 |263.21 |89.17 |31.21

54047 |192.74 |90.00 {30.13
450.81 | 78.15 90.00 |30.13
579.28 |[281.76 [95.00 |21.89
455.83 | 138.21 |[85.00 |35.86
35145 [163.50 [95.83 |20.07
664.72 |329.78 | 80.83 139.53
34749 |184.33 | 9833 | 12.86
37549 |89.50 [98.33 |12.86
367.94 |121.89 [97.50 |15.68

=[e (oo |wn|siwin
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Table 5. Individual mean and standard deviation of response time and accuracy for the LWIR-

only trials within the cognitive fusion-capacity block in Experiment 1.

Response Time Accuracy

Participant M SD M SD
854.86 | 712.83 | 62.50 | 48.62
57243 125391 |83.33 (3742
462.30 [ 91.93 90.00 |30.13
593.33 128241 |94.17 |[23.54
486.52 [ 174.19 [90.00 [30.13
579.62 | 151.28 | 96.67 | 18.03
674.35 |1316.87 | 84.17 | 36.66
564.00 | 18440 |97.50 |15.68
611.69 |108.40 |[95.83 |20.07
10 57825 |122.65 [95.83 | 20.07
Table 6. Individual mean and standard deviation of response time and accuracy for the

WwWloel~a|n|w | ]|WwW N |—

multisensor trials within the cognitive fusion-capacity block in Experiment 1.

Response Time Accuracy
Participant M SD M SD
599.03 | 448.00 | 89.17 [31.21
483.77 [110.40 |98.33 12.86
421.89 | 61.67 97.50 15.68
533.59 | 179.55 |[98.33 12.86
415.13 1 70.73 98.33 12.86
52045 ]139.19 |97.50 15.68
650.40 33345 [93.50 |26.45
51292 ] 130.20 | 100.00 | 0.00
555.77 _196.25 100.00 | 0.00
515.64 |12.73 99.17 [9.13

=[e]ee|~a|on |t u b =
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Table 7. Individual mean and standard deviation of response time and accuracy for the visible-

only trials within the algorithmic fusion-capacity block in Experiment 1.

Response Time Accuracy
Participant M SD M SD
369.14 [ 166.17 |92.50 |2645
42751 |146.85 |96.67 |18.03
37426 {58.01 19667 |18.03
468.80 123136 |94.17 | 23.54
37729 |1170.88 |95.83 | 20.07
41121 | 91.92 98.33 12.86
469.10 | 178.51 |95.00 |21.89
35198 [5298 [97.50 |12.68
612.01 [113.09 [99.17 |0.09
10 46399 1107.61 | 100.00 |0.00
Table 8. Individual mean and standard deviation of response time and accuracy for the LWIR-

W oo~y |wn &t m

only trials within the algorithmic fusion-capacity block in Experiment 1.

Response Time Accuracy
Participant M SD M SD
363.07 |64.74 94.17 23.54
441.35 153.25 | 95.83 20.07
390.04 |61.59 96.67 18.03
502.71 |290.83 | 96.67 18.03
379.65 |94.24 92.50 | 26.45
41529 |174.18 | 97.50 15.68
527.46 | 248.52 |92.50 |26.50
35482 |63.24 97.50 15.68
651.72 |170.28 | 99.17 0.09
458.60 | 87.16 100.00 | 0.00

ole|se|N]ov|u|s|wtf—
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Table 9. Individual mean and standard deviation of response time and accuracy for the

multisensor trials within the algorithmic fusion-capacity block in Experiment 1.

Response Time Accuracy

Participant M SD M SD
395.64 21996 |86.67 |34.14
432.32 | 96.36 96.67 | 18.02
406.80 | 168.53 | 94.17 | 23.54
499.01 |193.83 |98.33 |12.86
402.29 |206.82 |93.33 |25.05
44791 | 108.62 199.17 19.13

545.60 |304.75 [94.17 [23.54
368.66 | 87.19 96.67 | 18.03
654.78 1169.29 [97.50 | 15.68
507.05 |169.96 |[99.17 |9.13

=1 RN =N (VA P (P (8] B

Table 10. Mean and standard deviation of response time at the group level across each trial type
(visible-only, LWIR-only, multisensor) of both the algorithmic and cognitive fusion capacity

blocks in Experiment 1.

Condition M SD
Visible 422.63 | 26.53
Algorithmic LWIR 44146 | 26.57

Multisensor | 442.59 26.45

Visible 506.78 26.66
Cognitive LWIR 539.31 26.65
Multisensor | 523.95 26.4
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Figure 11. Group level Bayesian estimated mean and 95% highest density interval for both
algorithmic and cognitive fusion with visible-only, LWIR-only, and multi-sensor trials. The
salmon colored bars represent the algorithmic fusion trials (center of screen) and the purple-blue
bars represent the cognitive fusion trials (randomly placed to the left/right of center screen).
3.2.2 Capacity Coefficient. The capacity coefficient function was below 1 for some time
for both cognitive and algorithmic fusion. Individual capacity z-scores in Experiment 1 ranged
from -9.5 to -6.4 for algorithmic fusion (Table 11) and from -4.2 to 0.08 for cognitive fusion
(Table 12). The performance hypotheses were supported; I found a limited workload capacity
across both fusion techniques with algorithmic fusion decisively more limited than cognitive

fusion, BF = 850 (Figure 12). However, looking at individual level analyses 4 participants
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exhibited an unlimited workload capacity for cognitive fusion blocks (Participants 2, 3, 5, 10). At
the group level, processing efficiency of multi-sensor information was worse than what was
predicted by a UCIP model across both fusion techniques. However, individual analyses show
some individuals process multi-sensor cognitive fusion information with equal efficiency as

UCIP model predictions (unlimited capacity).

Table 11. Individual level capacity, z-score, and p-value for algorithmic multi-sensor images

compared to each sensor alone (UCIP model).

Subject | Capacity | z-score p-value
Limited -8.174 p<.05
Limited -6.367 p <.05
Limited -8.182 p<.05
Limited -7.694 p<.05
Limited -7.780 p<.05
Limited -9.155 p<.05
Limited -7.436 p<.05
Limited -7.547 p <.05
Limited -7.660 p <.05
Limited -9.500 p<.05

ololeelwon|nin|wirn|—

Table 12. Individual level capacity, z-score, and p-value for multi-sensor cognitive fusion

compared to each sensor alone (UCIP model).

Subject Capacity z-score p-value
N/A N/A N/A
Unlimited | -0.088 p=10.930
Unlimited | -0.653 p=0.514
Limited -4.056 p<.05
Unlimited 0.088 | p=0.930
Limited -3.322 p<.05
Limited -4.219 p <.05
Limited -4.066 p<.05
Limited -2.362 p <.05
Unlimited | -0.826 | p=0.409

oo |eel]a|un]n|w]—
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Experiment 1 - Workload Capacity
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' Cognitive Fusion |
| Algorithric Fusion

ciy

Time

Figure 12. The capacity coefficient for both algorithmic and cognitive fusion in Experiment 1.
The reference line is C(t) = 1 (unlimited capacity). The bold red line shows the group level for
algorithmic fusion with red dashed lines showing each individual. The bold blue line shows the
group level for cognitive fusion with the blue dashed lines showing each individual.

3.2.3 Blocking Effects. Most participants’ performance exhibited no difference across
sensor response time distributions when pulling each individual sensor trials into a separate
block of trials using a Bayesian t-test. However, some participants did show evidence for an
effect. Table 13 and 14 list visible effects with algorithmic and cognitive sensor presentation,
respectively. Likewise, Table 15 and 16 lists LWIR effects with algorithmic and cognitive
sensor presentation, respectively. The direction indicates whether the presence of additional
sensors increased (positive) or decreased (negative) response times. The direction was only

reported for those participants with BF > 3 in favor of an effect.
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3.2.3.1 Visible Images. Participant 1 achieved low accuracy performance and was not
used for analyses of sensor effect. For visible-only trials with algorithmic fusion presentation,
there was decisive evidence of an effect for only one participant, Participant 9 (Mcontext =
609.73ms, Myg comext = 320.79ms), while the block with just visible-only trials were faster than
visible-only trials in a block randomized with other sensor types. There was a BF < .30 for 5
participants, which indicates evidence against a difference. The Bayes Factor for a visible effect
with algorithmic fusion is listed for each participant in Table 13.
Table 13. Visible signal effect in presence and absence of LWIR and multi-sensor imagery for

the algorithmically combined, single-image display.

Subject Bayes Factor Direction
1 N/A N/A
2 BF =0.29 N/A
3 BF = 0.26 N/A
4 BF = 0.44 N/A
5 BF =0.15 N/A
6 BF =0.19 N/A
7 BF =0.20 N/A
8 BF =0.56 N/A
9 BF =9.09 x 10° Positive
10 BF = 0.49 N/A

For visible-only trials with cognitive fusion display, decisive evidence for an effect was
found for participant 2, 8, and 10 (Table 14); all of which had faster mean response times when
presented visible-only trials in isolation rather than randomly interleaved with multi-sensor and

LWIR trials. There was evidence against an effect for 4 participants (3, 4, 6, and 9), BF <.30.
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the cognitive fusion, single-image display.

Table 14. Visible signal effect in presence and absence of LWIR and multi-sensor imagery for

Subject Bayes Factor Direction
1 N/A N/A
2 BF =9.69 Positive
3 BF =0.15 N/A
4 BF =0.15 N/A
5 BF =0.40 N/A
6 BF =0.20 N/A
7 BF =0.31 N/A
8 BF =6.13 x10"° Positive
9 BF =0.25 N/A
10 BF = 1.94 x 10° Positive

3.2.3.2 LWIR Images. For LWIR-only trials with algorithmic fusion presentation, there
was decisive evidence of an effect for 3 participants. Participant 4 (Mcontext = 451.08ms, Mo context
= 497.36ms) and Participant 6 (Mcoptexs = 401.83ms, Muo context = 477.01ms) had a negative effect
of the presence of visible and multi-sensor images. Therefore LWIR-only trials in isolation were
slower than those in context of visible and multi-sensor trials. Using a Bayesian t-test I found
decisive evidence for positive effects for Participant 9 (Mcontexi = 642.07ms, Mro context =
563.93ms). Therefore for this Participant LWIR-only trials in isolation were faster than in the
presence of visible and multi-sensor trials. There was a BF < .30 for 3 participants, which
indicated evidence against a difference in response times. The Bayes Factor for a LWIR effect

with algorithmic fusion is listed for each participant in Table 15.
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algorithmically combined, single-image display.

Table 15. LWIR signal effect in presence of absence of visible and multi-sensor imagery for the

Subject Bayes Factor Direction
1 N/A N/A
2 BF = 0.88 N/A
3 BF = (.24 N/A
4 BF =3.47x 10" Negative
5 BF = 0.55 N/A
6 BF=217.75 Negative
7 BF = 0.50 N/A
8 BF=10.14 N/A
9 BF = 1.30x 10° Positive
10 BF =0.17 N/A

I found evidence of an effect for 5 participants in LWIR-only trials with cognitive fusion
presentation. Three participants exhibited a positive relationship (faster RT with LWIR-only
isolation) and 2 had a negative relationship (slower RT with LWIR-only trial isolation). There
was a BF < .3 for 3 participants (Participant 3, 6 and 7), which was evidence against any effect.
Table 16 lists each subject along with a corresponding Bayes Factor for evidence of an effect of
LWIR with cognitive fusion and the direction of the effect (where necessary).

Table 16. LWIR signal effect in presence of absence of visible and multi-sensor imagery for the

algorithmically combined, single-image display.

Subject Bayes Factor Direction
1 N/A N/A
2 BF =3.22 Positive
3 BF = 0.15 N/A
4 BF =3.16 Negative
5 BF = 0.34 N/A
6 BF =0.15 N/A
7 BF =0.21 N/A
8 BF = 1.69 x 10° | _Positive
9 BF=7.70 Negative
10 BF =2.39x 10| Positive
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3.2.4 Survivor Interaction Contrast. For algorithmically fused images, no participant’s
data satisfied the assumptions of selective influence thereby precluding the use of the SIC for
model classification (Table 17). If selective influence held across the group, all assumptions
listed in Table 17 would show significance at p < .05. Individual participant’s ordering of
survivor functions and corresponding SIC (uninterruptable) are shown in Figure 13 - 22.

Table 17. Distribution comparison K-S tests by participant for algorithmically fused images.

Subject | Dan.ar | Purir | Pann | DipiL
0.010 0.074 | 0.011 0.072
0.079 0.087 | 0.068 |0.069
0.084 0.038 | 0.150* | 0.038
0.112 0.051 | 0.135* | 0.103
0.095 0.045 |0.061 (.034
0.092 0.103 | 0.056 |0.000
0.074 0.055 |0.022 | 0.094
0.100 0.109 | 0.081 0.058
0.034 0.098 |0.031 |0.103
0.132~* ] 0.081 0.039 |0.117~-*
Note: ~* p <.10, * p <.05, ** p <.01, *** p <.001.

=[elee|w|on|w|a|w | )—
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Figure 13. SIC analyses of selective influence and architecture for Participant 1 in the
Experiment 1, algorithmic fusion block. The plot to the left shows the ordering of survivor
functions. If the red line is fastest (furthest to the left) and the blue line is the slowest (furthest to
the right), selective influence holds. If selective influence holds, the SIC function (plot to the
right) is tested for positive and negative deviations from zero. If selective influence does not

hold, SIC results are uninterruptable.
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Figure 14. SIC analyses of selective influence and architecture for Participant 2 in the

Experiment 1, algorithmic fusion block.
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Figure 15. SIC analyses of selective influence and architecture for Participant 3 in the

Experiment 1, algorithmic fusion block.
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Exp1, Algorithmic Fusion - Subject 4
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Figure 16. SIC analyses of selective influence and architecture for Participant 4 in the

Experiment 1, algorithmic fusion block.
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Figure 17. SIC analyses of selective influence and architecture for Participant 5 in the

Experiment 1, algorithmic fusion block.
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Figure 18. SIC analyses of selective influence and architecture for Participant 6 in the

Experiment 1, algorithmic fusion block.
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Exp1, Algorithmic Fusion - Subject 7 Exp1, Algorithmic - Architecture 7
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Figure 19. SIC analyses of selective influence and architecture for Participant 7 in the

Experiment 1, algorithmic fusion block.
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Figure 20. SIC analyses of selective influence and architecture for Participant 8 in the

Experiment 1, algorithmic fusion block.
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Exp1, Algorithmic Fusion - Subject 9 Exp1, Algorithmic - Architecture 9
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Figure 21. SIC analyses of selective influence and architecture for Participant 9 in the

Experiment 1, algorithmic fusion block.
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Figure 22, SIC analyses of selective influence and architecture for Participant 10 in the
Experiment 1, algorithmic fusion block.

For cognitive fusion SIC analyses, selective influence was satisfied for 7 participants.
The Houpt-Townsend SIC statistic (Houpt & Townsend, 2010) indicated 3 participants had a
significant positive SIC (parallel-OR), 2 participants showed an all negative SIC (parallel-
AND), and 2 participants showed no positive and negative deviations from zero (Serial-OR).
For all tests alpha = .33, as explained previously in the Methods section. The remaining 3
participants failed tests of selective influence leading to ambiguous SIC interpretations. Table 18
lists each participant’s Houpt-Townsend SIC statistic for both positive and negative deviations
from zero and corresponding K-S statistics with level of significance. Individual figures of

ordering of survivor functions and corresponding SIC are listed below in Figure 23 - 32.
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Table 18. Cognitive fusion results including: Houpt-Townsend statistic (D+, D-) and tests of
selective influence for each participant in Experiment 1. Bold D+ and D- statistics indicate a

significant Houpt-Townsend statistic at p < 0.33.

Subject [ D+ [ D- Dynnr | Duir | Dupan DrpiL
1 N/A | N/A | 0.043 0.176** | 0.112 0.057
2 N/A | N/A | 0.220%** | 0.064 0.143* 0.146*
3 N/A | N/A | 0.100 (0.095 0.163** 0.068
4 0.018 [ 0.131 | 0.231*** | 0.115~* | 0.190** 0.157**
5 0.136 | 0.035 | 0.256*** | (0.225%* | 0.159*** [ (.340%**
6 0.179 | 0.055 | 0.196** | 0.203** | 0.119~* 0.300***
7 0.062 | 0.139 | 0.201*** | 0.077 0.118~* 0.122~*
8 0.159 { 0.073 | 0.268*** | 0.275*** | 0.238*** | (. 252%*%*
9 0.096 | 0.086 | 0.295%** [ (),293%** | (),203*** | (), 284***
10 0.101 j 0.011 | 0.207*** | 0.233%** | 0.171** | (0.269***

50

Note: H-T statistic = p <0.33, ~* =p <.10, * =p < .05, ** =p < .0], *** =p <.001l.
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Figure 23. SIC analyses of selective influence and architecture for Participant 1 in the

Experiment 1, cognitive fusion block. The plot to the left shows the ordering of survivor

functions. If the red line is fastest (furthest to the left) and the blue line is the slowest (furthest to

the right) then selective influence holds. If selective influence holds, the SIC function (plot to

the right) is tested for positive and negative deviations from zero. If selective influence does not

hold, SIC results are uninterruptable.

51



Exp1, Cognitlve Fusion - Subject 2

s()

T T i T
200 300 400 500 800 VOO 800

Time

SIC

04

02

00

-0.2

-04

Exp1, Cognitive Fusion - Architecturs 2

y '-,.ML,--"\ ———

I|-1

~

1000 1500 2000

Time

Figure 24. S1C analyses of selective influence and architecture for Participant 2 in the

Experiment 1, cognitive fusion block.
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Figure 25. SIC analyses of selective influence and architecture for Participant 3 in the

Experiment 1, cognitive fusion block.
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Figure 26. SIC analyses of selective influence and architecture for Participant 4 in the
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Figure 27. SIC analyses of selective influence and architecture for Participant 5 in the

Experiment 1, cognitive fusion block.

55



Exp1, Cognitive Fusion - Subject &

=2 . e,
. el /“J
= Ao
il
0 AT
o r .-‘I
< | [ |
(=]
i
.'-.. o
i
= [id]
4
it J,r
g & ':.'_,-_l".‘_
- T T T T
200 300 400 500 800 700 800

04

02

0.0

-02

04

Exp1, Cognitive Fusion - Architecture 6

)
[ % 4
e
I 1 I
0 500 1000 1500 2000
Time

Figure 28. SIC analyses of selective influence and architecture for Participant 6 in the

Experiment 1, cognitive fusion block.
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Figure 29. SIC analyses of selective influence and architecture for Participant 7 in the

Experiment 1, cognitive fusion block.
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Figure 30. SIC analyses of selective influence and architecture for Participant 8 in the

Experiment 1, cognitive fusion block,
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Figure 31. SIC analyses of selective influence and architecture for Participant 9 in the

Experiment 1, cognitive fusion block.
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Figure 32. SIC analyses of selective influence and architecture for Participant 10 in the
Experiment 1, cognitive fusion block.

Subsequent MIC analyses using a hierarchical Bayesian model indicate posterior probability
distributions with MIC = 0 most likely (57.7%) while MIC <0 (24.2%) and MIC > 0 (18.2%) are
less likely models at the group level, However, the posterior distribution did not change much
from the prior, MIC = 0 at 50%, MIC > 0 at 25%, and MIC < 0 at 25%. Therefore, more
participants are needed to make stronger conclusions about the likelihood of the underlying
structure of information processing at the group level. Using 4000 burn-in samples there was
sufficient convergence of MCMC sampling chains was achieved with Gelman-Rubin statistic
ranging from £ = 1.01 — 1.12. Further individual MIC analyses did not favor any one particular

model for any participant; more individual trials are needed to make conclusions.



Table 19. Summary table of capacity and SIC analyses across algorithmic and cognitive fusion in
Experiment 1 for each participant.

Experiment 1

Algorithmic Cognitive

Participant  Capacity SIC Capacity SIC

1 Lirited N/A Limited N/A

2 Limited N/A Unlimited N/A

3 Limited N/A Unlimited N/A

4 Limited N/A Limited | Parallel-AND

5 Limited N/A Unlimited | Parallel-OR

6 Limited N/A Limited Parallel-OR

7 Limited N/A Limited | Parallel-AND

8 Limited N/A Limited Parallel-OR

9 Limited N/A Limited Serial-OR

10 Limited N/A Unlimited Serial-OR

3.3 Discussion

All participants’ performance with algorithmically fused multi-sensor information
resulted in limited workload capacity. Individual sensor performance for both LWIR and visible
imagery was just as good if not better than multi-sensor performance. When this is the case, the
capacity coefficient will always indicate limited workload capacity. The algorithmic fusion did
not aid in performance above that of individual sensors for the left/right pointing discrimination
task. However, with cognitive fusion of multi-sensor information almost half of the participants’
performance (4 participants) exhibited unlimited workload capacity. Cognitive fusion presents
all of the available information to the participant and allows him or her to decide what
information is important from each. An unlimited workload capacity indicated that participants
were efficiently using the available information from both sensor images when presented with
both simultaneously to achieve performance equal to that predicted by a UCIP model.

Additional analyses of architecture indicated that multi-sensor cognitive fusion images
were processed with several different strategies across participants. Some participant’s imply

parallel processing (Participant 4, 5, 6, 7, 8); however of this subset with cognitive fusion, all
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performance except Participant 5 exhibited limited workload capacity (Table 19). Therefore,
such participants may exhibit changes in capacity for each individual sensor with multi-sensor
information and/or violations of independence between the sensor channels. With the cognitive
fusion presentation technique, some participants’ performance indicated better utilization of
information than when presented with algorithmically fused images for the same image set and

task, regardless of spatio-temporal strategy of information processing.
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4. EXPERIMENT 2

Experiment 2 was conducted to further investigate the cognitive process of
multisensor information across both algorithmic and cognitive fusion. However,
the imagery and task will slightly vary from those used in Experiment 1. The
results of Experiment 2 will indicate the generalizability of cognitive processes
across a two systematic manipulations: the introduction of spatial uncertainty the
target location and the discrimination task instructions.

4.1 Methods

Experiment 2 was always the last 5 days of participation. All 5 sessions involved a
discrimination task with spatial uncertainty of the target.

4.1.1 Procedures. Participants were asked to find the target (a person); then,
discriminate whether a person was facing left or right (Figure 33A-33F). The direction the man
was facing was randomly chosen on each trial. Then contingent on the direction, 1 of 10
left/right facing images was randomly selected for presentation. Five of the available images to
choose from were of one target man (Figure 33A-33C) and 5 were an alternative target man
(Figure 33D-33F). If the participant determined left, they pressed the left mouse button, if right,
they pressed the right mouse button. The participants were told to perform the task as quickly
and accurately as possible and were informed they must achieve at least 90% accuracy to order
for me to conduct any further analyses. For low salience imagery intended to slow down
processing random Gaussian was systematically manipulated using the QUEST method

previously explained; examples are shown in Figure 34A-34D.
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Experiment 1 and 2 had equivalent stimulus presentation time: 250ms. Although the
participant now must account for spatial uncertainty of the target, pilot studies have shown

250ms is enough to invoke fast response times while obtaining a high accuracy (~90%).

-

D. ' E. F.
Figure 33. An example of each target either facing left in the visible-only (A), LWIR-only (B),
and Laplacian algorithmically fused (C) image or facing right in the visible-only (D), LWIR-only

(E), and Laplacian algorithmically fused (F) used in Experiment 2.



D.

Figure 34. An example of visible-only image (A) with random Gaussian noise (B) and a LWIR-
only image (C) with random Gaussian noise (D). The noise added to the stimuli was
individualized each day of participation and to each sensor image to target 90% accuracy.
4.2 Results

A summary of capacity coefficient and SIC results across both algorithmic and cognitive
fusion for the discrimination task in Experiment 2 for each participant is listed in Table 34. The
following sections address the results of several measures that test my hypotheses.

4.2.1 General Analyses. Summary statistics of response time and accuracy are outlined
for each participant for visible-only (Table 20), LWIR-only (Table 21) and multi-sensor (Table
22) in the algorithmic fusion block and for each participant in the cognitive fusion block (Table

23-25). Group response time statistics are provided in Table 26 and Figure 35. Using a Bayesian
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linear model there is decisive evidence for a main effect of fusion type (algorithmic, cognitive),
sensor (visible-only, LWIR-only, multisensor) and subject with an interaction between fusion
type and sensor over a model with just the main effects of fusion type, sensor and subject, BF =
286,428.6. 1 used a Bayesian linear model to test whether the change of task from Experiment I
to Experiment 2 sufficiently manipulated human performance. There was decisive evidence fora
model including main effects of all independent measures (task, fusion type, sensor, and subject)
above a model without the main effect of task, BF = 4.92 x 10°%°,

A one-way ANOVA was conducted for each sensor and fusion type to test response time
variability within each set of 10 images. Analysis of variance showed that the effect of
individual image was significant across visible-only, F(19,1180) = 14.04, p < .05, LWIR-only
F(19,1180) = 1.61, p <.05, and the images used for fusion, F(19,1180) = 4.88, p < .05 with
algorithmic fusion presentation. Likewise, there were significant effects of image across visible-
only, F(19,1180) = 16.42, p <.05, and LWIR-only, F(19,1180) =3.77, p < .05 in the cognitive
fusion conditions.

Table 20. Individual mean and standard deviation of response time and accuracy for the visible-

only trials within the cognitive fusion-capacity block in Experiment 2,

Response Time Accuracy

Participant M SD M SD
63849 |[423.46 18000 |40.17
57540 |[137.41 |91.67 |27.75
535.67 |124.31 |81.67 |38.86
820.53 |380.29 |[85.83 |35.02
573.81 138.39 | 8333 |37.42
580.01 156.67 | 86.67 | 34.14
63993 |[205.14 |85.83 |35.02
65424 |[214.53 |85.83 |35.02
565.01 11298 | 90.00 | 30.13
670.05 |[21830 |88.33 |32.24

=~ =101 BN [= N (V.1 - [P [ N o
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Table 21. Individual mean and standard deviation of response time and accuracy for the LWIR-

only trials within the cognitive fusion-capacity block in Experiment 2,

Response Time Accuracy
Participant M SD M SD
479.78 | 135.85 | 94.17 23.54
535.56 (9343 99.17 9.13
533.00 |[108.25 | 89.17 31.21
674.45 176.81 | 100.00 | 0.00
512.31 |98.90 08.33 12.86
523.23 100.64 | 97.50 15.68
556.48 |128.22 |95.83 20.07
555.56 {169.66 | 98.33 12.86
513.24 [102.09 |99.17 9.13
586.86 |169.24 | 100.00 | 0.00

=|elee|w|ov|un|a|wo]|=

Table 22. Individual mean and standard deviation of response time and accuracy for the multi-

sensor trials within the cognitive fusion-capacity block in Experiment 2.

Response Time Accuracy
Participant M SD M SD
49290 |169.49 |93.33 25.05
533.20 [ 167.01 | 96.67 18.03
497.81 |91.19 89.17 31.21
700.73 | 246.39 | 98.33 12.86
532.82 [119.61 |99.17 9.13
518.30 [ 95.52 95.83 20.07
570.30 [ 158,15 ]95.83 20.07
555.67 [ 125.67 | 96.67 18.03
522.03 [ 90.65 95.83 20.07
562.53 134.67 | 96.67 18.03

=he|ee|w|afu]a v o=
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Table 23. Individual mean and standard deviation of response time and accuracy for the visible-

only trials within the algorithmic fusion-capacity block in Experiment 2.

Response Time Accuracy
Participant M SD M SD
47336 |199.81 | 80.83 39.53
544.82 {11694 |98.33 12.86
456.65 | 81.21 87.50 33.21
627.09 [273.22 | 88.33 32.24
541.67 [150.62 | 88.33 32.24
492.08 |[112.57 |90.83 28.98
58347 (16241 [90.00 30.13
664.96 |252.05 | 80.83 39.53
505.61 105.45 | 89.17 31.21
66695 [231.22 | 88.33 32.24

e =1 =] BN TE- () N (WY N

Table 24. Individual mean and standard deviation of response time and accuracy for the LWIR-

only trials within the algorithmic fusion-capacity block in Experiment 2.

Response Time Accuracy
Participant M SD M SD
453.99 169.10 | 95.00 21.89
51577 |91.45 100.00 | 0.00
456.73 69.17 92.50 26.45
551.89 152.10 | 99.17 0.13
492.14 133.16 | 99.17 9.13
461.89 13698 | 98.33 12.86
552.18 169.69 | 97.50 15.68
610.82 |[268.99 | 87.50 33.21
461.17 [ 61.64 100.00 | 0.00
617.09 | 298.88 | 97.50 15.68

e =R LT S (-8 (R B (P T B




Table 25. Individual mean and standard deviation of response time and accuracy for the

multisensor trials within the algorithmic fusion-capacity block in Experiment 2.

Response Time Accuracy

Participant M SD M SD
498.50 1261.49 |69.17 |46.37
577.18 | 123.74 | 85.83 |35.02
485.38 1100.14 | 75.00 | 43.49
653.18 1251.21 |[85.83 |35.02
580.04 115934 |[85.00 |]35.86
551.79 }121.83 [ 72.50 |44.84
664.69 21893 |87.50 |33.21
732.73 | 129.67 | 73.33 | 4441
573.87 1322.61 | 84.17 |36.66
760.58 | 322.61 | 76.67 |42.47

= (-1 -1 BN £- N [0 N P [ 3 P

Table 26. Mean and standard deviation of response time at the group level across each trial type
(visible-only, LWIR-only, multisensor) of both the algorithmic and cognitive fusion capacity

blocks in Experiment 2.

Condition M SD
Visible 538.05 | 25.02
Algorithmic LWIR 511.21 | 24.87

Multisensor | 541.21 24.82

Visible 597.38 25.00
Cognitive LWIR 550.21 24.91
Multisensor | 558.52 24.72
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Figure 35. Group level Bayesian estimated mean and 95% highest density interval for both
algorithmic and cognitive fusion with visible-only, LWIR-only, and multi-sensor trials. The
salmon colored bars represent the algorithmic fusion trials (center of screen) and the purple-blue

bars represent the cognitive fusion trials (randomly placed to the left/right of center screen).

4.2.2 Capacity Coefficient. Similar to Experiment 1, Participant 1 did not obtain at least
80% accuracy in all conditions for further analysis of workload capacity with multi-sensor
information. The cumulative hazard function was less than one, C(t) <1, for some time for both
cognitive and algorithmic fusion. Capacity z-scores in Experiment 2 ranged from -10.7 to -8.5

for algorithmic fusion (Table 27) and from -4.9 to -2.2 for cognitive fusion (Table 28). I
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hypothesized that individual’s efficiency of both algorithmic and cognitive fusion was at least as
high as respective UCIP predictions for the more difficult task in Experiment 2. The
performance hypotheses were not supported; I found decisive evidence for limited workload
capacity across both fusion techniques (algorithmic BF = 7.2 x 10, cognitive BF = 7.3 x 10%)
with algorithmic fusion decisively more limited than cognitive fusion, BF = 2.4 x 10 (Figure
36).

Table 27. Individual level capacity, z-score, and p-value for algorithmic multi-sensor images

compared to each sensor alone (UCIP model).

Subject | Capacity | z-score p-value

N/A N/A N/A
Limited -9.586 p <.05
Limited -9.137 p<.05

Limited -8.597 p<.05
Limited -9.702 p<.05
Limited -10.748 p<.05
Limited -9.517 p<.05
Limited -8.980 p<.05
Limited -10.036 p<.05
10 Limited -9.750 p<.05
Table 28. Individual level capacity, z-score, and p-value for cognitive fusion of multi-sensor

Oleo|~J|on|tnda b |e—

images compared to each sensor alone (UCIP model).

Subject | Capacity | z-score | p-value
Limited -3.992 p<.05
Limited -3,.985 p <.05
Limited -2.268 p<.05
Limited -4.757 p<.05
Limited -4,879 p <.05
Limited -3.459 p<.05
Limited -4.515 p<.05
Limited -4.189 p<.05
Limited -4,296 p <.05
Limited -2.676 p<.05

e (F=1 ECI BN - 8 (R N (] D
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Figure 36. The capacity coefficient for both algorithmic and cognitive fusion in Experiment 1.
The reference line is C(t) = 1 (unlimited capacity). The bold red line shows the group level for
algorithmic fusion with red dashed lines showing each individual. The bold blue line shows the
group level for cognitive fusion with the blue dashed lines showing each individual.

4.2.3 Blocking Effects. Identical to Experiment 1, most participants’ performance
exhibited no difference across sensor response time distributions when pulling each individual
sensor trials intro a separate block of trials using a Bayesian t-test. However, some participants
did show evidence for such effects. Table 29 and 30 list visible-only block effects with
algorithmic and cognitive sensor presentation, respectively. Likewise, Table 31 and 32 list
LWIR-only block effects with algorithmic and cognitive sensor presentation, respectively.
Again, the direction was only reported for those participants with BF > 3.

4.2.3.1 Visible Images. . Participant 1 achieved low accuracy performance and was not

used for analyses of blocking effects. For visible-only trials with algorithmic fusion presentation,
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Participant 9 exhibited decisive evidence for effects (Mcontext = 488.92ms, Mg context = 566.08ms)
while visible signal trials out of the presence of LWIR and multi-sensor images were slower than
those in the block consisting all three trial types. Strong evidence for effects were found for
Participant 10 (Mcontext = 639.54ms, Mpo context = 571.57ms), while visible signals out of the
presence of LWIR-only and multi-sensor imagery were faster than those in the mixed sensor
block. There was a BF < .30 for 5 participants, which indicates evidence against a difference.
The Bayes Factor with visible image effects with algorithmic fusion is listed for each participant
in Table 29.

Table 29. Visible image blocking effects for the algorithmic fusion presentation in Experiment 2.

Subject Bayes Factor Direction
1 N/A N/A
2 BF =0.24 N/A
3 BF =0.22 N/A
4 BF =0.33 N/A
5 BF=0.22 N/A
6 BF =0.35 N/A
7 BF=0.21 N/A
8 BF =0.19 N/A
9 BF = 285.97 Negative
10 BF =4.08 Positive

For visible-only trials with cognitive fusion display, decisive evidence for effects were
found for Participant 3, 8, and 9 (Table 30). Participant 3 demonstrated a slower mean response
time with the presence of LWIR-only and multi-sensor imagery (Mcontext = 546.02ms, My context =
498.96ms) while Participant 8 (Mcontext = 612.31ms, My context = 714.19ms) and Participant 9
(Meontext = 550.95ms, Mio conext = 599.88ms) exhibited faster response times with the presence of
LWIR-only and multi-sensor trials as opposed to a block of trials with only visible images.

There was evidence against a effect for 6 participants, BF < .30.
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Table 30. Visible image blocking effects for the cognitive fusion presentation in Experiment 2.

Subject | Bayes Factor | Direction
1 BF = 0.85 N/A
2 BF=0.16 N/A
3 BF =10.51 Positive
4 BF =0.15 N/A
5 BF =0.30 N/A
6 BF =0.25 N/A
7 BF =0.17 N/A
8 BF = 56.74 Negative
9 BF =9.96 Negative
10 BF =0.20 N/A

4.2.3.2 LWIR Images. For LWIR-only trials with algorithmic fusion presentation,
Participant 2 exhibited decisive evidence for blocking effects Mcontext = 515.77ms, Muo context =
479.76ms) with LWIR signal trials out of the presence of visible and algorithmically fused
images slower than than in the block consisting all three trial-types. Decisive evidence for
effects were also found for Participant 3 (Mcontext = 459.71ms, Myo conext = 427.71ms) with
response times in the LWIR-only block faster than those in the biock with visible and
algorithmically fused images. There was BF < .30 for 4 participants, which indicates evidence
against a difference in response times. The Bayes Factor with LWIR image blocking effects with
algorithmic fusion is listed for each participant in Table 31.

Table 31. LWIR image blocking effects for the algorithmic fusion presentation in Experiment 2.

Subject Bayes Factor Direction
1 N/A N/A
2 BF = 29.65 Positive
3 BF = 43.93 Positive
4 BF =0.82 N/A
5 BF =0.17 N/A
6 BF =0.16 N/A
7 BF = 0.39 N/A
8 BF = 0.97 N/A
9 BF =0.15 N/A

10 BF =0.30 N/A
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For cognitive fusion trials, substantial evidence for blocking effects were found for
Participant 6 (Mcontext = 525.38ms, Mpg context = 561.90ms) with LWIR signal trials out of the
presence of visible and algorithmically fused images slower than those in the multi-sensor block.
BF < .30 was found for 7 participants, indication for evidence against an effect. The Bayes
Factor with LWIR image blocking effects with cognitive fusion is listed for each participant in
Table 32.

Table 32. LWIR image blocking effects for the cognitive combined, multi-image display.

Subject Bayes Factor Direction
1 BF = 0.15 N/A
2 BF =0.14 N/A
3 BF =0.17 N/A
4 BF = 0.47 N/A
5 BF=0.15 N/A
6 BF =2.04 Negative
7 BF =0.16 N/A
8 BF = (.14 N/A
9 BF =0.15 N/A
10 BF = 0.77 N/A

4.2.4 Survivor Interaction Contrast. Identical to Experiment 1 with algorithmically
fused images, no participant’s data satisfied the assumptions of selective influence thereby
precluding the use of the SIC for model classification (Table 33). If selective influence held
across the group, all assumptions listed in Table 33 would show significance at p < .05.
Individual participant’s ordering of survivor functions and corresponding SIC (uninterruptable)

are shown in Figure 37 — 46.
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Table 33. Distribution comparison K-S tests by participant for algorithmically fused images.

Subject | Dupne | Davie | Pupan | Dinan
0.098 0.062 0.093 0.094
0.108 0.068 0.069 0.076
0.102 0.108 0.047 0.113
0.108 0.056 0.080 0.061
0.116 0.036 0.114 0.021
0.067 0.056 0.048 0.059
0.036 0.024 0.054 0.036
0.013 0.074 0.036 0.079
0.119 0.000 0.115 0.041
10 0.157 0.018 0.047 0.068
Note: ~* p <.10, * p <.05, ** p <.01, *** p <.001.
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Figure 37. SIC analyses of selective influence and architecture for Participant 1 in the

Experiment 2, algorithmic fusion block. The plot to the left shows the ordering of survivor

functions. If the red line is fastest (furthest to the left) and the blue line is the slowest (furthest to

the right), selective influence holds. If selective influence holds, the SIC function (plot to the

right) is tested for positive and negative deviations from zero. If selective influence does not

hold, SIC results are uninterruptable.
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Figure 38. SIC analyses of selective influence and architecture for Participant 2 in the

Experiment 2, algorithmic fusion block.
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Figure 39. SIC analyses of selective influence and architecture for Participant 3 in the

Experiment 2, algorithmic fusion block.
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Figure 40. SIC analyses of selective influence and architecture for Participant 4 in the

Experiment 2, algorithmic fusion block.



Exp2, Algorithmic Fusion - Subject 5 Exp2, Algorithmic Fusion - Architecture §

10
a4

0.6
1
02
i

= : & B e
: f 884 g
S 1 °F 1|_L1,‘r
Il
o
'..|' oy i |
2 i g !
o |
/ |
[
g o e ——— P g |
T T T T T I " T T 1
200 300 400 500 600 700 800 1] 500 1000 1500 2000
Time Time

Figure 41. SIC analyses of selective influence and architecture for Participant 5 in the

Experiment 2, algorithmic fusion block.

81



Exp2, Algorithmic Fusion - Subject 6 Exp2, Algorithmic Fusion - Architecture 6

a | - |
- ’ ':.- =3
o o
= e
7 R
v
L -]
-] }‘F ...-‘..1
= B D e L  —
] -.'J B o 1‘\‘
-« | ]
o
™
o %
b a
= _—..-L',.—_."Ftr{J T
= L
] i 1] I ¥ T 1 ¥ i
200 300 400 500 600 70O 8O0 0 500 1000 1500 2000
Time Time

Figure 42. SIC analyses of selective influence and architecture for Participant 6 in the

Experiment 2, algorithmic fusion block.
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Figure 43. SIC analyses of selective influence and architecture for Participant 7 in the

Experiment 2, algorithmic fusion block.
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Figure 44. SIC analyses of selective influence and architecture for Participant 8 in the

Experiment 2, algorithmic fusion block.
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Figure 45. SIC analyses of selective influence and architecture for Participant 9 in the

Experiment 2, algorithmic fusion block.
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Figure 46. SIC analyses of selective influence and architecture for Participant 10 in the

Experiment 2, algorithmic fusion block.

For cognitive fusion SIC analyses, selective influence was satisfied for 3 participants.

The Houpt-Townsend SIC statistic (Houpt & Townsend, 2010) indicated 1 participant had a

significantly (p <.33) positive SIC (parallel-OR) and 2 participants with a significantly (p < .33)

negative SIC (parallel-AND). The remaining 3 participants failed tests of selective influence

leading to ambiguous SIC interpretations. Table 33 lists each participants Houpt-Townsend SIC

statistic for both positive and negative deviations from zero and corresponding K-S statistics

with the amount of significance. Individual figures of ordering of survivor functions and

corresponding SIC are listed below in Figure 47 — 56.
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Table 34. Cognitive fusion results including: Houpt-Townsend statistic (D+, D-) and tests of
selective influence (D) for each participant in Experiment 2. Bold D+ and D- statistics indicate a

significant Houpt-Townsend statistic at p < 0.33.

Subject | D+ D- Dupp. | Dar | DPepn | Dinio
1 N/A | N/A | 0.136* 0.054 0.185* 0.031
2 N/A | N/A | 0.080 0.227%** | 0.242*** | (3,043
3 N/A | N/A | 0.097 0.150* 0.299*** | 0,036
4 N/A | N/A | 0.065 0.107 0.158* 0.036
5 0.013 | 0.156 | 0.124~* | 0.129~* | 0.240*** | 0.018
6 0.063 | 0.152 | 0.126~* | 0.134~* | 0.192** 0.069
7 N/A N/A | 6.094 0.091 0.113 0.051
8 0.136 | 0.076 | 0.087 0.251*** | 0,175%** [ 0.125~*
9 N/A N/A | 0.082 0.239*** | 0.336*** | 0.064
10 N/A N/A | 0.071 0.207** | 0.159* 0.0%4

Note: H-T statistic = p <0.33, ~* =p <.10, * =p <.05, ** =p < .01, *** =p <.001.
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Figure 47. SIC analyses of selective influence and architecture for Participant 1 in the
Experiment 2, cognitive fusion block. The plot to the left shows the ordering of survivor
functions. If the red line is fastest (furthest to the left) and the blue line is the slowest (furthest to
the right) then selective influence holds. If selective influence holds, the SIC function (plot to
the right) is tested for positive and negative deviations from zero. If selective influence does not

hold, SIC results are uninterruptable.
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Figure 48. SIC analyses of selective influence and architecture for Participant 2 in the

Experiment 2, cognitive fusion block.
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Figure 49. SIC analyses of selective influence and architecture for Participant 3 in the

Experiment 2, cognitive fusion block.
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Figure 50. SIC analyses of selective influence and architecture for Participant 4 in the

Experiment 2, cognitive fusion block.
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Figure 51. SIC analyses of selective influence and architecture for Participant 5 in the

Experiment 2, cognitive fusion block.
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Figure 52. SIC analyses of selective influence and architecture for Participant 6 in the

Experiment 2, cognitive fusion block.
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Figure 53. S1C analyses of selective influence and architecture for Participant 7 in the

Experiment 2, cognitive fusion block.
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Figure 54. SIC analyses of selective influence and architecture for Participant 8 in the

Experiment 2, cognitive fusion block.
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Figure 55. SIC analyses of selective influence and architecture for Participant 9 in the

Experiment 2, cognitive fusion block.
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Figure 56. SIC analyses of selective influence and architecture for Participant 10 in the
Experiment 2, cognitive fusion block.

Subsequent MIC analyses using a hierarchical Bayesian model indicate posterior probability
distributions with MIC = 0 (45.5%) and MIC > 0 (43.3%) about equally likely, and MIC > 0
(11.2%) a less likely model. I used the Gelman-Rubin statistic to test the convergence of MCMC
sampling chains factor for each participant. Factors ranged from # = 1.10 — 1.90 with 20,000
burn-in samples. Further individual level MIC analyses indicated evidence for 3 participants with
a negative MIC (parallel - exhaustive processing) and 2 participants with a negative SIC

(parallel-AND processing).
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Table 35. Summary table of capacity and SIC analyses across algorithmic and cognitive fusion in

Experiment 2 for each participant.

Experiment 2
Algorithmic Cognitive

Participant  Capacity SIC Capacity SIC

1 Limited N/A Limited N/A

2 Limited N/A Limited N/A

3 Limited N/A Limited N/A

4 Limited N/A Limited N/A

5 Limited N/A Limited | Parallel-AND

6 Limited N/A Limited | Parallel-AND

7 Limited N/A Limited N/A

8 Limited N/A Limited Parallel-OR

9 Limited N/A Limited N/A

10 Limited N/A Limited N/A

4.3 Discussion

All participants’ performance with algorithmically and cognitive fused multi-sensor
information resulted in limited workload capacity. In Experiment 2 individual sensor
performance for both LWIR and visible imagery was just as good if not better than muiti-sensor
performance across both fusion techniques. The algorithmic and cognitive fusion did not aid in
performance above that of individual sensors for the left/right discrimination task with spatial
uncertainty of the target. In line with previous research, I predicted more efficient use of multi-
sensor information in a more difficult task (Krebs et al., 2002). The results shown here indicate
that the task in Experiment 2 did just the opposite; all participants’ performance indicated less
efficient processing of multi-sensor information than what was predicted given their performance
with each individual sensor alone (UCIP model). However, this effect may result from
introducing more uncertainty in the position of the target and less salient body features indicating
whether the person is facing left or right rather than a change in task difficulty. The performance
with algorithmically fused images indicated that the algorithmic fusion of images provided no

benefit above that of an individual sensor image for any participant. A few participants
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performance indicated a parallel architecture with the presentation of multi-sensor, cognitive
fusion information. Perhaps training may be needed so people can better utilize multi-sensor

information (Shiffrin & Schnieder, 1977).
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5. GENERAL DISCUSSION

Participant response times varied across the chosen sets of images in most conditions of
Experiment 1 and all conditions in Experiment 2. The images within each Experiment were
chosen to represent a variety of spatial locations and target sizes. However, because these
images were taken from a natural scene, other variables such as lighting conditions and body
temperature could change due to the target location and/or identity. Such changes could make the
task easier or more difficult for a particular subset of images within each sensor type; for
example, participants self-reported that the “taller man” was easier than the “shorter man” across
both Experiment 1 and Experiment 2. Looking at the images post hoc it seems as if the taller
man is easier to detect with the LWIR images, indicating higher levels of body temperature than
the shorter man. In the current study I focused on gathering a variety of each type of image to
generalize across several image types and targets. However, it may be worthwhile in future
studies to systematically vary target temperature and illumination to measure the effects of more
specific environmental manipulations on response times with LWIR and visible images.
5.1 Algorithmic Fusion

I found a limited workload capacity across both levels of difficulty for algorithmically
combined images. These results indicate that participants may need to explore all of the
available data rather than making decisions based on algorithmic interpretations of important
features. “Combining data together can reduce information overload but poses challenges if the
human cannot determine why and how the algorithms are doing what they are doing” (Klein,
Moon, & Hoffman, 2006A). The results reported here are consistent with the past literature.
Previous research indicated that at best, algorithmic fusion performed just as well an individual

sensor performance across several tasks, sensor types, and algorithms (Essock, Sinai, DeFord,

100



Hansen, Srinivasan, 2004; Steele & Perconti, 1997; Krebs & Sinai, 2002). Contradictory to the
findings reported here, Toet et al. (1997) found performance improvements with algorithmically
fused LWIR and visible images. The task in this study was tailored to specifically utilize both
visible and LWIR information. The participants were asked to determine the position of a person
relative to an environmental object (fence, walkway, tree). Therefore, to correctly identify the
spatial location the participant must take advantage of unique information from each sensor. In
the present study information was, for the most part, redundant across the two sensors. Image
fusion may have the best results when each sensor alone does not supply redundant information;
rather, only the combination of the individual sensor information allows for correct decision-
making. Follow up studies should consider performance comparisons across multi-sensor
information presented with algorithmic and cognitive fusion when the individual sensors each
supply unique, useful information.

Complementary to the research reported here, Bittner et. al. (Bittner, Schill, Blaha &
Houpt, 2014) is using ideal observer analysis {(e.g., Geisler, 1989) with multi-sensor imagery of
the Landolt C used in my pilot studies. Ideal observer analysis is a framework used to estimate
human information efficiencies by comparing human performance to a Bayesian ideal observer.
Also, Bittner’s current work uses response classification (e.g., Ahumada, 2002; Ahumada &
Lovell, 1971). Response classification uses noise masking to identify the important information
in each single-sensor and multi-sensor image for an observer to make a decision. Clusters of
pixels can determine what unique features of each image carry task relevant details. Utilizing this
method tangential to SFT can ensure observers use different information from each single-sensor

for decision-making rather than redundant information across the single-sensor images.
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McCarley and Krebs (2006) found observers perceptually failed to separate contrast
information for each sensor in an algorithmically fused image. Similarly, I found failures of
selective influence when attempting to manipulate the processing speed of each individual sensor
when adding random Gaussian noise. The Gaussian noise was individualized using an adaptive
psychophysical method (QUEST) and added to each sensor image based on a threshold
indicative of slower processing rates. While the effects of selective influence were consistently
found with cognitive fusion, the manipulation of processing rate vanished when the images were
algorithmically combined. This effect is suggestive of nonseperability of noise information for
each individual sensor.

5.2 Cognitive Fusion

Cognitive fusion has not been researched with multi-sensor information in the past. In
the current study participants were, at best, performing just as well as predicted by a UCIP model
with cognitive fusion presentation of muliti-sensor information with the left/right discrimination
task (Experiment 1) and worse than predicted with left/right discrimination task with spatial
uncertainty of the target (Experiment 2). Although cognitive fusion did not provide clear
performance benefits above that of algorithmic fusion in these findings it is worthwhile to invest
further efforts to understand the benefits it may have with additional training and individual
sensor image enhancement techniques such as contrast manipulation (Smeelen, Schwering, Toet,
& Loog, 2014).

Additional training can use strategic methods for observers to learn the unique strengths
each single-sensor may possess. Observers can more efficiently utilize single-sensor information
after becoming familiar with how each sensor processes and displays environmental information

(e.g., LWIR images can display hottest elements as white and coolest elements as black). With
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practice, knowledge of single-sensor benefits could produce unlimited or super workload
capacity and parallel processing with cognitive fusion display of multi-sensor information.
Another display type of interest is the option for observers to quickly flip between the single-
sensor images within the same visual field. For instance, the interface could display a LWIR by
default but with a press of a button it switches to visible, or vice versa. Allowing the observer to
switch between the two as quickly as desired can mimic an image fusion like process. This
display method satisfies one substantial benefit of algorithmic fusion by restricting the amount of
visual information at a given instant; also, it satisfies a benefit of cognitive fusion by giving the
observer all of the available information to explore. Perhaps future research should investigate
alternative methods of displaying multi-sensor information above just that of algorithmic and
cognitive fusion.

The role of task, sensor, fusion algorithm, and quality of individual image information
has shown to change the benefits of algorithmic image fusion over an individual sensor image in
previous research. In the current study, I’ve shown evidence that while keeping overall task,
sensor, and fusion algorithm consistent the change of original image information can alter
performance with multi-sensor information presented with cognitive fusion. [ was not able to
give substantial evidence to determine whether the method of presentation changes observer
performance but have shown that other methods of presentation must be considered as an
alternative to algorithmic fusion.

Furthermore, people may benefit from guidance of important information in each
individual sensor without the system altering the original information altogether. Training that is

aimed at strengthening the relationship between automated image enhancement and human
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capabilities can better utilize the strengths of both human and machine to maximize overall

performance across task types (Klein, Moon, & Hoffran, 2006B).
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6. CONCLUSIONS

Using a theoretically driven, cognitive framework I developed an understanding for
which underlying processes are involved in closely controlled experimental manipulations of
stimulus information and multi-sensor fusion techniques. This thesis was a necessary step to gain
traction for how (if at all) multi-sensor displays provide benefits above individual sensor
displays. Displays using data fusion often times debate the benefits of algorithmically
combining information or displaying all available information to the observer. Until the current
study, no research has investigated the debate surrounding data fusion with multi-sensor
information. Future research with multi-sensor displays should not disregard the potential
benefits that displaying all of the available information may have over the algorithmic

interpretations of important information.
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