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ABSTRACT 

Bullemer, Beth Cristina. M.S. Department of Psychology, Wright State University, 2015.  

Reasonable reasoner:  The influence of intervention strategy, system parameters and their 

representation on causal understanding 

 

 

 

The following study assessed how contingency and delay influence people’s reasoning 

strategy and outcomes after interacting with a representation of a discrete and continuous 

system environment, in the context of controlling hypertension.  The related causal 

reasoning and system dynamics research adopt different measurement paradigms and 

employ different system dynamics, making it difficult to resolve the empirical findings.  

Specifically, the causal reasoning literature has traditionally considered systems in which 

previous inputs do not influence future outcomes (e.g., a discrete system condition) while 

the system dynamics literature removes this constraint (e.g., a continuous system 

condition).  Also, the system dynamics literature has focused on the ability to control pre-

specified systems, whereas the causal reasoning literature has focused on the ability to 

discover and identify causal relationships.  To examine reasoning under conditions 

comparable to hypertension management, I asked participants to consider causal 

scenarios involving causal variables (e.g., treatment options) with different amounts of 

contingency and delay in relation to a known outcome variable (i.e., level of blood 

pressure) with the representation of either a discrete or continuous system condition.  



 iv 

The findings address the relationship between causal attribution and system 

control, highlighting the effect of the system representation and dynamics on both 

reasoning behavior and outcomes, and challenging whether the efforts to build reasoning 

theory based on the combination of simplified paradigms paradoxically result in 

artificially complex problems and misleading theory.  Participants’ use of more 

observation-dependent intervention strategies with the discrete system condition indicates 

that they were aware of and responding to salient information.  Additionally, differences 

in information accessibility explain why more extreme causal attributions were observed 

with the continuous system condition.  Independent of system condition, specific 

intervention strategies (observation-independent and treatment-biased strategies) led to 

higher causal attributions, again reinforcing that system representation and underlying 

system dynamics directs reasoning outcomes.   

Keywords: contingency, delay, strategy, system, causal attribution, system control 
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I. INTRODUCTION 

People reason causally about simple and complex systems every day.  This 

reasoning often originates with a problem to control (e.g., Why is my washing machine 

overflowing?  Why does my car get better gas mileage in the summer?  Why do I have a 

headache?).  Consider the following scenario relating to hypertension, a problem dealt 

with by 29% of adults, 18 years and older, in the United States (e.g., Ostchega, Yoon, 

Hughes & Louis 2008; Yoon, Burt, Louis, & Carroll, 2012). 

“Your blood pressure has been consistently elevated for the past year.  Your 

doctor writes you a prescription for a common blood pressure lowering medication.  

Scared by this diagnosis, you obediently take your medication as prescribed and 

randomly refrain from indulging in a few of your unhealthy habits every now and then 

(e.g., bacon double cheeseburgers, reality TV on your sofa, and hourly doses of caffeine).  

Fortunately, your blood pressure measurements retract to a normal level after several 

weeks.  Your problem appears to be resolved, meaning you know that something you 

have changed affected your condition.  So, what do you do next?  Do you continue to 

take your medication diligently and determine to forgo your past indulgences forever in 

order to maintain this normal blood pressure level?  Alternatively, since you are fond of 

cheeseburgers, reality TV and caffeine, do you try to figure out if your medication alone 

affects your condition?” 
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 A significant amount of psychological research potentially describes what people 

may do in the above situation.  The causal reasoning literature has generated theoretically 

driven findings related to how people learn associations (Gopnik, Sobel, Schulz, & 

Glymour, 2001), use heuristics (Mayrhofer & Waldmann, 2011), and are influenced by 

delay (Lagnado & Speekenbrink, 2010; Shanks, Pearson & Dickinson, 1989) and 

instability (Rottman & Keil, 2012).  The associated research methods traditionally 

manipulate a small number of task variables or parameters, which are presented using 

simplified, discrete systems under the hope of developing theory by aggregating the 

findings of numerous simple studies.  However, people often experience problems much 

more complex and intertwined than addressed within causal reasoning literature.   

The system dynamics literature starts by considering how people interact with 

continuous systems with multiple underlying parameters.  Realistically complex, applied 

decision making situations include how people diagnose an unknown disease 

(Kleinmuntz & Thomas, 1987), fight forest fires (e.g., Brehmer, 1989), and manage 

product inventories (Diehl & Sterman, 1995).  However, numerous manipulations of the 

underlying system parameters obscure the relationship between reasoning behavior in 

these applied situations and the basic findings from the causal reasoning literature.  

This study borrows from both research methods to better understand how people 

reason when encountering paradigms in daily life with a variable whose causal efficacy is 

unknown and whose effects may appear after an unknown period of delay.  These are 

factors pertinent to hypertension management, which is a particularly challenging task 

requiring patients, physicians and caregivers to reason with the diagnosed patient’s 

cardiovascular system, an unobservable, but complex environment.  As the causal 



 3 

reasoning literature has traditionally considered system conditions which previous events 

do not influence future outcomes (i.e., discrete systems) while the system dynamics 

literature removes this constraint (i.e., continuous systems), I considered both a discrete 

and continuous system condition within the same experimental hypertension management 

task.   

Recommended treatment plans for hypertension are not equally effective across 

patients (e.g., Chobanian et al., 2003).  To examine reasoning under comparable 

conditions, I asked participants to consider three patient scenarios each involving a single 

causal variable (i.e., a treatment option) and a known effect variable (i.e., blood pressure 

level).  Each patient scenario differed relative to the frequency that the causal variable 

produced an effect or by the frequency that the effect occurred in the absence of the 

causal variable.  Also, I manipulated the amount of delay applied to the patient scenarios, 

as differences in temporal interactions between treatments and blood pressure level add 

additional complexity to hypertension management.   

Below I review the causal reasoning research that addresses the influence of 

contingency, delay, contextual cues, and intervention on reasoning with a single cause 

variable.  Additionally, I highlight the methodological differences between the causal 

reasoning and system dynamics research and review two studies that have considered 

continuous systems within the causal reasoning framework.  But first, let us review what 

I mean by a discrete system and a continuous system. 

Definition of a Discrete and a Continuous System  

I will use the definitions for a discrete and continuous system as they are 

presented within the causal reasoning literature.  However, differences in terminology 
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and definitions exist between literatures; so let me clarify what I mean when I refer to a 

discrete and continuous system.  In the system dynamics literature, a system’s 

representation is the manner in which the underlying parameters and dynamics of a 

system are sampled and presented to the observer.  In this context, discrete refers to a 

sampling procedure that presents isolated feedback or snap shots of the underlying 

system environment, whereas continuous refers to constant feedback.  This is not the 

meaning of discrete and continuous that I use here.  According to this systems dynamics 

definition, both the referenced literature and the system conditions that I apply in this 

study only consider discrete system representations.  Instead, the specification and 

discussion of the system condition in this document refers to aspects of the underlying 

dynamics, and their implications on the visual representation of the system environment.   

Figure 1 identifies four different possibilities for system dynamics relative to two 

dimensions (Flach, 2015): the independence of outcomes (independent or dependent) and 

the adaptability of outcomes (stationary or non-stationary).  The dimension of 

independence categorizes the outcomes associated with system environments as either 

independent from one another (e.g., whether or not you flip a heads or tails is unrelated 

to previous coin tosses) or dependent on one another (e.g., your blood pressure level after 

exercising is directly related to your starting blood pressure level).  Trial or time 

dependences between outcomes are a fundamental difference between causal reasoning 

and system control research, which I will discuss in more detail when comparing causal 

reasoning and system dynamics research.  Much of the causal reasoning literature does 

not consider the influence of time-based parameters, like delay, and research that 
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considers these parameters either violates the independent framework (becoming a 

discrete-like system) or has issues relative to internal validity.  

The dimension of adaptability identifies whether the outcomes are stationary (e.g. 

the outcome of a coin toss is always either heads or tails) or non-stationary (e.g., the 

effect of exercise on my blood pressure today differs from its effect 10 years ago).  Both 

the discrete and continuous systems mentioned within this document only consider 

stationary outcomes (past and present research included), meaning the parameters that 

define the systems’ dynamics are fixed or constant throughout the learning experience.   

So, the primary distinction between discrete and continuous systems as defined 

here, is the independence of outcomes.  Figure 1 highlights that quadrants A and C 

distinguish the discrete and continuous systems mentioned within this document.   Also, 

it is important to mention that neither of these systems truly reflects the human 

cardiovascular system (quadrant D), which is a potential limitation of this study. 

 Stationary Non-stationary 

Independent 

A) Traditional 

Discrete Systems/ 

Bernoulli Process 

 

B) Multiple Bernoulli 

Processes 

Dependent 

C) Continuous 

System/ Discrete-like 

(and the Discrete 

system in this study) 
Fixed parameters 

(relative to either time 

or trial) 

D) Cardiovascular 

System/Variable 

Parameter (relative to 

either time or trial) 

Figure 1. Possible system dynamics of underlying environmental 

parameters.  Adapted from Flach (2015). 
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Causal Reasoning  

The causal reasoning literature focuses on how people establish the source(s) of 

effects or determine the likelihood that an effect will occur.  Until recently, the typical 

research paradigm involved the presentation of a series of observations of the underlying 

parameters of the environment presented in a discrete manner.  With such discrete system 

representations, each observation is independent of the next, so the interpretation of these 

observations (an assessment of causality) is the same regardless of whether the 

observations presented as a collection or a sequence.  The scope of the reasoning task 

limits search for plausible causal candidates (Buehner & Cheng, 2005, p. 145).  

Researchers generally restrict the problem space to the relationship between a single 

causal variable and a known effect.  Furthermore, researchers seldom combine more than 

two dimensions that may affect causal attributions.  Relative to the multi-dimensional 

setting of hypertension management, this bottom-up approach results in a disjointed set 

of research finding regarding: contingency, delay, contextual cues, and direct engagement 

through intervention on the system.  

Contingency.  The causal reasoning literature considers differences relative to the 

frequency of an effect (e) given the presence (P(e|c)) and absence (P(e|~c)) of a causal 

variable (c), and the contrast between these two values: ∆P1 = P(e|c) - P(e|~c).  Although 

contingency is a common manipulation, researchers have not systematically explored 

consistent sets of contingency manipulations in isolation, with other manipulations, or 

with a consistent dependent measure between studies.   

                                                      
1 ∆P = 0 when P(e|c) = P(e|~c), meaning the probability of an effect is the same 

regardless of whether the suspected causal variable is present.  
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Buehner, Cheng, and Clifford’s (2003) series of experiments is one of the few 

attempts to examine how a range of contingency values influences causal attribution (see 

also Wasserman, Elek, Chatlosh, & Baker, 1993).  Buehner et al. (2003, experiment 1) 

examined 15 experimental conditions that assessed combinations of five contingency 

values (1.00, .75, .50, .25, .00) applied to the presence and absence of a suspected causal 

variable.  Using a within-subject design, participants passively observed precisely eight 

applications and eight absences of the suspected causal variable presented randomly for 

each experimental condition.  The intervention (causal variable (c), no causal variable 

(~c)) and the outcome (effect (e), no effect(~e)) appeared on the same trial, with the 16 

observations presented serially rather than simultaneously. 

 
Figure 2.  Positive slope associated with Buehner et al. (2003, experiment 1) findings 

when P(e|c) varies and P(e|~c) is held constant at 0. 

 

 
Figure 3.  Negative slope associated with Buehner et al. (2003, experiment 1) findings 

when P(e|~c) varies and P(e|c) is held constant at .75. 
 

 Figures 2 and 3 depict the mean causal attribution values, the primary dependent 
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an effect in the absence of the causal variable (P(e|~c)) was held constant at zero, causal 

attributions increased in combination with increases in the probability of an effect in the 

presence of the causal variable (P(e|c)) resulting in the positive slope depicted in Figure 2 

(n = 260, SE = 1.39, β = 77.40).  Conversely, increasing the value associated with the 

presence of an effect in the absence of the causal variable (P(e|~c)) reduces causal 

attributions when the probability of an effect given the causal variable (P(e|c)) is held 

constant at .75, forming the negative slope shown in Figure 3 (n = 208, SE = 1.73, β  = -

34.46).   

These outcomes correspond to previous findings (e.g., Wasserman et al., 1993) 

and Buehner et al.’s predictions with the exception of when the probability of an effect 

was the same given the presence and absence of the causal variable (∆P = zero).  When 

the effect is occurring frequently, but ∆P = zero (as with the P(e|c) = .75, P(e|~c) = .75 

condition), people fail to realize that the effect is present more often than not across all 

trials and ascribe causality to the suspected causal variable rather than concluding the 

variable is non-contingent.  This finding is indicative of the base-rate neglect/fallacy (i.e., 

focusing on, or placing greater weight on, specific information (like the overall 

probability of an effect (P(e)) rather than considering all the information presented (e.g., 

the probability of a causal variable (P(c)) or the probability of the effect given the causal 

variable (P(e|c)).  Buehner et al. (see also Buehner and Cheng, 2005) posit that 

participants’ higher than expected attributions of non-contingent variables reflect a) an 

excessive demand on working memory or b) ambiguity in the semantics of the dependent 

measure.  However, 16 trials may not be enough time to detect a difference between the 

probability of an effect given the cause (P(e|c)) and the probability of an effect without 
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the cause (P(e|~c)) across all contingency values.  (See Appendix A for a detailed 

analysis that considers whether differences can be detected between two proportions.) 

Delay.  People rely on the cause preceding the effect as a cue to identify causal 

relationships (Lagnado & Sloman, 2006).  A common paradigm for the study of human 

causal reasoning with delay is the experimental design used by Shanks et al. (1989).  

Participants freely administer a suspected causal variable (e.g., pressing a space bar) and 

observe whether an effect occurs (e.g., triangle appearing on a screen).  After performing 

this task for a controlled amount of time or number of applications specified by the 

experimenter, participants determine the degree to which the suspected causal variable 

causes the effect.   

Initial findings indicated that increasing the amount of time between the 

application of the cause and the onset of the effect disrupts causal attribution (e.g., 

Shanks et al., 1989).  However, the implementation of the delay manipulation, rather than 

delay itself may be responsible for these findings.  Specifically, the seemingly continuous 

learning period (e.g., 120 seconds) was divided into separate time segments (e.g., 1 

second) to maintain a discrete rather than continuous learning environment in which there 

is no carry-over between trials.  This time interval was extended for the delay condition 

(e.g., 2 seconds) relative to the control condition (e.g., 1 second).  Yet, only the first 

action within each time interval was registered by the computer and produced an outcome 

with both the delay and non-delay conditions.  So, only one corresponding outcome was 

produced regardless of whether the causal variable was applied two or ten times.  Longer 

delay intervals provide more opportunity for participants to apply the potential causal 

variable, which may have reduced the observed contingency because the probability of 
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the cause (P(c)) increased relative to the probability of the effect (P(e)).  Thus, the 

observed decrease in causal attribution may have been a function of a mathematical 

decrease in contingency rather than an increase in delay.  

 
Figure 4. Negative slopes associated with Greville et al. (2010) findings. 

To rule out this confounding explanation, Greville and Buehner (2010) 

maintained Shanks et al.’s (1989) basic spacebar/triangle experimental design, with an 

implementation of delay that is more analogous to, if not categorically a continuous 

system.  Greville and Buehner did not parse their learning period into separate time 

segments, allowing for carry-over or overlap between participants’ application of the 

suspected causal variable and outcomes.  Figure 4 depicts Greville and Buehner’s (2010, 

experiment 1 and 2) findings.  With all four of Greville and Buehner’s conditions, the 

negative slopes illustrate the same pattern of decline in causal attributions with increases 

in the interval of delay as observed by Shanks et al. (1989).  Also, Greville and Buehner’s 

findings suggest that a consistent temporal relationship between cause and effect 
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declined when exposed to variable delay intervals, but that these declines in attribution 

did not affect participants’ ability to correctly differentiate the active casual variable from 

a set of three options. 

Other causal reasoning research has suggested that contiguity affects people’s 

reasoning capabilities in conjunction with other factors (e.g., context, extraneous 

variables, ability to interact with the system), that moderate the relationship between 

delay and causal attribution.  For instance, Buehner and May (2002) demonstrated that 

context could offset the impact of delay by providing participants with temporal 

expectations.  This finding is compelling given that the common paradigm for contiguity 

within the causal reasoning literature (i.e., Shanks et al., 1989) essentially asks people to 

reason about nothing (the relationship between a space bar and the appearance of a 

triangle). 

Contextual Cues.  The use of substantive contextual scenarios has varied 

substantially within the causal reasoning literature.  Some studies have asked participants 

to reason about abstract relationships, like which shapes make a box glow (Frosch, 

McCormack, Lagnado & Burns, 2012) and if a space bar makes a triangle appear on a 

computer screen (Shanks et al., 1989).  Other studies have incorporated scenarios that are 

more realistic such as asking participants to identify which bacteria causes stomach 

cramping (Lagnado & Speekenbrink, 2010) or which variables prevent a rocket from 

launching (Lagnado & Sloman, 2002).   

Differences in realism can influence people’s reasoning behavior and 

interpretations of causality.  For instance, Johnson-Laird, Legrenzi, and Legrenzi (1972) 

famously demonstrated the influence of context on participants’ reasoning tendencies.  



 12 

Using the Wason card task, they illustrated that participants’ selections differed when 

exposed to symbolic representations (i.e., letters and numbers) and realistic 

representations (i.e., letters and stamps).  Similarly, Buehner and May (2002) illustrated 

that contextual assumptions pertaining to delay could influence reasoning by presenting 

participants with scenarios in which delay between cause and effect was expected (i.e., 

launching a grenade) and unexpected (i.e., turning on a light bulb).  Although Buehner 

and May found participants’ causal attributions were higher experimental conditions with 

no delay regardless of the contextual scenario, their contextual manipulation that 

insinuated some delay (grenade) did mediate the decline in causal attributions with 

conditions containing delay.  

Einhorn and Hogarth (1986) suggested that the influence of cues present in 

realistic representations could depend on whether or not they increase or decrease 

uncertainty.  So, contextual cues presented in experimental paradigms, or applied 

contexts may also impair successful identification of causal relationships.  Specifically, 

false assumptions pertaining to a specific context may prevent the recognition of causal 

relationships.  For instance, if I assume that all medication works like Advil on a 

headache (i.e., feel permanent relief after 30 minutes), I may falsely conclude that other 

medications are ineffective if they do not exhibit these characteristics.  

Though contextual cues can misguide participants, removing them altogether, or 

simplifying reasoning paradigms may inadvertently remove essential information that 

assists people in recognizing causal relationships.  This is a criticism of research that 

considers decomposed or discrete system environments independent of the amount of 

contextual framework added to the paradigm.  Arguably, the potential for cue elimination 
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is why system dynamics researchers refrain from altering the contextual framework of 

their task environments and is why it is essential to assess reasoning capability with this 

complexity added back in. 

Intervention.  One approach to the study of causal reasoning controls the 

learning environment in order to ensure a consistent participant experience, typically by 

presenting an equivalent number of observations related to the presence and absence of 

the causal variable (i.e., P(c) = P(~c)).  This allows researchers to attribute differences in 

data to variables other than differences in the frequency of causal variables under the 

guidance of strategy.  The alternative to a fixed approach (e.g., P(c) = P(~c)) allows 

participants to interact freely with a system for a set amount of time or trials (i.e., free-

operant learning).  Causal reasoning with delay research has extensively employed free-

operant learning environments (e.g., Buehner & May, 2003; Shanks et al., 1989; 

Wasserman & Neunabber, 1986), and free-operant learning environments are equally as 

prevalent in the causal reasoning with contingency research (e.g., Jenkins & Ward, 1965; 

Wasserman et al., 1993) as controlled learning environments (e.g., Buehner et al., 2003; 

Perales & Shanks, 2003).  

Steyvers, Tenenbaum, Wagenmakers, and Blum (2003, experiment 2) 

demonstrated that people were markedly more successful in identifying causal structures 

when allowed to interact with the system representation.  Lagnado and Sloman’s research  

(2002, 2006) also indicates that people are more successful when learning through active 

intervention, as opposed to passive observation.  However, they propose that confounded 

temporal cues (Lagnado and Sloman, 2006) or the relative frequencies of causal variables 

(e.g., P(c) relative to P(~c)) (Lagnado and Sloman, 2002) enable correct causal structure 
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identification rather than the act of interacting with the system representation.  I 

examined a series of treatment intervention strategies to evaluate Lagnado and Sloman’s 

(2002) latter explanation.  Specifically, I considered what intervention strategies 

minimize standard error (Appendix B) and an observation-dependent strategy relative to 

two different observation-independent strategies (Appendix C).  These theoretical 

analyses highlight that intervention strategy shapes the amount and type of information 

available to the observer, which supports Lagnado and Sloman’s (2002) proposition, as 

well as provides a viable explanation as to why Hagmayer, Meder, Osman, Mangold, and 

Lagnado (2010) found differences in reasoning outcomes as a function of intervention 

strategy.  Additionally, these analyses emphasize that limiting research to the study of 

one treatment intervention strategy (i.e., the unbiased intervention strategy used in 

controlled learning environments) only realizes a simple effect, which may not generalize 

to (or even bear on) the complete set of treatment intervention strategies.  Or, potentially, 

this simple effect is true, but not important relative to other observations, e.g., the effect 

of intervention strategy dwarfs everything else. 

Causal Reasoning vs. System Dynamics Research 

The previous sections focused on causal reasoning research tasks that employ 

discrete system in their test environments.  Research that uses continuous system (e.g., 

system dynamics) also demonstrates that people struggle to control system outputs with 

longer delay intervals, and are affected by/recognize differences in the underlying 

parameters of the system (e.g., contingency).  However, fundamental differences between 

causal reasoning and system dynamics research considering, including dependencies 
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between trials and dissimilar dependent measures, make it difficult to align and compare 

findings. 

Dependent measures.  The causal reasoning literature focuses on whether people 

can explicitly identify causal relationships given a set of observations.  These measures 

ask participants to either identify a system’s causal structure (e.g., Rottmann & Keil, 

2012), assign causal attributions (e.g., Shanks et al., 1989), or identify the probability that 

the same outcome would occur in a set number of instances (e.g., Buehner et al., 2003; 

Greville & Buehner, 2010).  Conversely, the system dynamics literature focuses on the 

manner in which participants manage a system with causal relationships over time.  

Moreover, people participating in system dynamics studies are commonly informed of 

details relating to the system’s underlying causal structure prior to and when interacting 

with the system representation (e.g., Sterman, 1989; Jensen & Brehmer, 2003).  This 

design property of system dynamics studies arises from the intent to measure whether 

participants can manipulate a system to a point of equilibrium and what inputs they make 

to do so, rather than ascertaining if participants can explicitly identify the system’s causal 

relationships.  The use of divergent performance measures and paradigms limit the ability 

to characterize the relationship between understanding and behavior.  

Dependencies between trials.  In defining the difference between decision 

making with discrete and continuous system, Edwards (1962) describes dynamic decision 

making tasks as sequential sets of decisions with each decision producing an effect 

contingent on previous decisions as well as behavior of the system.  In closed looped 

systems, feedback loops inform these sequential decisions providing participants with 

insight regarding their status in relation to their goal.  Thus, past decisions influence 
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participants’ future decisions as they attempted to accomplish the goal of the task.  

Feedback loops can improve learning or performance over a series of trials (Paich & 

Sterman, 1993), as long as the gleaned information is correctly perceived and interpreted 

(Sterman, 1989). 

The methodological assumption of trial independence within the causal reasoning 

literature precludes examination of continuous systems with feedback.  Most causal 

reasoning research compares people’s assessments with outputs from mathematical 

models, which designate a correct assessment based on the rules of probability (e.g., 

Power PC theory, Rescorla-Wagner model).  Often these models stipulate that an 

observation of an effect given a cause must be independent from other observations of the 

effect.  Thus, the effect returns to a baseline state after each observation and without the 

application of an effective causal variable, the effect is absent or assumed to be zero.  

This assumption of independence is inconsistent with the closed loop systems considered 

within the system dynamics literature, in which previous interventions might still be 

acting on the effect or have yet to influence the effect when subsequent causal variables 

activate.  Consequently, adherence to the constraint of independent observations 

precludes system conditions that are continuous in nature. 

Causal Reasoning with Continuous Systems 

Recently, a couple of conventional causal reasoning researchers (Hagmayer et al., 

2010; Rottman & Keil, 2012) removed the constraint of trial independence to understand 

if and how people reason with interdependent trials.  Both Hagmayer et al. and Rottman 

and Keil measured causal structure identification, rather than causal attribution.  Neither 

investigated the influence of delay on people’s causal reasoning tendencies.  Only 
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Rottman and Keil incorporated contingency into their experimental design, but did so as a 

confounding variable rather than a manipulation.  Lastly, although Hagmayer et al. 

allowed participants to freely interact with the system, Rottman and Keil controlled the 

learning environment by exposing participants to a predetermined set of observations.  

Together, their findings suggest that previous system states (Rottman & Keil, 2012) and 

intervention strategy (Hagmayer et al., 2010) influence the manner in which people 

reason, which in turn raises questions about the validity of outcomes associated with 

experimental designs that limit free-operant learning and assume trial independence. 

Hagmayer et al.  Hagmayer et al. (2010) asked participants to consider the 

influence of three casual variables on an effect (i.e., three light rays, all of which 

positively influenced the effect, to produce an optimal transmitter level in order to kill 

cancerous areas in a rat’s brain).  Participants freely administered interventions (light 

rays) over the span of 40 trials.  Hagmayer et al. manipulated the gain associated with 

each of the variables rather than contingency, meaning a positive effect always followed 

an intervention, but the degree to which each causal variable reduced the cancerous area 

differed.  Following the learning phase, Hagmayer et al. measured whether participants 

could identify the correct causal structure from two options (termed the demonstrative 

task) and assessed whether participants could successfully select combinations of the 

causal variables to reach various target values.  Next, Hagmayer et al. mapped 

participants’ success in these demonstrations to their selection strategies in the preceding 

learning task.  Not only did they discover that participants adapted their strategy based on 

the system underlying parameters, but that selection strategy in the learning task affected 

their success in the demonstrative tasks.  
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Rottman and Keil.  Rottman and Keil (2012) presented participants with either 

two or three variables.  No variable had an identifiable role, such that any variable could 

influence or be influenced by another variable.  This is a departure from the traditional 

causal reasoning paradigm, which typically excludes causal discovery by defining the 

roles of the variables, where the only issue is the presence or absence of causality.  The 

number of variables determined the number and type of causal structure manipulations 

considered with each experiment.  After observing a series of non-randomized trials 

arranged to prompt conclusions indicative of either trial independence or carry-over, 

Rottman and Keil measured participants’ interpretations of the underlying causal 

structure.  These interpretations suggest that people integrate information presented 

across trials when reasoning, rather than assume that trials are independent.  Also, 

Rottman and Keil demonstrated that exposure to trials inconsistent with the underlying 

causal structure (i.e., an unstable condition with less contingency associated with causal 

variables or more contingency associated with non-causal variables) decreased 

participants’ ability to correctly identify causal structures.  Rottman and Keil (2012, 

experiment 1a, p. 103) commented that participants  “endorsed links that do not exist” in 

the unstable condition, which suggests that people are more willing to error on the side of 

causality than discounting a variable’s causal influence entirely.   

Summary 

I have discussed findings involving factors related to hypertension management 

(i.e., contingency, delay, contextual cues, and intervention) in isolation and highlighted 

the primary differences between research considering discrete and continuous systems.  

People tend to infer causality when the relationship between variables frequently occurs 
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in a stable manner and the cause is proximally near the effect.  A violation of these 

assumptions affects causal attribution and structure identification, as well as system 

control (e.g. Brehmer, 1989; Diehl & Sterman, 1995).  However, certain manipulations 

including contextual expectations, and most importantly for the present study, learning 

through intervention can moderate the negative influence of instability and extended 

delay intervals.   

Although the system dynamics literature has considered the influence of delay on 

systems and intervention strategy, these studies focused on whether people can control a 

system without assessing how effectively managing a system relates to an explicit 

understanding of the system.  Because the system dynamics literature has focused on the 

ability to control pre-specified systems and the causal reasoning literature has focused on 

the ability to discover and identify causality, both have failed to address the relationship 

between understanding and behavior, and unfortunately it is not feasible to draw 

comparisons between the two literatures.  The two examples of causal reasoning with 

continuous systems only emphasizes the need for causal reasoning research that considers 

experimental designs with interrelated trials that takes into account the relationship 

between intervention strategy and reasoning outcome.  Moreover, neither the causal 

reasoning nor the system dynamics literature has assessed differences in causal 

attribution as a function of strategy with a discrete or continuous system condition with 

various underlying parameters (e.g., levels of contingency and amounts of delay).  

Consequently, both areas of research are incomplete relative to the problem scenario of 

how a person diagnosed with hypertension determines how, and what treatments affect 

their chronic condition. 
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Study Objectives and Predictions 

This study considered two different system conditions to better understand how 

people reason about a potential causal variable (proposed treatments) and a known effect 

variable (blood pressure level) in a contextual scenario involving the control of 

hypertension.  Causal reasoning researchers have commonly used two variable 

environments when assessing the influence of delay (e.g., Greville & Buehner, 2010; 

Shanks et al., 1989) and various degrees of contingency (e.g., Buehner et al., 2003; 

Perales & Shanks, 2003; Wasserman et al., 1993) on causal attribution.  So, I 

intentionally chose to explore how people reason with two variables, rather than 

exploring environments with additional variables in order to relate my findings back to 

this basic research.  Allowing participants to freely interact with test environments with 

different system dynamics allowed me to consider the implications of system condition 

on selection strategy, and selection strategy on causal attribution.   

The discrete system condition is consistent with existing causal reasoning 

research, such that the effect of a treatment applied in one trial is independent from the 

participant’s treatment applications in other trials.  This condition connects my study 

paradigm to the existing causal reasoning research by examining the influence of delay 

and contingency with a discrete system condition.  The second condition extends the 

causal reasoning literature by examining the same delay and contingency conditions 

explored in the first condition, but in conjunction with a continuous system condition.  

The continuous system condition is analogous to those found within system dynamics 

research, as there were interdependencies between trials such that participants’ actions on 

previous trials influence the effect of future treatment applications.  A comparison of the 
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two conditions allows us to align results from the disparate methodological approaches 

used within causal reasoning and system dynamics literatures.  

The problem space of hypertension management did require a combination of 

methods previously used in experimental research in a novel paradigm.  The potential 

implications of specific design implementations are discussed in detail in the method 

section.  Below, I present my hypotheses and research questions related to the 

experimental manipulations of contingency, delay, and their interaction.  Additionally, I 

identify pertinent research questions related to the discrete and continuous system 

conditions, and intervention strategy. 

Contingency and delay.  There is conflicting evidence related to how people 

might respond to the interaction between contingency and delay.  Findings from a subset 

of studies suggest people ascribe more causality to non-causal variables when confronted 

with uncertainty (e.g., Gao, Nitzany, & Edelman, 2012; Lagnado & Speekenbrink, 2010; 

Rottman & Keil, 2012).  These findings support a prediction that participants’ causal 

attributions will increase for variables with lower contingencies (i.e., lower ΔP values) 

with increased delay intervals.  Conversely, reasoning theories (e.g., Occam’s razor, Take 

the Best) suggest that situations with more uncertainty might assist participants in 

identifying potential causal variables with lower ΔP values in favor of parsimonious and 

definite explanations of causality (or no causality).  In these instances, participants may 

use unknown causal variables to explain inconsistent observations (Rottman & Ahn, 

2011), rather than attribute causality to less contingent causal variables.  A decrease in 

participants’ causal attributions for manipulations with increased amounts delay and 

lower ΔP values will support this perspective.  Given findings relating to the influence of 
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delay across conditioning, system dynamics, and causal reasoning literatures, I expect 

that increases in delay will result in greater differences in causal attributions regardless of 

its direction. 

In the absence of a significant interaction between the delay and contingency 

experimental manipulations, I expected causal attributions to reflect the differences in the 

ΔP values between the contingency manipulations, such that lower ΔP values would 

correspond to lower causal attributions (Buehner et al., 2003).  Also, I anticipated that 

delay alone would generate outcomes inconsistent with participants’ expectations.  With 

this inconsistency, current research suggests that participants would struggle to 

adequately manage the system (e.g., Brehmer, 1989) and be less likely to attribute the 

causal variable with the effect (e.g., Greville & Buehner, 2010).   

Discrete vs. continuous system.  To predict whether or not participants will 

perform better or worse in the continuous system condition as opposed to the discrete 

system condition is largely dependent on which paradigm one adheres.  System dynamics 

literature would argue that simplifying the problem space by removing the 

interdependencies between trials renders it devoid of essential contextual cues (and 

makes the findings rather meaningless when relating the findings back to systems that are 

continuous in nature).  If this is the case, participants will be better equipped to correctly 

identify the underlying contingency with the continuous system condition than with the 

discrete system condition.  Contrary to this, the causal reasoning literature would argue 

that a discrete problem space simplifies the reasoning task, so is not only a logical place 

to initiate research, but is also more likely to facilitate causal attribution.  Thus, this study 
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addressed the research question of how system condition affects outcome measures 

common to the respective literatures within a consistent reasoning framework.   

 Intervention strategy.  Although free-operant learning environments are more 

characteristic of the environments experienced by hypertensive patients applying new 

treatment regimens, they add an unpredictable amount of variability that may reduce the 

affect of other, controlled manipulations applied by the experimenter.  This is why the 

number and type of interventions participants apply and subsequently observe when 

learning about causal scenarios is a contextual factor often controlled or ignored by 

causal reasoning researchers.   

 An analysis of the standard error of the difference between proportions illustrates 

that the underlying contingency value affects what intervention strategies will provide the 

most information regarding the influence (or lack of) of the causal variable on the effect 

outcome (Appendix B).  Unbiased intervention strategies, with which the probability that 

the causal variable is applied is equivalent to the probability that it is withheld (i.e., P(c) 

= P(~c)), provide the most information in scenarios with no prior assumptions about a 

variable’s efficacy.  But the application of unbiased intervention strategies is difficult to 

rationalize (and is less informative) if one assumes that a particular variable or 

intervention (e.g., a treatment recommended by your trusted physician, or specific action 

relative to the contextual scenario, as with diet to hypertension) will have a positive 

effect.   

 Additionally, the underlying contingency value directs intervention strategy if 

people react to specific observations, but has no bearing on selections made 

independently of a system’s outputs (Appendix C).  For example, a strategy that only 
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applies the treatment when the blood pressure is elevated provides less opportunity to test 

outcomes associated with the treatment as the contingency value increases.  This is 

because increasing the combined contingency, or increasing the likelihood of an effect 

will occur regardless of the source (i.e., treatment or ~treatment), increases the frequency 

that the blood pressure observation is in the normal range.  For this reason, differences in 

system control are related to both intervention strategy and contingency.  Exclusive 

application of the causal variable (i.e., a treatment-biased intervention strategy) will yield 

the lowest possible blood pressure levels when the probability of an effect given the 

cause is greater than the probability of the effect in the absence of that cause (P(e|c) > 

P(e|~c)).  Moreover, the converse, lower blood pressure levels when refraining from 

applying the causal variable when the probability of an effect given the cause is less than 

the probability of the effect in the absence of that cause (P(e|c) < P(e|~c)).  When the 

probability of an effect given the presence and absence of the cause is equivalent (P(e|c) 

= P(e|~c)), intervention strategy will not effect the system control measure, or the 

probability that the effect is observed.    

 An analysis of observed treatment intervention selections presents an opportunity 

to discover common reasoning strategies.  Further, a review of the relationships between 

the experimental manipulations and treatment intervention strategy, and treatment 

intervention strategy and causal attribution will provide a clearer direction for future 

research.  If intervention strategy is unrelated to both the experimental manipulations and 

causal attributions, this will provide justification for restricted reasoning paradigms and 

ultimately deemphasize the need to employ free-operant paradigms and consider 

intervention strategy moving forward.  Conversely, an increased emphasis on measures 
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that reflect both behavior and understanding is justified if intervention strategy is related 

to either the experimental manipulations or reasoning outcomes as suggested by 

Hagmayer et al.’s (2010) findings. 
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II. METHOD 

Participants  

  A total of 96 students enrolled in an undergraduate psychology course at Wright 

State University were recruited to participate in this study for course credit.  The data 

from 24 participants were excluded because they did not meet the English proficiency or 

conscientious responder criteria (i.e., attempted to apply the treatment).  When a 

participant failed to meet these criteria, I excluded their data and re-ran the condition with 

a new participant.   

  Table 1 summarizes the demographic distribution of the 72 participants whose 

data were considered across analyses.  About half of the 72 participants were females (n 

= 35), whom were evenly distributed between the discrete (n = 18) and continuous (n = 

17) system condition by happenstance.  Participants were between 18 and 45 years old 

(M = 20.25, SD = 4.41) and had normal or corrected normal vision.  A total of 18 

participants reported that English was not their native language.  In addition to basic 

demographic information, participants provided information related to their health beliefs 

and experiences managing their own or someone else’s medical condition.  I did not 

exclude participants based on this information as preconceived notions and experiences 

with specific medical treatments and conditions are arguably realistic in natural settings.  

Over half of the participants (n = 42) reported managing their own or another person’s 

medical condition.  These conditions ranged from acute medical conditions (e.g., cold 

and flu) to chronic diseases.  
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  I performed one-way ANOVAs for a subset of the demographic questionnaire 

items (i.e., age, sex, grade level, and ESL) to determine whether the randomly assigned 

groups of participants were equivalent.  Also, I compared the distribution of participants 

between the system conditions using independent samples t-tests.  Participants were 

evenly distributed between experimental manipulations.  These analyses are presented in 

Appendix D, along with summaries of participants’ responses to the Health Belief 

Questionnaire measures and participants’ performance on the English proficiency 

measure.   

Table 1 

Participant Demographic Distribution separated by System Condition 

 Discrete System  Continuous System 

Age    

    < = 21 32  30 

    > 21 4  6 

Sex    

    Female 17  18 

    Male 19  18 

Grade    

    Freshman 26  24 

    Sophomore 9  8 

    Junior 1  4 

    Senior 0  0 

ESL  9  9 

College Affiliation    

    Business 2  1 

    Education 2  2 

    Engineering and 

Computer Science 12  10 

    Liberal Arts 3  7 

    Nursing 2  3 

    Math and Science 6  3 

    University College 9  10 

Health Management 

Experience* 18  25 

Note.  *Have you personally managed your own or someone else's 

medical / condition?  
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Manipulations and Conditions 

 Contingency.  I employed three contingency manipulations to explore differences 

relative to the value associated with the probability that the causal variable produces the 

effect and the probability that the effect occurs in the absence of the causal variable.  I 

started with the contingency manipulation, P(e|c) = .75, P(e|~c) = .00 as it is frequently 

used within the causal reasoning literature by researchers considering the influence of 

various contingency values, as well as those measuring the influence of delay on causal 

attributions (e.g., Buehner et al., 2003; Greville & Buehner, 2010; Shanks et al., 1989).    

The second manipulation alters the probability that an effect will occur in the absence of 

the causal variable, so that the difference between the probabilistic values is zero (i.e., 

P(e|c) = .75, P(e|~c) = .75; and P(e|c) - P(e|~c) = ΔP = 0).  The third manipulation 

lowers the probability that the effect will occur in the presence of the causal variable, but 

retains the same value as the first manipulation relative to the probability that the effect 

will occur in the absence of the casual variable (i.e., P(e|c) = .25, P(e|~c) = .00).  

Buehner et al. (2003, experiment 1) also evaluated these last two manipulations in their 

assessment of several contingency manipulations.2  For the remainder of the document, I 

will refer to these contingency manipulations as 75|0, 75|75, and 25|0. 

 The two methods used for implementing contingency are random (Allan, Tangen, 

Wood, & Shah, 2003; Buehner et al., 2003; Buehner & May, 2003; Jenkins & Ward, 

                                                      
2 Buehner et al. (2003, experiment 1) assessed 15 contingency conditions using a within 

subjects design.  The learning task was presented using a discrete system, in which 

participants were not allowed to freely apply the causal variable and the influence of 

delay was not considered.   
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1965; Perales & Shanks, 2003; Shank et al., 1989; Wasserman et al., 1993) and fixed 

assignment (Rottman & Keil, 2012).  With random assignment, researchers randomly 

generate and display a sequence of observations at the rate of contingency for each 

participant, whereas this sequence of observations is specified a-priori and remains 

consistent between participants with fixed assignment.  In combination with a free-

operant learning task, the advantage of the fixed assignment approach is that there is 

considerably less variation between the actual, observed contingency values across all of 

the possible intervention distributions (i.e., strategies) as compared to the fixed 

assignment implementation.  However, these actual, observed contingency values are 

equal to the contingency specification only with specific intervention distributions and 

otherwise, will be greater than the specified contingency value.  Appendix E contains a 

more complete analysis that considers the fixed and random assignment approach in the 

specification of contingency.   

Although random assignment as the method for contingency specification is more 

common within the causal reasoning literature, the implementation of contingency here 

was linked to participants’ hypertensive treatment interventions (i.e., fixed assignment), 

rather than randomly generated (i.e., random assignment) in order to retain some 

consistency between learning experiences.  With manipulations in which the P(e) = .75, 

the null effect (~e) was observed in combination with the participants’ 2, 6, 10, and 14th 

selection of the associated treatment option (either the application of the treatment and/or 

the absence of the treatment depending on the manipulation).  Similarly, the effect 

occurred on participants’ 1, 5, 9, and 13th selections of the apply treatment option when 

P(e|c) = .25.  Table 2 presents the actual contingency values for each of the contingency 
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manipulations averaged across participants’ intervention strategies and the delay 

manipulations. 

Table 2 

Actual Contingency Values relative to Intended Contingency Values for the 

Discrete and Continuous System Conditions 

 Intended  Discrete System  Continuous System 

 P(e|c) P(e|~c)  P(e|c) P(e|~c)  P(e|c) P(e|~c) 

75|0 .75 .00  .77 (.03) .00 (.00)  .76 (.05) .00 (.00) 

75|75  .75 .75  .78 (.05) .76 (.04)  .78 (.06) .77 (.12) 

25|0 .25 .00  .37 (.06) .00 (.00)  .38 (.07) .00 (.00) 

Note.  Values represent the mean contingency value across participants’ 

intervention strategies.  SDs shown in parentheses. 
 

Delay.  Researchers exploiting a causal reasoning paradigm explore the 

implications of delay with duration-based based learning tasks (Allan et al., 2003; 

Buehner & May, 2003; Shanks et al., 1989; Wasserman & Neunabber, 1986).  Actual 

time determines participants’ exposure to the learning environment (e.g., two minutes) 

and specification of the delay interval is in increments of seconds.  This duration-based 

approach provides the greatest opportunity for control of the delay interval, given delay is 

a factor of time.  However, applied situations requiring causal assessments and 

management extend beyond these abbreviated durations, as is the case with hypertension 

management.  Although running experiments over longer durations is possible (e.g., 

Shiffrin & Schneider, 1977), the general absence of such studies insinuates that there are 

disadvantageous to such endeavors, such as cost, participant retention, and inclusion of 

uncontrollable variables. 

  Trial-based learning tasks are the alternative.  The use of trial-based learning 

environments is customary in the system dynamics literature, as well as within areas of 

the causal reasoning literature that control for delay.  The temporal ambiguousness of 

trials allows researchers to assign timeframes contextually appropriate to their 
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experimental scenarios, which arguably increases external validity.  However, there are 

several implications of a trial-based approach to the implementation of delay.  First, the 

speed at which participants progress through the learning task will determine the actual 

time between trials, which hampers comparison to duration-based research.  Second, the 

use of trials to specify the delay interval prohibits the exploration of a no-delay 

manipulation, which serves as the control condition within duration-based research.  

However, the use of a one-trial delay condition is a justifiable, if not better, alternative 

given some delay is inherent to most complex, continuous systems.  Third, implementing 

delay within a trial-based framework necessitates carry-over between trials.  This overlap 

between action-outcome pairings makes the system categorically less discrete, but 

Rottman & Keil’s (2012) findings suggest that people inherently interrelate information 

presented on contiguous trials in discrete-trial based tasks.  Also, overlaps between action 

and outcome pairings already exist within duration-based, free-operant learning tasks that 

consider delay (e.g., Buehner & May, 2003, experiment 2; Greville and Buehner, 2010).  

Lastly, delay/time becomes a symbolic, rather direct representation.  Although the 

inability for trials to adequately represent time is a concern, the use of trials to represent 

time is not novel to this experiment.  

I used three delay manipulations to study the influence of delay between the 

administration of the treatment intervention and its effect on the patient’s blood pressure: 

one-trial delay, two-trial delay, and three-trial delay.  With the one-trial delay 

manipulation, the outcome associated with the treatment intervention was shown at the 

start of the next trial (i.e., if you take treatment on trial 1, you see the applicable effect on 

trial 2).  With the remaining delay manipulations, the impact of treatment interventions 
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occurred on subsequent trials, but not on the next trial.  With the two-trial delay 

manipulation, the outcome associated with the administered treatment intervention 

skipped a trial.  With the three-day delay manipulation, the outcome was presented three 

trials after the application of the intervention (skipped two trials).  The blood pressure 

observation associated with the null-effect (elevated blood pressure level with the 

discrete system and +2 with the continuous system) was not shown to participants until 

the delay manipulation allowed the administered treatment intervention to influence the 

effect (i.e., one trial delay/trial 2, two trial delay/trial 3, three trial delay/trial 4).  

Figures 5 and 6 depict the delay manipulations in combination with the 75|0 

contingency manipulation for both the discrete and continuous system conditions.  For 

the purposes of illustration, in both instances, the apply treatment intervention was 

selected on trials 1 through 8 and the withhold treatment intervention was selected for the 

remaining trials.  Appendix F presents the systems’ behavior (blood pressure levels) in 

relation to additional treatment intervention scenarios.  Table 3 contains the approximate 

delay durations associated with each of the trial-based delay manipulations observed in 

this study.  Quantifying the actual time associated with each trial is necessary to compare 

the observed findings with research that uses duration-based, rather than trial-based 

learning tasks.  
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Figure 5.  Delay manipulations with the discrete system condition with the 75|0 

contingency manipulation.  140 and 120 represent an elevated and normal blood pressure 

levels respectively.  Application of the treatment invention occurs on trials 1-8. 

 

 
Figure 6.  Delay manipulations with the continuous system condition with 75|0 

contingency manipulation.  Application of the treatment intervention occurs on trials 1-8.   
 

 

System conditions.  The contigency and delay manipulations were applied to two 

system conditions: discrete and continuous.  Half of the study’s participants worked with 

each condition.  With the discrete system condition, a patient’s blood pressure level was 
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Table 3 

Approximate Duration associated with each Delay Manipulation in Seconds for the 

Discrete and Continuous System Conditions 

Delay Manipulation Discrete System  Continuous System 

One-trial delay 3.90  3.82 

Two-trial delay 7.80  7.63 

Three-trial delay 11.70  11.45 

Note.  For the discrete system condition, the amount of time spent on each trial was just 

under four seconds across all contingency * delay treatment combinations (M = 3.90, 

SD = 1.16).  For the continuous system condition, the amount of time spent on each 

trial was just under four seconds across all contingency * delay treatment combinations 

(M = 3.82, SD = 0.90).  Approximate duration was calculated by multiplying the mean 

trial time by the number of trials of delay. 
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depicted as either an elevated or a normal state.  Patients’ blood pressure level started at 

and returned to the elevated state after each trial unless acted upon according to the 

contingency manipulation.  As such, the treatment interventions worked on the effect in 

accordance to experimental manipulations without influence of prior treatment 

interventions.  Although each intervention affected the system separately, there was 

carry-over between trials due to the trial-based implementation of the delay manipulation 

making this a partially-discrete condition.  This partially-discrete condition is not unique 

to this paradigm and is consistent with Greville and Buehner’s (2010) experimental 

design.  Greville and Buehner allowed carry-over between trials to overcome the 

challenges (i.e., differences in contingency, differences in learning task duration) of 

studying delay with a completely discrete system.  

With the continuous system, the trials were dependent such that an application of 

a treatment option on previous trials influenced the impact of the treatment application on 

subsequent trials (e.g., Edwards, 1962).  The same carry-over between trials applies to the 

continuous system condition due to the delay manipulation as mentioned with my 

discrete(-like) system condition.  However, the blood pressure measurements were 

continuous between trials as well, meaning the output on each trial was representative of 

the cumulative impact of the participant’s actions.  For this reason, the patients’ blood 

pressure levels were presented on a continuous, 100-interval scale.  The left and right 

halves of the scale were depicted as ranges containing normal (color coded as green) and 

elevated (color coded as red) blood pressure levels, respectively.  Patients’ blood pressure 

level started at the center of the elevated range.  If the treatment influenced the patients’ 

blood pressure according to the underlying contingency manipulation, the blood pressure 
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indication would shift 8 points to the left (i.e., toward the normal range), otherwise the 

blood pressure indication would shift 2 points to the right (i.e., toward the elevated 

range).  This movement toward the elevated range (i.e., the gain value associated with the 

null effect) is representative of treatment decay or a patient’s natural tendency toward 

blood pressure elevation.  Appendix G provides further rationale for the selection of this -

8:+2 effect to null effect gain ratio.  If the level reached either bound of the scale, the 

blood pressure level would remain at the bound until patient’s selection behavior in 

combination with the underlying contingency and delay manipulations warrented 

movement.  

Measures 

As discussed previously, a major difference between the causal reasoning and 

system dynamics literatures is the dependent measure.  Causal reasoning focuses on the 

ability of people to explicitly describe either the direction or magnitude of the effect on a 

system, whereas the system dynamics research measures behavior, that is peoples’ 

interaction with and ability to control a system.  Both measures are appropriate to a 

hypertension management context.  Peoples’ interventional approach informs the 

evolution of their beliefs, whereas their overall success in controlling the system is 

potentially indicative of their cumulative understanding of the system.  However, neither 

of these measures requires people to explicitly express this understanding, which is the 

benefit of attribution measures characteristic of the causal reasoning paradigm.  In 

addition to these outcome measures, I collected data using a series of demographic and 

debrief questions.  For brevity, the following section will only present the measures 

considered in the body of this document.  Appendix H contains the descriptions of 
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additional measures such as selection diversity, selections based on observations, 

selections based on changes in observations, selections based on unexpected changes, and 

response times.  

Causal attribution measures.  I used participants’ causal attributions from the 

judgment task to assess their explicit understanding of the situation (i.e., the causality of 

the treatment option).  In the causal reasoning literature, researchers either specify causal 

direction (i.e., preventative or generative) (e.g., Buehner et al., 2003, experiment 1; 

Jenkins & Ward, 1965; Wasserman et al., 1993) or leave the directional nature of the 

scenario ambiguous (e.g., Allen et al., 2003, experiment 1; Perales & Shanks, 2003; 

Wasserman & Neunabber, 1986).  Specifying a causal direction within the context of 

hypertension management (or in any reasoning domain) seems presumptive and 

unnecessary.  First, medical treatments can exacerbate or generate symptoms despite their 

preventive intention (e.g., flu vaccines), so using a directional scale preemptively narrows 

the range of reasoning outcomes.  Also, if reasoning outcomes are strictly preventative or 

generative, reasoners should be capable of making this distinction.  Further, Wasserman 

and Neunaber (1986) found participants were less sensitive to differences in contingency 

and altered their judgment strategy with directionally minimized scales.  For these 

reasons, I applied a measure that assesses both direction and magnitude of the potential 

causal relationship with an ordinal and ratio measure, respectively. 

Ordinal measure.  The ordinal measure describes participants’ overall impression 

of how the treatments influenced a patient’s outcome and was collected in the first part of 

the judgment task.  Participants selected whether the treatment raised, lowered, or had no 

effect on the patients’ blood pressure level.   
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Ratio measure.  If participants selected ‘no-effect’ with the ordinal measure in the 

first part of the judgment task, I coded their responses as zero.  If participants determined 

that a treatment ‘lowered’ or ‘raised’ their patient’s blood pressure, they were asked to 

determine the degree of the treatments influence on a 100-point scale.  To distinguish 

between the lowered and raised causal attributions, I inverted the causal attributions 

associated with ‘raised’ responses on a zero (never raised patients’ blood pressure) to -

100 (always raised patient’s blood pressure) scale.  No conversions were made to the 

causal attributions associated with a ‘lowered’ assessment.   

System control measure.  The amount of blood pressure decline (as opposed to 

elevation) is a system control measure that is compatible with both the discrete and 

continuous system conditions and is meaningful to the contextual scenario of 

hypertension management (see Appendix I for a comparison of the two options system 

control measures that I considered for this study).  I measured the decline in blood 

pressure after 13 treatment interventions, rather than 15 in order to assess the same 

number of treatment interventions across the delay conditions.  So, I compared the 

cumulative blood pressure values associated with trial 14, 15, and 16 with one-trial, two-

trial, and three-trial delay manipulations, respectively.  Although participants were not 

shown numeric blood pressure values, a numeric scale underlay the continuous system 

outcome graphic.  I transferred participants’ treatment intervention selections made in the 

discrete system condition to the continuous systems’ numeric scale to allow for a system 

comparison.  Importantly, differences in contingency are expected with this outcome 

measure.  For example, patients’ blood pressure levels readily lower with the 75|75 

contingency manipulation as compared to the 25|0 contingency manipulation.  
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Intervention strategy measures.  Participants’ experiences with the learning 

tasks will vary based on the order and frequency that they administered the treatment 

intervention options (i.e., apply, withhold).  The computer application recorded each of 

the participants’ treatment interventions.  I used these inputs to assess whether 

participants applied identifiable patterns of exploration (i.e., strategies) consistently 

within and between patient scenarios and considered whether these strategies were 

related to the experimental manipulations and treatment type (e.g., exercise).  I also 

considered whether treatment intervention strategy affected participants’ causal 

attributions and system control.  I used two treatment intervention measures when 

categorizing participants’ strategic behavior: the number of treatment interventions 

applied and the number of runs.   

Number of treatment inventions applied.  The number of treatment interventions 

applied tallies the number of times that a participant applied the treatment intervention 

option as opposed to withholding the treatment across the 16 trials.  This measure was 

used to identify conscientious responders, as well.  If participants withheld the treatment 

intervention option on all 16 trials, I excluded their data and re-ran the condition with a 

new participant as it is impossible to assess something’s influence without ever sampling 

the phenomena. 

Number of runs.  The number of runs measure leverages part of the runs test that 

is used to detect non-randomness (Bradley, 1968).  A run is defined as a series of the 

same input/value - in the present study the input is the treatment intervention option.  So, 

the number of runs is the number of times the input selection changes.  For example, let’s 

pretend that I flipped a coin ten times and got the following output: HHHHTHHTTT with 
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H and T representing a heads and tails outcome, respectively.  The number of runs for 

this sequence is four.  The first run has a length of four (HHHH).  The second run has a 

length of one (T).  The third run has a length of two (HH) and the fourth run has a length 

of three (TTT).  Generally, with runs test analyses, fewer runs are associated with a non-

random process. 

 Demographic questions.  In addition to providing their age, gender and major, 

participants answered questions that assessed their English proficiency, and their current 

knowledge and expectations related to medical treatments (see Appendix J for complete 

list of questions).  I used these responses to verify that participants’ language proficiency 

was adequate to understand the written instructions and to ensure that the participants 

randomly assigned to each condition were equivalent.  

 English proficiency.  I presented participants with four definitions and asked 

them to identify the corresponding word from a set of six options.  This method of 

measuring English proficiency is used on a language learning website (i.e., Level test) to 

ascertain readers’ language ability in order to recommend appropriate instructional 

materials.  The four definitions presented to participants were randomly selected from a 

set of 12 definition to word pairings.  Half of these definition to word pairings were 

categorized as identifiable by readers at an intermediate level, while the other half an 

upper intermediate level.  Given a large portion of the protocol involved reading in 

English, participants that answered two or more of these four questions incorrectly were 

excluded from the final data analysis and their condition was re-run with a new 

participant. 
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 Medical experience.  I asked participants a series of questions about their 

experiences managing medical conditions, treatment expectations, and beliefs related to 

medical treatments.  Specifically, I asked about their expectations related to treatment 

onset and offset durations, as well as the percentage of treatment interventions that should 

positively act on a medical condition to consider the cumulative treatment experience as 

effective.  To better understand participants’ general beliefs about medicine, I asked 

participants to rate a subset of items from the Beliefs about Medicine Questionnaire 

(BMQ) (Horne, Weinman, & Hankins, 1999): if doctors had more time with patients, 

they would prescribe fewer medicines, doctors use too many medicines, medicines do 

more harm than good, and people who take medicines should stop their treatment for a 

while every now and again.  These items consider medication overuse and harm, and 

were selected based on Horne et al.’s (1999, p.10) factor analysis results.  Horne et al. 

(1999) suggests that people who feel more strongly about these items will be more 

inclined to ‘seek alternative methods of treatments.’  Relative to this study, participants 

with higher ratings on these items may apply the treatment less frequently when 

determining how the treatment options influence their patients’ blood pressure. 

 Debrief questions.  I asked participants to provide feedback pertaining to their 

reasoning experience with their last hypothetical patient.  This series of questions (also 

shown in Appendix J) asked participants to discuss the strategy that they used during the 

learning and judgment tasks, their expectation of how the treatment option may have 

influenced the patient’s blood pressure level at the start of the learning task, and to 

explain the underlying construct/system behavior.  These questions specifically targeted a 

single patient scenario because I expected some participants to modify their behavior 
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according to the experimental conditions.  Further, the last patient scenario was selected 

to minimize the amount of time between the participants’ experience and their 

recollection of this experience. 

Design 

All participants learned about hypothetical patients’ responses to a series of 

administered treatment interventions (i.e., potential causal variables) in a learning task 

and rated whether these treatment interventions affect the patient’s blood pressure level 

(i.e., the effect) in a judgment task.  Between patient scenarios, I revised elements of the 

cover story to highlight this transition and reinforce to participants that they were 

interacting with a new patient.  The computer application randomly generated a name for 

each hypothetical patient by selecting from six options (i.e., Mr. Smith, Mr. Jones, Mr. 

Green, Mr. Nelson, Mr. White, and Mr. Tyler).  Once used, the system did not present 

this name to that participant on subsequent tasks (i.e., sampling without replacement).  I 

used the same technique to revise the names and illustrations representing the 

hypertensive treatment options (i.e., medication, healthy diet, and exercise) presented 

with each patient scenario.  I manipulated the underlying contingency (a. 25|0, b. 75|0, c. 

75|75) and the amount of delay (a. one-trial delay, b. two-trial delay, c. three-trial delay) 

to form nine treatment combinations (e.g., hypothetical patient scenarios).  Table 4 

presents these nine treatment combinations.  I considered how these nine treatment 

combinations influenced peoples’ reasoning ability separately with a discrete and a 

continuous system condition as a between subjects effect, and used participants’ casual 

attributions, treatment intervention behavior, system control, and time as dependent 

measures.  
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Table 4 

Learning Task: 3 (Delay) x 3 (Contingency) Design 

Delay Manipulation 

 Contingency Manipulation 

 0 – 75|0  1 - 75|75  2 - 25|0 

0 - one-trial delay  00  10  20 

1 - two-trial delay  01  11  21 

2 - three-trial delay  02  12  22 

Note.  75|0, 75|75, and 25|0 represent the P(e|c) = .75, P(e|~c) = .00, P(e|c) 

= .75, P(e|~c) = .75, and P(e|c) = .25, P(e|~c) = .00) conditions respectively. 
 

 I assigned treatment combinations using a 3 x 3 random block partially 

confounded factorial design (RBPF) for each system condition (i.e., continuous and 

discrete).  The confounded design allocated 1/3 of the treatment combinations (i.e., 3 

patient scenarios) to each participant.  This design avoids between subjects comparisons 

for the independent variables in question, and the potential for carryover with repetitions 

of the same value for an independent variable across the session.  While this design 

allows for the assessment of main effects using a within subject error term, it also reduces 

the number of treatment combinations assigned to each participant to reduce fatigue.  

However, only half of the 4 df interactions in the confounded factorial are within 

subjects.  A replication accounted for within this design switches the between and within 

subjects contrasts so that all contrasts can be tested with within subjects power, albeit for 

only half of the data (see Table 5).  To eliminate the possibility of an ordering effect, I 

counterbalanced the treatment order.  The three treatment combinations in each block can 

be presented in six different orders.  Table 6 illustrates the orders for the treatment 

combinations in Block 1.  I randomly assigned six participants in each block to view the 

treatment combinations in each of the six possible presentation orders.  Figure 7 shows 

the distribution of the 72 participants amongst the system conditions, the six blocks and 

further divided into the six possible treatment orders.  
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Table 5 

RBPF – 32 Design 

 Treatment Combination (DelayjContingencyk) 

 1  2  3 

Block 1 00  12  21 

Block 2 01  10  22 

Block 3 02  11  20 

Block 4 00  11  22 

Block 5 02  10  21 

Block 6 01  12  20 

Note.  Delay0, Delay1, and Delay2 represent the one-trial delay, two-trial delay, 

and three trial manipulations respectively.  Contingency0, Contingency1, and 

Contingency2 represent the P(e|c) = .75 P(e|~c) = .00, P(e|c) = .75, P(e|~c) = 

.75, and P(e|c) = .25, P(e|~c) = .00 manipulations. 

 

Table 6 

Presentation Orders for the Treatment Combinations in Block 1 

 First Second Third 

1 00 12 21 

2 00 21 12 

3 12 00 21 

4 12 21 00 

5 21 00 12 

6 21 12 00 

 

  
Figure 7.  Breakdown of Participants into Conditions, Treatment Blocks, and Order of 

Treatments  

 



 44 

Procedure 

 I conducted this study in sessions with multiple participants3 individually working 

on laptop computers.  Participants reviewed a consent form and offered their consent to 

participate before the start of the study (see Appendix K for the consent form).  

Participants were randomly assigned to a set of experimental treatment combinations and 

were asked to enter this treatment combination into the computer application.  After 

entering this information, the computer application guided participants through an 

introduction familiarizing them with the cover story (i.e., physician managing patients 

blood pressure levels), as well as the upcoming learning and judgment tasks (see 

Appendix L).  The final screen of this introduction (shown in Figure 8) presented 

participants with two task goals: a) figure out how the treatment is influencing the 

patient’s blood pressure level and b) lower the patient’s blood pressure as much as 

possible.  In addition to presenting the task goals, this screen reinforced that each of the 

three patient scenarios (experimental treatment combinations) should be considered 

independent from one another, and insinuated the presence of temporal variability and 

external influences.  I reiterated this information between patient scenarios, as well as 

changed the patient’s name and hypertension treatment option (e.g., medicine, diet, and 

exercise) to emphasize the change in the learning task scenario.  Participants were 

encouraged to ask questions during this introduction phase, as they were not given 

feedback from the facilitator (me) after this point.    

                                                      
3 The final session only contained one participant.  The remaining 16 sessions included 

between two and eight participants. 
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Figure 8.  Task Goals and Contextual Information Screen 
  

 Following the introduction, participants continued to use the computer application 

to learn about their three hypothetical patients, again with three different experimental 

treatment combinations.  Participants applied the randomly assigned hypertension 

treatment options (medicine, diet, and exercise) and monitored their patients’ status over 

a series of trials.  After each learning task, I asked participants to determine how the 

hypertension treatment influenced their patient’s blood pressure level.  Participants 

received feedback concerning the accuracy of their responses after they completed the 

judgment task related to their last hypothetical patient.  This feedback screen also 

directed participants to an online demographic and debrief questionnaire.  Participants 

self-progressed through their three patient scenarios and the questionnaire with no time 

limitation.  The vast majority of participants completed both of these activities in less 

than 30 minutes. 
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Tasks 

 Learning task.  Participants monitored their patients’ status while administering 

16 days (i.e., 16 trials) worth of treatment interventions that behaved in accordance with 

the experimental conditions.  This number of trials is consistent with past studies that 

have used eight trials per intervention option (Buehner et al., 2003; Rottman & Keil, 

2012).  The user interface presented participants with two intervention options: apply 

treatment or do not apply treatment (Figure 9).  In so doing, participants determined the 

frequency, as well as the order in which they applied (or chose not to apply) each 

treatment intervention.  So, for each trial, the participant needed to determine whether or 

not to administer the treatment to the patient.  Once the participant selected an 

intervention option, a next button activated allowing the participant to move to the next 

trial. 

 
Figure 9.  Learning Task Interface 

  

 With each new trial, the patient’s status changed according to the participant’s 

treatment intervention select and the underlying experimental manipulations of the 

patient scenario (i.e., contingency value, the amount of delay, and system condition).  For 

the discrete system condition, I used a dichotomous widget to represent the patients’ 
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blood pressure status (e.g., Novick & Cheng, 2004).  This icon depicted the patient’s 

blood pressure level as either normal (middle of the green range) or elevated (middle of 

the red range) (see Figure 10).  I used the same widget in the continuous condition, but 

there were multiple intervals within the normal and elevated blood pressure ranges (see 

Figure 11).  With both system conditions, the patients’ status on the first trial began at the 

midpoint of the elevated blood pressure range.  In addition to the patients’ status, the 

indication of the number of remaining trials for each patient scenario updated with each 

trial.  Participants could not move backwards or alter their intervention selections once 

they moved to a new trial.   

 

 

Figure 10.  Elevated and Normal Blood Pressure Level Indication in the Discrete System 

Condition.  The status indication is always positioned in the middle of the respective 

ranges.  

 

 

 
Figure 11.  Elevated Blood Pressure Level Indications in the Continuous System 

Condition.  The elevated status indication can have various states.  The same is true for 

the normal level in the continuous state. 
 

Judgment task.  The judgment task followed each learning task.  I asked 

participants to assess how the treatment option (i.e., the cause) affected the patients’ 

blood pressure level (i.e., the effect) in a two-part task (e.g., Buehner et al., 2003, 

experiments 2 and 3).  First, participants decided whether the treatment affected the 
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patients’ blood pressure level by selecting one of three ordinal categories (i.e., the 

treatment lowered the patient’s blood pressure, the treatment had no effect on the 

patient’s blood pressure, or the treatment raised the patients blood pressure).  If the 

participants determined that the treatment either lowered or raised the patient’s blood 

pressure level, they were asked to rate the extent to which the treatment affects the 

patient’s condition.  This measurement was collected using a graphic rating scale ranging 

from zero (the treatment had no effect on the patient’s blood pressure level) to 100 (the 

treatment always [raised or lowered depending on the previous selection] the patient’s 

blood pressure level), with continuous whole numbers (e.g., Buehner et al., 2003; 

Greville & Buehner, 2010).  Figures 12 and 13 show the interfaces related to first and 

second part of the judgment task. 

 
Figure 12.  Judgment Task – Selection of Ordinal Category Interface 
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Figure 13.  Judgment Task – Ratio Scale Selection 

 After completing the judgment task related to their third and final hypothetical 

patient, participants received feedback regarding the accuracy of their assessments across 

the session (Figure 14).  The purpose of this feedback was to provide participants with 

some insight into their performance.  However, I intentionally did not present this 

feedback throughout the session in order to reduce carryover effects, and to limit 

potential frustration and task abandonment that may accompany incorrect responses.  

Response accuracy was determined by participants’ initial, ordinal assessment regarding 

the influence of the treatment on the patient’s blood pressure relative to the underlying 

contingency manipulation.  Specifically, the correct response for the conditions in which 

the probability of an effect given the cause (P(e|c)) was greater than the probability of an 

effect in the absence of the cause (P(e|~c)) (i.e., ΔP > 0 as was the case with 75|0 and 

25|0 contingency manipulations) was that the treatment lowered the patient’s blood 

pressure.  Further, had no effect on the patient’s blood pressure was considered correct 

response when the probability of an effect given the cause (P(e|c)) was equal to the 

probability of an effect in the absence of the cause (P(e|~c)) (i.e., ΔP = 0, the 75|75 

contingency manipulation).  The user interface indicated whether the participants’ 
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responses were correct or incorrect, but did not provide rationale for this assessment to 

ensure participants remained ignorant of the experimental manipulations.   

 
Figure 14.  Performance Feedback Screen
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III. RESULTS 

I assessed differences in reasoning outcomes (i.e., causal attributions and system 

control) according to the experimental manipulations, the relationship between these 

reasoning outcomes, differences in intervention strategies, and the relationship between 

reasoning strategy and causal attributions.  Additionally, I compared the findings from 

the present study to existing experimental research and reasoning theory, and reviewed 

participants’ self-reported data.  For quantitative analyses, I used an alpha level of .05, 

and performed normality (Appendix M) and homogeneity of variance (Appendix N) 

assessments.   

To summarize, the omnibus analyses revealed differences in participants’ causal 

attributions (Figure 15), but not success in controlling the system (Figure 16).  Both 

system condition and contingency (Figure 15b), but not delay (Figure 15c), influenced 

participants’ causal attributions.  The observed pattern of causal attributions was 

consistent between the system conditions (25|0 < 75|0 and 75|75, 75|0 = 75|75), but the 

attributions of participants that interacted with the continuous system condition were 

more extreme.  Participants’ causal attributions negatively correlated with their system 

control with each level of delay in both system conditions (Figure 17).  That is, higher 

attributions were associated with lower blood pressure values.  Yet, this negative 

relationship only persisted with the 75|0 contingency manipulation in the discrete system 

condition, when the outcome data was separated by contingency and system.   
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Although neither system condition nor delay directly affected the system control 

measure (Figure 16), my consideration of intervention strategy did reveal behavioral 

differences between the system conditions, specifically relative to the strategic dimension 

of observation dependence.  The use of reactionary, observation-dependent strategies was 

more prevalent with the discrete system condition with most of the contingency and delay 

manipulations (Figure 19).  In contrast, differences in the distribution of the strategic 

dimension of intervention bias were not tied to the experimental manipulations (Figure 

18).  Yet, causal attributions differed according to both strategic dimensions with 

observation-independent and treatment-biased strategies leading to higher causal 

attributions (Figure 20).  

Lastly, the observed causal attributions generally reflect the existing experimental 

research.  The exception is participants’ conclusion that the treatment associated with the 

75|75 contingency manipulation was extremely efficacious.  Participants’ self reported 

assessment technique and expectations concerning treatment efficacy provide some 

rationale for this disconnect.  But, causal attributions failed to consistently correspond to 

theoretical predictions, even when intervention strategy was taken into account, limiting 

the ability to assess what information contributed to participants’ understanding of 

causality.  

The Omnibus Analyses 

I used a combination of t-tests and ANOVAs to assess the differences between the 

experimental manipulations on the dependent measures.  I used paired samples t-tests to 

compare the outcomes that were confounded by the respective system conditions 

(essentially, I ran two separate experiments).  I performed a separate paired t-test for each 
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level of contingency, and each level of delay to ensure data independence in the repeated 

measures design.  Thus, each of these analyses considered 36 outcomes associated with 

each system condition.  Using these outcomes, I obtained difference scores by yoking the 

causal attributions of participants assigned to the same set of contingency and delay 

combinations in the same presentation order, but from the different system conditions. 

Then, analyzing the data separately according to the system condition with the 

data collapsed over presentation order, I used a series of ANOVAs with a 3 x 3 

randomized block partially confounded factorial design (RBPF-32) to assess the 

differences associated with the delay (a. one-trial delay, b. two-trial delay, c. three-trial 

delay) and contingency (a. 25|0, b. 75|0, c. 75|75) manipulations.  If there were no 

significant interactions, I established whether there were significant delay and 

contingency main effects, and when applicable, performed pairwise comparisons using 

Tukey HSD analyses to establish which manipulations statistically differed.  Below, I 

will review the results pertaining to participants’ causal attributions and system control, 

as well as the relationship between these measures.  The complete set of analyses, 

including those that use response time and other strategy-oriented dependent measures 

are presented in Appendix O.   

Causal Attributions.  With causal attributions as the outcome measure, there 

were significant effects reflecting both system and contingency differences, but not 

differences in delay.  Table 7 depicts participants’ abstract, ordinal attributions (i.e., 

whether the treatment raised, lowered or had no effect on patients’ blood pressure levels).  

Figure 15 graphs participants’ more detailed, causal attributions on a ratio scale (i.e., the 

extent to which the treatment affected the patients’ blood pressure level) for each of the 
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system conditions.  Figure 15a separates the data by the contingency and delay treatment 

combinations, but collapsed over presentation order.  Figures 15b and 15c separates the 

data by levels of contingency and by levels of delay, again collapsing over presentation 

order.  Appendix P contains alternative conversions and transformations of the raw causal 

attributions, as well as the outcomes of analyses considering the revised data sets.  These 

analyses were conducted to verify that scale and data transformation were not responsible 

for the findings associated with causal attributions, given the variety of measurement 

scales used within the causal reasoning literature.   

Table 7 

Frequency of Abstract, Ordinal Attributions separated by the Experimental 

Manipulations 

 Raised  No effect  Lowered 

 D C  D C  D C 

25|0 and         

One-trial delay 3 3  6 5  3 4 

Two-trial delay 2 7  6 4  4 1 

Three-trial delay 5 5  2 5  5 2 

75|0 and         

One-trial delay 1 0  1 0  10 12 

Two-trial delay 2 0  4 0  6 12 

Three-trial delay 3 1  1 0  8 11 

75|75 and         

One-trial delay 2 1  2 0  8 11 

Two-trial delay 1 2  0 0  11 10 

Three-trial delay 1 2  3 2  8 8 

Note.  Raised = ordinal selection that the treatment raised the patient’s blood 

pressure level, No effect = ordinal selection that the treatment had no effect 

on the patient’s blood pressure level, Lowered = ordinal selection that the 

treatment lowered the patient’s blood pressure level. D = Discrete system 

condition.  C = Continuous system condition. 
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A) Causal Attributions separated by the Contingency and Delay Combinations 

 
B) Causal Attributions separated by  

Levels of Contingency  

C) Causal Attributions separated by  

Levels of Delay 

  
Figure 15.  Causal attributions separated by the experimental manipulations, collapsing 

over presentation order.  Causal attributions between 100 and 0 indicated that the 

treatment lowered the patient’s blood pressure, a causal attribution of zero indicated that 

the treatment had no effect on the patient’s blood pressure, and causal attributions 

between 0 and -100 indicate that the treatment raised the patient’s blood pressure levels.  

Error bars illustrate 95% confidence interval.   

 

Effect of system condition on causal attributions.  Causal attributions were lower 

and higher in the continuous system condition with the 25|0 and 75|0 contingency 
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manipulations, respectively.  The causal attributions were equivalent between the system 

conditions when the data were separated by delay, as well as with the 75|75 contingency 

manipulation.  Table 8 contains the outcomes of the series of paired samples t-tests for 

each level of contingency, and each level of delay to ensure data independence in the 

repeated measures design. 

Table 8 

Paired Samples t-tests - Effect of System on Causal Attributions 

 Discrete  Continuous   95% CI  

 M SD  M SD t(35) p LL UL d 

Contingency           

25|0 00.14 52.44  -23.67 47.50 -2.27 0.03 -02.47 -45.14 -0.38 

75|0 36.19 57.75  -68.75 31.33 -3.47 < .01 -51.61 -13.51 -0.58 

75|75 48.89 55.18  -45.42 61.48 -0.24 0.81 -25.50 -32.44 -0.04 

Delay           

One-trial 34.36 57.10  -38.39 57.70 -0.36 0.72 -26.80 -18.74 -0.06 

Two-trial 30.06 53.62  -30.83 68.03 -0.06 0.95 -26.77 -25.23 -0.01 

Three-trial 20.81 64.89  -21.28 60.50 -0.04 0.97 -26.04 -25.10 -0.01 

Note.  Discrete = Discrete System Condition.  Continuous = Continuous System 

Condition.  CI = Confidence Interval; LL = lower limit; UL = upper limit.  I conducted 

paired samples t-tests for separating the data by each level of contingency and each level 

of delay.  Participants from each system condition were yoked by their respective 

contingency by delay combinations and presentation order.  The participant’s outcome 

from the continuous system condition was subtracted from the participant’s outcome 

from the discrete system condition.  So, a positive t-value suggests causal attributions 

were higher with the discrete system condition.  All tests two-tailed. 
 

Effect of delay and contingency on causal attributions by system.  I expected 

longer delay intervals to interact with the contingency manipulation, such that delay 

would influence causal attributions more in conjunction with the less probable 

contingency manipulations (i.e., 75|75 and 25|0).  Surprisingly, there was not a significant 

within block interaction between contingency and delay using causal attributions as the 

outcome dependent measure, relative to either the discrete (F(4, 64) =1.52, p =.21) or 

continuous (F(4, 64) =0.69, p =.60) system conditions.  
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Effect of contingency on causal attributions by system.  In the absence of a 

significant interaction between the delay and contingency experimental manipulations, I 

expected causal attributions to reflect the differences in the ΔP values (i.e., P(e|c) - 

P(e|~c)) between the contingency manipulations.  The findings partially support this 

hypothesis, with inconsistencies with both system conditions regarding the effect of 

contingency, particularly regarding the ability to distinguish between the 75|0 and 75|75 

contingency manipulations.  

 With the discrete system condition, there was a significant contingency main 

effect with causal attributions as the outcome dependent measure (F(2, 64) = 7.55, p < 

.01).  As predicted, a Tukey HSD pairwise comparison indicated causal attributions were 

higher with the 75|0 contingency manipulation (M = 36.19, SD = 57.75) than with the 

25|0 contingency manipulation (M = 0.14, SD = 52.44), p < .05.  Inconsistent with my 

predictions were the relationships between the 25|0 and 75|75, and 75|0 and 75|75 

contingency manipulations.  Causal attributions were higher with the 75|75 contingency 

manipulation (M = 48.89, SD = 55.18) than with the 25|0 contingency manipulation, p < 

.05, and there was no significant difference in causal attributions between 75|0 and 75|75 

contingency manipulations, p  > .05.   

With the continuous system, the contingency manipulations differed in the same 

manner relative to causal attributions as with the discrete system condition.  Again, there 

was a significant contingency main effect (F(2, 64) = 38.72, p < .001).  Causal 

attributions with both the 75|0 (M = 68.75, SD = 31.33) and 75|75 (M = 45.42, SD = 

61.48) contingency manipulations were higher than with the 25|0 contingency 

manipulation (M = -23.67, SD = 47.50), p < .01 for both Tukey HSD pairwise 



 58 

comparisons.  The 75|0 and 75|75 contingency manipulations did not differ statistically 

by causal attribution, p  > .05. 

Effect of delay on causal attributions by system.  Similar to my prediction 

involving contingency, I anticipated that delay alone would affect causal attributions.  

Specifically, I anticipated that causal attributions would decrease as the delay interval 

increased.  The findings do not support this hypothesis.  

With the discrete system condition, there was no significant difference between 

the delay manipulations with causal attributions as the dependent measure (F(2, 64) = 

0.57, p = .57).  The mean values of the causal attributions associated with the one-trial, 

two-trial, and three-trial delay manipulations were 34.36 (SD = 57.10), 30.06 (SD = 

53.62), and 20.81 (SD = 64.89), respectively.  Similarly for the continuous system, there 

was no significant difference between the delay manipulations with causal attributions: 

F(2, 64) = 1.23, p = .30.  The mean values of the causal attributions were 38.39 (SD = 

57.70), 30.83 (SD = 68.03), and 21.28 (SD = 60.50) for the one-trial, two-trial, and three-

trial delay manipulations. 

System Control.  The system condition did not affect participants’ ability to 

control the system.  Also, there were no significant interactions between contingency and 

delay, or main effects as a function of the delay with the system control outcome 

measure.  These findings are inconsistent with my expectation that increases in delay 

would hinder participants’ ability to lower blood pressure levels.  I did not consider the 

contingency main effect, as contingency, rather than participants’ reasoning behavior, 

directly determines the outcome of system control (e.g., blood pressure values will 

decline more with a 75|0 contingency value than with a 25|0 contingency value).  Figure 
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16 depicts the system control outcomes associated with each system condition.  Figure 

16a separates the data by the contingency by delay treatment combinations, but collapsed 

over presentation order.  Figure 16b separates the data by levels of delay, again 

collapsing over presentation order.  Recall that lower system control values reflect better 

performance.  

A) System Control separated by the Contingency and Delay Combinations 

 
B) System Control separated by Levels of Delay  

 
Figure 16.  System control separated by the experimental manipulations.  Error bars 

illustrate 95% confidence interval.  The system control scale ranged from 50 (lowest 

possible blood pressure observation) to 150 (highest possible blood pressure 

observation).  

 

Effect of system condition on system control.  Participants’ system control was 

equivalent between the system conditions.  Table 9 contains the outcomes of the series of 

paired samples t-tests used to compare the system conditions.  Again, each paired 
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samples t-test considered a level or either contingency or delay to ensure data 

independence in the repeated measures design.   

Table 9 

Paired Samples t-tests - Effect of System on System Control 

 Discrete  Continuous   95% CI  

 M SD  M SD t(35) p LL UL d 

Contingency           

25|0 124.06 07.10  127.17 06.78 -1.99 .06 -6.29 00.07 -.33 

75|0 085.17 17.30  078.00 20.45 -1.80 .08 -0.90 15.23 -.30 

75|75 055.17 05.00  055.78 04.95 -0.56 .58 -2.82 01.59 -.09 

Delay           

One-trial 086.00 30.57  084.61 32.09 -0.61 .55 -3.27 06.05 -.10 

Two-trial 088.22 29.43  086.89 34.50 -0.43 .67 -4.93 07.60 -.07 

Three-trial 090.17 31.93  089.44 31.66 -0.28 .78 -4.36 05.81 -.05 

Note.  Discrete = Discrete System Condition.  Continuous = Continuous System 

Condition.  CI = Confidence Interval; LL= lower limit; UL=upper limit.  I conducted 

paired samples t-tests for separating the data by each level of contingency and each 

level of delay.  Participants from each system condition were yoked by their respective 

contingency by delay treatment combinations and presentation order.  The participant’s 

outcome from the continuous system condition was subtracted from the participant’s 

outcome from the discrete system condition.  So, a positive t-value suggests system 

control outcomes were higher with the discrete system condition.  Higher values are 

indicative of worse performance with the system control measure.  All tests two-tailed. 

 

Effect of delay and contingency on system control by system.  I expected longer 

delay intervals to interact with the contingency manipulation, such that delay would 

influence system control more combination with the 75|0 contingency manipulation given 

the possible range of system control differences was greater with this contingency 

manipulation, than the 25|0 or 75|75 contingency manipulations.  (Possible differences in 

system control are presented Appendix Q.)  However, there was not a significant within 

block interaction between contingency and delay, relative to either the discrete (F(4, 64) 

=0.66, p =.62) or continuous (F(4, 64) =0.45, p =.77) system conditions, with system 

control as the dependent measure. 
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Effect of delay on system control by system.  In the absence of a contingency by 

delay interaction, I anticipated that participants’ ability to control the system would 

decline with increases in delay.  The findings do not support this hypothesis.  With the 

discrete system condition, the delay main effect was not significant with system control 

as the dependent measure (F(2, 64) = 1.26, p = .29).  With the discrete system condition, 

the mean values of the system control outcomes associated with the one-trial, two-trial, 

and three-trial delay manipulations were 86.00 (SD = 30.57), 88.22 (SD = 29.43), and 

90.17 (SD = 31.93), respectively.  Likewise, there was no significant difference between 

the delay manipulations relative to system control with the continuous system: F(2, 64) = 

1.33, p = .27.  With the continuous system condition, the mean system control values 

were 84.61 (SD = 32.09), 86.89 (SD = 34.50), and 89.44 (SD = 31.66) for the one-trial, 

two-trial, and three-trial delay manipulations, respectively. 

Correlations between causal attribution and system control.  I performed a 

series of Pearson product-moment correlational analyses to assess the relationship 

between system control and causal attribution.4  The data associated with these analyses 

are plotted in Figure 17 and the outcomes are shown in Table 10.  I separated the data by 

system and contingency collapsing across levels of delay, and by system and delay 

collapsing across levels of contingency to maintain data point independence.  (See 

Appendix S for the analysis that separates the data by system, contingency, and delay.)  

                                                      
4 Appendix R contains the comprehensive set of results.  Appendix S focuses specifically 

on the measures used to define strategy relative to causal attributions and system control.  

Appendix T contains a series of regression analyses assessing the influence of system 

control on causal attribution that control for delay. 
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With the 75|0 contingency manipulation in the discrete system condition, better system 

control (i.e., the more declines in blood pressure observations) correlated with the higher 

causal attributions.  This relationship was not observed in combination with the other 

contingency manipulations within the discrete system or with the continuous system 

condition when outcomes were separated by contingency.  However, higher causal 

attributions were associated with greater declines in blood pressure observations across 

all of the delay manipulations with both system conditions.   

Table 10 

Correlations between the Causal Attributions and System Control 

 Discrete System  Continuous System 

 r r2 p  r r2 p 

Contingency        

25|0 - .178 .03 < .30  - .296 .09 < .08 

75|0 - .509 .26 < .01  - .109 .01 < .53 

75|75 - .023 < .01 < .89  - .157 .02 < .36 

Delay        

One-Trial - .412 .17 < .01  - .470 .22 < .01 

Two-Trial - .359 .13 < .03  - .675 .46 < .01 

Three-Trial - .497 .25 < .01  - .412 .17 < .01 

Note.  All tests two tailed. 
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A) Discrete System Data Separated by Levels of Contingency 

 
B) Discrete System Data Separated by Levels of Delay 

 
C) Continuous System Data Separated by Levels of Contingency 

 
D) Continuous System Data Separated by Levels of Delay 

 
Figure 17.  Relationships between the causal attribution and system control 

dependent measures.  System condition, and either levels of delay or levels of 

contingency separate the data. 

 

 



 64 

Strategic Differences 

I conducted a strategy analysis to (better) identify and categorize patterns of 

treatment intervention behavior.  I sorted participants’ treatment intervention behavior on 

two dimensions of strategy: intervention bias and observation dependence.  There was no 

evidence to suggest that participants changed their behavior in the midst of individual 

patient scenarios (Appendix U) or between patient scenarios (Appendix V), and 

participants’ self-reported behavior corroborates these findings (see Appendix W).  

However, there were significant system effects on intervention strategy, specifically with 

the strategic dimension of observation dependence (Figure 19).  Additionally, I 

considered the effect of intervention strategy on causal attribution.  In general, increases 

in causal attributions were observed following treatment-biased and observation-

independent strategies (Figure 20).  

Strategy categorizations.  I identified the treatment intervention strategies of 

intervention bias and observation dependence using two dependent measures: the total 

number of treatment interventions applied and the number of context specific runs.  I 

performed analyses considering the strategic dimensions of intervention bias and 

observation dependence separately, as the classification schemes are not orthogonal, 

meaning it is not possible to distinguish between or relate the findings between these 

separate analyses.  However, the dependent measures used to form these categorizations 

do appear to be negatively related with both system conditions5, such that applying more 

                                                      
5 The findings from correlational analyses from discrete (r = -.58, p < .01) and continuous 

(r = -.50, p < .01) system conditions indicate that the strategic dimensions are negatively 

correlated.  However, it is important to note that these analyses violate the assumption of 
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treatment interventions lessens the degree with which participants switch between 

applying and withholding the treatment (i.e., number of runs).   

Intervention bias.  To establish whether participants were biased to a particular 

treatment intervention, I separated the intervention selection data into categories using the 

total number of treatment interventions applied.  I calculated the 95% confidence interval 

for the unbiased strategy.  Using the upper and lower confidence interval limits, I divided 

participants into three categories: treatment-biased (participants that applied the 

treatment on 12 or more trials), unbiased (participants that applied the treatment across 5 

to 11 trials), and withhold-biased (participants that applied the treatment on four or less 

trials).  Participants rarely had a bias toward withholding the treatment with both the 

discrete (n = 4) and continuous (n = 3) system conditions, so data within this 

categorization were excluded from analyses reviewing differences in intervention bias.  

The distribution of unbiased (n = 114) and treatment-biased (n = 95) intervention 

strategies was split across the experimental manipulations.  However, unbiased 

intervention strategies in which P(treatment) = P(~treatment) = 8 (e.g., the intervention 

strategy typically used by causal reasoning researchers when controlling the learning 

experience) were only applied in 17 of 216 learning tasks.  

Observation dependence.  Next, I determined whether participants formed their 

treatment intervention strategies independent of or dependent on their patients’ blood 

pressure observation shown on each trial.  I identified observation-dependent and 

                                                                                                                                                              
independence as they collapsed data across the experimental manipulation combinations, 

so each individual contributed three data points for each measure.  Appendix R contains 

correlations between all of the dependent measures, including those mentioned here. 
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observation-independent strategies using the number of runs measure.  The number of 

runs describes the number of times participants switched between applying and 

withholding the treatment.  I scored behavior according to consistency with the observed 

state (i.e., whether the treatment selection was applied after observing an increase in 

blood pressure and withheld after an observing a decrease in blood pressure).  I 

determined the number of expected runs associated with an observation-dependent 

treatment intervention strategy independently for each combination of experimental 

manipulations (e.g., 75|0 contingency with one-trial delay in the discrete condition).  

Using these values as the expected value input, I conducted a series of runs tests6 to 

establish if the number of observed runs significantly varied from the number of runs 

associated with an observation-dependent intervention strategy.  Using the resulting z-

statistics, I characterized participants’ treatment intervention behavior as either 

observation-dependent (p > = .05) or observation-independent (p < .05).  A total of 119 

observation-independent and 97 observation-dependent intervention strategies were 

observed.   

Effect of the system condition on strategy.  I used a series of Fisher’s Exact 

Tests to assess whether participants’ use of treatment intervention strategies was 

contingent on the system condition.  I separated the data by levels of contingency or 

levels of delay to ensure data independence.  The results of these analyses indicate that 

                                                      
6 This series runs tests differs from the traditional Wald-Wolfowitz runs test for 

randomness.  Although the statistical formula and procedure is consistent, I compared the 

observed number of runs to the expected number assuming a particular intervention 

strategy. 
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the system condition generally did not affect participants’ intervention bias, but did affect 

their observation dependence. 

Effect of system condition on intervention bias.  The distribution of intervention 

bias was consistent between the discrete and continuous system condition.  The only 

difference in intervention bias was observed with the discrete system condition; 

participants applied more unbiased intervention strategies with the 75|75 contingency 

manipulation in comparison to the 25|0 contingency manipulation (p < .01).  The same 

pattern of behavior is visually apparent between the 75|0 and 25|0 contingency 

manipulations, but the difference was not significant (p = .054). 

Figure 18 depicts the number of applications of unbiased and treatment-biased 

intervention strategies applied in each system condition separated by A) levels of 

contingency, and B) levels of delay.  Table 11 contains the distribution of intervention 

strategies separated by intervention bias, alongside the Fisher’s Exact Tests p values used 

to assess the differences in the distribution of intervention bias between the system 

conditions.  Appendix X contains the comprehensive set of analyses that includes 

analyses considering the differences in the distribution of intervention bias according to 

either contingency or delay, confounded by the system condition. 
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A) Differences in the Distribution of Intervention Bias 

between System Conditions separated by Contingency 

 
B) Differences in the Distribution of Intervention Bias 

between System Conditions separated by Delay 

 
Figure 18.  Differences in the Distribution of Intervention 

Bias between System Conditions.  A) Data separated by 

contingency.  B) Data separated by delay.  Asterisks identify 

significant differences.  Unbiased = Unbiased Treatment 

Intervention Strategy.  Biased = Treatment-biased 

Intervention Strategy.  Discrete = Discrete System 

Condition.  Continuous = Continuous System Condition 
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Table 11 

Distribution of the Strategic Dimension of Intervention Bias and Outcomes 

of Fisher’s Exact Tests assessing differences between the System Conditions  

 Discrete System  Continuous System  

 Unbiased Biased  Unbiased Biased p 

Contingency       

25|0  13 21  21 15 0.10 

75|0 22 14  16 20 0.23 

75|75 24 10  18 15 0.21 

Delay       

One-trial  17 18  15 21 0.64 

Two-trial  19 15  18 17 0.81 

Three-trial  23 12  22 12 1.00 

Note.  Biased = Treatment-biased intervention strategy.  All tests two-tailed. 
 

Effect of system condition on observation dependence.  Unlike the strategic 

dimension of intervention bias, there was a system effect on the strategic dimension of 

observation dependence.  The system condition interacted with both contingency (75|0 

and 75|75) and delay (two-trial and three-trial), with more participants applying 

observation-dependent strategies with the discrete system condition than with the 

continuous system condition.  Yet, the distribution of observation dependence was 

independent from system condition with the 25|0 contingency and one-trial delay 

manipulations.   

Within the continuous system condition, observation-independent strategies were 

used more in combination with the 75|0 (p < .01) and 75|75 (p < .01) contingency 

manipulations relative to the 25|0 contingency manipulation.  This explains why there 

was no between system effect on observation dependence pertaining to the 25|0 

contingency manipulation.  Yet, there were no significant differences in the distribution 

of observation dependence with respect to delay within either system condition to explain 

why the between system interaction was only observed with longer intervals of delay. 
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Table 12 contains the distribution of intervention strategies separated by 

observation dependence, alongside the Fisher’s Exact Tests p values that illustrate the use 

of more observation-dependent strategies with the discrete system condition.  Figure 19 

depicts the number of applications observation-independent and observation-dependent 

strategies applied with each system condition separated by levels of A) contingency, and 

B) delay.  Again, Appendix X contains the comprehensive set of analyses that consider 

the differences in the distribution of observation dependence as a function of either levels 

of contingency or levels of delay, confounded by each system condition. 

Table 12 

Distribution of the Strategic Dimension of Observation Dependence and 

Outcomes of Fisher’s Exact Tests assessing differences in the Distribution of 

Observation Dependence between the System Conditions 

 Discrete System  Continuous System  

 Independent Dependent  Independent Dependent p 

Contingency       

25|0  14 22  16 20 < .81 

75|0 16 20  30 6 < .01 

75|75 15 21  28 8 < .01 

Delay       

One-trial  19 17  25 11 <.23 

Two-trial  11 25  23 13 < .01 

Three-trial  15 21  26 10 <.02 

Note.  Independent = Observation-independent intervention strategy; Dependent = 

Observation-dependent intervention strategy.  All tests two-tailed. 
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A) Differences in the Distribution of Observation 

Dependence between System Conditions separated by 

Contingency 

 
B) Differences in the Distribution of Observation 

Dependence between System Conditions separated by Delay 

 
Figure 19.  Differences in the Distribution of Observation 

Dependence between System Conditions.  A) Data 

separated by levels of contingency.  B) Data separated by 

levels of delay.  Asterisks identify significant differences.  

Independent = Observation-Independent Intervention 

Strategy.  Dependent = Observation-Dependent Intervention 

Strategy.  Discrete = Discrete System Condition.  

Continuous = Continuous System Condition 
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Effect of intervention strategy on causal attributions.  Next, I assessed whether 

intervention strategy was related to participants’ causal attributions.7  I performed a series 

of 2 (intervention strategy) by 2 (system condition) ANOVAs using the causal attribution 

as the dependent measure.  I performed separate ANOVAs for the two strategic 

dimensions (intervention bias, observation dependence) as well as for each level of 

contingency (25|0, 75|0, 75|75)8 collapsing over the delay manipulations to maintain 

subject/data point independence.  Below, I focus on the simple effects with respect to 

intervention strategy and contingency as that only one of twelve interactions between the 

system conditions and the strategic dimensions was significant (see Appendix AA).  

Also, the results pertaining to the system condition main effects concur with the paired 

samples t-test findings discussed within the omnibus analysis section (and included in 

Appendix O), so will not be repeated here.  

                                                      
7 Differences in system control are inherent with the contingency manipulation 

(Appendix C).  Although I did consider the differences in system control as a function of 

contingency and delay, and intervention strategy, the results reflect the distribution of 

contingency values underlying each intervention strategy, rather than the effect of 

intervention strategy (Appendix Y).  

8 Appendix Z contains a similar set of analyses with the data separated by delay.  These 

analyses are not presented in the document because the distribution of contingency values 

was not equivalent between the intervention strategy conditions, so the effect of 

contingency on causal attributions realized with the omnibus ANOVAs confounds these 

results.  The data is separable by contingency because delay did not affect causal 

attributions. 
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In general, causal attributions appear higher with treatment-biased and 

observation-independent strategies.  However, this tendency was only significant with a 

subset of the contingency manipulations.  Relative to intervention bias (Figure 20a), 

higher causal attributions followed treatment-biased intervention strategies as compared 

to unbiased intervention strategies with the 75|0 and 75|75 contingency manipulations.  

Yet, this same relationship was not observed with the 25|0 contingency manipulation.  

Similarly, observation-independent intervention strategies were associated with higher 

causal attributions, but only with the 25|0 and 75|0 contingency manipulations (Figure 

20b).  Table 13 presents the simple effect findings.  Figure 20 depicts the relationships 

between causal attributions and intervention strategies separated by levels of 

contingency, collapsing over system and delay.  

 

Table 13 

Effect of Strategy by Contingency Level on Causal Attributions (simple effects, 

between subjects) 

 

 Unbiased  Treatment-biased        

Contingency n  M  SD  n  M  SD  F  df  p 𝜂𝑝
2  

25|0 34  -21.74  47.77  36  0-0.42  52.20  01.93  1, 67  < .17 .03 

75|0 38  -30.05  56.55  34  -77.53  18.57  19.00  1, 69  < .01 .22 

75|75 42  -38.69  55.40  25  -81.76  20.66  13.59  1, 64  < .01 .18 

 

Observation-

independent  

Observation-

dependent        

Contingency n  M  SD  n  M  SD  F  df  p 𝜂𝑝
2 

25|0 30  03.73  45.80  42  -22.83  52.32  05.85  1, 69  < .02 .08 

75|0 46  70.52  30.99  26  -20.54  58.45  14.43  1, 69  < .01 .17 

75|75 43  50.23  59.62  29  -42.59  56.29  00.47  1, 69  < .50 .01 

Note. 𝜂𝑝
2 = partial eta squared. 
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A) Intervention Bias 

 
B) Observation Dependence 

 
Figure 20.  Relationships between participants’ causal attributions and 

intervention strategy separated by levels of contingency collapsing over 

system condition and delay.  Error bars illustrate 95% confidence interval.  

Asterisks identify significant differences.  A) Relationship between causal 

attributions and the strategic dimension of intervention bias.  B) 

Relationship between causal attributions and the strategic dimension of 

observation dependence.  
 

Comparison to Previous Experimental Research 

I compared the present data to existing experimental research using slopes rather 

than the actual values associated with causal attributions to account for differences in the 

experimental manipulations (e.g., 1 second to 3 second delay vs. 4 to 8 second delay) and 

procedural approach (e.g., open/free-operant vs. directed learning environment).  These 
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slopes describe the change in causal attribution given the change in experimental 

manipulation.  I generated the slopes using the mean causal attribution value, rather than 

individual data-points, because raw data sets were unavailable for the referenced 

experimental research.  Also, when generating the mean values for the present study, I 

excluded portions of the complete data set to maximize similarity between the rating 

scales (i.e., outcome measure) and learning environments to justify a comparison.  

Specifically, I only considered data from the discrete system condition and data 

associated with no effect and lowered blood pressure assessments. 

Using these slopes, I performed independent samples t-tests to assess whether the 

relationships observed with past experimental research were consistent with the 

relationships observed in the present study; these t-tests considered the respective sample 

sizes, slopes, and standard error values.  My findings partially replicate findings from 

previous experimental research.  Slopes containing causal attributions associated with the 

75|75 contingency manipulation significantly differed between the data sets.  However, 

the remaining contingency relationship (25|0 to 75|75), and the relationships between the 

delay manipulations were consistent with the empirical literature. 

Comparison to existing experimental research with contingency.  I expected 

the relationships between contingency manipulations to be equivalent to the changes in 

P(e|c) and P(e|~c) found within Buehner et al. (2003, experiment 1).  I compared changes 

in contingency relative to changes in causal attributions, rather than using the mean of the 

causal attribution values associated with each contingency value, to account for 

experimental paradigm and manipulation differences.  Initially, I only included data 

pertaining to the one-trial delay manipulation in the discrete system condition because 
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this condition is the most similar to Buehner et al.’s experimental paradigm, which did 

not consider the influence of delay.  However, I the changes in causal attributions given 

contingency across the delay manipulations as well, as both the contingency by delay 

interaction, and the delay main effect were not significant, but again, only with data from 

the discrete system condition. 

 Table 14 contains the results of the independent samples t-tests comparing the 

slopes associated Buehner et al. to the slopes generated from the mean causal attribution 

values (i.e., 25|0 relative to 75|0 and 75|0 relative to 75|75).  The change in participants’ 

causal attributions between the 25|0 and 75|0 contingency manipulations replicates the 

positive linear relationship observed by Buehner et al.  When only the one-trial delay data 

are included in the analysis, the slope between the causal attributions for the 25|0 and 

75|0 contingency manipulations exceeds the magnitude observed by Buehner et al.  

However, the slopes are equivalent when causal attributions from all of the delay 

manipulations are included in the analysis.  The slope of the differences in causal 

attributions between the 75|0 and 75|75 contingency manipulations is positive as well.  

This observation directly contradicts Buehner et al.’s findings (again that uses a discrete 

learning paradigm with no delay) that suggest causal attributions should decrease as the 

ΔP (i.e., P(e|c) -P(e|~c)) decreases.  A visual comparison of slopes from Buehner et al. 

(also shown in Figure 2) and the observed data are depicted in Figures 21 and 22. 
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Table 14 

Contingency Comparison to Buehner et al.’s (2003, experiment 1) Findings 

 n SE β t df p d 

25|0 to 75|0  

One-trial delay 20 7.10 116.54 5.41 276 < .01 0.65 

All delay 

manipulations 56 4.51 080.84 0.73 312 < .47 0.08 

75|0 to 75|75        

One-trial delay 21 7.51 002.57 4.80 266 < .01 0.59 

All delay 

manipulations 62 4.13 009.08 9.72 225 < .01 1.30 

Note.  I excluded negative causal attributions associated with ‘raised 

blood pressure’ assessments from these analyses.  All tests two-tailed. 

 

 

 
Figure 21.  Relationships between causal attributions associated with 25|0 

and 75|0 contingency manipulations.  Data from Buehner et al. (2003, 

experiment 1) and a subset of the data from the present study (across delay 

manipulations in the discrete system condition and only the one-trial delay 

in the discrete system condition).  
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Figure 22.  Relationship between causal attributions associated with 75|0 

and 75|75 contingency manipulations. Data from Buehner et al. (2003, 

experiment 1) and a subset of the data from the present study (across delay 

manipulations in the discrete system condition and only the one-trial delay 

in the discrete system condition). 

 

Comparison to existing experimental research with delay.  I expected the 

observed findings to correspond to findings from existing experimental research 

illustrating decreases in causal attribution with increases delay intervals.  I compared 

causal attributions from the 75|0 contingency manipulation in the discrete system 

condition with findings from Greville and Buehner (2010, experiment 1 and 2) as this 

data segmentation was the most equivalent.  The implemented delay intervals (i.e., Mone-

trial delay = 3.92 seconds, Mtwo-trial delay = 7.95 seconds, Mthree-trial delay = 11.42 seconds)9 

differed from those used by Greville and Buehner (i.e., 2 seconds and 4 seconds, 3 and 6 

                                                      
9 These times were calculated based on the data associated with the 75|0 contingency 

manipulations in the discrete system condition.  The average trial time in the learning 

task across the contingency manipulations was 3.90, 7.80, 11.70 seconds for the one-trial, 

two-trial, and three-trial delay manipulations respectively. 
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seconds for experiments 1 and 2, respectively).  Given this discrepancy, I compared 

changes in causal attribution relative to changes in delay rather than comparing the mean 

causal attribution value for specific intervals. 

I excluded the data associated with the three-trial delay manipulation because 

Greville and Buehner’s experiments only considered two shorter duration time intervals. 

Table 15 lists the number of participants, standard errors, and slopes associated with 

Greville and Buehner’s findings and the results of the independent samples t-tests 

comparing the delay decrements with the 75|0 contingency by discrete system condition.  

Figure 23 depicts the negative relationship between causal attributions with the one-trial 

and two-trial delay manipulations (β = -6.38, SE = 7.46) alongside Greville and 

Buehner’s findings.  The absence of statistical differences confirms that the observed 

reductions in causal attributions were consistent with Greville and Buehner’s various 

experimental conditions. 

Table 15 

One-trial and Two-trial Delay Comparison to Greville and Buehner’s (2010) 

Findings 

 n SE β t df p d 

Experiment 1, fixed delay 30 3.26 -12.72 0.78 077 .44 0.18 

Experiment 1, distributed delay 30 2.94 0-7.15 0.10 077 .92 0.02 

Experiment 2, fixed delay 60 2.85 0-2.57 0.48 137 .63 0.08 

Experiment 2, distributed delay 60 2.49 0-3.61 0.35 137 .73 0.06 

Note.  Comparison to the causal attributions collected with the 75|0 contingency 

manipulation with the discrete system condition.  All tests two-tailed. 
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Figure 23.  Relationship between causal attributions associated with the one-trial and 

two-trial delay manipulations to the findings associated with Greville and Buehner’s 

(2010) various experimental conditions. 

 

In addition to these analyses, I reviewed the slope of the causal attributions 

associated with all three of the delay manipulations implemented in this study.  The mean 

causal attribution value associated with the three-trial delay manipulation was greater 

than the two-trial delay manipulation creating a curvilinear relationship (shown in Figure 

24).  This curvilinear relationship suggests that different causal attributions may emerge 

when longer delay intervals are considered.  However, it is not appropriate to suggest or 

compare the complete data set with Greville and Buehner’s outcomes (2010, experiment 

1 and 2), as these experiments did not assess the influence of longer delay intervals. 
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Figure 24.  Relationship between causal attributions associated with the 

one-trial, two-trial, and three-trial delay manipulations. 

 

Comparison to Reasoning Theory 

I used one-sample t-tests to compare the observed causal attributions to theoretical 

predictions separated by treatment intervention strategy (i.e., treatment bias, observation 

dependence) and contingency.  Although the observed main effect trends are generally 

consistent with existing experimental research, a single reasoning theory does not 

successfully predict the observed causal attributions across the contingency 

manipulations for either system condition (see Appendix AB for the comprehensive set of 

analyses).  This finding is consistent with the observed differences in causal attributions 

(contingency effect, system effect), the effect of reasoning strategy on causal attributions, 

and the differences in participants’ self-reported assessment technique in the judgment 

task (discussed in the next section).   

To summarize, the theoretical predictions accounted for more causal attributions 

associated with the 25|0 contingency manipulation in the discrete system condition 

(which were less extreme) and an equivalent amount of causal attributions with the 75|0 
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contingency manipulation (despite the more extreme causal attributions with the 

continuous system condition).  Also, the pattern of findings was similar between the 

discrete and continuous systems with the 75|75 contingency manipulation.  Overall, the 

theoretical predictions that left out probabilistic information, including base rates, were 

more successful at predicting the observed causal attributions.   

Debrief Questionnaire Insights  

In addition to collecting demographic data, the debrief questionnaire attempted to 

elicit participants’ expectations of and adherence to elements of the cover story including 

task goals, hypertension treatment options, and treatment effectiveness.  Questions 

concerning the experiment, as opposed to general expectations (e.g., treatment 

effectiveness) directed participants to reflect and respond based on their third patient 

scenario only.  This feedback indicated that more participants prioritized discovering the 

treatment’s efficacy over lowering their patients’ blood pressure.  Participants’ 

expectations concerning the three hypertensive treatment cover story variations 

(medicine, diet, and exercise) were consistent and their threshold for treatment efficacy 

was well above the 25|0 contingency manipulation.  Also, participants’ descriptions of 

their assessment technique in the judgment task confirm their use of different procedures 

in forming attributions in the judgment task.   

For qualitative questions, I coded and categorized responses, and then used chi-

square tests to establish categorical differences.  For quantitative questions, I used 

independent samples t-tests to assess differences.  When participants’ provided a range of 

values, rather than a specific value as their response, I converted their response to the 
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median value of the range.  Appendix AE contains analyses pertaining to questionnaire 

material not covered and referenced in this section or elsewhere in the document.  

Use of task goals.  To understand participants’ adherence to and prioritization of 

task goals, I asked participants to explain why they applied their specific intervention 

strategy (that they used with their third patient scenario).  In most instances, these 

descriptions mentioned one of the task goals: lowering the patient’s blood pressure (n = 

24) and realizing whether the treatment was an effective solution for the patient (n = 43).  

However, some participants did mention alternative motivators, including their beliefs 

about the treatment (n = 11) and their experiences with the previous patient scenarios (n = 

2).  Also, a handful of participants provided a non-interpretable response (n = 5).  Figure 

25 summarizes participants’ use of the task goals with the data separated by system 

condition.  

 
Figure 25.  Use of task goals.  Only considers behavior with the third patient 

scenario.  

 

A Fisher’s Exact Test indicates that participants’ adherence to either of the task 

goals was unrelated to their system condition (p = .40).  With the data collapsed over 

system conditions, more participants’ claimed to focus on realizing the effectiveness of 

the treatment than lowering the patient’s blood pressure level (X2 (1, n = 55) = 6.56, p = 

.01, Cramer’s V = .35).  Participants that mentioned using both task goals (n = 6) were 

excluded from these analyses to maintain data independence. 
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Equivalence between cover stories.  Given the within subjects experimental 

design, I used different cover stories (i.e., name of patient, type of hypertensive 

treatment) to help participants distinguish between their three patient scenarios.  I asked 

participants to discuss their expectations of the hypertension treatment that they 

administered in their third patient scenario to confirm whether participants’ bias toward 

the hypertension treatment options (i.e., medication, diet, and exercise) were comparable.  

The number of responses concerning each of the hypertension treatments differed as the 

treatment options were randomly assigned without replacement across the three patient 

scenarios.  So, 21, 26, and 25 participants provided their expectations concerning the 

implications of a healthy diet, exercise, and medication, respectively.   

Most participants expected that these treatments to lower blood pressure levels 

(55 of 57 participants).  The results of chi-square tests indicate that this expectation was 

evenly distributed across the three hypertension treatment options (X2 (2, n = 52) = 0.62, 

p = .74, Cramer’s V = .08) and that this expectation was true regardless of system 

conditions (X2 (2, n = 52) = 3.16, p = .21, Cramer’s V = .17). 

A small number of participants did convey alternative biases.  For example, there 

was mention of alternative directional influences on blood pressure levels (i.e., stabilize 

(n = 1), raise (n = 2), and have no effect (n = 2)).  Also, a small number of participants 

indicated that their treatment expectations were based on their experiences with previous 

patient scenarios (n = 3) or that actual clinical research had proven a treatment’s ability to 

reduce blood pressure (n = 2).  Although I did want to mention these alternative 

expectations, it is unlikely that they influenced my findings given the relatively small 

number of participants in this category and the diversity of their expectations.  The 
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remaining ten participants did not clearly communicate their expectations or stated that 

they were unsure of their expectation (i.e., unknown).  Figure 26 summarizes 

participants’ expectations relative to each of the hypertension treatment options.  

 
Figure 26.  Treatment expectation by hypertension treatment option.  N = 

72; treatments were randomly assigned. 

 

Treatment effectiveness.  I asked participants to quantify the percentage of 

treatment applications that should influence the patient’s condition for that treatment to 

be considered effective to better understand their prior biases toward treatment 

effectiveness, as well as to contextualize their responses in the judgment task.  Most 

participants felt that treatment applications should produce the desired outcome at least 

50% of the time for the treatment considered effective  (X2 (1, n = 72) = 29.39, p < .01, 

Cramer’s V = .64).  Participants’ expectations for treatment efficacy were consistent 

between the discrete and continuous system condition according to an independent 

samples t-test: t(70) = -0.16, p = .87, 95% CI [-0.10, 0.09], d = -.04.  Figure 27 depicts 

the skewed distribution of expected treatment efficacy separated by system condition.  
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Figure 27.  Expectation for treatment efficacy.  Response distribution of the 

percentage of treatment applications that should influence a patient's condition 

for that treatment to be considered effective. 

 

Self-reported assessment technique in the judgment task.  Participants’ self-

reported responses emphasize that participants employed different approaches when 

completing the judgment task.  Their responses referenced relying on specific 

observations (e.g., the two times I clicked, when I applied…, each day), using a tally of 

successful applications (e.g., most days, not all of the time but most of the time, 

constantly, how many times), and consideration of the overall influence of the treatment 

(e.g., before and after, after a while, stayed within the same area).  Additionally, some 

participants mentioned relying on their intuition or general beliefs when considering the 

efficacy of the treatment (e.g., what I thought, what I believed was correct, I guessed).   

Figure 28 shows the distribution of responses separated by system condition.  

More participants stated that they used information from specific trials when assessing a 

treatment’s causality with the continuous than with the discrete system (X2 (1, n = 12) = 

5.33, p = .02, Cramer’s V = .67).  This finding contradicts the observation that 

participants in the discrete system condition were more reliant on specific system states 

when forming their intervention strategy.  None of the other assessment techniques 

significantly varied between the system conditions (Appendix AF).  Also, more 
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participants reported using explicit (specific, tally, and overall) over implicit (intuition 

and unknown) assessment techniques (X2 (1, n = 72) = 4.50, p = .03, Cramer’s V = .25).  

I performed a series of ANOVAs to assess whether the differences in the 

explicitness affected causal attributions. I categorized the specific, tally, and overall 

assessment techniques as explicit, and intuitions and unknown as implicit assessment 

techniques. There were no significant interactions between explicitness and intervention 

strategy on causal attribution.  Also, there were no significant interactions between 

explicitness and level of contingency, and explicitness and levels of delay, with causal 

attributions as the dependent measure. (See Appendix AF for the comprehensive 

analyses.)  

 
Figure 28.  Approach to judgment task.  N = 72.  Distribution of 

participants self-reported assessment techniques 
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IV. DISCUSSION 

My hypotheses and research questions involved the relationships between 

contingency, delay, and system manipulations, as well as the role of intervention strategy 

in a paradigm that permits the joint examination of casual understanding and system 

control.  The results indicate that causal attributions differed according to both 

dimensions of intervention strategy.  The relationships between these outcome measures 

present an opportunity to unify, and improve the causal reasoning and system control 

experimental paradigms.  Neither reasoning behavior nor understanding appears to 

successfully measure or present a cohesive understanding of the reasoning process, in 

isolation.  

Concluding that performance was better with one system condition over the other 

is speculative.  However, an increased reliance on blood pressure outcomes with the 

discrete system condition highlights a difference in information accessibility between the 

system conditions.  Differences in reasoning behavior and outcomes, as well as the 

feasibility of studying time with truly discrete system conditions question the utility of 

research paradigms that employ these discrete systems, as the extensibility of the 

findings, although valid, is limited.   

There was limited support for the hypotheses concerning the contingency and 

delay manipulations.  The unexpectedly high causal attributions associated with the 75|75 

contingency manipulation differed from those previously observed in experimental 

research, but the consideration of participants’ expectations and observed outcomes 
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rationalize the observed outcomes.   

Finally, the absence of findings associated with the delay manipulation as 

measured by system control and causal attribution suggests a potential issue with the 

length of the learning task, as well as the use of trials as a representation of time.   

Intervention Bias 

The free operant learning paradigm enabled the consideration strategic differences 

and their affect on reasoning outcomes.  Researchers routinely control the learning 

environment (e.g., Buehner et al., 2003; Lagnado & Speekenbrink, 2010; Perales & 

Shanks, 200; Rottman & Keil, 2012).  Specifying the number interventions controls the 

learning environment to assess variables other than strategic approach.  This is an 

effective method as long as 1) the forced strategy is ecologically valid or 2) outcomes do 

not differ according to strategy.  Yet, my findings challenge both of these assumptions. 

Overwhelmingly biased.  Most participants applied intervention strategies that 

favored the application of the treatment (this includes intervention strategies that I 

categorized as unbiased).  This overwhelming bias toward the treatment is a departure 

from research that controls the learning environment by presenting participants with an 

equal number of each intervention option.  Such an intervention strategy was rarely 

observed (i.e., only in 17 of the 216, or 8% of the observed strategies).  Yet, being biased 

toward the treatment is reasonable with the contextual scenario of hypertension 

management.  There was no reason to suspect a placebo condition at the onset of the 

experiment and one of the task goals was to lower blood pressure as much as possible.  

Moreover, participants’ bias toward the treatment was reinforced given the lowest 

possible blood pressure levels were observed with the exclusive application of the 
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treatment intervention because the probability of an effect in the presence of the causal 

variable was greater or equal to the probability of an effect in the absence of the causal 

variable (P(e|c) ≥ P(e|~c)) with all of the contingency manipulations.  So, why withhold 

the treatment?  

Higher causal attributions with bias.  Treatment-biased strategies led to higher 

causal attributions with the 75|0 and 75|75 contingency manipulations.  Participants 

expected the treatment to effectively lower their patients’ blood pressure levels at least 

50% of the time.  So, when they applied treatment-biased intervention strategies with the 

75|0 and 75|75 contingency manipulations, and observed many efficacious, positive 

results (Appendix AG contains observed contingencies), they attributed these positive 

results to the treatment intervention.  This finding is representative of confirmation bias.  

Conversely, the use of unbiased intervention strategies with the 75|0 contingency 

manipulation produced fewer positive results leading to lower causal attributions.  With 

the 75|75 contingency manipulation, unbiased intervention strategies provided the 

necessary, and optimal information according to standard error (Appendix B) to realize 

that both applying and withholding the treatment yielded the same result.  This 

understandably decreased causal attributions.  The observation of positive results was 

rare and well below participants’ efficacy expectations with the 25|0 contingency 

manipulation, regardless of intervention strategy.  The inability to produce a recognizable 

number of positive results with either unbiased or treatment-biased interventions 

strategies explains why intervention bias does not account for the variance in 

participants’ causal attributions with 25|0 contingency manipulation.  
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The differences in causal attributions according intervention strategies reinforce 

Lagnado and Sloman’s (2002) belief, and Hagmayer et al.’s (2010) findings that learning 

experience, in addition to (or possibly instead of) the act of intervening in itself, affects 

reasoning outcomes.  Additionally, the predominant use of treatment-biased intervention 

strategies questions whether the outcomes associated with controlled learning 

environments will transfer to contexts where applying a particular intervention option is 

favorable, as with hypertension management.  

Observation Dependence 

The results convey important differences between the system conditions relative 

to participants’ observation dependence and the effect of observation dependence on 

causal attributions.  The prevalent use of observation-dependent strategies with the 

discrete system in comparison to the continuous system condition, suggests that 

participants detect this difference and are reacting to the available information (or lack 

there of).  Instead of simplifying or reducing the complexity of the reasoning task, the 

discrete system condition actually appears to have increased the complexity relative to 

the continuous system condition.  If the system condition affects reasoning behavior and 

outcomes, as my findings suggest, the presence of system differences challenges the 

assumption that conclusions from examining discrete, or simplified, deconstructed 

systems can be applied to predict and control behavior with more complex system 

representations and environments.   

Discrete system generates observation dependence.  Differences in the 

prevalence of observation-dependent strategies distinguish between the two system 

conditions.  I defined the strategy of withholding the treatment only when the outcome 
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was within tolerance (i.e., in the normal blood pressure range) as observation-dependent.  

I suspect that the information presented with each system condition is responsible for 

these differences.  The cumulative output of the participants’ interventions, as well as the 

implication of each individual intervention selection was updated on each trial with the 

continuous system condition.  Essentially, this cumulative output serves as a data 

repository in that it aggregates and retains participants’ collective set of interventions.  

With the discrete system condition, the current state on each trial only conveyed 

information pertaining to each individual intervention selection, which transferred the 

burden of calculating and maintaining the cumulative statistics of the administered 

treatments to the observer.   

The need to retain multiple events, which would grow accordingly with the delay 

interval, strains working memory capacity.  The prevalence of observation-dependent 

strategies with the discrete over continuous system condition with the two-trial and three-

trial delay manipulations conditions reflects this additional strain.  In the discrete system 

condition, participants’ likely directed their attention toward tracking individual 

intervention to outcome pairings to ease the burden on working memory.  Observation-

dependent strategies limit the act of intervention selection to a reaction, eliminating the 

need to expend additional effort on determining which intervention selection to apply 

with each trial.  With the continuous system, the cumulative output appears to have 

mitigated the effect of delay, as participants’ observation dependence was equivalent over 

levels of delay.   

When the data were parsed by levels of contingency, more participants used 

observation-dependent strategies with the discrete over the continuous system condition 
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in combination with the 75|0 and 75|75 contingency manipulations.  By design, exclusive 

application of the treatment produced the most efficacious observations across the 

contingency manipulations.  With the 75|0 and 75|75 contingency manipulations, the 

prevalence of an effect actually decreases the number of treatment interventions applied 

with observation-dependent strategies (apply only when symptomatic) in comparison to 

observation-independent strategies.  This is because the system’s current state (i.e., the 

presence or absence of the effect) directs intervention behavior with observation-

dependent strategies.  The continuous system’s cumulative output likely emphasized the 

positive results associated with applying the treatment with the 75|0 and 75|75 

contingency manipulations.  Subsequently, the accessibility of this information provide 

reinforcement to apply the treatment irrespective of whether the blood pressure level was 

in the elevated range (i.e., apply observation-independent strategies) in order to satisfy 

the goal of lowering the patient’s blood pressure level.   

With the 25|0 contingency manipulation, the decrease in observation-

independence with the continuous system further reinforces the argument that 

participants were aware of the cumulative output and were focused on lowering their 

patients’ blood pressure.  Observation-independent strategies were associated with less 

treatment interventions with this contingency manipulation because the low rate of a 

positive effect increased the number of treatment interventions applied with observation-

dependent strategies.  Moreover, the equivalent use of observation-dependent strategies 

between the system conditions with the 25|0 contingency manipulation simply identifies a 

situation in which the use of different information provoked analogous strategic behavior. 

In sum, the dissimilar, rather than similar use of observation-dependent strategies 
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between the system conditions suggests participants lost information with the discrete 

system condition and were attempting to compensate for it with strategy or were shifting 

their strategy to reflect the information that was available.   

Lower causal attributions with dependence.  Observation-dependent 

intervention strategies were associated with lower causal attributions with the 25|0 and 

75|0 contingency manipulations.  With the 75|75 contingency manipulation, I suspect that 

the overwhelming prevalence of positive outcome nullified observable differences 

between observation-independent and observation-dependent intervention strategies, 

leading participants to conclude that the treatment was effective regardless of strategy.  

As discussed in the previous section, observation-dependent strategies are a behavioral 

response to the current system state, rather than the cumulative outcome of one’s 

intervention selections.  Focusing on specific intervention to outcome pairings should 

have increased participants’ awareness of inconsistences attributable to both contingency 

and more delay between participants’ expectations (i.e., the treatment will lower the 

patient’s blood pressure) and their observations.  Therefore, I suspect that unmet efficacy 

expectations (i.e., the treatment will be effective at least 50% of the time) and the 

observation of inconsistencies account for the lower causal attributions that followed 

observation-dependent strategies with the 25|0 contingency manipulation.  The 

observation of inconsistencies, but not unmet efficacy expectation, may account for the 

lower causal attributions associated with observation-dependent intervention strategies 

with the 75|0 contingency manipulation, as well.  Additionally, the observation of less 

efficacious results following observation-dependent strategies with the 75|0 contingency 
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manipulation (discussed in the previous section) supports the observed decrease causal 

attributions.  

As with intervention bias, the observed findings indicate that differences in 

observation dependence impacted participants’ understanding of the system’s underlying 

environmental parameters.  In the previous section, I identified that differences in the 

prevalence of observation-dependent strategies distinguish between the two system 

conditions.  The reliance on observation-dependent strategies with the discrete system 

suggests participants focused on changing their patient’s blood pressure on the present 

trial (i.e., experiencing tunnel vision imposed by the available information) rather than 

the fully considering the changes in their patients’ blood pressure over time.  An 

appropriate analogy appears in the context of driving where a person might be aware of 

the speed that they are driving at various points in time, but unaware of the relationship 

between these instances (i.e., acceleration or deceleration).  Ultimately, information 

differences tied to system condition direct people’s intervention strategy, which 

subsequently influences their reasoning outcome. 

Causal Attributions 

Independent of intervention strategy, the results indicate that both system 

condition and contingency (but not delay) affected causal attributions.  The effect of 

system on causal attribution reflects the informational differences discussed relative to 

observation dependence.  The higher than expected causal attributions observed with the 

75|75 contingency manipulation is a departure from previous experimental research.  Yet, 

it seems quite reasonable for participants to conclude that the treatments associated with 

the 75|0 and 75|75 contingency manipulations were equally as effective given similar 
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declines in blood pressure.  The equivalence of causal attributions over levels of delay 

identifies limitations of the implemented experimental paradigm, despite replicating 

patterns observed in previous experimental research. 

More extreme with continuous system.  Causal attributions of participants that 

interacted with the continuous system condition were more extreme than observed with 

the discrete system condition with the 25|0 and 75|0 contingency manipulations.  With 

the 75|0 contingency manipulation, higher causal attributions in the continuous system 

condition exemplify the affect of observation dependence on causal attributions.  As I 

have discussed above, with this particular contingency manipulation, observation-

independent intervention strategies were associated with higher causal attributions and 

more participants applied observation-independent strategies with the continuous system 

condition.  However, with the 25|0 contingency manipulation, intervention strategy is not 

a viable explanation for the system difference in causal attributions as observation 

dependence and intervention bias was equivalent between the system conditions.   

Instead, I suspect the effect to null-effect gain ratio and the display of the 

cumulative blood pressure level are responsible for lowering causal attributions with this 

contingency manipulation in the continuous system condition.  With the continuous 

system condition, the confounded gain ratio decreased patients’ blood pressure by eight 

intervals with the observation of an effect and increased patients’ blood pressure by two 

intervals with the observation of a null-effect on a continuous scale.  (See Appendix I for 

a review on the selection of this -8: +2 effect to null effect ratio.)  Because of the limited 

probability of an effect and prevalence of the null-effect with the 25|0 contingency 

manipulation, the blood pressure output progressively increased with the continuous 
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system condition.  The mean value of the cumulative blood pressure level on the 16th trial 

that was 1.94 points greater than the starting point.10    

In contrast, participants in the discrete system condition observed binary outputs 

(i.e., effect = normal, null effect/starting point = elevated).  With the 25|0 manipulation, 

the blood pressure output was almost always in the elevated state.  Observing a gradual 

elevation over time, and an outcome greater than the starting (in the continuous system 

condition) as opposed to viewing a consistently elevated, but stagnant output  (in the 

discrete system condition), explains why causal attributions associated with the 

continuous system condition were lower with the 25|0 contingency manipulation.  

Although the explanations for the shift in causal attributions between systems condition 

differed with respect to each contingency manipulation (i.e., observation dependence 

with 75|0 contingency manipulation, and the effect to null-effect gain ratio with the 25|0 

contingency manipulation), both reflect participants’ sensitivity to informational 

differences (i.e., cumulative, interval-based display vs. binary output) between the system 

conditions.   

Higher than expected attributions with 75|75 contingency.  I expected causal 

attributions to reflect the differences between causal attributions observed in previous 

experimental research (Buehner et al., 2003, experiment 1).  The direction of change in 

causal attributions between the 25|0 and 75|0 contingency manipulations was consistent 

with increases in the probability of an effect given the causal variable (P(e|c)), when the 

probability of an effect in the absence of the causal variable was held constant at zero 

                                                      
10 For reference, the cumulative output was on average 48.89 and 70.86 points less than 

the starting point with the 75|0 and 75|75 contingency manipulations, respectively.   
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(P(e|~c) = 0) observed previously with experimental research (Buehner et al., 2003, 

experiment 1).  In contrast, the higher than expected causal attributions associated with 

the 75|75 contingency manipulation, and their equivalence to the 75|0 contingency 

manipulation, were inconsistent with the previously observed decline in causal attribution 

in combination with increases in the probability of an effect in the absence of the causal 

variable (P(e|~c)), when the probability of the effect given the causal variable was held 

constant at zero (P(e|c) = 0).   

The predominant use of treatment-biased intervention strategies explains why the 

observed causal attributions were greater with the 75|75 contingency manipulation than 

found by Buehner et al (2003, experiment 1), as Buehner et al. presented an equal number 

of each intervention in their learning task.  Treatment-bias intervention strategies 

provided less opportunity to realize that withholding the treatment was equally as 

effective as administering the treatment with the 75|75 contingency manipulation, as 

compared to an unbiased, evenly distributed strategy (Appendix B).  Additionally, 

limiting withhold treatment observations likely contributed to, and even strengthened 

participants’ beliefs that the treatment was accountable for lowering their patients’ blood 

pressure levels.  The significantly lower causal attributions of participants that did apply 

unbiased intervention strategies with the 75|75 contingency manipulation supports this 

explanation.  Although participants’ causal attributions only partially supported the 

predictions, their conclusions are reasonable given their prior biases toward the 

hypertension treatment options and treatment efficacy, and their observations in the 

reasoning tasks.   
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No delay effect.  I expected the causal attributions of participants to differ 

according to magnitude of delay, as well as in combination with the underlying 

contingency.  Increasing the amount of delay between the administration of the causal 

variable and onset of effect generates outcomes inconsistent with participants’ 

expectations.  With this inconsistency, current research suggests that participants will be 

less likely to attribute the causal variable with the effect (e.g., Greville & Buehner, 2010).   

The apparent reductions in causal attributions between the one-trial and two-trial 

delay manipulations were consistent with Greville and Buehner’s (2010) various 

conditions.  Yet, there were no significant differences in causal attributions as a function 

of delay, in isolation, or in combination with the contingency manipulations when the 

entire data set was taken into account.  The interaction between delay and the system 

condition to produce differences in observation dependence challenges explanations of 

either ceiling or floor effects.  Nonetheless, the failure to support the hypothesized 

differences in causal attribution raises concerns about the number of trials in the learning 

task and the use of trials as a representation of time, which I will discuss within the 

limitations section. 

System Control 

I anticipated system control would suffer with increases in delay, as such deficits 

have been observed in experimental research (Diehl and Sterman, 1995; Sterman, 1989).  

Instead, no differences in system control were observed as a function of contingency and 

delay, the effect of delay, or system condition.  A post-hoc review of possible differences 

in system control given contingency, the number of trials in the learning task, and 

intervention strategy revealed that the experimental design limited differences with the 
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system control measure.  Considerable differences in system control performance were 

only feasible with the 75|0 contingency manipulation with 16 trials.  So, the results 

suggesting that system control success (lower blood pressure values) negatively relates to 

causal attributions are likely an artifact of the contingency manipulations.  I will discuss 

the range of potential system control outcomes further in the limitations section.   

Theoretical Implications 

Previous studies have demonstrated the influence of delay and contingency in 

isolation on causal attributions within discrete systems (e.g., Greville & Buehner, 2010; 

Shanks et al., 1989) and on system control with continuous systems (e.g., Brehmer, 1989, 

1995; Diehl & Sterman, 1995).  Within the causal reasoning literature, studies that have 

focused on systems that are continuous in nature have focused on decision-making rather 

than reasoning (Gonzalez & Dutt, 2011) or have maintained a constant temporal 

relationship between cause and effect (e.g., Hagmayer et al., 2010; Rottman & Keil, 

2012).  This study extends this research by providing a comparative analysis that 

considers both causal attributions and system control relative to intervention strategy with 

both a discrete and a continuous system condition.  The findings provide insight into how 

participants’ reasoning strategy relates to their fundamental understanding of causality, in 

addition to highlighting a difference in information accessibility between the system 

conditions.  Discrepancies between the observed findings and those in the causal 

reasoning literature challenge the use of particular methods as opposed to the observed 

findings, particularly the exclusive study of unbiased intervention strategies in controlled 

learning environments.  In general, I am doubtful that causal reasoning theories and 

results transfer to my paradigm.   
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Free-operance.  This study allowed participants to freely form and test their 

hypotheses, hypothetically providing them with the greatest amount of information from 

which to make assessments.  The results stress the role of intervention strategy in the 

formation of causal assessments.  This, in combination with participants’ bias toward the 

treatment intervention challenges the extensibility of findings associated with unbiased 

intervention strategies to this particular contextual scenario.  Conceivably, a better 

understanding of reasoning strategy is necessary prior to focusing on outcomes only 

associated with a single, possibly irrelevant intervention strategy.   

Convergence of causal attribution and control measures.  System control does 

appear to play a role in causal attribution, as the two measures were negatively correlated 

over levels of delay and with the 75|0 contingency manipulation.  I suspect that this 

relationship failed to persist with the 25|0 and 75|75 contingency manipulations because 

of the limited possibility of differences in system control with these conditions (discussed 

in the limitations section).  Although success in controlling the system (lowering patients’ 

blood pressure levels) did correspond to higher causal attributions, these attributions did 

not always reflect the underlying contingency value.  This finding suggests that system 

control is possible without a detailed understanding of the system’s underlying 

parameters and is consistent with research outside the system dynamics and causal 

reasoning literature that suggests participants’ ability to control a system may not 

correlate with their ability to identify causal variables.  Specifically, in their research 

considering the role of expertise in diabetes management, Lippa, Klein, and Shalin 

(2008) found that participants’ actions or applied knowledge did not always correspond 

to their declarative knowledge about their condition.   
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In favor of continuous environments.  The prediction of whether or not 

participants would perform better or worse in the continuous condition as opposed to the 

discrete condition depends on the paradigm.  The causal reasoning literature deconstructs 

the reasoning environment to focus on how specific factors, like contingency and delay, 

influence reasoning.  Simplifying the problem space should a) facilitate causal 

attribution, and b) produce outcomes that are transferable to complex reasoning 

scenarios.  The system dynamics literature challenges these assumptions and argues that 

such simplification a) removes essential contextual cues hindering causal attribution, and 

b) produces uninformative findings relative to more complex and continuous systems.  

Behavioral shifts related to differences in information accessibility provide 

evidence that simplified system environments and tasks may not be valid precursors to 

more complex scenarios.  Researchers have tried to reduce the burden on working 

memory and improve the accessibility of information necessary in calculating 

probabilistic values (specifically P(e|c)) by using simultaneous, rather than sequential 

presentation formats within discrete system environments (Buehner et al., 2003; Cheng & 

Novick, 1990).  This shift in approach is valid given a) the simultaneous presentation of 

material appears to facilitate learning over sequential presentation of the same 

information (Imhof, Scheiter, & Gerjets, 2011; Imhof, Scheiter, Edelmann, & Gerjets, 

2012) and b) people are more successful in remembering more attributes with fewer 

variables (e.g., trials), than fewer attributes with more variables (Yntema, 1963).  

However, contextually, reasoning about a group of events between individuals, or having 

all the evidence on hand at the same time, may differ from reasoning about a series of 

events within an individual with evidence accruing over time.  The continuous system 
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framework provides the same binding element (cumulative output) that aids in 

information accessibly as the simultaneous presentation, yet preserves the reasoning 

scenario.  

Delay in discrete system environments.  In the method section, I highlighted 

several implications of using a trial-based over a duration-based learning task including 

carry-over between trials, making the discrete system more continuous in nature.  Yet, 

carry-over between trials is not unique to this study as Rottman and Keil (2012) found 

that people naturally interrelate information presented on separate trials and that carry-

over already exists within duration-based, free-operant learning tasks that consider delay 

(e.g., Buehner & May, 2003, experiment 2; Greville and Buehner, 2010).  Duration-

based, free-operant studies that have avoided carry-over to maintain the discrete system 

framework have other experimental design issues related to the segmentation of the 

overall learning period into smaller units (e.g., Shanks et al., 1989).  For example, the 

system responds to whether an action is produced in the underlying segment, not how 

many actions are produced, which reduces the observed contingency.  Also, the 

underlying segment is generally determined by the delay specification, so the length of 

each learning task and segment differs between conditions. 

Delay is a kind of carryover, but when implemented in the discrete paradigm, it 

lacks the full properties of cumulative outcome.  This is quite literally an artificial 

construct that would not occur in nature, which questions the ability to and the utility of 

studying delay with discrete system conditions. 
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Practical Implications 

 People routinely use strategies to reason about causal relationships (e.g., Cheng & 

Holyoak, 1985; Kelley, 1973).  Yet, as we observed, these strategies do not always result 

in outcomes that align with formal reasoning logic (e.g., Lave, 1988; Tversky & 

Kahneman, 1974).  Perhaps forcing a system 2 measure (explicit measure of attributions) 

on a system 1 learning task provides an explanation as to why normative models have 

failed to universally account for causal attributions observed with the present study, as 

well as consistently within the causal reasoning literature.  The research of Tversky and 

Kahneman (1974), and Kahneman (2003) emphasizes the failure of normative predictions 

to align with decision-making outcomes associated with system 1 thinking.  According to 

dual process theory, an inability to explicitly describe ones’ behavior, as well as fast, 

automatic, and random behavior is indicative of system 1 thinking.  In contrast, system 2 

thinking is effortful, slow, calculated, and conscious.   

I classified participants self-reported assessment techniques as implicit and 

explicit based on participants’ ability to verbalize their assessment strategy (Figure 22), 

and causal attributions did not differ according to this categorization of explicitness 

(Appendix AF).  However, my categorization of explicit responses describes heuristics as 

opposed to rational logic, which Kahneman (2003) classifies as system 1 rather than 

system 2 thinking.  Thus, the insignificant difference in causal attribution according my 

categorization of explicitness supports Kahneman’s classification scheme, suggesting that 

all of the observed reasoning falls into the system 1 thinking.  Consequently, expecting 

the prescriptive analyses (e.g., ΔP, Power PC theory, Rescola-Wagner) to 

mathematically, or logically align with participants’ system 1 reasoning outcomes 
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appears unreasonable.  Yet, this is what is conventionally done in causal reasoning 

research that focus’ on people’s ability to detect and accurately describe underlying 

contingency values.  The analysis of these data provides two encouraging indications of 

reasonable reasoning: 1) intervention strategies are sensitive to changes in information 

accessibility (i.e., adaption to the environment) and 2) causal attributions reflect 

experience.   

Limitations 

 The primary limitation of this study was the number of trials implemented in the 

learning task.  I selected the number of trials for the learning task based on experimental 

designs in the causal reasoning with contingency literature that use eight trials per 

intervention option (Buehner et al., 2003; Rottman & Ahn, 2009; Rottman & Keil, 2012).  

I felt that limiting the number of trials was both ecologically valid (approximately, two 

weeks) and would foster task vigilance.  Yet, these referent experimental designs did not 

consider delay and controlled the learning environment.  Other research paradigms use 

more trials in the learning task, including causal reasoning with delay (Allan et al., 2003; 

Greville & Buehner, 2010), system dynamics (Diehl and Sterman, 1995; Sterman, 1989), 

non-human conditioning (e.g., Claflin, Garrett, & Buffington, 2005), and as do other 

designs that focus solely on contingency (Jenkins & Ward, 1965).  In retrospect, sixteen 

trials may not have been long enough for participants to recognize the delay interval, as 

well as for participants’ to detect differences between the treatment options, or to 

generate differences in system control.   

 Detecting a difference between proportions.  Peoples’ ability to establish 

conclusive differences between apply and withhold treatment observations differs 
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according to contingency.  (Appendix A contains the analysis assessing the plausibility of 

detecting differences between proportions.)  With the 16 trial learning task, only the 75|0 

contingency manipulation should have provided sufficiently conclusive evidence of a 

difference between the probability of an effect given a treatment/causal variable (P(e|c)) 

and the probability of an effect in the absence of that treatment/causal variable (P(e|~c)), 

in order to attribute the blood pressure observations (e) to the treatment invention (c).  

The confidence intervals associated with 25|0 and 75|75 contingency manipulations both 

include zero, which in turn challenges whether 16 trials in the learning task provided 

enough evidence to conclusively determine that the effect is attributable to the treatment 

regardless of intervention strategy (optimal or not according to standard error).   

 Yet, even when the learning task is lengthened to 56 trials, this analysis suggests 

that differences in people’s ability to detect a difference will be limited to specific 

intervention strategies with the 25|0 contingency manipulation.  Further, this analysis 

posits that detecting a difference between the two proportions with the 75|75 contingency 

manipulation (or any contingency that ΔP = 0) is prohibitive regardless of the observed 

number of trials because in actuality there is no difference between the two proportions.  

The theoretical ability to detect differences between proportions durations beyond 16 

trials (i.e., 32 and 56 trials) suggests that the length of the learning task is a limitation that 

extends beyond this study. 

Range of system control outcomes.  The range of possible system control 

outcomes based on the intervention distributions extremes (only applying one treatment 

intervention and applying the treatment intervention on all of the trials) compliments the 

difference between proportions assessment.  With the 16 trial learning task, only the 75|0 
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contingency manipulation allowed for prominent differences in system control 

performance.  This is especially true given the system control measure only considered 

13 treatment interventions, rather than 16, in order to assess the same number of 

treatment interventions across the delay manipulations.  Table 16 presents the range of 

possible system control outcomes in relation to three contingency manipulations (25|0, 

75|0, and 75|75) and three learning task durations (16, 32, and 56 trials).  The upper and 

lower bound of the range of outcomes is defined using intervention strategy extremes 

(i.e., when only one treatment is applied and when the treatment is applied on all trials). 

Table 16 

Range of System Control Outcomes with Extreme Intervention Distributions for 

each Contingency Manipulation 

 Intervention Distribution 

25|0 75|0 75|75  Treatment ~Treatment 

16 trials 
01 12 141 141 50 

13 00 111 050 50 

32 trials 
01 28 150 150 50 

29 00 103 050 50 

56 trials 
01 52 150 150 50 

53 00 091 050 50 

Note.  Assumes a starting blood pressure level of 125, with a maximum level of 

150 and minimum level of 50.  Applying treatment applications reduced blood 

pressure level by 8 and withholding the treatment increased the blood pressure 

level by 2.  The number of interventions considered by the system control measure 

is less than the total number of trials so that the same number of interventions is 

considered across the delay manipulations.  For this examination, I assumed a 

three-trial delay condition, so all of the learning durations were reduced by three 

trials. 

 

Increasing the number of trials expands the range of possible system control 

outcomes to the greatest extent with the 25|0 contingency manipulation.  Yet, the lower 

bound (50) is not reached, even with the 56 trial duration, because of the low, overall 

probability of an effect.  In contrast, increasing the number of trials in the learning task 

does not affect the range of possible system control outcomes with the 75|75 contingency 
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manipulation because applying and withholding the treatment intervention have the same 

outcome.  With the 75|0 contingency manipulation, the maximum potential range is 

reached with 32 trials.  Perhaps, increasing the number of trials would allow for more 

variation in intervention strategy, as well, which in turn may be highlight delay effects 

that are unnoticeable given the current experimental design. 

Trials as a representation of time.  Even with an expanded number of trials, the 

potential implications of using trials as a representation of time, rather than actual elapsed 

time, remain.  Although there are examples of trial-based learning environments in the 

system dynamics literature that consider delay (Brehmer, 1989; Diehl and Sterman; 

1995), reasoning about a representation of time may not generate the same effect as 

directly experiencing and reasoning in real time.  Moreover, variation in the actual time 

between trials and between participants is a consequence of using trials to specify delay, 

and these differences in the actual time likely nullified the effect of delay on causal 

attributions.  Alternatively, the influence of delay on reasoning outcomes, especially 

causal attributions may be non-linear or plateau with longer intervals.  Shanks et al. 

(1989) observed non-significant differences with delay intervals comparable to the 

implemented one-trial and two-trial delay manipulations, as well as with a much longer 

16-second manipulation.   

I formed my expectation that increases in delay would negatively influence 

participants’ reasoning outcomes without knowing the length or the variability in the 

actual time associated with the delay intervals.  Also, the use of trials to specify the delay 

interval prohibited the exploration of a no-delay, base-line condition, so establishing 

whether delay had no effect on participants’ causal attributions, or whether this effect was 
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equivalent across the manipulations is not plausible.  Future research should reconsider 

the use of trials to represent time and recast the experiment to accomplish a better 

mapping between dwell time in experiment and the cause/effect model. 

Future Research 

 Despite the duration of the learning task and the use of trials to represent time as 

limitations, this study provides valuable insights to guide future research.  Differences in 

intervention strategy and their influence on reasoning outcomes suggest a natural focal 

point.  Although we have an initial understanding of the relationship between strategy, 

system control, and causal attribution, more can be learned about this triad of measures.  

Simplifying the experimental design will allow better identification of the factors that 

motivate strategic differences.  Exploration of additional system parameters (e.g., 

contingency and gain) will only contribute to the understanding of what information 

people leverage from different contextual environments.   

 For example, consideration of a 25|25 contingency may have provided clarity 

concerning the causal attributions associated with the 25|0 and 75|75 contingency 

manipulations.  If causal attributions were equivalent between the 25|0 and a 25|25 

contingency manipulation, as was the case with the 75|0 and 75|75 contingency 

manipulations, this would suggest that outcomes associated with treatment applications 

were more salient.  Otherwise, the equivalence between the 75|0 and 75|75 contingency 

manipulations is more attributable to the overall probability of an effect.   

 Also, consideration of alternative cover stories and task goals, as well as expertise 

would provide a better understanding of the extensibility of these findings.  Lastly, use of 

discrete system conditions should be avoided moving forward, in favor of continuous 
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system conditions, given issues accommodating time-based manipulations, decreases in 

information accessibly, and limited external validity.   
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V.  CONCLUSIONS 

This study served as a starting point for future research into how people reasoning 

about a new treatment when diagnosed with a chronic medical condition.  In order to 

examine reasoning under conditions comparable to hypertension management, I used a 

novel reasoning paradigm, modeled from the causal reasoning literature, to vary the 

amount of delay and contingency between actions and outcomes within discrete and 

continuous system conditions.  I asked participants to consider causal scenarios involving 

a single causal variable (treatment option) that acted in accordance to these underlying 

experimental manipulations and collected data pertaining to the separate outcome 

measures employed by the causal reasoning and system dynamics literatures, causal 

attributions and system control, respectively. 

Although the observed findings mostly concur with existing experimental 

research focused on contingency and delay in isolation with discrete system conditions, 

the influence of system condition and intervention strategy on causal attributions 

emphasizes an alternative research focus.  Participants’ application of observation-

independent, as opposed to observation-dependent intervention strategies with the 

continuous system condition reveals a difference in information accessibility between the 

system conditions, as do the differences in causal attributions with the 25|0 and 75|0 

contingency manipulations.  This system effect emphasizes the need to explore 

continuous, over discrete systems within the causal reasoning literature.  Additionally, 
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allowing people to freely intervene in the learning task highlighted the role of 

intervention strategy in shaping causal attributions, which challenges the utility of 

research that focuses on controlled learning experiences founded in theory rather than 

observation. 

Admittedly, there were several limitations related to the experimental design that 

constrained what analyses could be performed, which in turn restricted the conclusions.  

Still, the data do provide an initial understanding of the relationship between the 

reasoning environments and the dependent measures employed separately by the causal 

reasoning and system dynamics literatures.  Yes, there is still a lot to learn with respect to 

how people reason when confronted with a chronic medical condition, like hypertension.  

However, my initial findings suggest that people’s reasoning outcomes, although 

inconsistent with normative theory, are actually quite reasonable once the various 

elements that are involved in everyday cognition, including prior bias, information 

salience, and reasoning strategy are taken into account. 
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APPENDIX A 

Detecting a Difference between Two Proportions 

To understand how different contingency specifications may affect people’s ability to 

detect a difference between P(e|c) and P(e|~c), I calculated the confidence interval for 

the difference between two proportions.  I assumed a null hypothesis that there is no 

difference between the proportions or ΔP = P(effect|treatment)-P(effect|~treatment) = 0.  

Confidence intervals that exclude zero indicate that it is plausible for people reject the 

null and conclude that the presence of the causal variable is more efficacious than its 

absence.  I considered three contingency values (25|0, 75|0, 75|7511) across three 

intervention distributions (apply treatment-biased, unbiased, and withhold treatment-

biased) assuming a 16 trial, 32 trial, and 56 trial learning task.12   

Table A1 contains the 95% confidence intervals for each contingency by 

intervention distribution combination.  Confidence intervals that exclude zero are 

                                                      
11 25|0 = P(effect|treatment) = .25, P(effect|~treatment) = .00, 75|0 = P(effect|treatment) 

= .75, P(effect|~treatment) = .00, 75|75 = P(effect|treatment) = .75, P(effect|~treatment) = 

.75. 

12 This analysis could not be conducted across all of the intervention distributions 

because the contingency fluctuates on a trial-by-trial basis (e.g., can not have .75 

contingency with only one observation).  
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referenced in bold font.  This analysis indicates that peoples’ ability to establish 

conclusive differences between the observations associated with apply and withhold 

treatment interventions differed according to contingency.13  Specifically, only the 75|0 

contingency manipulation should have provided conclusive enough evidence of a 

difference between the P(effect|treatment) and P(effect|~treatment) to attribute the blood 

pressure observations to the treatment invention with a 16 trial learning task.  The 

confidence intervals associated with 25|0 and 75|75 contingency manipulations all 

include zero, challenging whether 16 trials in a learning task provides enough evidence to 

conclusively determine the influence of P(effect|treatment) regardless of intervention 

strategy (optimal or not according to standard error). 

 

 

 

 

 

 

 

 

 

 

                                                      
13 This insight is also apparent with the analysis considering standard error of the 

differences between proportions presented in Appendix B. 
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Table A1 

Difference of Proportions Confidence Intervals for a subset of Intervention 

Distributions and Contingency Values 

   95% CI 

 Intervention Distribution  25|0  75|0  75|75 

 Treatment ~Treatment  LL UL  LL UL  LL UL 

16 trials 04 12  - .13 .78  .14 .99  - .56 .40 

 08 08  - .20 .64  .19 .96  - .44 .44 

 12 04  - .38 .57  .06 .93  - .40 .56 

32 trials 04 28  - .03 .78  .19 .98  - .55 .31 

 16 16  - .04 .53  .38 .92  - .32 .32 

 28 04  - .37 .45  .11 .89  - .31 .55 

56 trials 04 52   - .001 .78  .21 .99  - .54 .28 

 28 28  - .05 .45  .50 .89  - .24 .24 

 52 04  - .36 .39  .13 .86  - .28 .54 

Note.  Treatment = total number of applications of the treatment.  ~Treatment = total 

number of instances that the treatment was withheld.  CI = Confidence Interval of a 

Proportion, including continuity correction.  LL = Lower Limit.  UL = Upper Limit.  

25|0 = P(effect|treatment) = .25, P(effect|~treatment) = .00, 75|0 = 

P(effect|treatment) = .75, P(effect|~treatment) = .00.  75|75 = P(effect|treatment) = 

.75, P(effect|~treatment) = .75. 
1 -0.0018 

 



 116 

APPENDIX B 

Standard Error of the Difference between Two Proportions 

Standard error is the degree to which the sampled value reflects the population value.  

Smaller standard error measurements place smaller confidence intervals around the 

sampled value, providing a more precise estimate.  Using the concept of standard error, I 

examined all of the possible treatment intervention distributions assuming a 16 trial 

learning task to determine the likelihood that each experience (the sample) would allow 

for the realization of different underlying contingencies (the population value).  I 

considered these treatment intervention distributions across three contingency values 

(25|0, 75|0, 75|7514) that varied according to the probability that the presence and absence 

of the treatment generated the expected effect on the patients’ blood pressure.  Table B1 

contains the standard error of the difference between two proportions for each 

contingency by intervention distribution combination.  For reference, I highlighted the 

lowest standard error value for each contingency value with bold font and identified the 

evenly distributed treatment intervention strategy (i.e., P(treatment) = P(~treatment) = 

8).

                                                      
14 25|0 = P(effect|treatment) = .25, P(effect|~treatment) = .00; 75|0 = P(effect|treatment) 

= .75, P(effect|~treatment) = .00; 75|75 = P(effect|treatment) = .75, P(effect|~treatment) 

= .75 
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Concerning the specific standard error values, when P(effect|~treatment) = zero 

the error is naturally smaller because no error is affiliated with one of the two 

proportions.  Also, with the 75|0 and 25|0 contingency values, treatment-biased 

intervention distributions produce the lowest standard error outcomes.  This implies that 

treatment intervention strategies biased toward the effective action/variable will provide 

the most information to the observer when the probability of the conjugate action 

producing an effect is zero.  Conversely, an unbiased intervention strategy lowers the 

standard error to the greatest degree with the 75|75 contingency value.  This outcome 

highlights the need to observe both actions equivalently when both actions are capable of 

producing efficacious observations, in order to obtain the most information about the 

underlying contingencies.  Further, this analysis reinforces that an unbiased treatment 

intervention strategy (P(treatment) = P(~treatment)) is not the optimal treatment 

intervention strategy across all contingency values.  Although an evenly distributed, 

unbiased intervention strategy will produce the lowest standard error on average, a 

treatment-biased intervention strategy is a reasonable approach if there is reason to 

believe that the treatment option will be effective.  
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Table B1 

Standard Error of the Difference between Two Proportions given 

possible Treatment Intervention Distributions assuming 16 Trials  

Intervention Distribution  SE 

Treatment ~Treatment  25|0 75|0 75|75 

01 15  0.43 0.43 0.45 

02 14  0.31 0.31 0.33 

03 13  0.25 0.25 0.28 

04 12  0.22 0.22 0.25 

05 11  0.19 0.19 0.23 

06 10  0.18 0.18 0.22 

07 09  0.16 0.16 0.22 

08 08  0.15 0.15 0.22 

09 07  0.14 0.14 0.22 

10 06  0.14 0.14 0.22 

11 05  0.13 0.13 0.23 

12 04  0.13 0.13 0.25 

13 03  0.12 0.12 0.28 

14 02  0.12 0.12 0.33 

15 01  0.11 0.11 0.45 

Note.  SE = Standard Error of the difference between two proportions.  

The following is the calculation used to compute SE: 

√
(𝑃1)(1−𝑃1)

𝑃1
+

(𝑃2)(1−𝑃2)

𝑃2
  Treatment = total number of applications of 

the treatment.  ~Treatment = total number of instances that the 

treatment was withheld.  25|0 = P(effect|treatment) = .25, 

P(effect|~treatment) = .00; 75|0 = P(effect|treatment) = .75, 

P(effect|~treatment) = .00; 75|75 = P(effect|treatment) = .75, 

P(effect|~treatment) = .75. 
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APPENDIX C 

Outcome Differences based on the Strategic Dimension of Observation Dependence 

When freely intervening with a system, participants may select and apply a strategy 

independent of the observed outcomes.  Alternatively, it is plausible for participants to 

select subsequent moves based on recently observed outcomes or changes in outcomes.  

Using this strategic concept of observation dependence, I examined three viable treatment 

intervention distributions (observation-dependent, observation-independent and treatment 

biased, and observation-independent and unbiased) and calculated the frequency that the 

observed blood pressure level was normal (the effect was present), as opposed to elevated 

(the effect was absent).15,16   

First, I considered the observation-dependent intervention strategy of applying 

and withholding the treatment in response to elevated and normal blood pressure 

observations, respectively.  Essentially, this strategy follows the decision rule of only 

applying the treatment when symptomatic.  Notice in Table C1, that the underlying 

                                                      
15 I used a one-trial delay manipulation in the discrete system condition separated for 

each of the proposed contingency manipulations.  The same analysis can be performed 

with the continuous system condition when declines relative to increases in blood 

pressure are used as the frequency measure, rather than frequency in the normal range. 

16 I reviewed 15 interventions rather than 16 with this analysis because the outcome 

associated with the intervention applied on 16th trial is not displayed to participants.   
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contingency values direct the treatment intervention distribution with this, and other 

observation-dependent strategies.  With this particular strategy, the treatment is applied 

more often with the 25|0 contingency value (12 times) than the 75|0 contingency value (9 

times) because the lower contingency of the treatment on the effect results in more 

elevated blood pressure observations (no effects).  When the blood pressure observation 

is frequently normal (the effect occurs frequently) as with the 75|75 contingency value, 

the number of apply treatment selections with our observation-dependent intervention 

strategy is further reduced to five applications.   

To contrast this observation-dependent approach, I considered two observation-

independent strategies: treatment-biased and unbiased.  A treatment-biased approach 

assumes that the treatments recommended by our healthcare providers will improve our 

condition.  This approach applies 12 treatment applications17 with three withhold 

applications (to represent occasional forgetfulness) evenly interspersed.  The unbiased 

approach evenly distributes the intervention options with eight application of the 

treatment (c) followed by seven instances of withholding the treatment (~c).  Again, this 

is typically the intervention strategy used by researchers that control the learning 

environment.  In Table C1, notice that the treatment distribution does not vary with the 

observation-independent intervention strategy across the explored contingencies as it did 

relative to the observation-dependent intervention strategy. 

                                                      
17 12 treatments was the mean number of treatments observed with both the discrete (n = 

45, M = 12.36, SD = 3.91) and continuous (n = 74, M = 11.97, SD = 3.63) system 

condition with observation-independent strategies  
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Also shown in Table C1 is the frequency that the blood pressure observation is in 

the normal range (i.e., % Normal).  This output is dependent on both the contingency 

value and the distribution of treatment interventions.  The influence of contingency on % 

Normal outputs is evident with the observation-independent intervention strategies 

because the treatment distribution is held constant.  Increasing the combined contingency, 

or increasing the likelihood of an effect will occur regardless of the source (i.e., treatment 

or ~treatment), increases the frequency that the blood pressure observation is in the 

normal range.  Comparing the % Normal values within each contingency value illustrates 

that there is a range of possible observations, and that % Normal outputs are directly 

dependent on the distribution of treatment interventions.  For example, the frequency that 

the blood pressure observation is in the normal range with the 75|0 contingency value 

decreases with the observation-dependent intervention strategy (47%) relative to the 

observation-independent and treatment-biased intervention strategy (60%) given the 

reduction in treatment applications.  That said, the range of possible % Normal values 

does vary as a function of the contingency specification, meaning treatment intervention 

strategy will affect blood pressure observations with certain contingency values (e.g., 

75|0) to a greater degree than others (e.g., 75|75).  
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Table C1 

Distribution of Treatment Interventions and the Implication of Treatment 

Intervention Strategy on Ability to Control the System separated by Contingency 

 Observation-

dependent 

 Observation –independent 

  Treatment-biased  Unbiased 

 c ~c % Normal  c ~c % Normal  c ~c % Normal 

25|0 12 03 .20  12 3 .20  8 7 .13 

75|0 09 06 .47  12 3 .60  8 7 .40 

75|75 05 10 .73  12 3 .73  8 7 .73 

Note.  c = total number of applications of the treatment.  ~c = total number of 

instances that the treatment was withheld.  % Normal = the frequency the 

observed blood pressure level was normal, as opposed to elevated.  25|0 = 

P(effect|treatment) = .25, P(effect|~treatment) = .00.  75|0 = P(effect|treatment) = 

.75, P(effect|~treatment) = .00.  75|0 = P(effect|treatment) = .75, 

P(effect|~treatment) = .75.  This analysis considered 15 interventions rather than 

16 because the outcome associated with the intervention applied on 16th trial is 

not displayed to participants. 
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APPENDIX D 

Distribution of Participants between Experimental Manipulations 

I used separate one-way ANOVAs to confirm that there were no differences in 

participants’ demographics (i.e., age, sex, grade, ESL) between the nine 

experimental manipulation combinations (contingency * delay).  I performed 

separate analyses for the discrete and continuous system conditions.  There were no 

significant differences (see Table D1 and D2).  Also, I used independent samples t-

tests to compare the system conditions using the same demographic measures.  

Again, there were no significant differences in the demographic measures between 

the system conditions (see Table D3). 

Table D1 

Demographic Differences between Participants in the Discrete System 

Condition 

 

Sum of 

Squares df 

Mean 

Square F p 𝜂2 

Age Between Groups 134.722 08 16.840 0.846 .572 .20 

Within Groups 537.500 27 19.907    

Total 672.222 35     

Sex Between Groups 003.000 08 00.375 1.688 .147 .33 

Within Groups 006.000 27 00.222    

Total 009.000 35     

Grade Between Groups 002.389 08 00.299 1.112 .386 .25 

Within Groups 007.250 27 00.269    

Total 009.639 35     

ESL Between Groups 002.500 08 00.313 1.985 .087 .37 

Within Groups 004.250 27 00.157    

Total 006.750 35     
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Table D2 

Demographic Differences between Participants in the Continuous System 

Condition 

 

Sum of 

Squares df 

Mean 

Square F p 𝜂2 

Age Between Groups 217.222 08 27.153 1.484 .209 .31 

Within Groups 494.000 27 18.296    

Total 711.222 35     

Sex Between Groups 003.222 08 00.403 1.891 .103 .36 

Within Groups 005.750 27 00.213    

Total 008.972 35     

Grade Between Groups 003.389 08 00.424 0.847 .571 .20 

Within Groups 013.500 27 00.500    

Total 016.889 35     

ESL Between Groups 001.500 08 00.188 0.964 .483 .22 

Within Groups 005.250 27 00.194    

Total 006.750 35     

 

Table D3 

Demographic Differences between System Conditions 

 

M 

 
 95% CI  

  

Discrete 

System 

Continuous 

System t(70)* p LL UL d 

Age 20.22 (4.38) 20.28 (4.51) -0.053 0.958 -2.145 2.034 -0.012 

Sex 01.50 (0.51) 01.47 (0.51) -0.233 0.817 -0.210 0.266 -0.056 

Grade 01.31 (0.53) 01.44 (0.69) -0.957 0.342 -0.429 0.151 -0.229 

ESL 01.25 (0.44) 01.25 (0.44) -0.000 1.000 -0.206 0.206 -0.000 

Note.  N = 72.  SD in parentheses.  CI = confidence interval; LL = lower limit; UL = 

upper limit.  Performance distribution only considers data from participants that 

were included in the final data analyses.  Sex coding: 1 for males, 2 for females.  

Grade coding: 1 for freshman, 2 for sophomores, 3 for juniors, and 4 for seniors.  

ESL coding: 1 for native English speaker, 2 for non-native English speaker *degrees 

of freedom differed for the grade analysis due to heteroscadicity: t(65.14).   

 

 

 Table D4 contains performance on the English proficiency measure separated by 

system condition.  Chi-square analyses indicated that participants’ ability to select the 

correct the intermediate (X2(1, n = 144) = 1.029, p = .310, Cramer’s V = .08) or upper 
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intermediate (X2(1, n = 144) = 0.150, p =.699, Cramer’s V = .03) vocabulary words when 

given a definition was equivalent between the system conditions. 

 

Table D4 

Performance on the English proficiency measure 

 

Discrete System 

 

Continuous System 

 

Correct Incorrect 

 

Correct Incorrect 

Intermediate 71 1  69 3 

ugly 17 0 

 

15 0 

blind 14 0 

 

12 0 

sensible 05 1 

 

10 0 

unlikely 12 0 

 

08 2 

lazy 10 0 

 

17 0 

shy 13 0 

 

07 1 

Upper intermediate 68 4  69 3 

victim 13 0 

 

11 0 

litter 10 3 

 

11 1 

reward 08 0 

 

18 0 

courage 08 0 

 

09 1 

plug 15 0 

 

12 0 

currency 14 1 

 

08 1 

Note.  N = 72.  Performance distribution only considers data from 

participants that were included in the final data analyses 

 

  Table D5 contains the mean and standard deviation values of participants’ 

responses to Health Belief Questionnaire items separated by system condition.  

Independent samples t-tests confirm that there were no significant differences in 

responses between the system conditions.  Of particular interest is the last item, which 

states that people should stop their treatment every now and again as this belief may have 

influenced intervention strategy.  Again, there was not a significant difference between 

the system conditions relative to this belief. 
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Table D5 

Health Belief Questionnaire Responses 

 

M   95% CI  

 

Discrete 

System 

Continuous 

System t(70) p LL UL d 

1. Too Many 3.08 (1.03) 3.19 (1.04) -0.457 .649 -.596 .374 -0.109 

2. Natural 3.08 (1.18) 3.31 (1.01) -0.859 .393 -.738 .294 -0.205 

3. Harm 2.64 (0.99) 2.28 (0.85) -1.661 .101 -.072 .795 -0.397 

4. Stop 2.72 (1.03) 3.11 (1.09) -1.555 .124 -.888 .110 -0.372 

Note.  N = 72.  SD in parentheses.  CI = confidence interval; LL = lower limit; UL = 

upper limit.  All responses were collected on a 5 point scale ranging from strongly 

disagree (1) to strongly agree (5).  All tests two-tailed.  1. Too many = Doctors use too 

many medicines.  2. Natural = Natural remedies are safer than medicines.  3. Harm = 

Medicines do more harm than good.  4. Stop = People who take medicines should stop 

their treatment for a while every now and again. 
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APPENDIX E 

Fixed versus Random Contingency Specification 

The two methods used for implementing contingency are random (Allen et al., 2003; 

Buehner et al., 2003; Buehner & May, 2003; Jenkins & Ward, 1965; Shank et al., 1989; 

Perales & Shanks, 2003; Wasserman et al., 1993) and fixed assignment (Rottman & Keil, 

2012).  With random assignment, researchers randomly generate and display a sequence 

of observations at the rate of contingency for each participant, whereas this sequence of 

observations is specified a-priori and remains consistent between participants with fixed 

assignment.  To determine which method to use, I assessed how the actual contingency 

(i.e., the contingency observed by participants) may vary from the specified contingency 

(i.e., the parameter designated by the experimenter) within a free-operant learning 

environment with both the fixed and random method of contingency specification.  For 

both conditions, I assumed a specified contingency of P(effect|treatment) = .75 and 

P(effect|~treatment) = .00.  Table E1 lists representative actual P(effect|treatment) 

contingency values generated using fixed and random assignment for the possible 

treatment intervention distributions assuming a 16 trial learning task. 

For the fixed assignment method, I examined having three out of every four apply 

treatment interventions produce an effect and every fourth selection produce the null 

effect.  Again, this assumes a contingency value of P(effect|treatment) = .75.  By design, 

the actual contingency values associated with fixed assignment remain consistent 

between samples, so there is no need to repeat this procedure as done with the random 
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assignment condition.  For the random assignment condition, I randomly generated a set 

of numbers for each of the possible treatment intervention distributions assuming a 16 

trial learning task.  The amount of numbers generated for each set was equal to the 

number of treatment applications in each intervention distributions.  For instance, I 

generated one number for the 1:15::treatment:~treatment intervention distribution.  The 

generated numbers ranged from 0 and 100.  I paired the numbers below and above 75 

with the effect and null-effect respectively, given the contingency condition of 

P(effect|treatment) = .75.  I repeated this procedure three times to assess variability.  

With fixed assignment method, if the treatment is applied one time (i.e., the 1:15 

intervention distribution), you will see exactly one observation of the effect (100% of the 

apply cases).  In contrast, with the random assignment method, it is possible that the one 

application of the treatment intervention will not produce the effect.  If the treatment is 

applied on all 16 of the trials (i.e., the 16:0 intervention distribution) with the fixed 

assignment method, then .75 (12 trials) of the outcomes will display the effect and .25 (4 

trials) the null effect.  Notice that the actual, observed contingency is always greater than 

.75 when the number of treatments is not divisible by 4 with the fixed assignment 

method.  This method requires a decision rule as to whether or not to favor the effect or 

null-effect, whereas with random assignment, whether the actual contingency to either 

more or less than the contingency specification is exactly that - random. 

This analysis confirms that the actual contingency value will differ from the 

specified contingency value with both methods of contingency implementation.  The 

mean value of actual contingencies is closer to the specified contingency value of .75 

with random assignment (1: M = .70, SD = .24; 2: M = .80, SD = .78; 3: M = .81, SD = 
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.80).  However, there is considerably more variation18 between the actual contingency 

values across the possible intervention distributions as compared to the fixed assignment 

implementation (M = .83, SD = .09).  The decision to use of fixed assignment over 

random assignment in the specification contingency reflects the benefit of consistency in 

experience between participants in a free-operant learning environment and less 

variability in actual, observed contingency with a limited number of trials.   

 

Table E1  

Representative Actual P(effect|treatment) Contingency Values after 

16 trials for the Possible Treatment Intervention Distributions with 

Fixed and Random Distribution of Contingency 

Intervention Distribution  Fixed  Random  

Treatment ~Treatment    1  2 3 

01 15  1.00  0.00 1.00 1.00 

02 14  1.00  1.00 0.50 1.00 

03 13  1.00  0.66 1.00 1.00 

04 12  0.75  0.50 0.75 1.00 

05 11  0.80  0.60 0.60 0.60 

06 10  0.83  0.83 0.83 0.67 

07 09  0.86  0.71 0.86 0.71 

08 08  0.75  0.50 0.88 0.75 

09 07  0.78  0.67 0.78 0.78 

10 06  0.80  0.60 1.00 0.80 

11 05  0.82  1.00 0.73 0.82 

12 04  0.75  0.75 0.75 0.83 

13 03  0.77  0.92 0.77 0.77 

14 02  0.79  0.93 0.71 0.86 

15 01  0.80  0.73 0.73 0.80 

16 00  0.75  0.75 0.75 0.63 

Note.  Treatment = total number of applications of the treatment.  

~Treatment = total number of instances that the treatment was 

withheld.  Fixed = Fixed assignment.  Random = Random 

assignment.  1, 2, 3 represent repeated simulations of the deriving 

actual contingency with the random assignment approach.  

Specified contingency:  p(effect|treatment) = .75, 

p(effect|~treatment) = .00. 

 

  

                                                      
18 Fmax1(15) = 7.11, p < .05; Fmax2(15) = 75.11, p < .05; Fmax3(15) = 79.01, p < .05 
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APPENDIX F 

Sample of Blood Pressure Observations given Treatment Intervention Strategies, Delay, 

Contingency, and System Condition 

Below are figures depicting blood pressure observations with a subset of intervention 

strategies.  Each figure presents these outcomes relative to the nine experimental 

treatment combinations (delay * contingency).  The figures are separated by system 

condition, as well.  Figure F1 through Figure F5 present observations in the discrete 

system framework.  Figure F6 through Figure F10 present observations in the continuous 

system framework.  Figures F1 and F6 present the treatment intervention strategy of 

applying the treatment on all of the trials.  Figures F2 and F7 present the treatment 

invention strategy of applying the treatment only on the first trial and withholding the 

treatment for the remaining trials.  With Figures F3 and F8, the treatment is applied on 

the first eight trials and withheld of subsequent trials.  Figures F4 and F9 present a 

treatment intervention strategy that alternates applying two treatment interventions with 

withholding two treatment interventions.  Lastly, Figures F5 and F10 present a treatment-

biased intervention strategy of applying the treatment on the first 11 trials and 

withholding the treatment for the remaining trials. 

 

  



 131 

Discrete System  

 

A) Delay by 25|0 Contingency Manipulation with the Discrete System 

 
B) Delay by 75|0 Contingency Manipulation with the Discrete System 

 
C) Delay by 75|75 Contingency Manipulation with the Discrete System 

 
Figure F1.  Illustration of blood pressure observations assuming a treatment intervention 

strategy of applying the treatment on all of the trials with the discrete system condition. 

Observations are separated by delay manipulations and the a) 25|0 contingency 

manipulation, b) 75|0 contingency manipulation, and c) 75|75 contingency manipulation.  

140 and 120 represent an elevated and normal blood pressure levels respectively.  The 

observations are the same for the 75|0 and 75|75 contingency manipulations. 
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A) Delay by 25|0 Contingency Manipulation with the Discrete System 

 
B) Delay by 75|0 Contingency Manipulation with the Discrete System 

 
C) Delay by 75|75 Contingency Manipulation with the Discrete System 

 
Figure F2.  Illustration of blood pressure observations assuming a treatment intervention 

strategy of applying the treatment only on the first trial with the discrete system 

condition.  Observations are separated by delay manipulations and the a) 25|0 

contingency manipulation, b) 75|0 contingency manipulation, and c) 75|75 contingency 

manipulation.  140 and 120 represent an elevated and normal blood pressure levels 

respectively.  The observations are the same for the 25|0 and 75|0 contingency 

manipulations. 
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A) Delay by 25|0 Contingency Manipulation with the Discrete System 

 
B) Delay by 75|0 Contingency Manipulation with the Discrete System 

 
C) Delay by 75|75 Contingency Manipulation with the Discrete System 

 
Figure F3.  Illustration of blood pressure observations assuming a treatment intervention 

strategy of applying the treatment on trials 1-8 with the discrete system condition.  

Observations are separated by delay manipulations and the a) 25|0 contingency 

manipulation, b) 75|0 contingency manipulation, and c) 75|75 contingency manipulation.  

140 and 120 represent an elevated and normal blood pressure levels respectively.   
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A) Delay by 25|0 Contingency Manipulation with the Discrete System 

 
B) Delay by 75|0 Contingency Manipulation with the Discrete System 

 
C) Delay by 75|75 Contingency Manipulation with the Discrete System 

 
Figure F4.  Illustration of blood pressure observations assuming a treatment intervention 

strategy that alternates applying two treatment interventions with withholding the 

treatment on two trials with the discrete system condition.  Observations are separated by 

delay manipulations and the a) 25|0 contingency manipulation, b) 75|0 contingency 

manipulation, and c) 75|75 contingency manipulation.  140 and 120 represent an elevated 

and normal blood pressure levels respectively.   
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A) Delay by 25|0 Contingency Manipulation with the Discrete System 

 
B) Delay by 75|0 Contingency Manipulation with the Discrete System 

 
C) Delay by 75|75 Contingency Manipulation with the Discrete System 

 
Figure F5.  Illustration of blood pressure observations assuming a treatment-biased 

intervention strategy of applying the treatment on the first 11 trials and withholding the 

treatment for the remaining trials with the discrete system condition.  Observations are 

separated by delay manipulations and the a) 25|0 contingency manipulation, b) 75|0 

contingency manipulation, and c) 75|75 contingency manipulation.  140 and 120 

represent an elevated and normal blood pressure levels respectively. 
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Continuous System  

 

A) Delay by 25|0 Contingency Manipulation with the Continuous System 

 
B) Delay by 75|0 Contingency Manipulation with the Continuous System 

 
C) Delay by 75|75 Contingency Manipulation with the Continuous System 

 
Figure F6.  Illustration of blood pressure observations assuming a treatment intervention 

strategy of applying the treatment on all of the trials with the continuous system 

condition.  Observations are separated by delay manipulations and the a) 25|0 

contingency manipulation, b) 75|0 contingency manipulation, and c) 75|75 contingency 

manipulation.  The observations are the same for the 75|0 and 75|75 contingency 

manipulations. 
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A) Delay by 25|0 Contingency Manipulation with the Continuous System 

 
B) Delay by 75|0 Contingency Manipulation with the Continuous System 

 
C) Delay by 75|75 Contingency Manipulation with the Continuous System 

 
Figure F7.  Illustration of blood pressure observations assuming a treatment intervention 

strategy of applying the treatment only on the first trial with the continuous system 

condition.  Observations are separated by delay manipulations and the a) 25|0 

contingency manipulation, b) 75|0 contingency manipulation, and c) 75|75 contingency 

manipulation.  The observations are the same for the 25|0 and 75|0 contingency 

manipulations. 
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A) Delay by 25|0 Contingency Manipulation with the Continuous System 

 
B) Delay by 75|0 Contingency Manipulation with the Continuous System 

 
C) Delay by 75|75 Contingency Manipulation with the Continuous System 

 
Figure F8.  Illustration of blood pressure observations assuming a treatment intervention 

strategy of applying the treatment on trials 1-8 with the continuous system condition.  

Observations are separated by delay manipulations and the a) 25|0 contingency 

manipulation, b) 75|0 contingency manipulation, and c) 75|75 contingency manipulation.  
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A) Delay by 25|0 Contingency Manipulation with the Continuous System 

 
B) Delay by 75|0 Contingency Manipulation with the Continuous System 

 
C) Delay by 75|75 Contingency Manipulation with the Continuous System 

 
Figure F9.  Illustration of blood pressure observations assuming a treatment intervention 

strategy that alternates applying two treatment interventions with withholding the 

treatment on two trials with the continuous system condition.  Observations are separated 

by delay manipulations and the a) 25|0 contingency manipulation, b) 75|0 contingency 

manipulation, and c) 75|75 contingency manipulation.  
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A) Delay by 25|0 Contingency Manipulation with the Continuous System 

 
B) Delay by 75|0 Contingency Manipulation with the Continuous System 

 
C) Delay by 75|75 Contingency Manipulation with the Continuous System 

 
Figure F10.  Illustration of blood pressure observations assuming a treatment-biased 

intervention strategy of applying the treatment on the first 11 trials and withholding the 

treatment for the remaining trials with the continuous system condition.  Observations are 

separated by delay manipulations and the a) 25|0 contingency manipulation, b) 75|0 

contingency manipulation, and c) 75|75 contingency manipulation.   
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APPENDIX G 

Specification of the Effect to Null Effect Gain Ratio 

The gain or weight associated with treatment interventions determines the speed at which 

a desired output (i.e., target blood pressure level) can be reached.  More time and more 

apply treatment interventions are required to reach a target blood pressure level with 

lesser amounts of gain, but too much gain can result in less accuracy and oscillations 

around the target blood pressure threshold.   

The influence of the gain parameter is a contextual factor that differs based on the 

nature of the system.  With discrete system experiments, the system’s output (e.g., blood 

pressure, object presence, happiness) is generally binary in nature (high or low, triangle 

or no triangle, smiley face or frown-y face) with the system returning to the baseline state 

after each trial (high blood pressure, no triangle, frown-y face).  With such systems, a 

gain value is only associated with the presence of the effect (low blood pressure, triangle, 

smiley face) because the value associated with a null effect is the same as the baseline 

state (i.e., zero).  Further, the specific value assigned to gain is meaningless given the 

desired output is either reached or not reached on each trial as a function of the binary 

outcome.  In contrast, values associated with gain and the relationship between these 

values (in the case of more than intervention selection or type of output) is meaningful 

with continuous system experiments because a) the system’s output is relational rather 

than binary, meaning the gain associated with interventions alters the system’s output 

relative to the previous state rather than the baseline state, and b) the goal of reaching 



 142 

and/or maintaining the target threshold extends across trials (absence of trial 

independence as a restriction).  

I examined a series of scenarios to appreciate how the specification of gain and 

the resulting ratios between the gain values assigned to the effect and null effect 

observations may affect on peoples’ ability to control the system.  I considered the same 

treatment intervention distributions that I used in Appendix C discussing observation 

dependence (that differ according to the strategic dimensions of observation dependence 

and intervention-bias) across three different effect to null effect ratios (no-null effect, 

unequal, and equal) that held the gain value associated with the effect constant.  The no-

null effect gain ratio (-8:0) is the most representative of the discrete system 

implementation, but is rather unrealistic relative to our scenario of hypertension 

management because it is characteristic of a temporary/curable condition (e.g., a 

headache), rather than a chronic management scenario.  The unequal (-8: +2) and equal (-

8: +8) gain ratios are more representative of a chronic management scenario because 

there is a cost associated with withholding the treatment.  Figure G1 compares a 

treatment-biased and an unbiased, observation-independent intervention strategies, 

alongside an observation-dependent intervention strategy on blood pressure levels with a) 

the no null effect, b) the unequal, and c) the equal gain ratios with a 75|0 contingency by 

one-trial delay condition.19  

                                                      
19 With the observation-dependent strategy, I applied and withheld the treatment when 

the blood pressure was elevated and normal respectively.  This resulted in nine 

applications of the treatment.  With the treatment-biased strategy, I applied 12 

applications of the treatment with three withhold applications evenly interspersed.  
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A) No Null Effect: Effect (-8) to Null Effect (+0) Gain Ratio20 

  
 

B) Unequal Effect (-8) to Null Effect (+2) Gain Ratio21 

   
                                                                                                                                                              
Finally, I continuously applied the treatment for eight trials with the unbiased strategy 

and withheld the treatment for the remaining trials.  Across the scenarios, I applied a 75|0 

contingency value (P(effect|treatment) = .75, P(effect|~treatment) = .00) and the outcome 

of each intervention occurred on the subsequent trial (one-trial delay manipulation).  

20 Blood pressure level on trial 16 for the no null- effect (-8) to null-effect (+0) gain ratio 

are 77, 69, and 61 for the unbiased, observation-dependent, and treatment-biased 

strategies respectively 

21 Blood pressure level on trial 16 for the unequal effect (-8) to null-effect (+2) gain ratio 

are 95, 85, and 81 for the unbiased, observation-dependent, and treatment-biased 

strategies respectively 
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C) Equal Effect (-8) to Null Effect (+8) Gain Ratio22 

   
Figure G1.  The relationship between the effect to null effect gain ratio and treatment 

intervention strategy on the ability to patients’ blood pressure levels with a 75|0 

contingency by one-trial delay condition 

 

With all of the effect to null-effect gain ratios, the treatment-biased intervention 

strategy best supports the goal of lowering the patients’ blood pressure followed by the 

observation-dependent and unbiased strategies due to the total number of treatments 

applied (12, 9, 8 respectively) across the 16 trials and the underlying contingency 

condition (75|0).  This outcome corresponds to the % Normal values discussed relative to 

observation dependence in Appendix C.  Also notable is the relationship between the 

effect to null-effect gain ratio and the decline in blood pressure level relative to the 

starting point, as well as differences attributable to intervention strategy.  The equal gain 

ratio (+8:-8) generates the most variation in blood pressure observations between the 

three treatment intervention strategies.  Also, the equal gain ratio may encourage the use 

of treatment-biased intervention strategies (at least with a contingency condition more 

                                                      
22 Blood pressure level on trial 16 for the equal effect (-8) to null-effect (+8) gain ratio 

are 149, 133, and 117 for the unbiased, observation-dependent, and treatment-biased 

strategies respectively. 
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susceptible to strategic differences as with the 75|0 contingency condition), as this was 

the only treatment intervention strategy that resulted in a final system output on the 16th 

trial that was lower than the elevated starting point.  In contrast, the no-null effect gain 

ratio (+8:0) supports an overall reduction in the blood pressure level relative to the 

elevated starting point across the treatment intervention strategies and there are minimal 

differences in blood pressure observations between the intervention strategies.  However, 

it is not realistic that one application of a treatment will permanently affect a person’s 

blood pressure given the context of hypertension management.  The unequal gain ratio 

(+8:-2) offers a compromise in that there is a cost associated with withholding the 

treatment, yet it allows the blood pressure observation on the 16th trial to be reduced 

relative to the starting point and minimizes the impact of strategic differences. 
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APPENDIX H 

Descriptions of Additional Dependent Measures 

Table H1 contains descriptions of dependent measures not reviewed in the Method 

section.  These include selection diversity, standard error, selections based on 

observations, selections based on changes in observations, selections based on 

unexpected changes, observation on the 16th trial, and response times.  Results pertaining 

to these measures are included in subsequent appendices, but not reported in the body of 

the document.   

Table H1 

Descriptions of Additional Dependent Measures  

Measure Description 

Selection 

diversity 

I calculated participants’ selections on a return matrix, which maps their 

selections at a particular trial (t) in relation to their selection on the 

subsequent (t +1).  Given the two treatment interventions for 

participants to select within the learning task (apply and withhold), this 

matrix contained 4 cells.  I used quantitative calculations that take into 

account the rate at which each cell was selected (e.g., Shannon-Weiner 

measure of information) to determine participants’ overall selection 

diversity.   

 If participants selections are equally dispersed between the four 

possible combinations of t by t +1 options (apply apply, apply 

withhold, withhold apply, withhold withhold), then H(t, t +1) = 2.   

 If participants selections are less representative of equal selection 

dispersion across the four options, the value of H(t, t +1) will 

decline.   

 

Finally, when participants only opt to apply the treatment (apply apply) 

or only opt to withhold the treatment (withhold withhold), then H(t, t  
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 +1) will be equal to zero.23 

Standard 

error 

Measure of the likelihood that participants will be able to identify the 

causality of the treatment options.  Standard of error calculations take 

into account the number of trials that participants each of the treatment 

options relative to the actual contingency values associated with the task 

environment.  Intervention selection strategies associated with lower 

standard of error values should facilitate participants’ in correctly 

ascertaining the causality 

 

Table B1, in Appendix B depicts a set of selections strategies relative to 

the contingency conditions.   

o With the 75|0 and 25|0 contingency conditions, a strategy 

that is bias toward applying the treatment should assist 

participants in determining that the treatment variable lowers 

the patient’s blood pressure level.   

However, with the 75|75 condition, a biased strategy in either direction 

leads to greater standard error values.  The lowest standard error value, 

or the strategy with which the participant is most likely to realize the 

causality of (or lack of causality) the 75|75 condition is when an equal 

number of apply and do not apply treatment trials are considered (i.e., 8 

trials). 

Selections 

based on 

observations 

Measure of the frequency that a participant selected a specific 

intervention (apply or withhold) relative the type of blood pressure 

observation (normal and elevated blood pressure).   

 

It is important to note that both participants’ selections and the causal 

contingency manipulation influenced the probability of blood pressure 

observations.  Specifically, the more participants chose to withhold the 

treatment relative to the 75|0, and 25|0 causal contingency conditions, 

the less likely they were to observe the patient’s blood pressure level in 

the normal range.  Also, with the continuous system condition, it was 

not feasible for participants to exit the elevated range with the 25|0 

contingency condition regardless of intervention selection strategy.   

Selections 

based on 

changes in 

observations 

Measure considers intervention selections in relation to changes in 

blood pressure observations.  A change in blood pressure was defined 

by comparing the observation on the current trial (t) relative to the 

previous trial (t-1).  In addition to establishing whether a change 

occurred, I considered the direction of the change (increase or decrease 

in blood pressure observation).  So, the measure considered the 

                                                      
23  Participants only opting to withhold the treatment were eliminated from the final data 

set, so an H(t, t+1) = 0 relative to this condition will not occur.  
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frequency of treatment interventions in relation to increases in blood 

pressure level (t-(t-1) > 0),  decreases in blood pressure level ((t-(t-1) < 

0), and situations in which there was no change in blood pressure level 

(t-(t-1) = 0).   

 

There was always a change in blood pressure level with the continuous 

system, so neither the frequency calculation, nor analysis related to no 

change in blood pressure is applicable. 

Change in 

treatment 

selection 

based on 

unexpected 

blood 

pressure 

observations 

Measure of the frequency that participants switched their intervention 

selections when encountering an unexpected blood pressure 

observation.   

 

For this measure, I assumed that the expected observation was for the 

patient’s blood pressure level to decrease and increase on the next trial 

with the application of and withholding of the treatment intervention 

respectively.  With this assumption, the number of unexpected 

observations increased in combination with increases in the delay 

interval.  The overall number of unexpected observations was also 

influenced by the causal contingency manipulation.  Given the low 

P(effect|treatment) value, the 25|0 contingency manipulation produces 

more unexpected observations than the 75|0 contingency manipulation 

for expectations related to applying treatment option.  Also, the 75|75 

contingency manipulation produces more unexpected observations in 

relation to the withhold treatment option.   

 

To calculate the frequency value used for this measure, I summed the 

number of times participants changed their treatment selection (i.e., 

shifted from apply to withhold or from withhold to apply) that occurred 

in combination with an unexpected observation and divided this number 

by the total number of unexpected observations. 

Value on the 

16th trial 

The blood pressure observation shown to participants on the 16th trial.  

For the discrete system condition, this value was either normal or 

elevated.  For the continuous system condition, this value was the 

product of their cumulative set of treatment intervention selections. 

Response 

times 

The application recorded the amount of time (in seconds) between the 

‘next’ button selections, which were used to advance through the 

learning and judgment tasks.   

 Learning task: measure considered total learning time and 

average trial time for each participant.  

 Judgment task: considered the amount of time participants spent 

determining if the treatment raised, lowered, or had no effect on 

the patient’s condition.   
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APPENDIX I 

Assessment of System Control Options 

Two system control measures that are applicable to hypertension management are the 

frequency in a particular range (how often blood pressure is normal vs. elevated) or 

amount of directional change (how often does the blood pressure decline as opposed to 

elevate).  To better understand these measures, I graphed the blood pressure observations 

for each system condition with the 75|0 contingency and one-trial delay manipulations 

with treatments applied on all trials (shown in Figure I1); the null-effect occurs on trials 

3, 7, 11, and 15 with both system conditions. 

With this example, values above and below 100 indicate elevated and normal 

blood pressure levels.  The underlying contingency, and the effect to null effect gain ratio 

and gain specifications, affect the frequency that the blood pressure observation falls 

within the normal range with the continuous system.  As a result, the use of this 

measurement may produce an inconsistent outcome between the system conditions.  

Figure I1 exemplifies this.  Although 11 observations are in the normal range with both 

the discrete system (A) and continuous system with the -8:+2 effect to null effect gain 

ratio (B), a modification to this ratio results in only 4 observations in the normal range 

(C).
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A) Discrete System 

 
 

B) Continuous System – Effect to Null Effect Gain Ratio of 

-8:+2 

 
C) Continuous System – Effect to Null Effect Gain Ratio of 

-5:+5 

 
Figure I1.  Blood pressure observations associated with the discrete and continuous 

systems with the 75|0 contingency manipulation and two gain ratios for the continuous 

system.  The treatment is applied on every trial.  Values above and below 100 indicate 

elevated and normal blood pressure levels.  
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Alternative system control measures are the frequency that blood pressure 

declines and the cumulative output of a series of selections.  These measures are 

analogous; the only difference is whether the output value is presented as a percentage or 

in the units of the display scale.  The outcome state of the display scale is representative 

of cumulative impact of the treatment interventions on every trial with the continuous 

system.  This inherent counter is not true of the binomial output (elevated/normal) of the 

discrete system.  However, participants’ treatment interventions with the discrete system 

can be converted to the numeric scale of the continuous system to support system 

comparison. 
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APPENDIX J 

Demographic and Debrief Questionnaire 

Q1 Type in the code on written on your participant card 

 

Q2 For your last patient, how difficult or easy was it to identify how the treatment 

influenced their blood pressure level?   

 Very Difficult (1) 

 Difficult (2) 

 Somewhat Difficult (3) 

 Neutral (4) 

 Somewhat Easy (5) 

 Easy (6) 

 Very Easy (7) 

 

Q3 For your last patient, what strategy did you use to determine how the treatment was 

influencing their blood pressure level? 

 

Q4 Why did you use this strategy? 

 

Q5 Did you use the same strategy for all of the patients? 

 yes (1) 

 no (2) 

 
If Q5 is ‘no,’ then go to Q6, otherwise go to Q7 

Q6 Explain how you modified your strategy across the three patients. 

 

Q7 For your last patient, what was your expectation about how this treatment would work 

before you applied your treatment selections? 

 

Q8 For your last patient, what did you think was happening? 

 

Q9 If you thought the treatment influenced your last patient's blood pressure level, how 

much time did it take for the treatments to work (take effect)? 

 

Q10 Generally, how much time do you think it takes for medical treatments to work (take 

effect)? 

 

Q11 Generally, how much time do you think it takes for medical treatments to wear off? 
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Q12 For your last patient, how did you decide what assessment (or rating) to assign? 

 

Q13 Generally, what percentage of treatment applications should influence a patient's 

condition for that treatment to be considered effective? 

 

Q14 Doctors use too many medicines 

 strongly disagree (1) 

 disagree (2) 

 uncertain (3) 

 agree (4) 

 strongly agree (5) 

 

Q15 Natural remedies are safer than medicines 

 strongly disagree (1) 

 disagree (2) 

 uncertain (3) 

 agree (4) 

 strongly agree (5) 

 

Q16 Medicines do more harm than good 

 strongly disagree (1) 

 disagree (2) 

 uncertain (3) 

 agree (4) 

 strongly agree (5) 

 

Q17 People who take medicines should stop their treatment for a while every now and 

again 

 strongly disagree (1) 

 disagree (2) 

 uncertain (3) 

 agree (4) 

 strongly agree (5) 

 

Q18 Have you personally managed your own or someone else's medical condition?  

 Yes (1) 

 No (2) 
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If Q18 is ‘Yes,’ then complete Q19, Q20 and Q21, otherwise go to questions 24 to 29 

Q19 Please describe the medical condition that you managed. 

 

Q20 Where did you get information about this medical condition?  

 

Q21 Did you take or give medication for this medical condition? 

 Yes (1) 

 No (2) 

 
If Q21 is ‘Yes,’ then go to Q22, otherwise go to questions 24 to 29 

Q22 Did you change the amount of medication given or taken by yourself? 

 Yes (1) 

 No (2) 

 
If Q22 is ‘Yes,’ then go to Q23, otherwise go to questions 24 to 29 

Q23 Please describe how you changed the amount of medication given or taken. 

 
Q24 to Q29: The Qualtrics application randomly selected two of these six questions for each 

participant 

Q24 the opposite of beautiful is the definition of which word? 

 ugly (1) 

 shy (2) 

 blind (3) 

 sensible (4) 

 lazy (5) 

 likely (6) 

 

Q25 not able to see is the definition of which word? 

 ugly (1) 

 shy (2) 

 blind (3) 

 sensible (4) 

 lazy (5) 

 likely (6) 

 

Q26 acting with good judgment is the definition of which word? 

 ugly (1) 

 shy (2) 

 blind (3) 

 sensible (4) 

 lazy (5) 

 likely (6) 
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Q27 probably going to happen is the definition of which word? 

 ugly (1) 

 shy (2) 

 blind (3) 

 sensible (4) 

 lazy (5) 

 likely (6) 

 

Q28not wanting to work is the definition of which word? 

 ugly (1) 

 shy (2) 

 blind (3) 

 sensible (4) 

 lazy (5) 

 likely (6) 

 

Q29 nervous of other people is the definition of which word? 

 ugly (1) 

 shy (2) 

 blind (3) 

 sensible (4) 

 lazy (5) 

 likely (6) 

 
Q30 to Q35: The Qualtrics application randomly selected two of these six questions for each 

participant 

Q30 someone who has been affected by something like a crime, accident or illness is the 

definition of which word? 

 victim (1) 

 litter (3) 

 reward (4) 

 courage (5) 

 plug (6) 

 currency (7) 

 

Q31 rubbish is the definition of which word? 

 victim (1) 

 litter (3) 

 reward (4) 

 courage (5) 

 plug (6) 

 currency (7) 
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Q32 something good that you get or that happens because of something you have done is 

the definition of which word? 

 victim (1) 

 litter (3) 

 reward (4) 

 courage (5) 

 plug (6) 

 currency (7) 

 

Q33 the ability to do something dangerous, frightening or difficult is the definition of 

which word? 

 victim (1) 

 litter (3) 

 reward (4) 

 courage (5) 

 plug (6) 

 currency (7) 

 

Q34 an object used for connecting a machine to the electricity supply is the definition of 

which word? 

 victim (1) 

 litter (3) 

 reward (4) 

 courage (5) 

 plug (6) 

 currency (7) 

 

Q35 the money used in a particular country is the definition of which word? 

 victim (1) 

 litter (3) 

 reward (4) 

 courage (5) 

 plug (6) 

 currency (7) 

 

Q36 How old are you? 

 

Q37 Are you a male or female? 

 Male (1) 

 Female (2) 
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Q38 What is your grade level? 

 Freshman (1) 

 Sophomore (2) 

 Junior (3) 

 Senior (4) 

 

Q39 Is English your native language (the first language that you learned)? 

 Yes (1) 

 No (2) 

 
If Q31 is ‘No,’ then complete Q40 and Q41, otherwise go to Q42 

Q40 What is your native language? 

 

Q41 Describe your ability to understand written content (i.e., read) in English. 

 Poor (1) 

 Fair (2) 

 Good (3) 

 Very Good (4) 

 Excellent (5) 

 

Q42 What college or school are you affiliated with? 

 Raj Soin College of Business (1) 

 College of Education and Human Services (2) 

 College of Engineering and Computer Science (3) 

 College of Liberal Arts (4) 

 College of Nursing and Health (7) 

 College of Science and Mathematics (9) 

 University College (10) 

 
If Q42 is ‘College of Education and Human Services,’ then go to Q43 

Q43 What is your major/program? 

 Athletic Training (1) 

 Career, Technical, Adult Education (2) 

 Community Health Education (3) 

 Early Childhood Education (4) 

 Middle Childhood Education (5) 

 Middle Childhood Intervention Specialist (6) 

 Organizational Leadership (7) 

 Physical Education (8) 

 Rehabilitation Services (9) 

 Sign Language Interpreting (10) 

 Sports Science (11) 

 Wellness Studies (12) 

 Undecided (13) 
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If Q42 is ‘College of Engineering and Computer Science,’ then go to Q44 

Q44 What is your major/program? 

 Biomedical Engineering (1) 

 Computer Engineering (2) 

 Computer Science (3) 

 Electrical Engineering (4) 

 Engineering Physics (5) 

 Industrial and Systems Engineering (6) 

 Material Science Engineering (7) 

 Mechanical Engineering (8) 

 Undecided (9) 

 
If Q42 is ‘College of Liberal Arts Is Selected,’ then go to Q45 

Q45 What is your major/program? 

 Acting (1) 

 African and African/American Studies (2) 

 Anthropology (3) 

 Art History (4) 

 Classical Humanities (5) 

 Communication Studies (6) 

 Crime and Justice Studies (7) 

 Dance (8) 

 Design/Technology (9) 

 Economics (10) 

 English (11) 

 French (12) 

 Geography (13) 

 German (14) 

 Greek (15) 

 History (16) 

 International Studies (17) 

 Latin (18) 

 Liberal Studies (19) 

 Mass Communication (20) 

 Motion Pictures (21) 

 Music (22) 

 Music Education (23) 

 Music History and Literature (24) 

 Performance (25) 

 Philosophy (26) 

 Political Science (27) 

 Religion (28) 

 Selected Studies (29) 

 Social Science Education (30) 

 Social Work (31) 
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 Sociology (32) 

 Spanish (33) 

 Studio Art (34) 

 Theater Studies (35) 

 Urban Affairs (36) 

 Women's Studies (37) 

 Undecided (38) 

 
If Q42 is ‘College of Science and Mathematics,’ then go to Q46 

Q46 What is your major/program? 

 Biological Sciences (1) 

 Chemistry (2) 

 Clinical Laboratory Science (3) 

 Earth and Environmental Sciences (4) 

 Integrated Science (5) 

 Mathematics (6) 

 Physics (7) 

 Psychology (8) 

 Statistics (9) 

 Undecided (10) 

 
If Q42 is ‘Raj Soin College of Business,’ then go to Q47 

Q47 What is your major/program? 

 Accountancy (1) 

 Business Economics (2) 

 Finance (3) 

 Financial Services (4) 

 Human Resource Management (5) 

 International Business (6) 

 Management (7) 

 Management Info Systems (8) 

 Marketing (9) 

 Supply Chain Management (10) 

 Undecided (11) 

 

Thank you for participating in this study.  Your input will help us to better understand if 

and when people can correctly identify effective causal variables when interacting with 

complex systems.  As we are particularly interested in the medical domain, your 

questionnaire feedback will provide us with insight into how people think about 

treatments within the medical domain. 

 

Q48 Do you have any additional questions, comments, or concerns about this study?   

 

Please submit your responses and let the study facilitator know that you are complete.  
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APPENDIX K 

Research Consent Form 

CONSENT TO PARTICIPATE IN RESEARCH 
Department of Psychology 

Wright State University 

My signature below means that I have freely agreed to participate in this study. 

I will be given a copy of this consent form.  

 

_______________________________________________________________________ 

Participant                          Date   

 

 _____________________________ 

Participant Name (Printed) 

 

____________________________________________    

Investigator    

Title of study Identifying variables that cause an effect 

Consent to 

participate 

This signed consent is to certify my willingness to participate in this study, which assesses my ability to 

identify variables that cause an effect.  I am free to refuse to participate in this study or to withdraw at 

any time.  I understand that I will receive 1 research credit hour for every 30 minutes of my participation 

in this study.  If I decide not to participate, or to withdraw before completing the study, I am free to so 

do without penalty and I will still receive 1 research credit hour for every 30 minutes. 

Purpose of  

research 

To gain a better understanding of how and when people can correctly identify effective causal variables 

after interacting with a complex system. 

Procedures For this study, I will work individually on a computer to apply pretend medical treatments to 

hypothetical patients and assess whether or not these treatments affect their medical condition.  

I will also provide non-identifying demographic information and answer questions about my 

experience with the study.  I expect that participation will take about 1 hour.  I understand that 

the research team will electronically record the information that I provide during the study 

session.   

Risks There are no recognized risks in participating.   

Confidentiality I understand that any information that is obtained from this study will be kept strictly confidential.  I 

understand that all collected materials will be stored in password protected files and will only be 

available to the researchers.  I understand that I will NOT be identified in any report or publication.   

Availability of 

results 

A summary of the study results may be requested by contacting the researchers listed below.  The 

summary will show only aggregated (i.e., combined) data for the entire sample.  No individual results 

will be available.  The results of this study will be available after July, 2014. 

Questions or 

complaints 

If I have questions about this study or have research-related complaints I can contact the lead researcher 

Beth Bullemer at bullemer.2@wright.edu or her adviser, Valerie L. Shalin, PhD at 

valerie.shalin@wright.edu.  If I have general questions about giving consent or my rights as a research 

participant in the study, I can call the Wright State University Institutional Review Board at (937) 775-

4462. 

 

mailto:bullemer.2@wright.edu
mailto:valerie.shalin@wright.edu
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APPENDIX L 

Study Introduction 

The figures presented below are screenshots of the introduction shown to participants at 

the onset of the study.  Figure L1 depicts the screen that presented participants with an 

overview of the study.  Figure L2 presents the screen used to introduce the blood pressure 

widget.  Figures L3, L4, and L5 present the screens used to introduce the learning task 

and interface.  Figures L6 and L7 depict the screens that introduced the judgment task.  

Lastly, Figure L8 shows the screen that presented participants with the task instructions 

and goals. 

 
Figure L1.  Study Overview 
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Figure L2.  Description of the Blood Pressure (i.e., the effect) Widget 

 

 
Figure L3.  Introduction to the Learning Task and Interface 
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Figure L4.  Introduction to the Learning Task and Interface continued 

 

 
Figure L5.  Introduction to the Learning Task and Interface continued 
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Figure L6.  Introduction to the Judgment Task and Interface 

 

 
Figure L7.  Introduction to the Judgment Task and Interface continued 
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Figure L8.  Task Instructions and Task Goals 

 

 

  



 166 

APPENDIX M 

Normality Assessments 

 

Tables M1 and M5 contain the histograms and Q-Q plots of participants causal 

attributions separated by contingency.  Tables M2 and M6 contain the histograms and Q-

Q plots of the ability to control the system measure separated by contingency.  Tables M3 

and M7 contain the histograms and Q-Q plots related to treatment intervention selection 

measures.  Tables M4 and M8 contain the histograms and Q-Q plots of response time 

data.  Tables M1, M2, M3, and M4 graph data from the discrete system condition and 

Tables M5, M6, M7, and M8 graph data from the continuous system condition. 
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Discrete System 

 

Table M1 

Histograms and Q-Q Plots of Causal Attribution with the Discrete System Condition 

separated by Contingency 

Histogram Q-Q Plot 

A) 25|0 

  
B) 75|0 

  
C) 75|75 
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Table M2 

Histograms and Q-Q Plots of Control of the System with the Discrete System Condition 

separated by Contingency 

Histogram Q-Q Plot 

A) 25|0 

  
B) 75|0 

  
C) 75|75 
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Table M3 

Histograms and Q-Q Plots of Intervention Strategy Dependent Measures with the 

Discrete System Condition 

Histogram Q-Q Plot 

A) Number of Apply Treatment Interventions 

  
B) Number of Runs 

  
C) Selection Diversity 
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D) Standard Error 

  
E) Selections based on Observations - Apply Treatment Intervention with Elevated Blood 

Pressure  

  
F) Selections based on Observations - Apply Treatment Intervention with Normal Blood 

Pressure Observations 
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G) Selections based on Changes in Observations - Apply Treatment Intervention with 

Increases in Blood Pressure Observations 

  
H) Selections based on Changes in Observations - Apply Treatment Intervention with 

Decreases in Blood Pressure Observations 

  
I) Selections based on Changes in Observations - Apply Treatment Intervention with No 

Change in Blood Pressure Observations 

  
 

 

 

 

 

 

 

 

 



 172 

J) Change in Treatment Selection based on Unexpected Blood Pressure Observations 

  
 

Table M4 

Histograms and Q-Q Plots of Response Times with the Discrete System Condition  

Histogram Q-Q Plot 

A) Average Trial Time in the Learning Task 

  
B) Time on Judgment Task 
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Continuous System 

 

Table M5 

Histograms and Q-Q Plots of Causal Attribution with the Continuous System Condition 

separated by Contingency 

Histogram Q-Q Plot 

A) 25|0 

  
B) 75|0 

  
C) 75|75 
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Table M6 

Histograms and Q-Q Plots of Control of the System with the Continuous System 

Condition separated by Contingency 

Histogram Q-Q Plot 

A) 25|0 

  
B) 75|0 

  
C) 75|75 
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Table M7 

Histograms and Q-Q Plots of Intervention Strategy Dependent Measures with the 

Continuous System Condition 

Histogram Q-Q Plot 

A) Number of Apply Treatment Interventions 

  
B) Number of Runs 

  
C) Selection Diversity 
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D) Standard Error 

  
E) Selections based on Observations - Apply Treatment Intervention with Elevated Blood 

Pressure  

  
F) Selections based on Observations - Apply Treatment Intervention with Normal Blood 

Pressure Observations 
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G) Selections based on Changes in Observations - Apply Treatment Intervention with 

Increases in Blood Pressure Observations 

  
H) Selections based on Changes in Observations - Apply Treatment Intervention with 

Decreases in Blood Pressure Observations 

  
I) Change in Treatment Selection based on Unexpected Blood Pressure Observations 
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Table M8 

Histograms and Q-Q Plots of Response Times with the Continuous System Condition  

Histogram Q-Q Plot 

A) Average Trial Time in the Learning Task 

  
B) Time on Judgment Task 
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APPENDIX N 

Homogeneity of Variance Assessments 

 

 

Table N1 

Tests of Homogeneity of Variance of Data from the Discrete System 

Condition separated by Contingency * Delay Experimental 

Manipulation Combinations 

Dependent Measure 

Levene 

Statistic p 

Causal Attributions 1.583 .140 

Ability to Control the System 5.022 .000 

Number of Apply Treatment Interventions 2.818 .007 

Number of Runs 2.681 .010 

Selection Diversity 1.477 .175 

Standard Error 7.464 .000 

Selections based on Observations   

Apply Treatment Intervention with Elevated 

Blood Pressure Observations 

2.646 .011 

Apply Treatment Intervention with Normal 

Blood Pressure Observations 

0.972 .462 

Selections based on Changes in Observations   

Apply Treatment Intervention with Increases 

in Blood Pressure Observations 

2.288 .027 

Apply Treatment Intervention with 

Decreases in Blood Pressure Observations 

0.980 .456 

Apply Treatment Intervention with No 

Change in Blood Pressure Observations 

4.866 .000 

Change in Treatment Selection based on 

Unexpected Blood Pressure Observations 

1.126 .353 

Response Times   

Average Trial 0.969 .465 

Judgment Task 2.591 .005 

Note.  df 1 = 8, df 2= 99 
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Table N2 

Tests of Homogeneity of Variance of Data from the Continuous 

System Condition separated by Contingency * Delay Experimental 

Manipulation Combinations 

Dependent Measure 

Levene 

Statistic p 

Causal Attributions 02.805 .008 

Ability to Control the System 12.340 .000 

Number of Apply Treatment Interventions 02.886 .006 

Number of Runs 03.563 .001 

Selection Diversity 02.130 .040 

Standard Error 05.599 .000 

Selections based on Observations   

Apply Treatment Intervention with Elevated 

Blood Pressure Observations 

05.753 .000 

Apply Treatment Intervention with Normal 

Blood Pressure Observations 

02.667 .030 

Selections based on Changes in Observations   

Apply Treatment Intervention with Increases 

in Blood Pressure Observations 

02.261 .029 

Apply Treatment Intervention with 

Decreases in Blood Pressure Observations 

01.985 .056 

Change in Treatment Selection based on 

Unexpected Blood Pressure Observations 

02.777 .008 

Response Times   

Average Trial 00.875 .540 

Judgment Task 00.831 .577 

Note.  df 1 = 8, df 2= 99 
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APPENDIX O 

Comprehensive Set of RBPF-32 and Paired Samples t-Tests  

The RBPF-32 analyses review the data from each system condition separately.  Table O1 

highlights that there were no contingency by delay manipulations across the dependent 

measure with either system condition.  Table O2 and O3 contain the contingency by 

system condition simple effects analyses.  Tables O4 and O5 contain the delay by system 

condition simple effects analyses.  Tables O6 and O7 contains the paired samples t-tests 

comparing the system conditions.
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Table O1 

RBPF-32  Analyses - Delay by Contingency Findings 

 Discrete System  Continuous System 

 F(4, 64)  p   F(4, 64)  p  

Causal attribution 1.52  .21  0.69  .60 

Ability to control the system 0.66  .62  0.45  .77 

Number of apply treatment 

interventions 1.28  .29  0.13  .97 

Number of runs 1.34  .26  0.45  .77 

Selection diversity 1.76  .15  0.75  .56 

Standard error 0.59  .67  1.08  .37 

Selections based on observations        

Elevated  2.09  .09  0.43  .79 

Normal 0.36  .84  0.85  .50 

Selections based on changes in 

observations        

Increases  1.25  .30  0.81  .52 

Decreases  1.07  .38  0.77  .55 

No change** 1.53  .21     

Selection changes based on 

unexpected observations 0.66  .62  0.80  .53 

Response times        

Average trial in learning task 0.29  .88  0.22  .92 

Judgment task 0.56  .69  0.86  .49 

Note.  *Analysis does not apply to the continuous system condition given there 

the observation always changed. 
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Table O2  

RBPF-32  Analyses - Contingency by Discrete System Simple Effects 

 M  

  25|0 75|0 75|75 F(2, 64) 

Causal attributions 000.14 (52.44) 36.19 (57.75) 48.89 (55.18) 07.55*1 

Ability to control the 

system 124.06 (30.51) 85.17 (17.30) 55.17 (5.00) NA1 

Number of apply treatment 

interventions 011.33 (3.18) 10.94 (2.80) 09.25 (4.29) 04.12*2 

Number of runs 005.81 (2.39) 07.06 (3.71) 06.03 (3.19) 02.29*2 

Selection diversity 001.40 (0.51) 01.47 (0.61) 01.37 (0.69) 00.54*1 

Standard error 000.15 (0.03) 00.13 (0.02) 00.19 (0.05) 22.99*3 

Selections based on 

observations     

Elevated  000.75 (.24) 00.76 (.24) 0.77 (.28) 00.17*1 

Normal  000.56 (.35) 00.58 (.38) 0.47 (.39) 01.51*1 

Selections based on 

changes in observations     

Increases 000.73 (.36) 00.76 (.29) 00.75 (.33) 00.14*1 

Decreases 000.57 (.36) 00.57 (.37) 0.45 (.38) 02.29*1 

No change 000.74 (.26) 00.71 (.22) 0.49 (.36) 07.67*4 

Selection changes based on 

unexpected observations 000.24 (.26) 00.26 (.29) .19 (.27) 00.97*1 

Response times     

Average trial in 

learning task 061.31 (18.62) 61.86 (19.47) 59.31 (18.83) 00.14*1 

Judgment task 008.19 (4.48) 07.56 (4.67) 08.08 (6.63) 00.31*1 

Note.  *p < 0.05.  SD in parentheses.  
1 Differences are expected with the contingency manipulation.   

2 The number treatment selections applied to constructs containing the 75|75 contingency 

manipulations was statistically lower than those with the 25|0 manipulation, but neither 

differed significantly from the 75|0 contingency manipulation.   
3Despite participants applying the treatment less with the 75|75 contingency manipulation, 

the standard error associated with this condition was still statistically greater than that of 

the 75|0 and 25|0 contingency manipulations.   
4The frequency that participants applied treatment interventions when there was no 

change in blood pressure observation was significantly greater with the 25|0 and 75|0 

contingency manipulations than the 75|75 contingency manipulation.   
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Table O3  

RBPF-32  Analyses - Contingency by Continuous System Simple Effects 

 M  

  25|0 75|0 75|75 F(2, 64) 

Causal attributions -23.67 (47.50) 68.75 (31.33) 45.42 (61.48) 38.72* 

Ability to control the 

system 127.17 (6.78) 78.00 (20.45) 55.78 (4.95) NA1 

Number of apply 

treatment interventions 010.92 (2.47) 12.03 (3.02) 10.08 (4.53) 03.39*2 

Number of runs 006.06 (2.83) 05.19 (4.08) 04.31 (3.45) 04.05*3 

Selection diversity 001.53 (0.44) 01.12 (0.68) 01.09 (0.69) 09.23*4 

Standard error 000.15 (0.02) 00.13 (0.02) 00.20 (0.07) 24.92*5 

Selection based on 

observations     

Elevated 00.68 (.15) .81 (.20) 00.67 (.35) 03.83*6 

Normal NA  .71 (.36) 00.61 (.34) NA*7 

Selections based on 

changes in observations     

Increases 00.66 (.16) .73 (.20) 00.66 (.33) 01.17 

Decreases  00.65 (.34) .70 (.30) 00.61 (.32) 00.72 

Selection changes based 

on unexpected 

observations 00.29 (.23) .27 (.29) 00.20 (.29) 01.55 

Response times     

Average trial in 

learning task 60.86 (14.85) 61.81 (12.43) 60.50 (15.89) 00.10 

Judgment task 7.81 (4.46) 6.03 (3.10) 6.08 (3.04) 02.89 

Note.  *p < 0.05.  SD in parentheses.   

1Differences are expected with the contingency manipulation.   

2The number treatment selections applied to constructs containing the 75|75 

contingency manipulations was statistically lower than those with the 75|0 

manipulation.   
3Participants switched between the treatment options significantly more with the 25|0 

contingency manipulation than with the 75|75 contingency manipulation.   

4Participants’ intervention selections were more variable with the 25|0 contingency 

manipulation than with the 75|0 and 75|75 contingency manipulations.   
5The standard error associated with the 75|75 contingency manipulation was still 

statistically greater than that of the 75|0 and 25|0 contingency manipulations.   
6Participants applied the treatment more frequently when the blood pressure observation 

was elevated with the 75|0 contingency manipulation than with the 75|75 contingency 

manipulation.   
7Blood pressure observations did not enter the normal range with the 25|0 contingency 

manipulation. 
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Table O4  

RBPF-32  Analyses - Delay by Discrete System Simple Effects 

 M  

  

One-Trial 

Delay 

Two-Trial 

Delay 

Three-Trial 

Delay F(2, 64) 

Causal attributions 34.36 (57.10) 30.06 (53.62) 20.81 (64.89) 0.57*4 

Ability to control 

the system 86.00 (30.57) 88.22 (29.43) 90.17 (31.93) 1.26*4 

Number of apply 

treatment 

interventions 10.92 (3.89) 10.67 (3.54) 9.94 (3.28) 0.86*4 

Number of runs 05.92 (3.42) 06.11 (2.86) 6.86 (3.20) 1.28*4 

Selection diversity 01.28 (0.62) 01.43 (0.65) 1.52 (0.53) 3.46*1 

Standard error 0.16 (.05) 00.15 (.04) .16 (.04) 0.60*4 

Selections based on 

observations     

Elevated  0.80 (.23) .78 (.26) .70 (.26) 2.52*4 

Normal  0.60 (.39) .49 (.38) .52 (.36) 1.49*4 

Selections based on 

changes in 

observations     

Increases 0.82 (.25) .77 (.34) .64 (.35) 4.13*2 

Decreases 0.61 (.38) .44 (.36) .54 (.37) 3.27*3 

No change 0.65 (.34) .67 (.31) .63 (.28) 0.15*4 

Selection changes 

based on 

unexpected 

observations .22 (.26) .17 (.24) .31 (.30) 4.02*4 

Response times     

Average trial in 

learning task 61.11 (16.90) 62.06 (22.15) 59.31 (17.44) 0.34*4 

Judgment task 8.36 (6.23) 8.50 (5.80) 6.97 (3.49) 0.87*4 

Note.  *p < 0.05.  SD in parentheses.   

1 Participants’ intervention selections were more diverse or variable with the three-trial 

delay manipulation than with the one-trial delay manipulation.   
2 Participants applied the treatment more frequently in combinations with increases in 

blood pressure with the one-trial delay manipulation than with the two-trial and three-

trial delay manipulations.   
3 Participants applied the treatment more frequently after observing a decrease in 

blood pressure with the one-trial delay manipulation than the two-trial delay 

manipulation.   

4Participants switched their treatment selection when viewing unexpected 

observations more often with the three-trial delay manipulation than with the two-trial 

delay manipulation. 
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Table O5 

RBPF-32  Analyses - Delay by Continuous System Simple Effects 

 M  

 

One-Trial 

Delay 

Two-Trial 

Delay 

Three-Trial 

Delay F(2, 64) 

Causal attributions 38.39 (57.70) 30.83 (68.03) 21.28 (60.50) 1.23 

Ability to control the 

system 84.61(32.09) 86.89 (34.50) 89.44 (31.66) 1.33 

Number of apply 

treatment 

interventions 11.58 (3.17) 11.14 (3.62) 10.31 (3.69) 1.50 

Number of runs 05.39 (3.84) 04.39 (2.92) 05.78 (3.72) 2.71 

Selection diversity 01.21 (0.61) 01.21 (0.70) 01.33 (0.62) 0.70 

Standard error 00.16 (0.06) 00.15 (0.05) 00.16 (0.06) 0.46 

Selections based 

observations     

Elevated 00.78 (.24) 0.72 (.29) 0.67 (.22) 1.92 

Normal 00.47 (.41) 0.47 (.43) 0.38 (.44) 0.961 

Selections based on 

changes in 

observations     

Increases 00.76 (.21) 00.66 (.26) 0.64 (.25) 2.931 

Decreases 00.69 (.30) 00.69 (.28) 0.57 (.37) 1.791 

Selection changes 

based on unexpected 

observations 00.25 (.28) 00.22 (.22) 0.30 (.31) 1.101 

Response times     

Average trial in 

learning task 61.31 (15.87) 61.19 (14.14) 60.67 (13.28) 0.021 

Judgment task 7.00 (4.15) 6.39 (3.21) 6.53 (3.61) 0.291 

Note.  *p < 0.05.  SD in parentheses.  
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Table O6 

Paired Samples t-tests - Effect of System on Causal Attributions 

 M 

  

95% CI  

 
Discrete Continuous t(35) p LL UL d 

Contingency        

25|0 00.14 (52.44) -23.67 (47.50) -2.27 0.03 -02.47 -45.14 -0.38 

75|0 36.19 (57.75) -68.75 (31.33) -3.47 < .01 -51.61 -13.51 -0.58 

75|75 48.89 (55.18) -45.42 (61.48) -0.24 0.81 -25.50 -32.44 -0.04 

Delay        

One-trial 34.36 (57.10) -38.39 (57.70) -0.36 0.72 -26.80 -18.74 -0.06 

Two-trial 30.06 (53.62) -30.83 (68.03) -0.06 0.95 -26.77 -25.23 -0.01 

Three-trial 20.81 (64.89) -21.28 (60.50) -0.04 0.97 -26.04 -25.10 -0.01 

Note.  SD in parentheses.  Discrete = Discrete System Condition.  Continuous = 

Continuous System Condition.  CI = Confidence Interval; LL= lower limit; UL=upper 

limit.  I conducted paired t-tests for separating the data by contingency and delay with 

data from participants in the continuous system condition subtracted from data from 

participants in the discrete system condition.  Positive outcomes suggest higher 

attributions with the discrete system condition and negative outcomes suggest higher 

attributions with the continuous system condition.  All tests two-tailed. 
 

Table O7 

Paired Samples t-tests - Effect of System on System Control 

 M 

  

95% CI  

 
Discrete Continuous t(35) p LL UL d 

Contingency        

25|0 124.06 (7.10) 127.17 (6.78) -1.99 .06 -6.29 00.07 -.33 

75|0 0085.17 (17.30) 0078.00 (20.45) -1.80 .08 -0.90 15.23 -.30 

75|75 055.17 (5.00) 055.78 (4.95) -0.56 .58 -2.82 01.59 -.09 

Delay        

One-trial 086.00 (30.57) 0084.61 (32.09) -0.61 .55 -3.27 06.05 -.10 

Two-trial 088.22 (29.43) 0086.89 (34.50) -0.43 .67 -4.93 07.60 -.07 

Three-trial 090.17 (31.93) 0089.44 (31.66) -0.28 .78 -4.36 05.81 -.05 

Note.  SD in parentheses Discrete = Discrete System Condition.  Continuous = 

Continuous System Condition.  CI = Confidence Interval; LL= lower limit; UL=upper 

limit.  I conducted paired t-tests for separating the data by contingency and delay with 

data from participants in the continuous system condition subtracted from data from 

participants in the discrete system condition.  Positive outcomes suggest higher 

attributions with the discrete system condition and negative outcomes suggest higher 

attributions with the continuous system condition.  All tests two-tailed. 
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APPENDIX P 

Analyses considering Alternative Conversion Techniques, Causal Attribution Scales, and 

Sequence Effects 

I reviewed and conducted a subset of analyses using subsets of and transformations of the 

causal attribution dependent measure.  These alternative approaches to the -100 to 100 

rating scale considered the distributions of causal ratings data with outliers removed, with 

abbreviated scales (0 to 100), with transformed data to adjust for non-normality, and with 

the data separated by sequence order.  

Figure P1 through Figure P6 depict the distribution of data by casual contingency 

manipulation and system condition for each of these techniques.  In all of these figures, 

the unaltered data set is depicted in the upper left corner and is labeled -100 to 100 scale, 

raw data.  Across these distributions, the y-axis represents the frequency that the causal 

attribution was selected on a scale ranging from zero to 30.  The x-axis represents causal 

attribution scores from -100 to 100 separated by 5-point intervals with the exceptions of 

the square root and logarithmic transformations.  With the square root transformation 

(Sqrt(101-X)), the x-axis ranges from zero to 20 and the data is charted in 0.5 point 

intervals.  With the logarithmic transformation (log10(101-X)), the x-axis ranges from 

zero to three and is charted in 0.1 point intervals.  In the following sections, I will 

describe the conversion techniques and discuss their influences on analyses using causal 

attributions as the dependent measure in more detail. 
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Figure P1.  Distributions for the 25|0 Contingency Manipulations with the Discrete 

System Condition.  

 
Figure P2.  Distributions for the 75|0 Contingency Manipulations with the Discrete 

System Condition.  
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Figure P3.  Distributions for the 75|75 Contingency Manipulations with the Discrete 

System Condition.  

 
Figure P4.  Distributions for the 25|0 Contingency Manipulations with the Continuous 

System Condition.  
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Figure P5.  Distributions for the 75|0 Contingency Manipulations with the Continuous 

System Condition.  

 
Figure P6.  Distributions for the 75|75 Contingency Manipulations with the Continuous 

System Condition.  
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Outliers Removed 

I reviewed the data set with outliers beyond two standard deviations of the mean 

of each contingency manipulation removed and replaced with the mean value of that 

contingency manipulation.  This method resulted in the replacement of five of the 108 

ratings from discrete system condition’s data set and four from the continuous system 

condition’s data set.  

Discrete system condition.  With the discrete system, the RBPF-32 ANOVA 

findings with the outliers removed were the same as the raw data analysis, which found a 

significant contingency main effect (F(2,64) = 10.35, p <0.01).  The relationship between 

the contingency manipulations were the same with participants assigning less causality to 

the 25|0 manipulation (M = 0.31, SD = 47.03) than the 75|0 (M = 36.43, SD = 50.72) and 

75|75 (M = -50.05, SD = 47.98) contingency manipulations. 

Continuous system condition.  As with the raw data analysis, there were no 

significant interaction or a delay main effect with the RBPF-32 ANOVA using the 

continuous system data set.  However, the 75|0 contingency manipulation (M = 72.15, SD 

= 16.33) was greater than 75|75 (M = 46.42, SD = 54.81), which was greater than 25|0 (M 

= -24.68, SD = 42.06): F(2,64) = 48.63, p <0.01.  This is a departure from the raw data 

analysis that found that the 75|0 and 75|75 contingency manipulations were not 

significantly different.  

Raised Ratings Removed 

I removed the raised ratings (-100 to 0) from the data set for a subset of analyses 

that compared the results from the present study to previous findings.  Tables P1 and P2 
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present the findings from independent samples t-tests that compare the data set with the 

raised ratings removed to the raw data set.  

Table P1 

Comparison between the raw data and data set with the raised ratings removed with the 

discrete system condition 

 M     

 

Raw data 

Raised 

removed n t df p d 

One-trial delay* 34.36 (57.10) 53.30 (40.04) 30 -1.58 62.31 .12 -0.40 

Two-trial delay* 30.06 (53.62) 46.45 (36.09) 31 -1.49 61.62 .14 -0.38 

Three-trial delay* 20.80 (64.89) 53.04 (33.76) 27 -2.56 55.15 .01 -0.69 

25|0 00.14 (52.44) 25.65 (33.65) 26 -2.18 60.00 .03 -0.56 

75|0* 36.19 (57.75) 57.47 (33.78) 30 -1.86 57.87 .07 -0.49 

75|75* 48.89 (55.18) 65.00 (31.35) 32 -1.50 56.61 .14 -0.40 

Note.  nraw data=36.  n = number of raised removed data points.  SD in parentheses.  

*Variances unequal and t-test performed assuming inequality.  All tests two-tailed. 

 

Table P2 

Comparison between the raw data and data set with the raised ratings removed with the 

continuous system condition 

 M     

 Raw data 

Raised 

removed n t df p d 

One-trial delay* -38.39 (57.70) 54.47 (36.72) 32 -1.39 60.08 .17 -0.36 

Two-trial delay* -30.83 (68.03) 65.81 (33.72) 27 -2.68 53.90 .01 -0.73 

Three-trial delay* -21.28 (60.50) 48.07 (36.01) 28 -2.20 58.43 .03 -0.58 

25|0* -23.67 (47.50) 12.24 (23.46) 21 -3.81 53.90 .00 -1.04 

75|0 -68.75 (31.33) 73.14 (17.19) 35 -0.73 69.00 .47 -0.18 

75|75* -45.42 (61.48) 66.10 (34.68) 31 -1.73 56.63 .09 -0.46 

Note.  nraw data=36.  n = number of raised removed data points.  SD in 

parentheses.  *Variances unequal and t-test performed assuming inequality.  All 

tests two-tailed. 

 

Raised Ratings Replaced with Zero 

If participants felt that a treatment raised the patients’ blood pressure levels, it is 

arguable that they would have determined that the treatment had no effect (i.e., did not 

influence the patient’s blood pressure) on a 0 (no effect) to 100 (always lowered) scale.  

So, I explored replacing the raised ratings with zeros to construct an abbreviated rating 
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scale analogous to the scale used within the causal reasoning literature.  With the discrete 

and continuous conditions, the result of the RBPF-32 ANOVAs were the same as with the 

raw data set. 

Scale reduction 

The scale reduction technique (i.e., (100+X)/2) was another method of reducing 

the range of the scale to be analogous with the 100-point scales used in previous research.  

As with the raw data set, the RBPF-32 ANOVAs resulted in contingency main effects 

with both the discrete (F(2, 64) = 7.54, p < .01) and continuous (F(2, 64) = 38.71, p < 

.01) system conditions.  Also, the relationships between the contingency manipulations 

remained the same as the causal attributions associated with the 75|0 and 75|75 

contingency manipulations being significantly greater than the causal attributions 

associated with the 25|0 contingency manipulation.  

Separated by Sequence 

I reviewed the separated causal attributions relative to sequence order to explore if 

there were significant sequencing effects.  With these analyses, the number of 

replications of each experimental manipulation combination (contingency * delay) was 

reduced from 12 to four.  Table P3 presents the findings from the RBPF-32 ANOVAs 

related to the contingency main effects for the discrete and continuous system conditions 

separated by sequence order. 

Table P3 

RBPF-32 Contingency Main Effect Findings relative to 

Sequence Order 

 Discrete system  Continuous system 

 F(2, 16) p  F(2, 16) p 

1st position 9.55 < .01  04.03 < .03 

2nd position 1.16 < .34  27.43 < .01 

3rd position 2.88 <.09  09.55 < .01 
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Discrete system condition.  None of the findings associated with the data 

separated by sequence order were the same as with the combined analysis.  Although, 

there was a significant contingency main effect with the 1st position in the sequence, only 

75|75 contingency manipulation was greater than the 25|0 manipulation rather than both 

the 75|0 and 75|0 contingency manipulations.  Further, there was not a significant 

contingency main effects related to the 2nd and 3rd positions. 

Continuous system condition.  Unlike the discrete system condition, the 

contingency main effect persisted across the three positions in the sequence with the 

continuous system condition.  However, only the 75|0 contingency manipulation was 

greater than the 25|0 contingency manipulation with the first position in the sequence 

order.  The analyses considering the second and third positions replicated the findings of 

the combined analysis with the ratings associated with the 75|0 and 75|75 contingency 

manipulations being greater than those related to the 25|0 contingency manipulation. 

Data Transformations 

Given the raw data set is not normally distributed (see Appendix M), I attempted 

to transform the data to reduce the amount of skew.  I explored transforming the data by 

taking the square root of the causal attribution added to 101 (to account for the negative 

values associated with the raised ratings) and by taking the log of the causal attribution 

added to 101.  Neither of these transformations altered the RBPF-32 ANOVAs findings 

that there was a significant contingency main effect with both the discrete or continuous 

system conditions (shown in Table P4).  Also, the finding that the 25|0 contingency 

manipulation was significantly less than the 75|0 and 75|75 contingency manipulations 

persisted with both transformation techniques. 
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Table P4 

RBPF-32 Contingency Main Effect Findings with 

Transformed Data Sets 

 Discrete System  Continuous System 

 F(2, 64) p  F(2, 64) p 

Log10 8.33 < 0.01  32.39 < 0.01 

Sqrt 7.54 < 0.01  42.79 < 0.01 
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APPENDIX Q 

Possible System Control Differences given Intervention Strategy Extremes 

Large differences in system control performance were likely only with the 75|0 

contingency manipulation given the limited number of trials.  This is especially true 

given system control measure only considered 13 treatment interventions, rather than 16, 

in order to assess the same number of treatment interventions across the delay conditions.  

Table Q1 presents range of system control outcomes with the intervention distribution 

extremes (minimum number of treatment interventions (1 apply treatment: 12 withhold 

treatments) and maximum number of treatment interventions (13 apply treatments: 0 

withhold treatments)) relative to each of the contingency manipulations.  It is not feasible 

for system control to differ as a function of delay with the 75|75 contingency 

manipulation, because applying and withholding the treatment have the same outcome.  

Although there was less opportunity for variation given the limited number of trials with 

the 25|0 contingency manipulation than with the 75|0 contingency manipulation, system 

control outcomes were at neither extreme of the possible outcomes.  
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Table Q1 

Range System Control Outcomes with Extreme Intervention Distributions relative to 

System Control with each of the Contingency Manipulation in the Discrete and 

Continuous System Conditions 

 1 apply: 

12 withhold 

13 apply: 

0 withhold 

Discrete  Continuous  

 

M SD  M SD 

25|0 141 111 124.06 07.10  127.17 06.78 

75|0 141 050 085.17 17.30  078.00 20.45 

75|75 050 050 055.17 05.00  055.78 04.95 

Note.  Discrete = Discrete System Condition, Continuous = Continuous System 

condition.  Assumes a starting blood pressure level of 125, with a maximum level of 

150 and minimum level of 50.  Applying treatment applications reduced blood 

pressure level by 8 and withholding the treatment increased the blood pressure level 

by 2.   
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APPENDIX R 

Correlations between Dependent Measures  

To justify further exploration into the implications of intervention strategy on 

reasoning outcomes, I performed a series of Pearson product-moment correlational 

analyses assessing the relationships between dependent measures describing participants’ 

intervention selections and reasoning outcomes.  I considered the reasoning outcomes 

associated with both the causal reasoning (i.e., causal attributions) and system dynamics 

(i.e., ability to control the system) literatures.  The results of these analyses suggest that 

intervention strategy may explain causal attribution better than the ability to control the 

system, and further highlights the differences between the system conditions. 

Table R1 and R2 contains the correlations between the dependent measures for 

the discrete system and continuous system conditions respectively.  Both of these 

analyses violate the assumption of data independence given participants interacted with 

multiple experimental manipulation combinations.   

Tables R3, R4, and R5 contain the correlations with the data separated by 

contingency manipulations for the discrete system.  Tables R6, R7, and R8 contain the 

correlations with the data separated by delay manipulations for the discrete system.  

Tables R9, R10, and R11 contain the correlations with the data separated by contingency 

manipulations for the continuous system.  Tables R12, R13, and R14 review the 

correlations with the data separated by delay manipulations for the continuous system. 
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The apply treatment intervention with no change in blood pressure observations 

dependent measure is not applicable with the continuous system condition because the 

blood pressure observation either increase or decreases on every trial.  Although I 

removed this item (number 11) from the series of correlations with the continuous system 

condition data, I did not change the numbering scheme for remaining items to retain 

consistency between the discrete and continuous system analyses.   
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APPENDIX S 

Correlations between Outcome Dependent Measures, and Intervention Strategy and 

Outcome Dependent Measures 

I performed a series of Pearson product-moment correlational analyses to better 

understand the interdependencies between the dependent measures.  Here, I focus on 

relationships between dependent measures describing participants’ reasoning outcomes 

(i.e., causal attributions and ability to control the system), as well as their relationship to 

intervention strategy to justify further exploration into differences in reasoning process 

and the implication of reasoning process on reasoning outcome (see Appendix R for the 

comprehensive set of correlational analyses reviewing the relationships between all of the 

dependent measures).  I performed these analyses across experimental manipulations, as 

well as separated by contingency and delay, which ensures data independence.   

Causal Attributions and System Control 

 Table S1 contains the results of correlational analyses between causal attributions 

and system control.  With both the discrete and continuous system conditions, causal 

attributions are negatively correlated with the across experimental manipulation analysis 

that violated the assumption of data independence.  This relationship only persists with 

the 75|0 by three-trial delay when the data is separated by experimental combination. 
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Table S1  

Correlations between Number of Causal Attribution and System Control 

Measures  

 

Discrete System 
 

Continuous System 

  r 

 

p 

 

r 

 

p 

Across Experimental 

Manipulations -.431  < .001  -.532  < .001 

25|0 and         

One-trial delay -.141  .663  -.487  .108 

Two-trial delay .033  .919  -.131  .686 

Three-trial delay -.305  .335  -.569  .054 

75|0 and        

One-trial delay -.315  .318  -.022  .947 

Two-trial delay -.090  .782  -.088  .785 

Three-trial delay -.815  .001  -.125  .698 

75|75 and         

One-trial delay -.379  .225  -.125  .698 

Two-trial delay .306  .334  .183  .568 

Three-trial delay .095  .769  -.487  .108 

Note.  N = 108 for the across experimental manipulations analysis; n = 12 for 

each analyses.  All tests two-tailed. 

 

Causal Attributions 

Tables S2 and S3 contains the results of correlational analyses between the 

number of apply treatment selections and the number of runs relative to participants’ 

causal attribution ratings (i.e., the reasoning outcome dependent measure used within the 

causal reasoning literature).  With both the discrete and continuous system conditions, the 

number of apply treatment interventions appears to be positively correlated with causal 

attributions.  In contrast, the number of runs appears to negatively relate, or have no 

relationship to participants’ causal attributions.   

  



 216 

 

Table S2  

Correlations between Number of Apply Treatment Interventions and Causal 

Attribution Measures  

 

Discrete System 
 

Continuous System 

  r 

 

p 

 

r 

 

p 

Across Experimental 

Manipulations .259  .007  .489  .000 

25|0 .228  .182  .373  .025 

75|0 .530  .001  .521  .001 

75|75 .372  .025  .724  .000 

One-trial delay .213  .213  .374  .025 

Two-trial delay .105  .542  .387  .020 

Three-trial delay .426  .010  .673  .000 

Note.  N = 108 for the across experimental manipulations analysis; n = 36 for the 

remaining analyses.  All tests two-tailed. 

 

Table S3  

Correlations between Number of Runs and Causal Attribution Measures  

 

Discrete System 
 

Continuous System 

  r 

 

p 

 

r 

 

p 

Across Experimental 

Manipulations -.184  .057  -.277  .004 

25|0 -.128  .456  -.447  .006 

75|0 -.450  .006  -.315  .062 

75|75 -.036  .836  -.112  .514 

One-trial delay -.342  .041  -.148  .391 

Two-trial delay -.094  .584  -.541  .001 

Three-trial delay -.215  .209  -.184  .283 

Note.  N = 108 for the across experimental manipulations analysis; n = 36 for the 

remaining analyses.  All tests two-tailed. 

 

Control of the System 

Table S4 and S5 contains the results of correlational analyses between the number 

of apply treatment selections and the number of runs relative to participants’ blood 

pressure level after 13 treatment selections.  Participants’ ability to control the system 
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was negatively correlated to the number of apply treatment applications with the 25|0 and 

75|0 contingency manipulations with the discrete system condition, but was not 

significantly correlated across the experimental manipulations.  This is a rather 

unsurprising finding as the only manner in which the blood pressure observation can 

lower is by applying the treatment with these two contingency manipulations.  A similar 

pattern of findings was true relative to the continuous system, however the relationship 

between participants treatment applications and their ability to control the system was 

only significant with the 75|0 contingency manipulation.  

The relationship between the number of runs and the system control measure 

differed between the system conditions.  With the discrete system condition, the number 

of runs was positively correlated with their ability to control the system, meaning the less 

participants switched between the treatment options resulted in lower blood pressure 

observations after 13 treatment interventions, only with the 25|0 and 75|0 contingency 

manipulations and not across the experimental manipulations.  Conversely, the number of 

runs was positively correlated with system control across experimental manipulations 

with the continuous system, but not significantly correlated when the data was separated 

by contingency.  With the continuous system, the only significant correlation with the 

data separated by experimental manipulations was with the two-trial delay manipulation. 
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Table S4 

Correlations between Number of Apply Treatment Interventions and System 

Control Measures  

 

Discrete System 
 

Continuous System 

  r 

 

p 

 

r 

 

p 

Across Experimental 

Manipulations -.021  .826  -.039  .689 

25|0 -.907  .000  -.327  .051 

75|0 -.934  .000  -.371  .026 

75|75 -.043  .802  -.077  .656 

One-trial delay -.136  .429  -.049  .777 

Two-trial delay -.224  .189  -.121  .481 

Three-trial delay -.290  .086  -.002  .990 

Note.  N = 108 for the across experimental manipulations analysis.  N = 36 for the 

remaining analyses.  All tests two-tailed. 

 

Table S5  

Correlations between Number of Runs and System Control Measures  

 

Discrete System 
 

Continuous System 

  r 

 

p 

 

r 

 

p 

Across Experimental 

Manipulations .145  .135  -.270  .005 

25|0 .373  .025  -.220  .197 

75|0 .717  .000  -.328  .051 

75|75 .100  .562  -.054  .753 

One-trial delay .067  .698  -.148  .388 

Two-trial delay .021  .904  -.526  .001 

Three-trial delay .312  .064  -.191  .266 

Note.  N = 108 for the across experimental manipulations analysis.  N = 36 for the 

remaining analyses.  All tests two-tailed. 
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APPENDIX T 

Multiple Regressions Assessing the Influence of System Control on Causal Attribution 

I performed a series of multiple regressions to assess the influence of system control on 

causal attribution, while controlling for delay, with the data separated by system 

condition and levels of contingency.  The outcomes of the multiple regressions are the 

same as the correlations reported in the main body of the document.  Table T1 and Table 

T2 contain the outcomes pertaining to the discrete and continuous system conditions, 

respectively.  

Table T1 

Regression Analyses between System Control and Causal Attribution with the Discrete 

System Condition 

      95% CI 

 b SE β t p LL UL 

25|0 -1.27 1.30 -0.17 -0.97 0.34 -3.92 1.39 

75|0 -1.63 0.50 -0.49 -3.25 < 0.01 -2.65 -0.61 

75|75 -0.23 1.94 -0.02 -0.12 0.91 -4.17 3.72 

Note.  CI = Confidence Interval; LL= lower limit; UL=upper limit.   

 

Table T2 

Regression Analyses between System Control and Causal Attribution with the Continuous 

System Condition 

      95% CI 

 b SE β t p LL UL 

25|0 -2.11 1.22 -0.30 -1.74 0.09 -4.59 0.36 

75|0 -0.13 0.26 -0.09 -0.51 0.62 -0.66 0.39 

75|75 -1.35 2.32 -0.11 -0.58 0.56 -6.07 3.37 

Note.  CI = Confidence Interval; LL= lower limit; UL=upper limit.   
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APPENDIX U 

Strategy Shift within Learning Tasks 

To assess whether participants shifted their intervention strategy in the midst of 

individual learning tasks (or patient scenarios), I compared their intervention selections 

on trials 1 through 8 with their intervention selections on trials 9 through 16 using 

Fisher’s Exact Tests.  I was unable to calculate a p value using the Fisher’s Exact Test 

with several of the observations because zero instances of one or more intervention types 

within were observed.  To account for this limitation, I performed additional tests using 

adjusted data, specifically I added to one to every cell.  Table U1 summarizes the 

findings, which suggest that relatively few participants switched their treatment 

intervention strategy half way through the patient scenarios.  Tables U2, U3, and U4 

contain the analyses of the discrete system condition.  Tables U5, U6, and U7 present the 

analyses of the continuous system condition data. 

Table U1 

Summary of the Fisher Exact Test Assessing Strategy Shifts within 

Leaning Tasks 

 

System Condition Same Different NA 

Discrete 76 (107) 1 (1) 31 

Continuous 55 (98) 2 (6) 51 

Note.  Same = Same intervention strategy used on trials 1-8 than on trials 9-16 given p > 

.05.  Different = different intervention strategy used on trials 1-8 than on trials 9-16 given 

p <.05.  NA = not able to perform test because of a zero in one or more of the cells.  

Parentheses summarize Fisher’s Exact test calculated with adjusted data (i.e., +1 was 

added to every cell).   

 

 

 

 



 221 

Table U2 

Strategy Shift within a Patient Scenario - Fisher's Exact Tests related to the 

25|0 Contingency Manipulation in the Discrete System Condition separated 

by Delay 

 

 Trials 1-8  Trials 9-16   

 Treatment ~Treatment  Treatment ~Treatment p p** 

One-trial 

delay 

2 6  1 7 1.00 1.00 

7 1  7 1 1.00 1.00 

7 1  4 4 0.28 0.35 

6 2  6 2 1.00 1.00 

5 3  8 0 NA 0.30 

7 1  6 2 1.00 1.00 

4 4  7 1 0.28 0.35 

8 0  7 1 NA 1.00 

8 0  5 3 NA 0.30 

8 0  8 0 NA 1.00 

6 2  7 1 1.00 1.00 

5 3  6 2 1.00 1.00 

Two-

trial 

delay 

7 1  5 3 0.57 0.63 

7 1  5 3 0.57 0.63 

6 2  7 1 1.00 1.00 

4 4  6 2 0.61 0.65 

6 2  7 1 1.00 1.00 

6 2  8 0 NA 0.58 

4 4  8 0 NA 0.14 

6 2  4 4 0.61 0.65 

8 0  8 0 NA 1.00 

8 0  8 0 NA 1.00 

5 3  4 4 1.00 1.00 

7 1  4 4 0.28 0.35 

Three-

trial 

delay 

4 4  4 4 1.00 1.00 

3 5  7 1 0.12 0.17 

4 4  0 8 NA 0.14 

6 2  5 3 1.00 1.00 

4 4  2 6 0.61 0.65 

6 2  6 2 1.00 1.00 

8 0  5 3 NA 0.30 

7 1  6 2 1.00 1.00 

7 1  6 2 1.00 1.00 

4 4  2 6 0.61 0.65 

4 4  2 6 0.61 0.65 

7 1  6 2 1.00 1.00 

Note.  NA = not able to perform test because of a zero in one or more of the cells.  **p = 

Fisher’s Exact test calculated with adjusted data (i.e., +1 was added to every cell).   
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Table U3 

Strategy Shift within a Patient Scenario - Fisher's Exact Tests related to 

the 75|0 Contingency Manipulation in the Discrete System Condition 

separated by Delay 

 

 Trials 1-8  Trials 9-16   

 Treatment ~Treatment  Treatment ~Treatment p **p 

One-trial 

delay 

3 5  6 2 0.31 0.37 

6 2  6 2 1.00 1.00 

5 3  7 1 0.57 0.63 

7 1  8 0 NA 1.00 

7 1  8 0 NA 1.00 

5 3  4 4 1.00 1.00 

8 0  8 0 NA 1.00 

6 2  8 0 NA 0.58 

5 3  4 4 1.00 1.00 

5 3  6 2 1.00 1.00 

7 1  0 8 NA 1.00 

7 1  5 3 0.57 0.63 

Two-

trial 

delay 

5 3  5 3 1.00 1.00 

4 4  5 3 1.00 1.00 

5 3  5 3 1.00 1.00 

8 0  6 2 NA 0.58 

5 3  5 3 1.00 1.00 

4 4  7 1 0.28 0.35 

8 0  8 0 NA 1.00 

5 3  5 3 1.00 1.00 

4 4  8 0 NA 0.14 

5 3  4 4 1.00 1.00 

4 4  4 4 1.00 1.00 

5 3  5 3 1.00 1.00 

Three-

trial 

delay 

2 6  3 5 1.00 1.00 

4 4  6 2 0.61 0.65 

6 2  3 5 0.31 0.37 

6 2  6 2 1.00 1.00 

7 1  4 4 0.28 0.35 

5 3  4 4 1.00 1.00 

5 3  3 5 0.62 0.69 

8 0  8 0 NA 1.00 

5 3  4 4 1.00 1.00 

4 4  3 5 1.00 1.00 

8 0  5 3 NA 0.30 

7 1  8 0 NA 1.00 

Note.  NA = not able to perform test because of a zero in one or more of the cells.  **p 

= Fisher’s Exact test calculated with adjusted data (i.e., +1 was added to every cell).   

 

 



 223 

Table U4 

Strategy Shift within a Patient Scenario - Fisher's Exact Tests related to the 75|75 

Contingency Manipulation in the Discrete System Condition separated by Delay 

 Trials 1-8  Trials 9-16   

 Treatment ~Treatment  Treatment ~Treatment p **p 

One-trial 

delay 

3 5  2 6 1.00 1.00 

3 5  2 6 1.00 1.00 

5 3  6 2 1.00 1.00 

4 4  4 4 1.00 1.00 

8 0  8 0 NA 1.00 

5 3  5 3 1.00 1.00 

8 0  8 0 NA 1.00 

3 5  2 6 1.00 1.00 

3 5  2 6 1.00 1.00 

8 0  8 0 NA 1.00 

3 5  2 6 1.00 1.00 

3 5  2 6 1.00 1.00 

Two-

trial 

delay 

4 4  7 1 0.28 0.35 

7 1  8 0 NA 1.00 

5 3  3 5 0.62 0.69 

1 7  0 8 NA 1.00 

4 4  1 7 0.28 0.35 

8 0  7 1 NA 1.00 

8 0  8 0 NA 1.00 

5 3  7 1 0.57 0.63 

1 7  3 5 0.57 0.63 

5 3  2 6 0.31 0.37 

4 4  3 5 1.00 1.00 

3 5  3 5 1.00 1.00 

Three-

trial 

delay 

5 3  5 3 1.00 1.00 

4 4  3 5 1.00 1.00 

5 3  3 5 0.62 0.69 

4 4  4 4 1.00 1.00 

7 1  7 1 1.00 1.00 

8 0  8 0 NA 1.00 

8 0  3 5 NA 0.06 

4 4  2 6 0.61 0.65 

7 1  8 0 NA 1.00 

7 1  3 5 0.12 0.17 

4 4  2 6 0.61 0.65 

7 1  1 7 0.01 0.02 

Note.  NA = not able to perform test because of a zero in one or more of the cells.  **p = 

Fisher’s Exact test calculated with adjusted data (i.e., +1 was added to every cell).   
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Table U5 

Strategy Shift within a Patient Scenario - Fisher's Exact Tests related to the 25|0 

Contingency Manipulation in the Continuous System Condition separated by Delay 

 Trials 1-8  Trials 9-16   

 Treatment ~Treatment  Treatment ~Treatment p **p 

One-trial 

delay 

4 4  6 2 0.61 0.65 

7 1  5 3 0.57 0.63 

6 2  6 2 1.00 1.00 

8 0  6 2 NA 0.58 

5 3  4 4 1.00 1.00 

3 5  4 4 1.00 1.00 

2 6  8 0 NA 0.02 

8 0  7 1 NA 1.00 

6 2  8 0 NA 0.58 

6 2  6 2 1.00 1.00 

7 1  5 3 0.57 0.63 

6 2  7 1 1.00 1.00 

Two-

trial 

delay 

2 6  4 4 0.61 0.65 

5 3  5 3 1.00 1.00 

8 0  8 0 NA 1.00 

4 4  7 1 0.28 0.35 

4 4  6 2 0.61 0.65 

6 2  5 3 1.00 1.00 

4 4  8 0 NA 0.14 

4 4  5 3 1.00 1.00 

7 1  6 2 1.00 1.00 

8 0  6 2 NA 0.58 

5 3  5 3 1.00 1.00 

4 4  4 4 1.00 1.00 

Three-

trial 

delay 

6 2  5 3 1.00 1.00 

6 2  8 0 NA 0.58 

5 3  6 2 1.00 1.00 

5 3  8 0 NA 0.30 

8 0  5 3 NA 0.30 

4 4  4 4 1.00 1.00 

3 5  3 5 1.00 1.00 

6 2  3 5 0.31 0.37 

5 3  4 4 1.00 1.00 

6 2  4 4 0.61 0.65 

5 3  3 5 0.62 0.67 

7 1  4 4 0.28 0.35 

Note.  NA = not able to perform test because of a zero in one or more of the cells.  **p = 

Fisher’s Exact test calculated with adjusted data (i.e., +1 was added to every cell).   
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Table U6 

Strategy Shift within a Patient Scenario - Fisher's Exact Tests related to the 75|0 

Contingency Manipulation in the Continuous System Condition separated by Delay 

 Trials 1-8  Trials 9-16   

 Treatment ~Treatment  Treatment ~Treatment p **p 

One-trial 

delay 

5 3  8 0 NA 0.30 

5 3  4 4 1.00 1.00 

8 0  8 0 NA 1.00 

8 0  6 2 NA 0.58 

4 4  6 2 0.61 0.65 

5 3  4 4 1.00 1.00 

7 1  4 4 0.28 0.35 

4 4  4 4 1.00 1.00 

5 3  6 2 1.00 1.00 

6 2  6 2 1.00 1.00 

8 0  8 0 NA 1.00 

8 0  8 0 NA 1.00 

Two-

trial 

delay 

2 6  8 0 NA 0.02 

8 0  7 1 NA 1.00 

8 0  0 8 NA < .01 

8 0  8 0 NA 1.00 

5 3  6 2 1.00 1.00 

8 0  5 3 NA 0.30 

7 1  5 3 0.57 0.63 

8 0  5 3 NA 0.30 

5 3  8 0 NA 0.30 

4 4  2 6 0.61 0.65 

6 2  7 1 1.00 1.00 

8 0  8 0 NA 1.00 

Three-

trial 

delay 

8 0  3 5 NA 0.06 

7 1  8 0 NA 1.00 

5 3  5 3 1.00 1.00 

8 0  8 0 NA 1.00 

7 1  8 0 NA 1.00 

4 4  8 0 NA 0.14 

3 5  7 1 0.12 0.17 

4 4  2 6 0.61 0.65 

8 0  8 0 NA 1.00 

7 1  1 7 0.01 0.02 

5 3  4 4 1.00 1.00 

6 2  8 0 NA 0.58 

Note.  NA = not able to perform test because of a zero in one or more of the 

cells.  **p = Fisher’s Exact test calculated with adjusted data (i.e., +1 was 

added to every cell).   
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Table U7 

Strategy Shift within a Patient Scenario - Fisher's Exact Tests related to the 75|75 

Contingency Manipulation in the Continuous System Condition separated by Delay 

 Trials 1-8  Trials 9-16   

 Treatment ~Treatment  Treatment ~Treatment p **p 

One-trial 

delay 

3 5  6 2 0.31 0.37 

8 0  5 3 NA 0.30 

0 8  6 2 NA 0.02 

8 0  8 0 NA 1.00 

7 1  1 7 0.01 0.02 

8 0  4 4 NA 0.14 

8 0  8 0 NA 1.00 

5 3  0 8 NA 0.30 

8 0  6 2 NA 0.58 

7 1  6 2 1.00 1.00 

3 5  2 6 1.00 1.00 

8 0  7 1 NA 1.00 

Two-

trial 

delay 

4 4  1 7 0.28 0.35 

8 0  8 0 NA 1.00 

8 0  8 0 NA 1.00 

8 0  8 0 NA 1.00 

1 7  8 0 NA < .01 

8 0  8 0 NA 1.00 

1 7  8 0 NA < .01 

3 5  5 3 0.62 0.67 

8 0  1 7 NA < .01 

8 0  5 3 NA 0.30 

1 7  2 6 1.00 1.00 

1 7  4 4 0.28 0.35 

Three-

trial 

delay 

3 5  4 4 1.00 1.00 

6 2  8 0 NA 0.58 

6 2  0 8 NA 0.02 

5 3  3 5 0.62 0.67 

4 4  7 1 0.28 0.35 

4 4  2 6 0.61 0.65 

4 4  5 3 1.00 1.00 

7 1  8 0 NA 1.00 

2 6  1 7 1.00 1.00 

4 4  6 2 0.61 0.65 

8 0  8 0 NA 1.00 

1 7  0 8 NA 1.00 

Note.  NA = not able to perform test because of a zero in one or more of the cells.  **p = 

Fisher’s Exact test calculated with adjusted data (i.e., +1 was added to every cell).   
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APPENDIX V 

Strategy Shift between Learning Tasks 

Tables V1 and V2 present the chi-square goodness-of-fit analyses that I used to assess if 

intervention strategy was consistent between the three learning task/sequence orders with 

both the discrete and continuous system conditions.  Indeed, it was consistent as p > .05 

with all of the analyses. 

Table V1 

Distribution of Treatment Selection Processes across Learning 

Tasks with the Discrete System Condition 

 

1st 2nd 3rd X2 p V 

Treatment-biased 12 15 18 1.20 .55 .12 

Unbiased 24 19 16 1.66 .44 .12 

Withhold-bias 00 02 02 2.00 .37 .50 

Observation-

independent 12 17 16 0.93 .63 .10 

Observation- 

dependent 24 19 20 0.67 .72 .07 

Note.  1st, 2nd, and 3rd = order within the 3 learning tasks.  V = 

Cramer’s V. 

       

      

 

Table V2 

     

 

Distribution of Treatment Selection Processes across Learning Tasks with 

the Continuous System Condition 

 

1st 2nd 3rd X2 p V 

Treatment-biased 16 18 16 0.16 0.92 .04 

Unbiased 19 17 19 0.15 0.93 .04 

Withhold-bias 01 01 1 0.00 1.00 .00 

Observation-

independent 22 28 24 0.76 0.68 .07 

Observation- 

dependent 14 08 12 1.65 0.44 .16 

Note.  1st, 2nd, and 3rd = order within the 3 learning tasks.  V = Cramer’s V. 
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APPENDIX W 

Self-report of Intervention Strategy 

Categorization of Responses 

I asked participants to describe the intervention strategy that they used in 

combination with their third patient scenario.  My intent was to use these self-reports to 

validate the findings of my strategy analysis.  With each participant’s response, I looked 

for words and phases to categorize their intervention strategies using the same 

classification schemes that I used for the strategy analysis (i.e., intervention bias and 

observation dependence).  When participants did not refer to either observation 

dependence or treatment biases,24 I categorized the self-reported strategy as unknown.  

Figures W1 and W2 depict the distribution of intervention strategies with the third patient 

scenario based on participants’ self-reported and observationally derived data. 

  

                                                      
24 I coded observation dependence and intervention bias separately using the same 

response.  Given this, a participant’s self-reported intervention strategy may have been 

categorized as unknown relative to observation dependence, but categorized as treatment-

biased/unbiased/withhold-biased relative to intervention biases and vice versa. 



 229 

A) Self-Report 

 
B) Observational Strategy Analysis 

 
Figure W1.  Comparison of intervention bias between self-reported intervention 

strategies and the results of the observational strategy analysis.  The information 

contained in these distributions only refers to participants’ interaction with the third 

patient scenario.  N = 72.   
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A) Self-Report 

 
B) Observational Strategy Analysis 

 
Figure W2.  Comparison of observation dependence between self-reported intervention 

strategies and the results of the observational strategy analysis.  The information 

contained in these distributions only refers to participants’ interaction with the third 

patient scenario.  N = 72.   
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of self-report responses that were coded as unknown prohibited a direct comparison of the 

distributions.  Given this, I compared the distributions using correlation coefficients 

calculated from chi-square values describing the degree to which intervention strategies 

were evenly distributed across the strategy categorizations.  I excluded the unknown 

categorization when calculating the chi-square values for the self-report analyses, as this 

category was distinct to the self-report analyses.  The outcome of these analyses indicate 

that there were no significant differences between the self-reported and the 

observationally derived data distributions (Table W1 and W2), which validates both the 

type of categorizations (observation dependence and intervention bias) and the 

quantitative techniques used within the observationally derived strategy analysis.   

Table W1 

Comparison of Self-reported and Observationally Derived 

Intervention Strategies with the Discrete System Condition 

 n X2(1) r z p 

Intervention Bias      

Self -report 21 10.29 0.70 0.63 0.53 

Observed 36 12.67 0.59   

Observation Dependence      

Self -report 20 03.20 0.40 1.05 0.29 

Observed 36 00.44 0.11   

Note.  Self-report did not consider unknown categorization; p-value 

reflects a two-tailed analysis. 

 

Table W2 

Comparison of Self-reported and Observationally Derived 

Intervention Strategies with the Continuous System Condition 

 n X2(1) r z p 

Intervention Bias      

Self-report 23 04.52 0.44 -1.18 0.24 

Observed 36 16.17 0.67   

Observation Dependence      

Self-report 31 01.58 0.23 -0.45 0.65 

Observed 36 04.00 0.33   

Note.  Self-report did not consider unknown categorization; p-value 

reflects a two-tailed analysis. 
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Strategy Shift across Patient Scenarios 

Less than half of the participants in the discrete (n = 16) and continuous (n = 12) 

system conditions reported altering their treatment intervention strategy across the three 

patient scenarios.  Sixteen of these participants reported that they adjusted their treatment 

intervention strategy based on the underlying experimental manipulation combination 

(i.e., blood pressure behavior related to each patient scenario).  Eight participants 

adjusted their treatment intervention strategy because they felt it would help them to 

realize how the treatment was influencing the patient’s blood pressure, and the remaining 

three participants adapted their treatment intervention strategy based on their expectations 

about type of treatment (exercise, healthy diet, or medication). 
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APPENDIX X 

Effect of Contingency and Delay on Intervention Strategy with Data Confounded by 

System Condition 

Effect of Contingency on Intervention Strategy 

I used Fisher’s Exact Tests to assess the consistency of participants’ intervention 

bias and observation dependence relative to changes in contingency.  For these analyses, 

I separated the data according to the system condition, contingency, and delay to ensure 

data independence given the experimental design (i.e., each participant interacted with 

each delay and contingency manipulation in various combinations) and because strategic 

differences between the system conditions discussed in the results section. 

I expected the contingency manipulations would affect intervention strategy 

differently according to the respective differences in either P(e|c) or P(e|~c).  I predicted 

that participants would be more reactive to changes in their patients’ blood pressure 

observations and would apply the treatment selection less frequently as P(e|c) declined 

(i.e., 75|0 to 25|0) and as P(e|~c) increased (i.e., 75|0 to 75|75).  Participants’ intervention 

strategy only partially reflected the anticipated differences in contingency.  Specifically, 

participants in the continuous system condition adjusted their observation dependence 

between the 25|0 and 75|0 contingency manipulations.  Differences in strategy between 

the 25|0 and 75|75 contingency manipulations with both systems were unexpected, but 

reflect the fact the participants treated the 75|0 and 75|75 contingency manipulations in 

largely the same manner. 
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Discrete system.  More participants applied unbiased treatment intervention 

strategies with the 75|75 contingency manipulation than with the 25|0 contingency 

manipulation with the discrete system condition.  This was the only significant difference 

in intervention strategy with the discrete system condition.  The same pattern was 

observed between the 75|0 and 25|0 contingency manipulations, but the difference did not 

reach significance.  Participants’ observation dependence was consistent despite changes 

in contingency with the discrete system condition.  Table X1 presents the distribution of 

treatment intervention strategies and the results of the Fisher’s Exact Tests used to assess 

differences as a function of the contingency manipulations with the discrete system 

condition. 

Table X1 

Distribution of Intervention Strategy by Contingency with the Discrete System Condition 

and Outcomes of Fisher’s Exact Tests 

 25|0 75|0 p 75|0 75|75 p 25|0 75|75 p 

Unbiased 12 22 0.051 22 24 0.45 12 24 < .01 

Treatment-biased 21 14   14 10   21 10   

Independent 14 16 0.81 16 18 1.00 14 18 0.64 

Dependent 22 20  20 21  22 21  

Note.  Independent = Observation-Independent Intervention Strategy, Dependent = 

Observation-Dependent Intervention Strategy.  All tests two-tailed. 
1p = 0.0547. 

 

Continuous system.  Participants’ intervention bias and observation dependence 

was evenly distributed across the contingency manipulations with a couple exceptions 

involving participants’ observation dependence.  Participants applied more observation-

independent strategies with the 75|0 and 75|75 contingency manipulations relative to the 

25|0 contingency manipulation.  There were no differences in intervention bias with the 

continuous system condition with the data was separated by contingency.  Table X2 

presents the distribution of strategies and the results of the Fisher’s Exact Tests used to 
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assess differences in strategy as a function of contingency with the continuous system 

condition. 

Table X2 

Distribution of Intervention Strategy by Contingency with the Continuous System 

Condition and Outcomes of Fisher’s Exact Tests 

 25|0 75|0 p 75|0 75|75 p 25|0 75|75 p 

Unbiased 21 16 0.25 16 18 0.47 21 18 0.81 

Treatment-biased 15 20   20 15   15 15   

Independent 16 30 <.01 30 28 0.77 16 28 <.01 

Dependent 20 06  6 8  20 08  

Note.  Independent = Observation-Independent Intervention Strategy, Dependent = 

Observation-Dependent Intervention Strategy.  All tests two-tailed. 

 

Effect of Delay on Intervention Strategy    

I used Fisher’s Exact Tests to assess whether participants intervention bias and 

observation dependence varied in combination with changes in delay.  I expected longer 

delay intervals to result in more reactive, unstructured treatment selection behavior.  

Specifically, I expected participants to explore the withholding the treatment to a greater 

degree, which in turn would reduce the number of treatment selections participants 

applied in the learning task.  Also, I anticipated that participants would become more 

sensitive to their patients’ blood pressure observations with longer delay intervals and 

adapt their treatment selection processes in response.  However, the results indicate 

intervention strategy did not differ as a function delay with either system condition.  

Tables X3 and X4 contains the distribution of intervention bias and observation 

dependence in relation to the delay manipulations and the results of the Fisher’s Exact 

Tests used to assess whether intervention strategy differed between the delay 

manipulations. 
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Table X3 

Distribution of Intervention Strategy by Delay with the Discrete System Condition and 

Outcomes of Fisher’s Exact Tests 

 One-

trial 

Two-

trial p 

Two-

trial 

Three-

Trial p 

One-

trial 

Three-

Trial p 

Unbiased 17 19 0.63 19 23 0.46 17 23 0.23 

Treatment-biased 18 15   15 12   18 12   

Independent 19 11 0.06 11 15 0.46 19 15 0.36 

Dependent 17 25  25 21  17 21  

Note.  One-trial = One-trial delay.  Two-Trial = Two-Trial Delay.  Three-trial = Three-trial 

delay.  Independent = Observation-Independent Intervention Strategy, Dependent = 

Observation-Dependent Intervention Strategy.  All tests two-tailed. 

 

Table X4 

Distribution of Intervention Strategy by Delay with the Continuous System Condition and 

Outcomes of Fisher’s Exact Tests 

 One-

trial 

Two-

trial p 

Two-

trial 

Three-

Trial p 

One-

trial 

Three-

Trial p 

Unbiased 15 18 0.48 18 22 0.33 15 22 0.06 

Treatment-biased 21 17   17 12   21 12   

Independent 25 23 0.80 23 26 0.46 25 26 1.00 

Dependent 11 13  13 10  11 10  

Note.  One-trial = One-trial delay.  Two-Trial = Two-Trial Delay.  Three-trial = Three-trial 

delay.  Independent = Observation-Independent Intervention Strategy, Dependent = 

Observation-Dependent Intervention Strategy.  All tests two-tailed. 
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APPENDIX Y 

Effect of Intervention Strategy on System Control 

Contingency 

By definition, the contingency manipulation constrains the possible influence of 

intervention on outcome (this is discussed in more detail within the proposed paradigm 

under observation dependence).  Specifically, participants rarely observed an effect with 

the 25|0 contingency manipulation and frequently observed an effect with the 75|75 

contingency manipulation regardless of intervention.  In contrast, the 75|0 contingency 

manipulation presented more opportunity for intervention to alter the participants’ ability 

to control of the system.  So, unsurprisingly, participants’ ability to control the system did 

differ in conjunction with intervention strategy with the 75|0 contingency manipulation, 

but not with the other contingency manipulations (Figures Y1a and Y1b).  Participants’ 

that applied treatment-biased and observation-independent intervention strategies 

lowered their patients’ blood pressure levels to a greater degree than participants’ that 

applied unbiased and observation-dependent intervention strategies with the 75|0 

contingency manipulation.  This is because both treatment-biased and observation-

independent intervention strategies are associated with higher rates of treatment 

interventions, and application of the treatment intervention is the only way to lower the 

blood pressure level with the 75|0 contingency manipulation as there is no value 

associated with withholding the treatment intervention.  Table Y1 presents the simple 

effect findings.   
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A) Intervention Bias 

 
B) Observation Dependence 

 

 
Figure Y1.  Relationships between participants’ system control and intervention strategy 

separated by contingency collapsing over system and delay.  Error bars illustrate 95% 

confidence interval.  Asterisks identify significant differences.  A) Relationship between 

system control and intervention bias.  B) Relationship between system control and 

observation dependence.  
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Table Y1 

Effect of Strategy by Contingency Level on Control of the System (simple 

effects, between subjects) 

 

 Unbiased  Treatment-biased        

 n  M  SD  n  M  SD  F  df  p 𝑃𝑃
2  

25|0 34  128.71  06.07  36  121.83  05.40  21.25  1, 67  < .01 .24 

75|0 38  092.11  16.48  34  069.82  14.65  33.49  1, 69  < .01 .33 

75|75 42  055.76  05.19  25  054.68  04.42  00.90  1, 64  0 .35 .01 

 

Observation-

independent 
 

Observation-

dependent 
      

 

 n  M  SD  n  M  SD  F  df  p 𝑃𝑃
2  

25|0 30  124.73  07.82  42  126.24  06.51  01.03  1, 69  0 .31 .02 

75|0 46  074.78  18.44  26  093.62  13.92  17.02  1, 69  < .01 .20 

75|75 43  055.51  05.04  29  055.41  04.91  00.01  1, 69  0 .91 .00 

 

 

Delay 

Delay, in combination with intervention bias, did not affect participants’ ability to 

control the system (Figure Y2a).  However, delay, in combination with observation 

dependence shows some influence over participants’ ability to control the system (Figure 

Y2b).  Participants that applied observation-independent intervention strategies lowered 

patients’ blood pressure levels to a greater degree than participants that applied 

observation-dependent intervention strategies with the two-trial and three-trial delay 

manipulations.  Figure Y2 shows the relationships between system control and 

intervention strategy separated by delay collapsing over system and contingency, and 

Table Y2 presents the simple effect findings.  Lower system control values reflect better 

performance. 
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A) Intervention Bias 

 
B) Observation Dependence 

 

 
Figure Y2.  Relationships between participants’ system control and intervention strategy 

separated by delay collapsing over system and contingency.  Error bars illustrate 95% 

confidence interval.  Asterisks identify significant differences.  A) Relationship between 

system control and intervention bias.  B) Relationship between system control and 

observation dependence.  
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Table Y2 

Effect of Strategy Given Delay on Control of the System (simple effects, between subjects) 

 Unbiased  Treatment-biased        

Delay n  M  SD  n  M  SD  F  df  p 𝑃𝑃
2  

One-trial  32  80.69  30.53  39  087.67  30.72  0.90  1, 69  0 .35 .01 

Two-trial 37  93.86  31.12  32  083.31  32.06  1.86  1, 66  0 .18 .03 

Three-trial  45  92.51  32.10  24  085.08  29.59  0.88  1, 66  0 .35 .01 

 

Observation-

independent  

Observation-

dependent       

 

Delay n  M  SD  n  M  SD  F  df  p 𝑃𝑃
2  

One-trial  44  83.27  30.11  28  088.50  32.96  0.44  1, 69  0 .51 .00 

Two-trial  34  76.18  29.44  38  097.74  30.79  9.87  1, 69  < .01 .13 

Three-trial  41  80.85  30.26  31  101.65  29.73  9.11  1, 69  < .01 .12 
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APPENDIX Z 

Effect of Intervention Strategy and Delay on Causal Attributions 

As with the data separated by contingency, causal attributions generally appear lower 

with unbiased and observation-dependent strategies across the delay manipulations.  

Despite a consistent pattern of behavior, causal attributions only significantly differed 

according to intervention bias with the three-trial delay manipulation (Figure Z1a).  Also, 

higher causal attributions were associated with observation-independent strategies with 

the one-trial and two-trial delay manipulations (Figure Z1b), but attributions did not 

significantly differ with the three-trial delay manipulation regardless of observation 

dependence.  Table Z1 presents the simple effect findings.  Figure Z1 shows the 

relationships between participants’ causal attributions and intervention strategy separated 

by delay collapsing over system and contingency, and  

Table Z1 

Effect of Strategy given Delay on Causal Attributions (simple effects, between subjects) 

 Unbiased  Treatment-biased        

Delay n  M  SD  n  M  SD  F  df  p 𝑃𝑃
2  

One-trial  32  24.78  57.02  39  46.82  56.26  02.59  1, 68  0 .11 .04 

Two-trial  37  21.16  65.44  32  47.19  47.31  03.43  1, 66  0 .07 .05 

Three-trial  45  10.04  55.81  24  55.37  54.57  10.32  1, 66  < .01 .14 

 

Observation-

independent  

Observation-

dependent       

 

Delay n  M  SD  n  M  SD  F  df  p 𝑃𝑃
2  

One-trial  44  55.30  48.50  28  06.64  57.27  14.71  1, 69  < .01 .18 

Two-trial* 34  51.82  49.46  38  11.32  64.19  09.82  1, 69  < .01 .13 

Three-trial  41  32.22  59.33  31  06.26  63.99  03.42  1, 69  0 .07 .05 

Note.  Significant system * strategy interaction with this delay manipulation.    
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A) Intervention Bias 

 
Dependence 

 

 
Figure Z1.  Relationships between participants’ causal attributions and intervention 

strategy separated by delay collapsing over system and contingency.  Error bars illustrate 

95% confidence interval.  Asterisks identify significant differences.  A) Relationship 

between causal attributions and intervention bias.  B) Relationship between causal 

attributions and observation dependence.  
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APPENDIX AA 

Intervention Strategy and System Condition ANOVAs 

Tables AA1 and AA2 report the ANOVA findings pertaining to the interactions between 

intervention strategy and system condition.  Tables AA3 and AA4 report the system 

condition by contingency and delay manipulation simple effects.  The intervention 

strategy by contingency and delay manipulation simple effects are included in the body 

of the document, so are not repeated here. 
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Table AA1  

The Effect of Treatment Intervention Strategies and System Condition 

separated by levels of Contingency and Delay on Causal Attributions 

  F 

 

df 

 

p 

Treatment Bias*System Condition 

Contingency      

25|0 2.31  1, 66  .13 

75|0 1.86  1, 68  .18 

75|75 0.00  1, 63  .99 

Delay      

One-trial 0.03  1, 67  .86 

Two-trial  2.57  1, 65  .11 

Three-trial  1.72  1, 65  .19 

Observation Dependence*System Condition 

Contingency      

25|0 1.41  1, 68  .24 

75|0 3.12  1, 68  .08 

75|75 0.01  1, 68  .91 

Delay      

One-trial 0.34  1, 68  .57 

Two-trial 7.79  1, 68  .01 

Three-trial 0.23  1, 68  .63 

Note.  The following are the descriptive statistics pertaining to the 

significant interaction: Discrete System * Observation Dependence 

(Observation-Independent: n = 11, M = 33.64, SD = 57.75, Observation-

Dependent: n = 25, M = 28.48, SD = 52.86), Continuous System * 

Observation Dependence (Observation-Independent: n = 23, M = 60.52, 

SD = 43.70, Observation-Dependent: n = 13, M = -21.69, SD = 72.94). 
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Table AA2  

The Effect of Treatment Selection Strategies and System Condition 

separated by levels of Contingency and Delay on Control of the System  

  F 

 

df 

 

p 

Treatment Bias*System Condition 

Contingency      

25|0 4.08  1,66  .05* 

75|0 1.73  1, 68  .19 

75|75 0.08  1, 63  .78 

Delay      

One-trial 0.17  1, 67  .68 

Two-trial  2.41  1, 65  .13 

Three-trial  0.34  1, 65  .57 

Observation Dependence*System Condition 

Contingency      

25|0 0.64  1, 68  .43 

75|0 0.08  1, 68  .78 

75|75 1.37  1, 68  .25 

Delay      

One-trial  2.56  1, 68  .11 

Two-trial  2.38  1, 68  .13 

Three-trial  0.04  1, 68  .85 

Note.  * p =.047.  The following are the descriptive statistics pertaining 

to the significant interaction: Discrete System * Treatment Bias 

(Treatment-Biased: n = 21, M = 119.57, SD = 3.59, Unbiased: n = 13, M 

= 128.69, SD = 4.39), Continuous System * Treatment Bias (Treatment-

Biased: n = 15, M = 125.00, SD = 6.00, Unbiased: n = 21, M = 128.71, 

SD = 7.02). 

 

Table AA3 

Effect of System on Causal Attributions (simple effects, between subjects) 

separated by levels of Contingency and Delay 

 

 Discrete  Continuous        

 n  M  SD  n  M  SD  F  df  p 𝜂𝑝
2  

Contingency                   

25|0 34  02.88  51.44  36  -23.67  47.50  3.74  1, 67  .06 .05 

75|0 36  36.19  57.75  36  -68.75  31.33  6.55  1, 69  .01 .09 

75|75 34  52.65  50.88  33  -56.94  49.82  0.06  1, 64  .81 .00 

Delay                   

One-trial  35  35.34  57.62  36  -38.39  57.70  0.01  1, 68  .91 .00 

Two-trial  34  32.71  50.40  35  -33.74  66.71  0.00  1, 66  .99 .00 

Three-trial  35  24.06  62.80  34  -27.62  55.97  0.05  1, 66  .82 .00 

Note.  Findings from ANOVA that also considered intervention bias 
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Table AA4 

Effect of System on Control of the System (simple effects, between subjects) 

separated by levels of Contingency and Delay 

 

 Discrete  Continuous        

 n  M  SD  n  M  SD  F  df  p 𝜂𝑝
2  

Contingency                   

25|0 34  123.06  05.92  36  127.17  06.78  4.32  1, 67  .04 .06 

75|0 36  085.17  17.30  36  078.00  20.45  0.90  1, 69  .35 .01 

75|75 34  055.12  05.00  33  055.61  04.42  0.31  1, 64  .58 .01 

Delay                   

One-trial  35  -84.43  29.50  36  -84.61  32.09  0.00  1, 68  .97 .00 

Two-trial  34  -90.12  29.17  35  -87.86  34.50  0.06  1, 66  .82 .00 

Three-trial  35  -88.71  31.16  34  -91.18  31.72  0.11  1, 66  .74 .00 

Note.  Findings from ANOVA that also considered intervention bias 
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APPENDIX AB 

Theoretical Predictions relative to Observed Causal Attributions 

I used one-sample t-tests to compare the observed causal attributions to theoretical 

predictions separated by treatment selection strategy (i.e., treatment bias, observation 

dependence) and contingency.  I separated the observed data according to intervention 

strategy to account for the significant simple effects of intervention strategy and 

contingency on causal attribution.  In general, higher causal attributions were associated 

with treatment-biased and observation-independent intervention strategies.  For each 

contingency manipulation, I collapsed the causal attribution data across delay 

manipulations, as there were no significant delay main effects with causal attributions as 

the dependent measure.  For brevity, I will only discuss the results relative to a subset of 

the theoretical predictions, but provide tables containing the comprehensive set of 

analyses at the end of this Appendix (Tables AB5-AB12).  Somewhat counter-intuitively, 

non-significant differences with these analyses indicate that the theoretical predictions 

satisfactorily describe participants’ causal attributions.  These are designated with 

asterisks. 

Although main effect trends are generally consistent with existing empirical work, 

a single reasoning theory does not successfully predict the observed causal attributions 

across the contingency manipulations for either system condition.  This finding is 

consistent with the observed differences in causal attributions and the effect of reasoning 

strategy on the outcome measure, as well as the differences in participants’ self-reported 
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assessment technique in the judgment task.  Also, system effects on causal attribution are 

apparent with this analysis.  The theoretical predictions accounted for more causal 

attributions associated with the 25|0 contingency manipulation in the discrete system 

condition (which were less extreme), an equivalent amount of causal attributions with the 

75|0 contingency manipulation (despite the more extreme causal attributions with the 

continuous system condition), and the pattern of findings was similar between the 

discrete and continuous systems with the 75|75 contingency manipulation.  The 

theoretical predictions that left out probabilistic information, including base rates, were 

more successful at predicting the observed causal attributions.   

Predicted Values 

I calculated a set of predicted values (using the mean actual contingency values) 

for popular theories within the causal reasoning literature including Bayes Theorem (i.e., 

P(e|c)), ΔP (i.e., P(e|c)-P(e|~c)), Power PC Theory (P(e|c)-P(e|~c))/(1-P(e|~c)), and 

Rescorla-Wagner Model (i.e., RWM; see Appendix AC for calculations), as well as 

probabilistic values representative of reasoning strategies described by participants in 

their debrief questionnaire responses including P(e) and P(c and e).  P(e), or the law of 

total probability, is representative of a reasoning strategy that focuses on the overall 

effect, meaning the number of times (discrete system) or the degree to which (continuous 

system) the patients’ blood pressure lowered.  P(c and e) is characteristic of a reasoning 

strategy in which the participant focuses on the joint probability of a cause (i.e., the 

number application of the treatment selection) and effect (i.e., number of times the 

patients’ blood pressure lowers) without the consideration of base rate information (i.e., 

P(e) or P(c)).  
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Figure AB1 depicts the predicted causal attribution values alongside the mean of 

the observed causal attribution values separated by treatment intervention strategy for 

each system condition (the specific values are presented in Appendix AD).  Several of the 

theoretical predictions converge at two predicted values with the 25|0 and 75|0 

contingency manipulations, but all of the predictions vary with respect to the 75|75 

contingency manipulation.  In the subsequent analyses, I code these identical predictions 

as Group 1 (Bayes Theorem (P(e|c)), ΔP, RWM-asymptotic, and Power PC Theory) and 

Group 2 (P(c and e) and the law of total probability). 

A) 25|0 
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B) 75|0 

 
C) 75|75 

 
Figure AB1.  Theoretical Predictions Compared to Mean Causal Attribution Values 

separated by Treatment Intervention Strategy (Observation-dependent, Observation-

independent, Unbiased, Treatment-biased).  Bayes theorem = (P(e|c)); ΔP Model = 

P(e|c)-P(e|~c)); Power PC Theory = (P(e|c)-P(e|~c))/(1-P(e|~c)); RWM = Rescorla-

Wagner Model, see Appendix AC for calculations; Law of total probability = P(e)  
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With the discrete system, a single reasoning theory was unable to consistently 

predict the observed causal attributions across the treatment intervention strategies or the 
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contingency manipulations.  Although the theoretical predictions accounted for the causal 

attributions of participants that applied treatment-biased and observation-independent 

intervention strategies across the contingency manipulations, there was less 

correspondence between the predictions and causal attributions associated with unbiased 

and observation-dependent intervention strategies.  Tables AB1 and AB2 contain the 

outcomes of the one-sample t-tests with the discrete system condition that compared the 

observed causal attributions to various theoretical and probabilistic predictions.  
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Table AB1 

Theoretical Predictions relative to Observed Causal Attributions with the 

Discrete System Condition separated by Intervention Bias 

  Unbiased  

 Predicted M SD t df p d 

25|0  04.23 43.46   

Group 1 37.29 
  

-2.74 12 < .02* -0.76 

Group 2 26.48   -1.85 12 < .09* -0.51 

75|0  14.05 62.05     

Group 1 77.18   -4.77 21 < .01* -1.02 

Group 2 52.48   -2.91 21 < .01* -0.62 

75|75  39.88 55.52     

ΔP 02.17   3.33 23 < .01* -0.68 

P(e) 77.40   -3.31 23 < .01* -0.68 

P(c and e) 45.34   -0.48 23 < .63* -0.10 

  

Treatment-

biased  

 Predicted M SD t df p d 

25|0  2.05 56.84     

Group 1 37.29   0-2.84 20 < .01* -0.62 

Group 2 26.48   0-1.97 20 < .06* -0.43 

75|0  71.00 24.96     

Group 1 77.18   0-0.93 13 < .37* -0.25 

Group 2 52.48   -02.78 13 < .02* -0.74 

75|75  83.30 11.61     

ΔP 02.17   -22.11 09 < .01* -6.99 

P(e) 77.40   -01.61 09 < .14* -0.51 

P(c and e) 45.34   -10.34 09 < .01* -3.27 

Note.  Predicted = Predicted theoretical value.  Group 1 = Bayes Theorem 

(P(e|c)), ΔP, RWM-asymptotic, Power PC Theory; Group 2 =  Law of total 

probability, P(c and e). 

* Non-significant findings indicate that the predicted value was equivalent to 

the observed causal attributions. 
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Table AB2 

Theoretical Predictions relative to Observed Causal Attributions with the 

Discrete System Condition separated by Observation Dependence  

 

 

Observation-

independent  

 Predicted M SD t df p d 

25|0  17.92 48.47    

Group 1 37.29 
  

0-1.38 11 < .19* -0.40 

Group 2 26.48   0-0.61 11 < .55* -0.18 

75|0  68.56 27.01     

Group 1 77.18   0-1.28 15 < .22* -0.32 

Group 2 52.48   0-2.38 15 < .03* -0.60 

75|75  64.64 36.49     

ΔP 02.17   -12.18 13 < .01* -1.71 

P(e) 77.40   0-0.53 13 < .61* -0.35 

P(c and e) 45.34   0-4.86 13 < .01* -0.53 

  

Observation-

dependent  

 Predicted M SD t df p d 

25|0  05.32 52.22     

Group 1 37.29   -3.83 21 < .01* -0.82 

Group 2 26.48   -2.86 21 < .01* -0.61 

75|0  10.30 63.08     

Group 1 77.18   -4.74 19 < .01* -1.06 

Group 2 52.48   -2.99 19 < .01* -0.67 

75|75  44.25 58.35     

ΔP 02.17   -2.69 19 < .02* 0.72 

P(e) 77.40   -3.00 19 < .01* -0.57 

P(c and e) 45.34   -0.88 19 < .39* -0.02 

Note.  Predicted = Predicted theoretical value.  Group 1 = Bayes Theorem 

(P(e|c)), ΔP, RWM-asymptotic, Power PC Theory; Group 2 =  Law of total 

probability, P(c and e).  

* Non-significant findings indicate that the predicted value was equivalent to 

the observed causal attributions. 

 

Predicted values compared to causal attributions with the 75|0 contingency 

manipulation.  The predicted value associated with Bayes Theorem (P(e|c)), ΔP, Power 

PC Theory, and Rescorla-Wagner Model at its asymptotic level (Group 1) was equivalent 

to causal attributions associated with treatment-biased and observation-independent 

intervention strategies with the 75|0 contingency manipulation.  In contrast, causal 
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attributions were more equivalent to the reasoning theories’ predictions that omitted base 

rate information (i.e., Group 2 - P(e) and P(c and e)) with the 25|0 and 75|75 contingency 

manipulations.  None of the theoretical predictions matched causal attributions associated 

with unbiased and observation-dependent intervention strategies with the 75|0 

contingency manipulation. 

Predicted values compared to causal attributions with the 25|0 contingency 

manipulation.  The predicted value of P(e) and P(c and e) (Group 2) was equivalent to 

causal attributions associated with the treatment-biased, unbiased, and observation-

independent intervention strategies for the 25|0 contingency manipulation.  Causal 

attributions that followed observation-independent intervention strategies were also 

equivalent to the predictions of base rate inclusive models (i.e., Group 1 - (P(e|c)), ΔP, 

Power PC Theory, and Rescorla-Wagner Model at asymptotic). 

Predicted values compared to causal attributions with the 75|75 contingency 

manipulation.  With 75|75 contingency manipulation, causal attributions associated with 

treatment-biased and observation-independent intervention strategies were equivalent to 

the overall probability of the effect (i.e., P(e)).  Conversely, the joint probability of a 

cause and effect (i.e., P(c and e)) matched the causal attributions of participants that used 

unbiased and observation-dependent intervention strategies.  The ΔP prediction, and the 

predictions of other models that were closer to zero (see Appendix AD), did not account 

for causal attributions across the treatment intervention strategies with the 75|75 

contingency manipulation.  
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Continuous System 

As with the discrete system condition, no reasoning theory consistently predicted 

the observed causal attributions across the contingency manipulations with the 

continuous system condition.  The theoretical predictions accounted for more causal 

attributions with the 75|0 contingency manipulation with the continuous than the discrete 

system condition.  However, none of the predictions accounted for the causal attributions 

associated with the 25|0 contingency manipulation.  Tables AB3 and AB4 contain the 

complete series of comparisons between the observed causal attributions and the 

theoretical and probabilistic predictions with the continuous system condition. 
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Table AB3 

Theoretical Predictions relative to Observed Causal Attributions with the 

Continuous System Condition separated by Intervention Bias 

  Unbiased  

 Predicted M SD t df p d 

25|0  -37.81 43.85    

Group 1 38.09 
  

-7.93 20 < .01* -1.73 

Group 2 25.99   -6.67 20 < .01* -1.45 

75|0  52.06 40.07     

Group 1 76.29   -2.42 15 < .03* -0.60 

Group 2 57.35   -0.53 15 < .60* -0.13 

75|75  37.11 56.81     

ΔP 01.06   -2.69 17 < .02* -0.63 

P(e) 77.28   -3.00 17 < .01* -0.71 

P(c and e) 48.94   -0.88 17 < .39* -0.21 

  

Treatment-

biased  

 Predicted M SD t df p d 

25|0  -3.87 46.64     

Group 1 38.09   0-3.48 14 < .01* -0.90 

Group 2 25.99   0-2.48 14 < .03* -0.64 

75|0  82.10 10.90     

Group 1 76.29   0-2.38 19 < .03* -0.53 

Group 2 57.35   -10.15 19 < .01* -2.27 

75|75  80.73 25.34     

ΔP 01.06   -12.18 14 < .01* -3.14 

P(e) 77.28   0-0.53 14 < .61* -0.14 

P(c and e) 48.94   0-4.86 14 < .01* -1.25 

Note.  Predicted = Predicted theoretical value.  Group 1 = Bayes Theorem 

(P(e|c)), ΔP, RWM-asymptotic, Power PC Theory; Group 2 =  Law of total 

probability, P(c and e). 

* Non-significant findings indicate that the predicted value was equivalent to 

the observed causal attributions.  
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Table AB4 

Theoretical Predictions relative to Observed Causal Attributions with the 

Continuous System Condition separated by Observation Dependence  

  Observation-

independent  

 Predicted M SD t df p d 

25|0a  -0.63 39.07    

Group 1 38.09 
  

-3.96 15 < .01* -0.99 

Group 2 25.99   -2.73 15 < .02* -0.68 

75|0b  71.57 33.32     

Group 1 76.29   -0.78 29 < .44* -0.14 

Group 2 57.35   -2.34 29 < .03* -0.43 

75|75c  63.72 46.34     

ΔP 01.06   -6.76 24 < .01* -1.35 

P(e) 77.28   -1.46 24 < .16* -0.29 

P(c and e) 48.94   -1.60 24 < .12* -0.32 

 
 

Observation-

dependent     

 Predicted M SD t df p d 

25|0  -42.10 46.34     

Group 1 38.09   -7.74 19 < .01* -1.73 

Group 2 25.99   -6.57 19 < .01* -1.47 

75|0  54.67 12.18     

Group 1 76.29   -4.35 05 < .01* -1.78 

Group 2 57.35   -0.54 05 < .61* -0.22 

75|75  35.75 57.51     

ΔP 01.06   -1.71 07 <.13* -0.60 

P(e) 77.28   -2.04 07 <.08* -0.72 

P(c and e) 48.94   -0.65 07 <.54* -0.23 

Note.  Predicted = Predicted theoretical value.  Group 1 = Bayes Theorem 

(P(e|c)), ΔP, RWM-asymptotic, Power PC Theory; Group 2 =  Law of total 

probability, P(c and e).  

* Non-significant findings indicate that the predicted value was equivalent to 

the observed causal attributions. 

 

Predicted values compared to causal attributions with the 75|0 contingency 

manipulation.  Consistent with the discrete system condition findings, the predicted 

value associated with P(e|c), ΔP, Power PC Theory, and Rescorla-Wagner Model at its 

asymptotic level (Group 1) was equivalent to causal attributions of participants that 

applied observation-independent invention strategies with the 75|0 contingency 
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manipulation.  However, the predicted value of Group 1 did not account for causal 

attributions following treatment-biased strategies with the continuous system condition, 

nor did any of the predicted values.  Also, a departure from the discrete system findings, 

causal attributions of participants that applied unbiased and observation-dependent 

intervention strategies with the 75|0 contingency manipulation were equivalent to the 

theoretical prediction of P(e) and P(c and e) (Group 2).  

Predicted values compared to causal attributions with the 25|0 contingency 

manipulation.  None of the theoretical predictions matched the observed causal 

attributions with the 25|0 contingency manipulation.   

Predicted values compared to causal attributions with the 75|75 contingency 

manipulation.  P(e) and P(c and e) were equivalent to causal attributions following 

observation-independent and observation-dependent intervention strategies with the 75|75 

contingency manipulation.  Neither P(e) nor P(c and e) take into account the specific 

value associated with the probability of the effect in the absence of the causal variable 

(e.g., P(e|~c)).  The ΔP prediction was statically consistent with causal attributions 

associated with observation-dependent strategies, as well.  However, this outcome may 

be attributable to low power given the limited number of participants that applied 

observation-dependent strategies with the continuous system condition.  With respect to 

the strategic dimension of intervention bias, only P(e) predicted causal attributions that 

followed treatment-biased selections strategies and only P(c and e) predicted causal 

attributions that followed applied unbiased-treatment intervention strategies. 
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Comprehensive Tables 

Table AB5 

Theoretical Predictions relative to Observed Causal Attributions with Unbiased 

Intervention Strategies in the Discrete System Condition  

  Unbiased   

 Predicted M SD t df p d  

25|0      

Group 1 37.29 
4.23 43.46 

-2.74 12 < .02* -0.76  

Group 2 26.48   -1.85 12 < .09* -0.51  

RWM -15 trials 24.10   -1.65 12 < .13* -0.46  

75|0  14.05 62.05      

Group 1 77.18   -4.77 21 < .01* -1.02  

Group 2 52.48   -2.91 21 < .01* -0.62  

RWM -15 trials 48.40   -2.60 21 < .02* -0.55  

75|75  39.88 55.52      

P(e|c) 78.17   -3.38 23 < .01* -0.69  

ΔP 02.17   -3.33 23 < .01* -0.68  

Power PC Theory 09.04   -2.72 23 < .01* -0.56  

RWM-asymptotic 02.17   -3.33 23 < .01* -0.68  

RWM -15 trials 01.32   -3.40 23 < .01* -0.69  

P(e) 77.40   -3.31 23 < .01* -0.68  

P(c and e) 45.34   -0.48 23 < .63* -0.10  

Note.  Predicted = Predicted theoretical value.  Group 1 = Bayes Theorem (P(e|c)), 

ΔP, RWM-asymptotic, Power PC Theory; Group 2 =  Law of total probability, P(c 

and e).  *Findings that are statistically non-significant indicate that the predicted 

value was equivalent to the observed causal attributions. 
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Table AB6 

Theoretical Predictions relative to Observed Causal Attributions with Treatment-

biased Intervention Strategies in the Discrete System Condition  

 

 

Treatment-

biased  

 Predicted M SD t df p d 

25|0  2.05 56.84 

Group 1 37.29 
  

0-2.84 20 < .01* -0.62 

Group 2 26.48   0-1.97 20 < .06* -0.43 

RWM -15 trials 24.10   -1.78 20 < .09* -0.39 

75|0  71.00 24.96     

Group 1 77.18   0-0.93 13 < .37* -0.25 

Group 2 52.48   -02.78 13 < .02* -0.74 

RWM -15 trials 48.40   -03.39 13 < .01* -0.91 

75|75  83.30 11.61     

P(e|c) 78.17   -01.40 09 < .20* -0.44 

ΔP 02.17   -22.11 09 < .01* -6.99 

Power PC Theory 09.04   -20.24 09 < .01* -6.40 

RWM-asymptotic 02.17   -22.11 09 < .01* -6.99 

RWM -15 trials 01.32   -22.34 09 < .01* -7.06 

P(e) 77.40   -01.61 09 < .14* -0.51 

P(c and e) 45.34   -10.34 09 < .01* -3.27 

Note.  Predicted = Predicted theoretical value.  Group 1 = Bayes Theorem 

(P(e|c)), ΔP, RWM-asymptotic, Power PC Theory; Group 2 =  Law of total 

probability, P(c and e).  *Findings that are statistically non-significant indicate 

that the predicted value was equivalent to the observed causal attributions. 
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Table AB7 

Theoretical Predictions relative to Observed Causal Attributions with Observation-

independent Intervention Strategies in the Discrete System Condition  

 

 

Observation-

independent  

 Predicted M SD t df p d 

25|0  17.92 48.47 

Group 1 37.29 
  

0-1.38 11 < .19* -0.40 

Group 2 26.48   0-0.61 11 < .55* -0.18 

RWM -15 trials 24.10   0-0.44 11  < .67* -0.13 

75|0  68.56 27.01     

Group 1 77.18   0-1.28 15 < .22* -0.32 

Group 2 52.48   0-2.38 15 < .03* -0.60 

RWM -15 trials 48.40   -02.99 15 < .01* -0.75 

75|75  64.64 36.49     

P(e|c) 78.17   0-1.39 13 < .19* -0.37 

ΔP 02.17   -12.18 13 < .01* -1.71 

Power PC Theory 09.04   -05.70 13 < .01* -1.52 

RWM-asymptotic 02.17   0-6.41 13 < .01* -1.71 

RWM -15 trials 01.32   < 6.49 13 < .01* <1.74 

P(e) 77.40   0-0.53 13 < .61* -0.35 

P(c and e) 45.34   0-4.86 13 < .01* -0.53 

Note.  Predicted = Predicted theoretical value.  Group 1 = Bayes Theorem 

(P(e|c)), ΔP, RWM-asymptotic, Power PC Theory; Group 2 =  Law of total 

probability, P(c and e).  *Findings that are statistically non-significant indicate 

that the predicted value was equivalent to the observed causal attributions. 
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Table AB8 

Theoretical Predictions relative to Observed Causal Attributions with 

Observation-dependent Intervention Strategies in the Discrete System Condition  

 

 

Observation-

dependent  

 Predicted M SD t df p d 

25|0  -5.32 52.22 

Group 1 37.29   -3.83 21 < .01* -0.82 

Group 2 26.48   -2.86 21 < .01* -0.61 

RWM -15 trials 24.10   -2.64 21 < .02* -0.56 

75|0  10.30 63.08     

Group 1 77.18   -4.74 19 < .01* -1.06 

Group 2 52.48   -2.99 19 < .01* -0.67 

RWM -15 trials 48.40   -2.70 19 < .01* -0.60 

75|75  44.25 58.35     

P(e|c) 78.17   -2.60 19 < .02* -0.58 

ΔP 02.17   -2.69 19 < .02* -0.72 

Power PC 

Theory 09.04 

  

-2.70 19 < .01* -0.60 

RWM-

asymptotic 02.17 

  

-3.23 19 < .01* -0.72 

RWM -15 trials 01.32   -3.29 19 < .01* -0.74 

P(e) 77.40   -3.00 19 < .01* -0.57 

P(c and e) 45.34   -0.88 19 < .39* -0.02 

Note.  Predicted = Predicted theoretical value.  Group 1 = Bayes Theorem 

(P(e|c)), ΔP, RWM-asymptotic, Power PC Theory; Group 2 =  Law of total 

probability, P(c and e).  *Findings that are statistically non-significant 

indicate that the predicted value was equivalent to the observed causal 

attributions. 
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Table AB9 

Theoretical Predictions relative to Observed Causal Attributions with Unbiased 

Intervention Strategies in the Discrete System Condition  

  Unbiased  

 Predicted M SD t df p d 

25|0  -37.81 43.85 

Group 1 38.09 
  

-7.93 20 < .01* -1.73 

Group 2 25.99   -6.67 20 < .01* -1.45 

RWM -15 trials 23.83   -6.44 20 < .01* -1.41 

75|0  52.06 40.07     

Group 1 76.29   -2.42 15 < .03* -0.60 

Group 2 57.35   -0.53 15 < .60* -0.13 

RWM -15 trials 49.30   -0.28 15 < .79* -0.07 

75|75  37.11 56.81     

P(e|c) 77.66   -3.03 17 < .01* -0.71 

ΔP 01.06   -2.69 17 < .02* -0.63 

Power PC Theory 04.39   -2.44 17 < .03* -0.58 

RWM-asymptotic 01.06   -2.69 17 < .02* -0.63 

RWM -15 trials 00.64   -2.72 17 < .02* -0.64 

P(e) 77.28   -3.00 17 < .01* -0.71 

P(c and e) 48.94   -0.88 17 < .39* -0.21 

Note.  Predicted = Predicted theoretical value.  Group 1 = Bayes Theorem 

(P(e|c)), ΔP, RWM-asymptotic, Power PC Theory; Group 2 =  Law of total 

probability, P(c and e).  *Findings that are statistically non-significant indicate 

that the predicted value was equivalent to the observed causal attributions. 
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Table AB10 

Theoretical Predictions relative to Observed Causal Attributions with Treatment-

biased Intervention Strategies in the Discrete System Condition  

 

 

Treatment-

biased  

 Predicted M SD t df p d 

25|0  -3.87 46.64 

Group 1 38.09 
  

0-3.48 14 < .01* -0.90 

Group 2 25.99   0-2.48 14 < .03* -0.64 

RWM -15 trials 23.83   0-2.30 14 < .04* -0.59 

75|0  82.10 10.90     

Group 1 76.29   0-2.38 19 < .03* -0.53 

Group 2 57.35   -10.15 19 < .01* -2.27 

RWM -15 trials 49.30   -13.46 19 < .01* -3.01 

75|75  80.73 25.34     

P(e|c) 77.66   -00.47 14 < .65* -0.12 

ΔP 01.06   -12.18 14 < .01* -3.14 

Power PC Theory 04.39   -11.67 14 < .01* -3.01 

RWM-asymptotic 01.06   -12.18 14 < .01* -3.14 

RWM -15 trials 00.64   -12.24 14 < .01* -3.16 

P(e) 77.28   0-0.53 14 < .61* -0.14 

P(c and e) 48.94   0-4.86 14 < .01* -1.25 

Note.  Predicted = Predicted theoretical value.  Group 1 = Bayes Theorem 

(P(e|c)), ΔP, RWM-asymptotic, Power PC Theory; Group 2 =  Law of total 

probability, P(c and e).  *Findings that are statistically non-significant indicate 

that the predicted value was equivalent to the observed causal attributions. 
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Table AB11 

Theoretical Predictions relative to Observed Causal Attributions with Observation-

independent Intervention Strategies in the Discrete System Condition  

 

 

Observation-

independent  

 Predicted M SD t df p d 

25|0  -0.63 39.07 

Group 1 38.09 
  

-3.96 15 < .01* -0.99 

Group 2 25.99   -2.73 15 < .02* -0.68 

RWM -15 trials 23.83   -2.50 15 < .02* -0.63 

75|0  71.57 33.32     

Group 1 76.29   -0.78 29 < .44* -0.14 

Group 2 57.35   -2.34 29 < .03* -0.43 

RWM -15 trials 49.30   -3.66 29 < .01* -0.67 

75|75  63.72 46.34     

P(e|c) 77.66   -1.50 24 < .15* -0.30 

ΔP 01.06   -6.76 24 < .01* -1.35 

Power PC Theory 04.39   -6.40 24 < .01* -1.28 

RWM-asymptotic 01.06   -6.76 24 < .01* -1.35 

RWM -15 trials 00.64   -6.81 24 < .01* -1.36 

P(e) 77.28   -1.46 24 < .16* -0.29 

P(c and e) 48.94   -1.60 24 < .12* -0.32 

Note.  Predicted = Predicted theoretical value.  Group 1 = Bayes Theorem 

(P(e|c)), ΔP, RWM-asymptotic, Power PC Theory; Group 2 =  Law of total 

probability, P(c and e).  *Findings that are statistically non-significant indicate 

that the predicted value was equivalent to the observed causal attributions. 
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Table AB12 

Theoretical Predictions relative to Observed Causal Attributions with Observation-

independent Intervention Strategies in the Discrete System Condition  

 

 

Observation-

dependent  

 Predicted M SD t df p d 

25|0  -42.10 46.34 

Group 1 38.09 
  

-7.74 19 < .01* -1.73 

Group 2 25.99   -6.57 19 < .01* -1.47 

RWM -15 trials 23.83   -6.36 19 < .01 -1.42 

75|0  54.67 12.18     

Group 1 76.29   -4.35 05 < .01* -1.78 

Group 2 57.35   -0.54 05 < .61* -0.22 

RWM -15 trials 49.30   -1.08 05 < .33* -0.44 

75|75  35.75 57.51     

P(e|c) 77.66   -2.06 07 < .08* -0.73 

ΔP 01.06   -1.71 07 < .13* -0.60 

Power PC Theory 04.39   -1.54 07 < .17* -0.55 

RWM-asymptotic 01.06   -1.71 07 < .13* -0.60 

RWM -15 trials 00.64   -1.73 07 < .13* -0.61 

P(e) 77.28   -2.04 07 < .08* -0.72 

P(c and e) 48.94   -0.65 07 < .54* -0.23 

Note.  Predicted = Predicted theoretical value.  Group 1 = Bayes Theorem 

(P(e|c)), ΔP, RWM-asymptotic, Power PC Theory; Group 2 =  Law of total 

probability, P(c and e).  *Findings that are statistically non-significant indicate 

that the predicted value was equivalent to the observed causal attributions. 
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APPENDIX AC 

Method Used to Generate Predicted RWM Values for Theoretical Comparison 

RWM asymptotic 

 

Approach used by Buehner, Cheng, and Clifford (2003) and was proposed in Wasserman 

et al. (1993). 

 

𝑉𝑎𝑠𝑦𝑚𝑝𝑡𝑜𝑝𝑖𝑐 =
𝑎

𝑎 + 𝑏
−

𝑐

𝑐 + 𝑑
 

 

where  

 a = P(E|C) 

 b = P(~E|C) 

 c = P(E|~C) 

 d = P(~E|~C) 

 

 

RWM – 15 trials 

 

Tables AC1 through AC6 illustrate the application of the following equations to generate 

the predicted values given 15 trials of observations.  I used the same alpha and beta 

values to generate these predictions as Buehner, Cheng, and Clifford (2003). 

 

∆𝑉 = 𝛼𝛽(𝜆 − 𝑉𝑖𝑛𝑖𝑡𝑖𝑎𝑙)  
and 

𝑉𝑒𝑛𝑑 𝑡𝑟𝑖𝑎𝑙 = 𝑉𝑖𝑛𝑖𝑡𝑖𝑎𝑙 + ∆𝑉 
 

where 

 𝑉𝑖𝑛𝑡𝑖𝑡𝑎𝑙
𝑡 = 𝑉𝑒𝑛𝑑 𝑡𝑟𝑖𝑎𝑙

𝑡−1  

 𝑉𝑖𝑛𝑡𝑖𝑡𝑎𝑙
𝑡=1 = 0.00 

 ∆𝑉 = change in association strength 

 𝛼 = salience of blood pressure observation 

 β = salience of treatment selection 

 λ = causal contingency value or ΔP value 
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Table AC1 

Generation of RWM Predicted Value for the 25|0 Contingency Manipulation with 

the Discrete System Condition 

Trial Treatment Initial Vt ΔV EndTrial Vt 

1 1 0.00 0.03 0.03 

2 1 0.03 0.03 0.06 

3 1 0.06 0.03 0.08 

4 1 0.08 0.02 0.11 

5 1 0.11 0.02 0.13 

6 1 0.13 0.02 0.15 

7 1 0.15 0.02 0.16 

8 1 0.16 0.02 0.18 

9 1 0.18 0.02 0.20 

10 1 0.20 0.01 0.21 

11 1 0.21 0.01 0.22 

12 0 0.22 0.00 0.23 

13 0 0.23 0.00 0.23 

14 0 0.23 0.00 0.24 

15 0 0.24 0.00 0.24 

Note.  I used 15 trials because participants were not shown the outcome of their 

treatment selection in the 16th trial and 11 treatment selections given the 

probability that a treatment applied with the 25|0 causal contingency 

manipulation with the continuous system condition was .71.  Treatment 

Selections: 1= apply treatment, 0 = do not apply treatment.  α = 0.1, β(treatment) 

= .8, β(~treatment) = .3, λ = .37. 
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Table AC2 

Generation of RWM predicted Value for the 75|0 Contingency Manipulation with 

the Discrete System Condition 

Trial Treatment Initial Vt ΔV EndTrial Vt 

1 1 0.00 0.06 0.06 

2 1 0.06 0.06 0.12 

3 1 0.12 0.05 0.17 

4 1 0.17 0.05 0.22 

5 1 0.22 0.04 0.26 

6 1 0.26 0.04 0.30 

7 1 0.30 0.04 0.34 

8 1 0.34 0.03 0.38 

9 1 0.38 0.03 0.41 

10 1 0.41 0.03 0.44 

11 0 0.44 0.01 0.45 

12 0 0.45 0.01 0.46 

13 0 0.46 0.01 0.47 

14 0 0.47 0.01 0.48 

15 0 0.48 0.01 0.48 

Note.  I used 15 trials because participants were not shown the outcome of their 

treatment selection in the 16th trial and 10 treatment selections given the 

probability that a treatment applied with the 75|0 causal contingency 

manipulation with the continuous system condition was .75.  Treatment 

Selections: 1= apply treatment, 0 = do not apply treatment.  α = 0.1, β(treatment) 

= .8, β(~treatment) = .3, λ = .77. 
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Table AC3 

Generation of RWM Predicted Value for the 75|75 Contingency Manipulation 

with the Discrete System Condition 

Trial Treatment Initial Vt ΔV EndTrial Vt 

1 1 0.0000 0.0017 0.0017 

2 1 0.0017 0.0016 0.0033 

3 1 0.0033 0.0015 0.0048 

4 1 0.0048 0.0014 0.0062 

5 1 0.0062 0.0012 0.0074 

6 1 0.0074 0.0011 0.0085 

7 1 0.0085 0.0011 0.0096 

8 1 0.0096 0.0010 0.0106 

9 1 0.0106 0.0009 0.0115 

10 0 0.0115 0.0003 0.0118 

11 0 0.0118 0.0003 0.0121 

12 0 0.0121 0.0003 0.0123 

13 0 0.0123 0.0003 0.0126 

14 0 0.0126 0.0003 0.0129 

15 0 0.0129 0.0003 0.0132 

Note.  I used 15 trials because participants were not shown the outcome of their 

treatment selection in the 16th trial and 9 treatment selections given the 

probability that a treatment applied with the 75|75 causal contingency 

manipulation with the continuous system condition was .58.  Treatment 

Selections: 1= apply treatment, 0 = do not apply treatment.  α = 0.1, β(treatment) 

= .8, β(~treatment) = .3, λ = .02. 
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Table AC4 

Generation of RWM Predicted Value for the 25|0 Contingency Manipulation with 

the Continuous System Condition 

Trial Treatment Initial Vt ΔV EndTrial Vt 

1 1 0.00 0.03 0.03 

2 1 0.03 0.03 0.06 

3 1 0.06 0.03 0.08 

4 1 0.08 0.02 0.11 

5 1 0.11 0.02 0.13 

6 1 0.13 0.02 0.15 

7 1 0.15 0.02 0.17 

8 1 0.17 0.02 0.18 

9 1 0.18 0.02 0.20 

10 1 0.20 0.01 0.21 

11 0 0.21 0.00 0.22 

12 0 0.22 0.00 0.22 

13 0 0.22 0.00 0.23 

14 0 0.23 0.00 0.23 

15 0 0.23 0.00 0.24 

Note.  I used 15 trials because participants were not shown the outcome of their 

treatment selection in the 16th trial and 10 treatment selections given the 

probability that a treatment applied with the 25|0 causal contingency 

manipulation with the continuous system condition was .68.  Treatment 

Selections: 1= apply treatment, 0 = do not apply treatment.  α = 0.1, β(treatment) 

= .8, β(~treatment) = .3, λ = .38. 
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Table AC5 

Generation of RWM Predicted Value for the 75|0 Contingency Manipulation with 

the Continuous System Condition 

Trial Treatment Initial Vt ΔV EndTrial Vt 

1 1 0.00 0.06 0.06 

2 1 0.06 0.06 0.12 

3 1 0.12 0.05 0.17 

4 1 0.17 0.05 0.22 

5 1 0.22 0.04 0.26 

6 1 0.26 0.04 0.30 

7 1 0.30 0.04 0.34 

8 1 0.34 0.03 0.37 

9 1 0.37 0.03 0.40 

10 1 0.40 0.03 0.43 

11 1 0.43 0.03 0.46 

12 0 0.46 0.01 0.47 

13 0 0.47 0.01 0.48 

14 0 0.48 0.01 0.48 

15 0 0.48 0.01 0.49 

Note.  I used 15 trials because participants were not shown the outcome of their 

treatment selection in the 16th trial and 11 treatment selections given the 

probability that a treatment applied with the 75|0 causal contingency 

manipulation with the continuous system condition was .75.  Treatment 

Selections: 1= apply treatment, 0 = do not apply treatment.  α = 0.1, β(treatment) 

= .8, β(~treatment) = .3, λ = .76. 
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Table AC6 

Generation of RWM Predicted Value for the 75|75 Contingency Manipulation 

with the Continuous System Condition 

Trial Treatment Initial Vt ΔV EndTrial Vt 

1 1 0.0000 0.0008 0.0008 

2 1 0.0008 0.0008 0.0016 

3 1 0.0016 0.0007 0.0023 

4 1 0.0023 0.0006 0.0029 

5 1 0.0029 0.0006 0.0035 

6 1 0.0035 0.0005 0.0040 

7 1 0.0040 0.0005 0.0045 

8 1 0.0045 0.0005 0.0050 

9 1 0.0050 0.0004 0.0054 

10 0 0.0054 0.0001 0.0056 

11 0 0.0056 0.0001 0.0057 

12 0 0.0057 0.0001 0.0058 

13 0 0.0058 0.0001 0.0060 

14 0 0.0060 0.0001 0.0061 

15 0 0.0061 0.0001 0.0062 

Note.  I used 15 trials because participants were not shown the outcome of their 

treatment selection in the 16th trial and 9 treatment selections given the 

probability that a treatment applied with the 75|75 causal contingency 

manipulation with the continuous system condition was .63.  Treatment 

Selections: 1= apply treatment, 0 = do not apply treatment.  α = 0.1, β(treatment) 

= .8, β(~treatment) = .3, λ = .01. 
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APPENDIX AD 

Predicted Causal Attributions  

 

In order to compare the observed findings to theoretical predictions, I calculated a set of 

predicted values (using the mean actual contingency value for each contingency 

manipulation) for popular theories within the causal reasoning literature including Bayes 

Theorem (i.e., P(e|c)), ΔP (i.e., P(e|c)-P(e|~c)), Power PC Theory (P(e|c)-P(e|~c))/(1-

P(e|~c)), and Rescorla-Wagner Model (i.e., RWM; see Appendix AC for calculations), as 

well as probabilistic values representative of reasoning strategies described by 

participants in their debrief questionnaire responses including P(e) and P(c and e).  Table 

AD1 contains these predicted values alongside the mean of the observed causal 

attribution values for each contingency manipulation divided by intervention strategy. 
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Table AD1  

Predicted and Observed Causal Attributions separated by Contingency and 

System Conditions 

  Discrete System  Continuous System 

  25|0 75|0 75|75  25|0 75|0 75|75 

Mean observed causal attribution value 

Treatment-

biased 02.05 71.00 83.30 

 

0-0.63 82.10 80.73 

Unbiased 04.23 14.05 39.88  -42.10 52.06 37.11 

Observation-

independent 17.92 68.56 64.64 

 

0-3.87 71.57 63.72 

Observation-

dependent -5.32 10.30 44.25 

 

-37.81 54.67 35.75 

Predicted causal attribution value 

P(e|c)  37.29 77.18 78.17  -38.09 76.29 77.66 

ΔP 37.29 77.18 02.17  -38.09 76.29 01.06 

Power PC 

Theory  37.29 77.18 09.04 

 

-38.09 76.29 04.39 

RWM-

asymptotic 37.29 77.18 02.17 

 

-38.09 76.29 01.06 

RWM -15 

trials 24.10 48.40 01.32 

 

-23.83 49.30 00.64 

Law of total 

probability 26.48 52.48 77.40 

 

-25.99 57.35 77.28 

P(c and e) 26.48 52.48 45.34 
 

-25.99 57.35 48.94 

Note.  Intervention Strategies = Treatment-biased, Unbiased, Observation-

independent, Observation-dependent.  Bayes theorem = (P(e|c)); ΔP Model 

= P(e|c)-P(e|~c)); Power PC Theory = (P(e|c)-P(e|~c))/(1-P(e|~c)); RWM 

= Rescorla-Wagner Model, see Appendix AC for calculations; Law of total 

probability = P(e)  
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APPENDIX AE 

Additional Findings from Demographic and Debrief Analyses 

Treatment Onset and Offset 

I asked participants to quantify their expectations toward treatment onset and 

offset (i.e., the amount of time before the treatment takes effect and the amount of time it 

takes for the treatment to dissipate) to verify that the number of trials, as well as delay 

manipulations, fell within this expected timeframe.  The majority of participants stated 

that treatment onset  (X2 (1, n = 52) = 27.77, p < .01, Cramer’s V = .73) and offset  (X2 (1, 

n = 51) = 7.08, p = .01, Cramer’s V = .37) typically occur within the 16 day/trial 

timeframe of this study.  These biases were formed independent of their assigned system 

condition (Onset: t(50) = -1.06, p = .29, 95% CI [-8.08, 2.49], d = -.30 Offset: t(49) = -

0.45, p = .66, 95% CI [-13.24, 8.40], d = -.13).  Interestingly, a substantial number of 

participants expressed reluctance in generalizing both onset (n = 13) and offset (n = 16) 

timeframes for treatments, stating that temporal dynamics is confounded with the 

treatment type and the individual.  Figure AE1 summarizes participants’ general 

expectations about the treatment onset and offset durations.  
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Figure AE1.  Expectations about treatment onset and offset.  N = 65. 

 

Task Difficulty 

 I asked participants to rate the task difficulty of their final patient scenario on a 7-

point graphic ratings scale.  There was no significant difference in the task difficult 

between the discrete (M = 4.17, SD = 1.72) and continuous (M = 3.97, SD = 1.93) system 

conditions: t(70) = 0.45, p = .65, two-tailed, 95% CI [-0.67, 1.05], d = 0.11.  I combined 

the system condition data and performed a 3 (contingency) * 3 (delay) ANOVA.  There 

were no significant differences (Table AE1). 

Table AE1 

3 (Contingency) * 3 (Delay) ANOVA - Task Difficult Differences between 

Experimental Manipulations 

 Sum of 

Squares df 

Mean 

Square F p 𝜂2 

Contingency 006.78 02 3.39 1.02 .37 .03 

Delay 004.69 02 2.35 0.71 .50 .02 

Contingency * Delay 015.06 04 3.76 1.14 .35 .06 

Error 208.13 63 3.30    

Note.  System data was combined.  MSerror and df for delay contingency 

and delay was 3.33 and 67, respectively given no significant interaction. 
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HBQ Items to Number of Treatment Applications 

  Relative to our study, participants with higher ratings on the Health Belief 

Questionnaire (HBQ) items may apply the treatment less frequently when determining 

how the treatments influence the patients’ blood pressure levels.  Table AE2 contains the 

correlational analyses between the HBQ items and the total number of treatment 

applications participants applied across their three patient scenarios.  The item medicines 

do no harm than good was negatively correlated with the number of treatment 

applications, meaning the participants that agreed that medicines do more applied the 

treatment less frequently.  None of the other items were correlated with the number of 

treatment applications measure.  

Table AE2 

Correlational Analyses between Health Belief Questionnaire Items and Total 

Number of Apply Treatment Interventions 

 1. Too Many 2. Natural 3. Harm 4. Stop 

1. Too Many     

2. Natural .352**    

3. Harm .212 .242*   

4. Stop .152 .242* -.250*  

5. Apply Treatments .172 .126 -.243* -.009 

Note.  N = 72.  1. Too many = Doctors use too many medicines.  2. Natural = 

Natural remedies are safer than medicines.  3. Harm = Medicines do more harm 

than good.  4. Stop = People who take medicines should stop their treatment for a 

while every now and again.  5. Apply Treatments = Sum of the apply treatment 

interventions across the three patient scenarios.  *Correlation is significant at the 

0.05 level (2-tailed).  **Correlation is significant at the 0.01 level (2-tailed).   
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APPENDIX AF 

Self-reported Assessment Technique in the Judgment Task  

Differences in Assessment Technique between System Conditions 

Table AF1 presents the outcomes of chi-square goodness of fit tests used to assess 

differences between the system conditions.  Substantially more participants stated that 

they used information from specific trials when assigning causality with the continuous 

than with the discrete system.  None of the other assessment techniques significantly 

varied between the system conditions.  Potentially more of differences in assessment 

technique between the system conditions would reach significance if participants were 

prompted after each judgment task, rather than only after their last patient scenario. 

 

Table AF1 

Distribution of Self-Reported Assessment Techniques in the 

Judgment Task and Outcomes of Chi-Square Goodness of Fit Tests 

 Discrete 

System 

Continuous 

System  X2(1) p V 

Specific 02 10  5.33 .02 .67 

Tally 12 08  0.80 .37 .26 

Overall 05 08  0.69 .41 .23 

Intuition 06 02  2.00 .16 .50 

Unknown 11 08  0.47 .49 .16 

Note.  Specific = consideration of specific observations, Tally = 

number of successful or normal blood pressure observations, Overall 

= consideration of the overall effect of the treatment.  V = Cramer’s 

V. 

 

Implicit (unknown) vs. Explicit Judgment Task Technique 

 I assessed if causal attribution differed as a function of the interaction between 

participants’ intervention strategy in the learning task and whether they had an explicit 
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assessment technique in the judgment task.  Unknown responses and references to 

intuition and were coded as implicit, and the remaining responses were coded as explicit.  

Table AF2 contains the outcomes of two 2 (intervention strategy) by 2 (judgment task) 

ANOVAs.  None of the interactions were statistically significant.  Also, I considered 

whether the contingency and delay manipulations interacted with the explicitness of 

participants’ technique in the judgment task, again using causal attribution as the 

dependent measure.  There were no significant interactions with these analyses (Table 

AF3).   

Table AF2 

2 (Intervention Strategy) * 3 (Explicitness of Judgment Task Technique) ANOVAs 

 Sum of 

Squares df 

Mean 

Square F p 𝜂2 

Intervention Bias * Judgment 

Task 001287.09 01 1287.09 0.36 .55 < .01 

Error 241421.12 67 3603.30    

Observation Dependence * 

Judgment Task 003566.29 01 3566.29 1.08 .30  0.01 

Error 224233.79 68 3297.56    

Note.  System data was combined.   

 

Table AF3 

2 (Intervention Strategy) * 3 (Explicitness of Judgment Task Technique) ANOVAs 

 Sum of 

Squares df 

Mean 

Square F p 𝜂2 

Contingency * Judgment 

Task 001682.36 02 0841.18 0.19 .83 0.01 

Error 289112.34 66 4380.49    

Delay * Judgment Task 0010750.81 02 5375.41 1.31 .28 0.04 

Error 271051.60 66 4106.84    

Note.  System data was combined.   
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APPENDIX AG 

Actual Observed Contingency with for Each Treatment Intervention Distribution 

 

Table AG1 

Actual Observed Contingency with for Each Treatment Intervention 

Distribution 

Intervention Distribution1  Contingency Specification 

Treatment ~Treatment  25|0 75|0 75|75 

01 15  1.00|0 1.00|0 1.00|0.73 

02 14  0.50|0 0.50|0 0.50|0.71 

03 13  0.33|0 0.67|0 0.67|0.77 

04 12  0.25|0 0.75|0 0.75|0.75 

05 11  0.40|0 0.80|0 0.80|0.73 

06 10  0.33|0 0.67|0 0.67|0.70 

07 09  0.29|0 0.71|0 0.71|0.78 

08 08  0.25|0 0.75|0 0.75|0.75 

09 07  0.33|0 0.78|0 0.78|0.71 

10 06  0.30|0 0.70|0 0.70|0.67 

11 05  0.27|0 0.73|0 0.73|0.80 

12 04  0.25|0 0.75|0 0.75|0.75 

13 03  0.31|0 0.77|0 0.77|0.67 

14 02  0.29|0 0.71|0 0.71|0.50 

15 01  0.27|0 0.73|0 0.73|1.00 

16 00  0.25|0 0.75|0 0.75|? 

Note.  Treatment = total number of applications of the treatment.  

~Treatment = total number of instances that the treatment was 

withheld. 
1Several of these treatment distributions were not observed.  The 

minimum number of treatment selections applied by participants in the 

discrete and continuous system condition was three and six, 

respectively.   
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APPENDIX AH 

Runs Tests for Randomness 

A series of Wald-Wolfowitz runs tests for randomness on each string of intervention 

selections suggests that participants’ intervention strategy was largely random with both 

the discrete and continuous system conditions.  Table AH1 summarizes the number of 

non-random strategies organized by experimental manipulation combination.  Tables 

AH2, AH3, and AH4 contain the data and findings pertaining to the discrete system 

condition.  Tables AH5, AH6, and AH7 contain the data and findings pertaining to the 

continuous system condition.  It is important to note that closer examination of the 

intervention selections identified by the runs tests as random, revealed patterns of 

behavior that were directly tied to specific observations. 
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Table AH1 

Summary of the Runs Tests for Randomness – Number of Non-Random Intervention 

Strategies 

 Discrete  Continuous 

 Table z distribution  Table z distribution 

Across 

Manipulations 9 16 

 

23 36 

25|0*      

One-trial delay 0 02  01 02 

Two-trial delay 1 01  00 02 

Three-trial delay 0 02  03 04 

75|0*      

One-trial delay 4 04  02 04 

Two-trial delay 1 01  03 05 

Three-trial delay 0 02  03 03 

75|75 *      

One-trial delay 0 00  04 06 

Two-trial delay 0 01  04 04 

Three-trial delay 3 03  03 06 

Note.  Ndiscrete = 108, Ncontinuous = 108, Discrete = discrete system condition, 

Continuous = continuous system condition, z distribution = number of instances 

with p < .05 using a z distribution (typically used for samples of over 20),  table = 

number of instances with p < .05 using the critical values table for when 

observations are less than or equal to 20 (Swed & Eisenhart, 1943) 
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Table AH2 

Runs Tests for Randomness – Consideration of Intervention Strategies from the Discrete 

System Condition with 25|0 Contingency  

  

Treatment ~Treatment R �̅� 𝑠𝑅 Z 

25|0, one-

trial delay 
3 13 5 5.88 1.12 -0.78 

14 2 5 4.50 0.76 0.65 

13 3 6 5.88 1.12 0.11 

15 1 3 2.88 0.33 0.38 

16 0 1 1.00 0.00 NA 

11 5 9 7.88 1.64 0.69 

11 5 7 7.88 1.64 -0.53 

12 4 8 7.00 1.41 0.71 

13 3 3 5.88 1.12 -2.56* 

11 5 7 7.88 1.64 -0.53 

13 3 3 5.88 1.12 -2.56* 

13 3 7 5.88 1.12 1.00 

25|0, two-

trial delay 
12 4 6 7.00 1.41 -0.71 

12 4 5 7.00 1.41 -1.41 

14 2 5 4.50 0.76 0.65 

10 6 5 8.50 1.80 -1.94 

9 7 7 8.88 1.90 -0.99 

11 5 3 7.88 1.64 -2.97*° 

13 3 7 5.88 1.12 1.00 

10 6 7 8.50 1.80 -0.83 

13 3 7 5.88 1.12 1.00 

12 4 7 7.00 1.41 0.00 

16 0 1 1.00 0.00 NA 

16 0 1 1.00 0.00 NA 

25|0, three-

trial delay 
10 6 7 8.50 1.80 -0.83 

4 12 4 7.00 1.41 -2.12* 

11 5 7 7.88 1.64 -0.53 

13 3 3 5.88 1.12 -2.56* 

13 3 7 5.88 1.12 1.00 

6 10 8 8.50 1.80 -0.28 

8 8 11 9.00 1.93 1.04 

6 10 6 8.50 1.80 -1.39 

12 4 7 7.00 1.41 0.00 

13 3 7 5.88 1.12 1.00 

6 10 10 8.50 1.80 0.83 

13 3 7 5.88 1.12 1.00 

Note.  *p < .05 using z distribution (typically used for samples of over 20), °p<.05 using 

critical values table for when observations are less than or equal to 20 (Swed & 

Eisenhart, 1943), Treatment = the number of apply treatment interventions, ~ Treatment 

= the number of withhold treatment interventions, R = the observed number of runs, �̅� = 

the expected number of runs, 𝑠𝑅 = the standard deviation of the number of run.   
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Table AH3 

Runs Tests for Randomness – Consideration of Intervention Strategies from the Discrete 

System Condition with 75|0 Contingency  

  

Treatment ~Treatment R �̅� 𝑠𝑅 Z 

75|0, one-

trial delay 
12 4 9 7.00 1.41 1.41 

15 1 3 2.88 0.33 0.38 

15 1 3 2.88 0.33 0.38 

16 0 1 1.00 0.00 NA 

9 7 14 8.88 1.90 2.70*° 

11 5 8 7.88 1.64 0.08 

9 7 10 8.88 1.90 0.59 

12 4 7 7.00 1.41 0.00 

9 7 14 8.88 1.90 2.70*° 

14 2 3 4.50 0.76 -1.96 

7 9 2 8.88 1.90 -3.62*° 

12 4 3 7.00 1.41 -2.83*° 

75|0, two-

trial delay 
9 7 9 8.88 1.90 0.07 

10 6 7 8.50 1.80 -0.83 

14 2 3 4.50 0.76 -1.96 

16 0 1 1.00 0.00 NA 

12 4 3 7.00 1.41 -2.83*° 

8 8 9 9.00 1.93 0.00 

10 6 9 8.50 1.80 0.28 

10 6 7 8.50 1.80 -0.83 

11 5 8 7.88 1.64 0.08 

10 6 9 8.50 1.80 0.28 

9 7 9 8.88 1.90 0.07 

10 6 9 8.50 1.80 0.28 

75|0, three-

trial delay 
5 11 11 7.88 1.64 1.90 

10 6 9 8.50 1.80 0.28 

9 7 10 8.88 1.90 0.59 

16 0 1 1.00 0.00 NA 

13 3 3 5.88 1.12 -2.56* 

15 1 2 2.88 0.33 -2.65* 

9 7 9 8.88 1.90 0.07 

12 4 9 7.00 1.41 1.41 

11 5 9 7.88 1.64 0.69 

8 8 11 9.00 1.93 1.04 

9 7 10 8.88 1.90 0.59 

7 9 10 8.88 1.90 0.59 

Note.  *p < .05 using z distribution (typically used for samples of over 20), °p<.05 using 

critical values table for when observations are less than or equal to 20 (Swed & 

Eisenhart, 1943), Treatment = the number of apply treatment interventions, ~ Treatment 

= the number of withhold treatment interventions, R = the observed number of runs, �̅� = 

the expected number of runs, 𝑠𝑅 = the standard deviation of the number of run. 
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Table AH4 

Runs Tests for Randomness – Consideration of Intervention Strategies from the Discrete 

System Condition with 75|75 Contingency  

  

Treatment ~Treatment R �̅� 𝑠𝑅 Z 
75|75, one-

trial delay 
5 11 8 7.88 1.64 0.08 

16 0 1 1.00 0.00 NA 

10 6 6 8.50 1.80 -1.39 

5 11 8 7.88 1.64 0.08 

5 11 7 7.88 1.64 -0.53 

5 11 8 7.88 1.64 0.08 

5 11 8 7.88 1.64 0.08 

11 5 8 7.88 1.64 0.08 

8 8 8 9.00 1.93 -0.52 

16 0 1 1.00 0.00 NA 

5 11 8 7.88 1.64 0.08 

16 0 1 1.00 0.00 NA 

75|75 two-

trial delay 

8 8 8 9.00 1.93 -0.52 

1 15 2 2.88 0.33 -2.65* 

15 1 3 2.88 0.33 0.38 

16 0 1 1.00 0.00 NA 

4 12 9 7.00 1.41 1.41 

7 9 8 8.88 1.90 -0.46 

11 5 8 7.88 1.64 0.08 

15 1 3 2.88 0.33 0.38 

5 11 8 7.88 1.64 0.08 

12 4 6 7.00 1.41 -0.71 

7 9 10 8.88 1.90 0.59 

6 10 10 8.50 1.80 0.83 

75|75, three-

trial delay 
8 8 11 9.00 1.93 1.04 

8 8 8 9.00 1.93 -0.52 

14 2 5 4.50 0.76 0.65 

11 5 2 7.88 1.64 -3.58*° 

15 1 3 2.88 0.33 0.38 

6 10 8 8.50 1.80 -0.28 

10 6 11 8.50 1.80 1.39 

7 9 9 8.88 1.90 0.07 

16 0 1 1.00 0.00 NA 

6 10 5 8.50 1.80 -1.94 

10 6 3 8.50 1.80 -3.05*° 

8 8 3 9.00 1.93 -3.11*° 

Note.  *p < .05 using z distribution (typically used for samples of over 20), °p<.05 using 

critical values table for when observations are less than or equal to 20 (Swed & 

Eisenhart, 1943), Treatment = the number of apply treatment interventions, ~ Treatment 

= the number of withhold treatment interventions, R = the observed number of runs, �̅� = 

the expected number of runs, 𝑠𝑅 = the standard deviation of the number of run.   
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Table AH5 

Runs Tests for Randomness – Consideration of Intervention Strategies from the 

Continuous System Condition with 25|0 Contingency  

  

Treatment ~Treatment R �̅� 𝑠𝑅 Z 

25|0, one-

trial delay 
7 9 7 8.88 1.90 -0.99 

10 6 2 8.50 1.80 -3.61*° 

12 4 8 7.00 1.41 0.71 

12 4 9 7.00 1.41 1.41 

13 3 5 5.88 1.12 -0.78 

14 2 3 4.50 0.76 -1.96 

9 7 7 8.88 1.90 -0.99 

10 6 9 8.50 1.80 0.28 

12 4 4 7.00 1.41 -2.12* 

12 4 5 7.00 1.41 -1.41 

14 2 3 4.50 0.76 -1.96 

15 1 3 2.88 0.33 0.38 

25|0, two-

trial delay 
6 10 11 8.50 1.80 1.39 

10 6 9 8.50 1.80 0.28 

10 6 5 8.50 1.80 -1.94 

11 5 8 7.88 1.64 0.08 

11 5 7 7.88 1.64 -0.53 

12 4 5 7.00 1.41 -1.41 

8 8 5 9.00 1.93 -2.07* 

9 7 9 8.88 1.90 0.07 

10 6 7 8.50 1.80 -0.83 

13 3 3 5.88 1.12 -2.56* 

14 2 5 4.50 0.76 0.65 

16 0 1 1.00 0.00 NA 

25|0, three-

trial delay 
6 10 8 8.50 1.80 -0.28 

8 8 8 9.00 1.93 -0.52 

9 7 14 8.88 1.90 2.70*° 

11 5 10 7.88 1.64 1.29 

11 5 5 7.88 1.64 -1.75 

14 2 5 4.50 0.76 0.65 

8 8 6 9.00 1.93 -1.55 

9 7 6 8.88 1.90 -1.51 

10 6 7 8.50 1.80 -0.83 

11 5 4 7.88 1.64 -2.36*° 

13 3 2 5.88 1.12 -3.45*° 

13 3 3 5.88 1.12 -2.56* 

Note.  *p < .05 using z distribution (typically used for samples of over 20), °p<.05 using 

critical values table for when observations are less than or equal to 20 (Swed & 

Eisenhart, 1943), Treatment = the number of apply treatment interventions, ~ Treatment 

= the number of withhold treatment interventions, R = the observed number of runs, �̅� = 

the expected number of runs, 𝑠𝑅 = the standard deviation of the number of run.   
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Table AH6 

Runs Tests for Randomness – Consideration of Intervention Strategies from the 

Continuous System Condition with 75|0 Contingency  

  

Treatment ~Treatment R �̅� 𝑠𝑅 Z 

75|0, one-

trial delay 

9 7 13 8.88 1.90 2.17* 

11 5 11 7.88 1.64 1.90 

12 4 5 7.00 1.41 -1.41 

14 2 3 4.50 0.76 -1.96* 

16 0 1 1.00 0.00 NA 

16 0 1 1.00 0.00 NA 

8 8 14 9.00 1.93 2.59*° 

9 7 15 8.88 1.90 3.22*° 

10 6 10 8.50 1.80 0.83 

11 5 6 7.88 1.64 -1.14 

13 3 6 5.88 1.12 0.11 

16 0 1 1.00 0.00 NA 

75|0, two-

trial delay 
10 6 5 8.50 1.80 -1.94 

11 5 7 7.88 1.64 -0.53 

12 4 5 7.00 1.41 -1.41 

13 3 2 5.88 1.12 -3.45*° 

13 3 5 5.88 1.12 -0.78 

15 1 2 2.88 0.33 -2.65* 

6 10 8 8.50 1.80 -0.28 

8 8 2 9.00 1.93 -3.62*° 

13 3 2 5.88 1.12 -3.45*° 

13 3 3 5.88 1.12 -2.56* 

16 0 1 1.00 0.00 NA 

16 0 1 1.00 0.00 NA 

75|0, three-

trial delay 
6 10 6 8.50 1.80 -1.39 

10 6 13 8.50 1.80 2.50*° 

12 4 2 7.00 1.41 -3.54*° 

14 2 5 4.50 0.76 0.65 

15 1 3 2.88 0.33 0.38 

16 0 1 1.00 0.00 NA 

8 8 4 9.00 1.93 -2.59*° 

9 7 10 8.88 1.90 0.59 

10 6 5 8.50 1.80 -1.94 

11 5 5 7.88 1.64 -1.75 

15 1 3 2.88 0.33 0.38 

16 0 1 1.00 0.00 NA 

Note.  *p < .05 using z distribution (typically used for samples of over 20), °p<.05 using 

critical values table for when observations are less than or equal to 20 (Swed & 

Eisenhart, 1943), Treatment = the number of apply treatment interventions, ~ Treatment 

= the number of withhold treatment interventions, R = the observed number of runs, �̅� = 

the expected number of runs, 𝑠𝑅 = the standard deviation of the number of run. 
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Table AH7 

Runs Tests for Randomness – Consideration of Intervention Strategies from the 

Continuous System Condition with 75|75 Contingency  

  

Treatment ~Treatment R �̅� 𝑠𝑅 Z 

75|75, one-

trial delay 
6 10 2 8.50 1.80 -3.61*° 

12 4 3 7.00 1.41 -2.83*° 

13 3 6 5.88 1.12 0.11 

14 2 3 4.50 0.76 -1.96 

15 1 2 2.88 0.33 -2.65* 

16 0 1 1.00 0.00 NA 

5 11 2 7.88 1.64 -3.58*° 

5 11 8 7.88 1.64 0.08 

8 8 4 9.00 1.93 -2.59*° 

9 7 8 8.88 1.90 -0.46 

13 3 3 5.88 1.12 -2.56* 

16 0 1 1.00 0.00 NA 

75|75 two-

trial delay 
3 13 4 5.88 1.12 -1.67 

5 11 6 7.88 1.64 -1.14 

8 8 9 9.00 1.93 0.00 

9 7 2 8.88 1.90 -3.62*° 

16 0 1 1.00 0.00 NA 

16 0 1 1.00 0.00 NA 

5 11 8 7.88 1.64 0.08 

9 7 3 8.88 1.90 -3.09*° 

9 7 2 8.88 1.90 -3.62*° 

13 3 2 5.88 1.12 -3.45*° 

16 0 1 1.00 0.00 NA 

16 0 1 1.00 0.00 NA 

75|75, three-

trial delay 
1 15 2 2.88 0.33 -2.65* 

3 13 3 5.88 1.12 -2.56* 

6 10 4 8.50 1.80 -2.50*° 

10 6 4 8.50 1.80 -2.50*° 

11 5 11 7.88 1.64 1.90 

14 2 2 4.50 0.76 -3.27*° 

6 10 12 8.50 1.80 1.94 

7 9 11 8.88 1.90 1.12 

8 8 9 9.00 1.93 0.00 

9 7 11 8.88 1.90 1.12 

15 1 2 2.88 0.33 -2.65* 

16 0 1 1.00 0.00 NA 

Note.  *p < .05 using z distribution (typically used for samples of over 20), °p<.05 using 

critical values table for when observations are less than or equal to 20 (Swed & 

Eisenhart, 1943), Treatment = the number of apply treatment interventions, ~ Treatment 

= the number of withhold treatment interventions, R = the observed number of runs, �̅� = 

the expected number of runs, 𝑠𝑅 = the standard deviation of the number of run. 
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APPENDIX AI 

Effect of System on Strategy with Data Separated by each Experimental Manipulation 

Combination 

 

 

Table AI1 

Distribution of Participants’ Intervention Bias and Outcomes of Fisher’s Exact Tests 

 Discrete System  Continuous System  

 Unbiased Biased  Unbiased Biased p 

25|0 and       

One-trial delay 3 8  4 8 1.00 

Two-trial delay 4 8  8 4 0.22 

Three-trial delay 6 5  9 3 0.40 

75|0 and       

One-trial delay 5 7  6 6 1.00 

Two-trial delay 9 3  4 8 0.10 

Three-trial delay 8 4  6 6 0.68 

75|75 and       

One-trial delay 9 3  5 7 0.21 

Two-trial delay 6 4  6 5 1.00 

Three-trial delay 9 3  7 3 1.00 

Note.  Biased = Treatment-biased intervention strategy.  All tests two-tailed. 
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Table AI2 

Distribution of Participants’ Observation Dependence and Outcomes of Fisher’s Exact 

Tests 

 Discrete System  Continuous System  

 Independent Dependent  Independent Dependent p 

25|0 and       

One-trial delay 06 6  06 6 1.00 

Two-trial delay 04 8  04 8 1.00 

Three-trial delay 04 8  06 6 0 .68 

75|0 and       

One-trial delay 10 2  09 3 1.00 

Two-trial delay 03 9  10 2 0.01 

Three-trial delay 03 9  11 1 < .01 

75|75 and       

One-trial delay 03 9  10 2 0.01 

Two-trial delay 04 8  09 3 0.10 

Three-trial delay 08 4  09 3 1.00 

Note.  Independent = Observation-independent intervention strategy; Dependent = 

Observation-dependent intervention strategy.  All tests two-tailed. 
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APPENDIX AJ 

Fisher’s Exact Tests using Nominal Attributions 

To help understand why the causal attributions were more extreme with the continuous 

system, I compared the abstract, nominal attributions related to the 25|0 and 75|0 

contingency manipulations using Fisher’s Exact Tests.  I considered the number of 

participants that selected raised, no effect, and lowered separately as their nominal 

attribution in combination with the 25|0 and 75|0 contingency manipulations in both 

system conditions.  The outcomes of these tests indicate that attributions are formed 

independent of system condition (Table AJ1).   

Table AJ1  

Frequency of Abstract, Nominal Attributions separated by the System Condition 

and Contingency and Outcomes of Chi-square Tests for Independence 

 Discrete System  Continuous System   

 25|0 75|0  25|0 75|0 p p** 

Raised 10 06  15 01 .08  

No Effect 14 06  14 00 NA .11 

Lowered 12 24  07 35 .11  

Note.  n(raised) = 32, n(no-effect) = 34, n(lowered) = 78.  **p = Fisher’s Exact 

test calculated with adjusted data (i.e., +1 was added to every cell).  Raised = 

nominal selection that the treatment raised the patient’s blood pressure level, No 

effect = nominal selection that the treatment had no effect on the patient’s blood 

pressure level, Lowered = nominal selection that the treatment lowered the 

patient’s blood pressure level.  All tests two tailed.   
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