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ABSTRACT 

 

Ghahghaei Nezamabadi, Shirin. M.S. Department of Earth and Environmental Sciences, Wright 

State University, 2015.  Accelerated Degradation of Chlorinated Solvents by Nanoscale Zero-

Valent Iron Coated with Iron Monosulfide and Stabilized with Carboxymethyl Cellulose. 

 

 

 

 

 Nanoscale zero-valent iron (nZVI) injections have proven to be a promising approach for 

the remediation of aquifers contaminated by chlorinated organic pollutants. This study compares 

the efficacy of nZVI in sulfidated and unamended forms in degrading selected chlorinated 

hyrocarbons (CHCs). Results show that nZVI amended with iron monosulfide (FeS) increases 

the rate of dechlorination of CT, CF and 1,1,1-TCA compared to that by unamended nZVI.  

 The focus of this research was to characterize degradation kinetics and degradation 

byproduct distributions of CT, CF and 1,1,1-TCA by nZVI coated by iron monosulfide, which is 

represented as nZVI/FeS. To prevent nZVI particles from agglomerating, 

carboxymethylcellulose (CMC) was used as a stabilizer in all experiments. Results indicated that 

the nZVI/FeS system was faster and produced less toxic byproducts than nZVI for all CHCs 

studied. α-elimination in nZVI/FeS system was an important degradation pathway for CF and 

1,l,1-TCA: it produces reactive carbene intermediates capable of degrading into benign products 

such as methane, ethane, and ethene. 

 The effect of sulfide loading on degradation was evaluated with all CHCs studied. 

Regardless of CHC type, the rate constant (kobs) increased with increasing sulfide loading, 
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reaching the highest amount at 1 wt% sulfide, and then decreased with higher sulfide loading. An 

additional study focused on the effects of varying of the concentration of nZVI and CMC, and 

particle longevity on the degradation of 1,1,1-TCA in the nZVI/FeS system with 1 wt.% sulfide. 

Particle longevity experiments showed that reactivity with 1,1,1-TCA decreases as particles age. 

nZVI/FeS particles showed a rapid power function decline in reactivity with time. Increasing the 

amount of iron-reducing chemical during nZVI/FeS synthesis improved reactivity by 43%. The 

addition of a polyelectrolyte stabilizer at an optimized concentration of 4.0 g/L further increased 

nZVI/FeS reactivity by 350%. nZVI/FeS shows great potential for treating certain CHCs. 
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Chapter 1 

BACKGROUND 

1.1 CHCs Pollution in Groundwater  

Chlorinated hydrocarbons (CHCs), including chlorinated methanes, ethanes, and ethenes are 

significant environmental contaminants due to their adverse toxicological effect at low 

concentrations and their presence in soil and groundwater at sites where they are produced, used 

or disposed (Barbee, 1994). CHCs including carbon tetrachloride (CT), perchloroethene (PCE), 

trichloroethene (TCE) and 1,1,1-trichloroethane (TCA) were commonly used cleaning and 

degreasing solvents in the United States (Doherty, 2000). They also have been used in a variety 

of other applications such as adhesives, pharmaceuticals, textile processing, paints and as 

feedstock for other chemicals. However, through general dispersal, during normal usage and also 

as a result of indiscriminate disposal, chlorinated solvents have caused a variety of 

environmental problems. One such problem of great concern is the contamination of 

groundwater (Mackay and Cherry, 1991).  

 A survey of groundwater quality at 479 waste disposal sites, including 178 CERCLA and 

173 RCRA sites, and 128 sanitary/municipal landfills, showed that CHCs were detected in 

groundwater due to improper disposal from all 10 U.S. EPA Regions (Plumb, 1991). The 

mobility of CHCs in the subsurface environment is strongly influenced by their physicochemical 

properties. In the vadose zone, their high vapor pressures and relatively low water solubility may 
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cause certain CHCs them to partition into the gaseous phase and migrate as volatilized 

constituents. That fraction of CHC chemicals that dissolves in soil pore water or groundwater 

can be readily transported with the water if CHC interaction with, and adsorption by, soil and 

aquifer solids is not a significant factor. As immiscible DNAPLs, CHCs will migrate in the 

subsurface under gravitational forces until they disperse, dissolve, degrade, or are removed 

through remedial operations (Barbee, 1994). 

1.2 Degradation of CHCs 

Since 1980, when the widespread contamination with chlorinated solvents become apparent, 

much has been learned about their movement and fate in the environment, and many different 

technical approaches to addressing their contamination of soil, air and groundwater have been 

developed (Stroo and Ward, 2010). Because of the cost, the magnitude and difficulties of 

remediation of sites contaminated with chlorinated solvents, the search for and implementation 

of new and cost-effective physical, chemical and biological site remediation approaches still 

continues. 

 Two remediation approaches were commonly employed in 1980s and 1990s. The first 

was the excavation and safe disposal of contaminated soil. The second involved pumping 

groundwater to the surface for treatment (pump-and-treat). Complete remediation by pump-and-

treat processes has proven difficult to achieve (Mackay and Cherry, 1989). Of the 77 sites 

reviewed by an NRC panel, 69 could not meet cleanup goals after 20 years of pump and treat 

(NRC, 1994). Because of geological complexities and slow rates of contaminant 

desorption/diffusion from the low permeability matrix in aquifers, many pore volumes of water 

must often be extracted/pumped in order to flush out the contaminants from a given area, 
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requiring treatment times on the order of decades, (Mackay and Cherry, 1989). Alternative 

treatment approaches have been developed to surmount some of these difficulties. These 

technologies include monitored natural attenuation, physical extraction/removal (e.g. soil vapor 

extraction, air sparging) and in situ destruction (e.g., bioremediation, chemical oxidation and 

reduction, including by permeable reactive barriers or PRBs). 

 PRBs involve the placement of a permeable barrier down-gradient of the contaminant 

source to treat the plume of contaminated groundwater. PRBs can degrade or sequester the 

contaminants within the reactive treatment zone and release treated water down-gradient. The 

reactive treatment zone of PRBs can be created by injecting/placing a mixture of reactive 

material and sand into the subsurface. Numerous studies have investigated various reactive 

reagents/materials that can be used in PRBs (Richardson and Nicklow, 2002; Henderson and 

Demond, 2007). The most common type of PRB is constructed using a zero-valent metal as the 

reactive media (Sale et al., 2008). Zero-valent iron (ZVI) became the metal of choice in early 

studies since it is generally non-toxic and relatively inexpensive (Matheson and Tratnyek, 1994).  

Iron filings from scrap metals and coarse iron particles are typically used in PRBs due to their 

availability and low cost. However, PRB is a passive remediation technology and does not 

eliminate the DNAPL source in the subsurface, necessitating continued site monitoring and, in 

some cases, periodic replacement of the reactive media (Roehl et al., 2005). In 1997, the 

development of nanoscale zero-valent iron (nZVI) that was more reactive due to smaller particle 

size brought with it the promise of more rapid and complete remediation of contaminants (Wang 

and Zhang 1997). Because of their small size, nZVI particles could potentially be injected into 

the subsurface and subsequently be transported to and mixed with the target contaminants. This 

possibility transformed zero-valent iron from an immobile, passive technology to one capable of 



4 
 

remediation with greater flexibility of both contaminant plumes and source zones (Nyer and 

Vance, 2001). In situ remediation by nZVI became more desirable because it may more 

completely degrade contamination at a lower cost. As an in situ technology, nZVI injection is 

attractive because it avoids the high cost of extracting and treating large volumes of water above 

ground (pump-and-treat) (Nyer and Vance, 2001), or constructing a PRB. The high reactivity of 

nZVI is a result of its high ratio of surface area to mass,expressed as specific surface area.. nZVI 

is normally injected as a slurry into the subsurface via a well. Some applications utilize single 

wells (direct push), while other applications may utilize pairs of wells (recirculation) (Gavaskar 

et al., 2005). Because no excavation is needed, nZVI can be applied at greater depths than PRBs 

and at sites where buildings or ongoing operations prohibit more invasive methods.  

Recently, multicomponent nanoparticles have received considerable attention (e.g., 

Fe/FeS) (kim et al., 2011) because they provide novel functions not available in single-

component nanoparticles, such as nZVI. It is expected that the improved catalytic properties can 

be achieved by a combination of iron sulfide and nanoscale zero-valent iron (Kim et al., 2011). 

1.3 Degradation Processes Affecting Chlorinated Hydrocarbons 

Highly chlorinated compounds are generally considered recalcitrant to oxidative microbial 

degradation (Vogel et al., 1994) which may be due primarily to the oxidized state of carbon in 

the molecules. The greater the number of chlorines on the hydrocarbon molecule, the more 

oxidized is the carbon in the compound. The oxidation state of the carbon in the hydrocarbon 

compound determines the range of chemical and biological transformations that the compound is 

likely to undergo (Vogel et al., 1994). For instance, perchloroethene (PCE) is already a highly 

oxidized molecule that will not naturally undergo further microbial oxidation in groundwater, but 
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can be dechlorinated under a reducing geochemical condition. Vinyl chloride, with just one 

chlorine atom substitution, may be subject to microbial oxidation using molecular oxygen and 

ferric iron as electron acceptors (Bradley and Chapelle, 1997). 

 It is often difficult to determine the exact mechanisms by which CHCs are transformed in 

the field. However, it is possible to discern the likely degradation processes from an 

understanding of the geochemical environment and the daughter products at a contaminated field 

site. A major concern associated with reductive degradation of CHCs is the production of toxic 

byproducts (Song and Carraway, 2005). For all these reasons, it is important to understand the 

kinetics and reaction pathways of byproducts for zero-valent metal systems (Arnold et al., 1999). 

The common reaction pathways of CHC degradation are hydrogenolysis, hydrolysis, 

dehydrochlorination, and dichloroelimination. Hydrogenolysis (reductive dechlorination) of 

CHCs is a reductive process in which a halogen is substituted by a hydrogen atom, with the 

simultaneous addition of two electrons to the molecule as shown in Eq. 1 (Mohn and Tiedje, 

1992); it is the principal microbial degradation pathway for highly chlorinated ethene derivatives 

under reducing condition (Nobre and Nobre, 2004). 

RCl + 2H+ + 2e- → RH + Cl- +H+ [1] 

 Hydrolysis in natural waters is an extremely slow process, though slightly faster in basic 

conditions. The reaction can be represented by the following equation (Tobiszewski and 

Namiesnik, 2012): 

RCl + H2O → R–OH + Cl- + H+ [2] 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3390699/#CR73
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 CHCs may undergo dehydrochlorination, in which HCl is eliminated from the molecule 

as shown in Eq. 3 below (Tobiszewski and Namiesnik, 2012). The reaction results in the 

formation of less saturated and less halogenated compounds. It is not a redox reaction. 

RHCCl – CRH2 → RHC=CHR + Cl- + H+ [3] 

 Dichloroelimination (by vicinal reduction/β-elimination or α-elimination) is a process 

involving transfer of two electrons to the molecule and the elimination of two chlorine atoms. 

The reaction products can be less saturated aliphatic hydrocarbons and two chloride ions (e.g., 

Eq. 4 below). β elimination occurs when chlorine atoms are removed from two different carbons, 

whereas α elimination is the elimination of chlorine atoms from one carbon atom. 

Dichloroelimination typically occurs under methanogenic conditions but may also take place 

under partially aerobic conditions (Chen et al. 1996). 

RCCl – CClR + 2e- → RC=CR + 2Cl- [4] 

1.4 Mechanism of Reductive Dechlorination by Zero-Valent Iron 

Zero-valent iron (Fe0) is used in engineered remediation systems and may contribute to natural 

attenuation (Cundy et al. 2008). Fe0 is capable of degrading chlorinated ethanes and ethenes 

through reductive dechlorination. The breakdown of carbon-chlorine bonds of CHC molecules 

by reductive dechlorination requires an electron donor (reductant), such as zero-valent metals. In 

such systems, CHCs are electron acceptors. Half-reactions for Iron in this system are shown 

below as Eq. 5 (Nyer and Vance, 2001): 

Fe0 → Fe2+ + 2e- [5]  

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3390699/#CR24
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 Song and Carraway (2006) described two parallel reaction pathways from carbon 

tetrachloride (CT) and chloroform (CF) to dichloromethane (DCM) and methane. Song and 

Carraway (2006) also suggested a direct pathway from CF to methane using short-lived carbene 

and radical intermediate species. There are additional reactions that can occur when more than 

one carbon atom is present in the CHC molecule, as in chlorinated ethenes, ethanes and 

propanes. Reductive dechlorination by β-elimination can occur with multi-carbon CHCs. 

Further, Fennelly and Roberts (1998) suggested that hydrogenoloysis, dehydrochlorination, and 

to a lesser extent, coupling of radical intermediates, are significant degradation processes for 

1,1,1-TCA. 

1.5 Degradation Kinetics of CHCs 

In addition to characterizing byproducts and the degradation pathways, it is also important to 

understand degradation kinetics. When characterizing degradation of CHCs, investigations have 

argued that contaminant destruction may generally occur by reaction kinetics that are pseudo 

first-order with respect to the concentration of the contaminant (Johnson et al., 1996). The 

pseudo first-order degradation rate constant, termed kobs (time-1), is the slope of the regression 

line found by plotting the natural logarithm of the contaminant concentration on the ordinate (y-

axis) and time on the abscissa (x-axis) (Matheson and Tratnyek, 1994). It has been observed that 

kobs values can differ between batch and column studies (Johnson et al, 1996). The surface area 

concentration of metal (m2 L-1 of solution) is expressed as a in Eqs. 7 and 8 below; the kobs may 

depend on the variations in a of the metal particles (Johnson et al, 1996). The larger the surface 

area the faster the degradation kinetics is expected to be (Boronina et al., 1995). In order to 

obtain a better representation of the degradation kinetics, normalizing kobs values to the 
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concentration of metal surface area (Johnson et al., 1996) can be done per the following 

equations (Salter-Blanc et al., 2012): 

kSA = kobs/a [6] 

where: kSA = pseudo first-order rate constant normalized by surface area (L m-2 hr-1) 

 kobs = pseudo first-order rate constant (hr-1) 

a = surface area concentration (m2 L-1) found by the following equation:  

a = s * m [7] 

 where: s = Specific surface area (SSA) (m2 g-1) 

 m = mass concentration (g L-1) 

Rate constants can also be normalized with respect to the amount of reductant mass 

concentration used according to Eq. 8 below (Salter-Blanc et al., 2012). However, it may be best 

to compare mass normalized kinetics only when similar particle sizes are used due to the 

importance of surface area. 

kM = kobs/m [8] 

where: kM = pseudo first-order rate constant normalized by mass (L g-1 hr-1) 

1.6 CHC Degradation with Multicomponent Nanoparticles 

Multicomponent nanoparticles have received considerable attention because they provide novel 

functions not available in single-component nanoparticles. The multicomponent nanoparticles 

can possess unique physical and chemical properties due to complementary or synergistic effects 

created by interactions between the different components. They have great potential for a wide 

range of applications including biological separation, controlled release of drugs, catalysis, and 
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contaminant removal (Ajayan et al., 2006). In recent years, various methods have been 

established to enhance the reactivity of iron nanoparticles (nZVI) for degradation of 

contaminants. Recently, Kim et al. (2011) reported a strategy for enhancement in iron 

nanoparticle reactivity involving iron (core) / iron sulfide (shell) nanoparticles (nZVI/FeS), 

which exhibit better reactivity compared to nZVI alone. Iron sulfide minerals commonly found 

in reduced, sulfidic groundwater and sediment have been shown to remove some contaminants 

due to reduction and/or adsorption (Butler et al., 2011). nZVI particles coated with FeS have 

advantages of both components. Kim et al. (2011) showed that the inherent properties of pure 

nZVI, such as electrical conductivity, magnetic susceptibility, and specific surface area, were 

greatly affected by the presence of FeS. In another study, Kim et al. (2014) examined the 

feasibility of using nZVI/FeS for the removal of pollutants from aqueous solutions, where the 

optimal composition between nZVI and FeS phases was apparently responsible for an enhanced 

reactivity of the nZVI/FeS composite toward the contaminants. The nZVI/FeS was significantly 

more efficient in TCE removal than previously reported techniques (Kim et al., 2014). 

1.7 nZVI Agglomeration 

Perhaps the most significant challenge to applying nZVI for subsurface remediation is the rapid 

agglomeration of individual particles into discrete micro-scale aggregates or larger chain 

aggregates (Phenrat et al., 2008). Due to interparticle, magnetic, and van der Waals forces, nZVI 

can rapidly agglomerate (He and Zhao, 2007). As a result, the available reactive surface area of 

the nZVI aggregates is significantly reduced, and the transport of the larger aggregates in porous 

media becomes severely restricted (Petosa et al., 2010). Stabilizing agents are often added to 

nZVI in order to prevent or reduce nanoparticle agglomeration so that nanoparticles remain 

dispersed, suspended, and mobile in the aqueous phase (He et al., 2010).The benefits of using 
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polyelectrolytes to stabilize nZVI include their low cost, wide availability, ease of 

implementation, non-toxic nature, and its contributions towards long-term biotic degradation of 

CHCs (He et al., 2010). Several polyelectrolytes, such as carboxymethyl cellulose (CMC) and 

xanthan gum, are food-grade additives (He et al., 2005). Polyelectrolytes are long chain 

molecules that can bind with the nZVI particle and provide a negative surface charge (He et al., 

2007). If steric and repulsive forces of the polyelectrolyte layer exceed the magnetic and van der 

Waals attraction, nZVI particles will not agglomerate (Hotze et al., 2010). In addition to the 

stabilization effect of polyelectrolytes on nZVI, the presence of polyelectrolytes during the 

precipitation-synthesis of nanoparticles affects particle nucleation and, subsequently, particle 

size (Shimmin et al., 2004). When nanoparticles are precipitated in aqueous solution, many small 

crystallites initially form which act as nuclei for further growth. Polyelectrolytes mediate faster 

nucleation, more numerous crystallites, and slow particle growth, all of which yields more 

numerous particles with smaller diameter (Shimmin et al., 2004). 

 Surface modification of nZVI by polymers has been achieved through two different 

approaches: (i) post-grafting where bare nZVI in suspension is mixed with polymer solutions to 

allow adsorption of the polymers onto the surface of already made particles (Phenrat et al., 2008) 

and (ii) pre-grafting or synthesis of nZVI by reduction of mixtures of Fe salt solutions in the 

presence of polymers where polymers may impact nucleation and growth of the nanoparticles 

(Sakulchaicharoen et al., 2010). Cirtiu et al. (2011) investigated the differences between pre- and 

post-synthesis stabilization of nZVI by CMC (Carboxymethyl Cellulose), PAM 

(Polyacrylamide), PSS (Polystyrene Sulfonate), and PAA (Polyacrylic Acid). They reported that 

although post-synthesis nZVI stabilization generally resulted in smaller particle diameters, more 

stable colloidal suspensions were produced when nZVI was pre-stabilized. In studies of post-
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synthesis nZVI stabilization, CMC performs poorest in terms of colloidal stability, with either 

PSS or PAP performing better (Kim et al., 2009). However, pre-synthesis stabilized studies 

suggest that CMC outperforms PAA, PAM, and PSS, in terms of stability (Cirtiu et al. 2011). 

1.8 Research Objectives 

This study examines the reactivity and longevity of zero-valent iron nanoparticles coated with 

FeS (nZVI/FeS) with respect to selected CAHs. The goals of the experiments are to compare the 

reactivity of nZVI/FeS with nZVI in degrading select groundwater pollutants and to assess the 

reaction pathways. Bench-scale experiments were conducted to determine the distribution of 

reaction products, degradation kinetics, and carbon mass balance. This research expands on 

previous studies to examine the reactivity of nZVI/FeS for different selected contaminants and 

determine nZVI lifespan. The results of this research will evaluate the efficacy of nZVI/FeS as 

an alternative to nZVI in groundwater remediation.  The study can be divided into five 

objectives:  

(1) Evaluate the effect of sulfide loading and nZVI loading on degradation of CHCs.  

(2) Measure degradation kinetics of select CHCs using a pseudo first-order modeling to 

compare the performance of nZVI/FeS to nZVI.  

(3) Determine the degradation byproduct distribution and assess degradation pathways/ 

mechanisms resulting from reactions involving nZVI/FeS and various CHCs. 

(4)  Evaluate the effect of stabilizer loading on nZVI/FeS system.  

(5)  Measure nZVI/FeS system longevity.  
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Chapter 2 

MATERIALS AND METHODS 

2.1 Materials 

The following chemicals were used as received: carbon tetrachloride (CT; Fisher 

Scientific, purity: 99.8%), chloroform (CF; Fisher Scientific, purity: 99.8% ), 1,1,2-

trichloroethane (1,1,2-TCA; Sigma-Aldrich, purity: 97%), 1,1,1-trichloroethane (1,1,1-TCA, 

Sigma-Aldrich, purity: 99%). Other chemicals used included ferrous sulfate (FeSO4.7H2O; MP 

Biomedicals, purity: > 99%), sodium sulfide (Na2S.9H2O; Alfa Aesar, purity: >98%), sodium 

borohydride (NaBH4; Sigma-Aldrich, purity: >98%), carboxymethyl-cellulose sodium salt 

(CMC-Na; Sigma-Aldrich, molecular weight 90,000 amu), TAPSO (N-

[tris(hydroxymethyl)methyl]-3-amino-2-hydroxypropanesulfonic acid; Sigma-Aldrich, purity: 

99%), sodium hydroxide (NaOH; Fisher Scientific, purity: > 99%), and high purity gases (He, 

N2, H2, air; Weiler Welding, Dayton, Ohio, purity: 99.999%). 

2.2 Methods 

2.2.1 Reagents 

The stock solutions for CHCs were prepared by adding 20 μL of pure organic liquid to a 160 mL 

serum bottle containing 160 mL Milli-Q water (i.e. no headspace) and sealed using Teflon-lined 

rubber stopper and aluminum crimp. Stock solution bottles were wrapped in aluminum foil and 
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placed on an end-over-end rotator (setting at 70; 45 rpm) for two days to allow the compound to 

completely dissolve. Sodium sulfide (Na2S) that was used for modifying nZVI surface was 

prepared by dissolving 2.47g of Na2S.9H2O salt in 100 mL de-oxygenated water to prepare 0.1 

M sodium sulfide reagent. Experimental reactors were filled with deoxygenated 30 mM 

(typically 96 mL; 2.88 mmoles) TAPSO titrated to pH 7 by 1 M NaOH. Carboxymethyl-

cellulose sodium salt (19.2 mL of 20 g/L) was used as a polyelectrolyte for stabilizing 

nanoparticles. Final CMC concentration in the reactors was 4 g/L or 0.4 g/L.  All reagent 

solutions used in setting-up the batch reactors were de-oxygenated in advance by sparging with 

high purity nitrogen gas for at least 40 minutes prior to their placement in the anaerobic chamber. 

Appendix A provides the calculations for determining the amounts of CHC aqueous in 

reactor (μmoles) after partitioning. 

2.2.2 nZVI and nZVI /FeS Synthesis 

 nZVI were synthesized using ferrous sulfate heptahydrate, sodium borohydride, and 

CMC. TAPSO buffer was used to achieve pH 7.  The source of sulfide for the experiments was 

sodium sulfide.  Reactors were prepared in an anaerobic chamber in a nitrogen gas atmosphere 

with 1-2% hydrogen. The synthesis of nZVI was accomplished through the borohydride 

reduction method, in which deoxygenated aqueous solution of ferrous sulfate heptahydrate 

(FeSO4.7H2O) was reacted with sodium borohydride (NaBH4) in an anaerobic chamber at room 

temperature (20-22 ºC) (Song and Carraway, 2005). Experiments were performed at 0.05 or 0.1 

g/L of nZVI modified with 4 g/L CMC. CMC-nZVI was synthesized in the anaerobic chamber 

starting with (0.320 mL - 0.860 mL) of 200 mM FeSO4.7H2O deoxygenated solution in a 160 

mL serum bottles, followed by adding( 0-19.2 mL) of 20 g/L CMC stock solution. The bottle 

was swirled gently three times for 5 seconds each at 15 second intervals and then Fe2+ was 
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allowed to complex with CMC solution for 15 minutes without mixing. Afterwards, 25 mL of 

deoxygenated 30 mM TAPSO buffer was added to achieve an initial pH of 7. (0.262mL - 0.525 

mL) of 1M NaBH4 solution was added to the bottle to reduce the Fe2+ to Fe0. The reaction is 

described by Equation [9] (Song and Carraway, 2005): 

Fe (H2O)6
2+ + 2BH4

- Fe0  + 2B(OH)3 + 7H2 [9]                                                                                 

This was followed by adding deoxygenated, deionized water in the batch reactors to 

make the total aqueous volume equal to 96 mL. Control reactors were prepared for each 

experiment with 96 mL Milli-Q water. After removing from the anaerobic chamber, the 

calculated amount of 0.01 M deoxygenated Na2S solution was added to the reactors containing 

freshly-prepared CMC-nZVI in the fume hood to achieve the desired concentration of sulfide in 

solution.  The solution will be equilibrated for 15 minutes on a rotator for homogenized mixing 

of the reactants.  

Equations (10-12) present key reactions (Poltun, 2003; Rickard and Luther, 2007) 

expected to occur on the surface of nZVI during treatment with Na2S (sulfidation): 

Fe0+2H2O → Fe2+ + 2OH− + H2 [10] 

Na2S + H2O → 2Na+ + HS− + OH− [11]                                                                                                                         

Fe2+ + 2HS− → FeS + H2S [12] 

2.2.3 Experimental Set-up 

Batch reactors containing nZVI were prepared in an anaerobic chamber in order to ensure 

that CHC, rather than oxygen, served as the preferred electron acceptor (oxidant) for nZVI. This 
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prevented the oxidation of nZVI particles by O2 during reactor preparation/set-up. Each 

experiment included duplicate batch reactors in order to validate results. After reactor setup, each 

batch reactor was injected with 50 μL of target CHC stock solution using a 250 μL syringe. 

Immediately after injection, each batch reactor was equilibrated on a rotator by end-over-end 

mixing at 45 rpm for 3 minutes. 50 μL of reactor headspace was periodically extracted using a 

250 μL gas-tight syringe and analyzed by gas chromatography. Reactors were well mixed on an 

end-over-end rotator at 45 rpm for the duration of the experiment except when headspace of the 

reactor was sampled. 

2.2.4 Chemical Analysis 

The amount of CT and daughter products in nZVI/FeS reactor was quantified by gas 

chromatography (Hewlett-Packard, model 6890 system) equipped with electron capture (ECD) 

and flame ionization (FID) detectors. An HP-624 column (30 m x 0.32 mm x 0.25 m, Agilent 

Technologies) was used with high purity helium serving as the carrier gas at constant flow of 1.8 

mL min-1. The GC method was as follows: front inlet = 250 oC, FID = 250 oC, ECD = 300 oC, 

and oven temperature (isothermal) = 100 oC. The make-up gas for GC 6890 was high purity N2 

with a flow rate of 25 mL min-1 for the FID and 60 mL min-1 for the ECD. The flow rate for high 

purity H2 was 30 mL min-1 and for high purity air it was 450 mL min-1. 

2.2.5 Data Treatment 

Five standards for each compound were prepared in 160 mL serum bottles with 96 mL 

Milli-Q water. CHC standards were injected with various amounts of stock solution, wrapped in 

aluminum foil, and allowed to equilibrate for at least 2-3 hours on an end-over-end rotator (45 
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rpm). Calibration curves for each compound were created by placing GC peak area obtained for 

each standard on the abscissa (x-axis) and amount (μmoles) in each bottle on the ordinate (y-

axis). The linear regression equation of the data points on the x-y scatter plot could then be used 

to transform GC peak areas into compound amounts in batch reactors. 

For degradation experiments, the CHC amount (μmoles) was plotted on the ordinate (y-

axis) and time on the abscissa (x-axis).  First-order degradation rate constants (kobs; h-1) were 

determined from the exponential regression through the selected data points. nZVI Mass 

normalized degradation rate constant (kM, L g-1 hr-1) was calculated from dividing kobs by nZVI 

concentration, m (g L-1).  Mass balance analysis of byproducts was performed from the amount 

(μmoles) of various products generated from the degradation of the target CHC, and their 

respective molar mass fraction yields (m/mo), referred to as yields henceforth. 

  



17 
 

 

 

 

Chapter 3 

RESULTS AND DISCUSSION 

3.1: Results 

The results shown here focus on selected CHCs degradation ,byproducts (mole fraction) and rate 

constant, however additional information on degradation and by products over sampling period 

are shown in Appendix B. 

3.1.1 Chlorinated Methanes 

3.1.1.1 Carbon Tetrachloride Degradation by nZVI 

The results for CT degradation with stabilized 0.05 g/L nZVI are plotted in Fig. 3.1. Observed 

products are CF and methane. Degradation was notably fast (kobs = 5.79 hr-1; kM = 1.15x102 L g-1 

hr-1) and CT was degraded below the detection limit within 1 hour. After 1.5 hours, CT 

remaining (m/m0) was 0.0 while CF yield (m/m0) was 0.67. CF appeared to be a stable product, 

as no further degradation was observed. A trace amount of methane was observed from the start 

of the experiment, but it was not quantified throughout this study.  
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3.1.1.2 Carbon Tetrachloride Degradation by nZVI/FeS 

 The results of CT degradation with 0.05 g/L stabilized nZVI with 1 wt% sulfide are shown in 

Fig. 3.2. CT was completely degraded in less than 1 hour (kobs = 11.2 hr-1; kM = 224 L g-1 hr-1). 

Observed products were CF and methane. CF formed quickly and peaked (m/m0: 0.67) around 

0.75 hour; the onset of CF decline corresponded with the complete disappearance of CT. A 

minor amount of methane appeared immediately after CT was added to the reactor. Any other 

byproduct, such as dichloromethane (DCM), remained below the detection limit. After 2 hours, 

CT remaining (m/m0) was 0.0, while CF yield (m/m0) was 0.56 (Table 3.1). 

3.1.1.3 Effect of Sulfide Loading in nZVI/FeS on CT Degradation. 

The degradation of CT by nZVI/FeS was evaluated with 0.05 g/L nZVI and a range of sulfide 

loadings (0.5-10 wt. % sulfide). CF and methane were observed as degradation products. After 

1.5 hours from the start of experiments, the amounts of CT remaining (m/m0) varied from 0.0 to 

0.68, while corresponding CF yields (m/m0) varied from 0.76 declining to 0.12. The rate 

constants of CT degradation (kobs) increased with increasing sulfide loading up to 1 wt. % and, 

then, declined at higher sulfide loading. 

At 0.5-2 wt. % sulfide loading, CT degradation was fast and it declined below the detection limit 

in less than 1 hour (kobs =7.33-11.2 hr-1; kM = 146.64-224 L g-1 hr-1) (Figs. 3.3-3.5 and Table 3.2). 

At greater sulfide loadings (4-10 wt. %), however, CT degradation was progressively much 

slower in comparison (kobs = 1.66-0.13 hr-1; kM = 33.2-2.6 L g-1 hr-1) (Figs. 3.6-3.11; Table 3.2). 

R2 values quantifying goodness-of-fit to the pseudo first-order model were greater than 0.987, 

with most above 0.99 (Table 3.2). In most cases, the model was fitted to four or more data 
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points, with a minimum of three points used in cases of rapid degradation for calculating overall 

kobs. 

3.1.1.4 Chloroform Degradation by nZVI 

 The results for CF degradation with stabilized 0.1 g/L nZVI are shown in Fig. 3.12. Observed 

products are DCM and methane. Degradation was slow (kobs = 0.08 hr-1; kM = 0.82 L g-1 hr-1). 

DCM and methane continued to accumulate during the 3 hours long experiment. After 3 hours, 

CF remaining (m/m0) was 0.72 while DCM and methane yields (m/m0) were 0.11 each. The 

carbon mass balance (m/m0) was >0.94 during the experiment suggesting most products were 

identified. Any other intermediate, such as chloromethane (CH3Cl), was below the instrument 

detection limit  

3.1.1.5 Chloroform Degradation by nZVI/FeS 

CF degradation with nZVI/FeS (0.1 g/L stabilized nZVI and 1 wt. % sulfide) is shown in Fig. 

3.13. Observed products are DCM and methane, and their yields (m/m0) were 0.17 and 0.22 

respectively at the end of experiment. Further, CF remaining and the carbon mass balance mole 

fractions at the end of experiment were 0.56 and 0.95, respectively. CF reduction kinetics (kobs = 

0.193 hr-1; kM = 1.93 L g-1 hr-1) are faster than nZVI system (kobs = 0.08 hr-1; kM = 0.8 L g-1 hr-1); 

see Figs. 3.12 and 3.13, and Table 3.3. 

3.1.1.6 Effect of Sulfide Loading on CF Degradation 

The effect of sulfide in nZVI/FeS on CF removal was examined by varying sulfide loading (0.5-

2 wt. %). For all CF degradation experiments, R2 values quantifying goodness-of-fit to the 

pseudo first-order model were higher than 0.95, with most above 0.99 (Table 3.3). Total carbon 



20 
 

yields (m/m0) are slightly greater than 1 in all CF experiments, which may be due to error in 

byproduct calibration curves. The results indicated that CF remaining (m/m0) after 2 hours are 

comparable to CF reduction with nZVI (Figs. 3.13-3.16; Table 3.4). Also, small increase in 

DCM and methane yields with increasing sulfide loading are demonstrated. Methane yields 

(m/m0) with 0.5-1 wt. % sulfide were higher than yield observed with nZVI (Table 3.4); 

however, at higher sulfide loading (1.5 and 2 wt. %) methane yields decreased (0.17 and 0.16). 

DCM yield (m/m0) declined somewhat with 0.5 wt. % sulfide in comparison to nZVI, but at 

higher sulfide loading (1- 2 wt. %) methane yields were ~0.14). Most CF destruction and the 

highest DCM and methane yields were obtained at 1 wt. % sulfide loading. Good total carbon 

mass balance was observed at all sulfide loadings investigated, indicating that DCM and methane 

were the dominant byproducts from CF reduction by nZVI/FeS. 

The reaction kinetics (kobs) for CF increased with increasing sulfide loading and reached 

the highest value at 1 wt.% sulfide (kobs = 0.193 hr-1; kM = 1.93 L g-1 hr-1), see Figs. 3.17, 3.18. 

3.1.2 CHLORINATED ETHANES 

3.1.2.1 Degradation of 1,1,1 TCA by nZVI and nZVI/FeS  

1, 1, 1-TCA degradation with stabilized 0.1 g/L nZVI was observed (kobs = 0.086 hr-1; kM = 0.86 

L g-1 hr-1; Fig. 3.19; Table 3.5). 1,1 DCA and ethane formed as degradation products. After 3 

hours, 1, 1, 1-TCA remaining (m/m0) was 0.64, and 1,1-DCA and ethane yields (m/m0) were 

0.073 and 0.014, respectively. In comparison, the degradation of 1,1,1-TCA with nZVI/FeS (0.1 

g/L stabilized nZVI and 1 wt% sulfide) (kobs = 0.61 hr-1; kM = 6.1 L g-1 hr-1) was faster than 

degradation of 1,1,1-TCA with nZVI (Fig. 3.20, Table 3.6). 1,1-DCA, ethane, and ethene were 

identified as degradation byproducts. After ~3 hours, 1,1,1-TCA remaining (m/m0) was 0.14, 
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while the 1,1-DCA, ethane, and ethene yields (m/m0) were 0.049, 0.034, and 0.033, respectively. 

A low carbon mass balance yield (m/m0 = 0.25) suggests that a significant part of the original 

1,1,1-TCA was degraded into unidentified products. 

3.1.2.2 Effect of Sulfide Loading in nZVI/FeS on 1,1,1 TCA Degradation 

1,1,1-TCA degradation by nZVI/FeS was evaluated with 0.1 g/L nZVI at various sulfide 

loadings (0.5, 1 and 1.5 wt.%); see Figs. 3.20 – 3.22. After 3 hours from the start of experiments, 

1,1,1-TCA remaining (m/m0) varied from 0.13-0.33, while 1,1-DCA yields (m/m0) varied from 

0.049 to 0.063 (Table 3.6); further, ethane and ethene yields (m/m0) did not vary much. The 

degradation kinetics of 1,1,1-TCA reached its maximum at 1 wt.% sulfide loading (Fig 3.23 and 

3.24). The carbon mass balance yields were generally poor for all sulfide loadings; m/m0 were 

0.36, 0.25 and 0.45 for 0.5, 1 and 1.5 wt. % sulfide, respectively. Other possible byproducts, like 

1,1-DCE, were below detection limits and likely account for remaining carbon mass balance. 

Increase in sulfide loading to 1 wt. % caused a faster 1,1,1-TCA degradation kinetics (kobs = 0.61 

hr-1; kM = 6.1 L g-1 hr-1), and 1,1,1-TCA remaining was lowest (m/m0: 0.26; Table 3.6). However, 

at 1.5 wt.% sulfide loading, 1,1,1-TCA removal was significantly less efficient in comparison to 

1 wt.% sulfide; 1,1,1-TCA remaining was greater (m/m0: 0.34), and its degradation kinetics also 

declined (kobs = 0.32 hr-1; kM = 3.2 L g-1 hr-1).  

3.1.3 Effect of Iron Loading on 1,1,1-TCA Degradation 

1,1,1-TCA degradation by nZVI/FeS was evaluated for two different nZVI 

concentrations (0.1 and 0.5 g/L) with 1 wt.% sulfide (kobs = 0.61-1.01 hr-1; kM = 6.09-2.02 L g-1 

hr-1; Fig. 3.25, 3.26 and Table 3.7). 1,1-DCA, ethane and ethene were observed as degradation 

products (Figs. 3.20 and 3.25, and Table 3.8). After 2 hours from the start of experiments, 1,1,1 
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TCA remaining (m/m0) varied from 0.12-0.23, with minor variations in 1,1-DCA and ethane 

yields (m/m0: 0.07-0.08 and 0.03-0.05, respectively. Ethene yields (m/m0) remained virtually 

unaffected at 0.03. Some evidence of 1,1-DCA degradation was noted for experiments involving 

nZVI/FeS. 

3.1.4 nZVI/FeS Longevity 

3.1.4.1 Degradation of 1,1,1-TCA by Fresh and Aged nZVI/FeS  

The degradation of 1,1,1-TCA with nZVI/FeS (0.1 g/L stabilized nZVI and 1 wt.% sulfide) was 

observed over the course of 9 days. nZVI/FeS stabilized by 4 g/L CMC showed a power function 

decline in reactivity (km) with time. The kobs of 1,1,1-TCA declined 2.6-fold overnight from 0.79 

hr -1 to 0.31 hr-1 (km = 7.9 to 3.1 L g-1 hr-1; Fig. 3.27, and Table 3.9), but it stabilized thereafter; 

the kobs of 1,1,1-TCA on day 5 and day 9 were 0.27 hr-1 and 0.26 hr-1, respectively. The final 

1,1,1-TCA mole fraction was almost same for the last three injections (Table 3.10). 

3.1.5 Effect of CMC Concentration on Reactivity 

3.1.5.1. Degradation of 1,1,1-TCA by Varying CMC Concentrations 

The effect of variable CMC concentration on nZVI/FeS reactivity with 1,1,1-TCA degradation 

(0.5 g/L nZVI and 1 wt.% sulfide) investigated at 0, 0.4 and  4.0 g/L CMC is summarized in 

Table 3.11. Unamended ZVI degraded 1,1,1-TCA only 7% during 2 hours sampling and no 

byproduct was detected (Fig.3.28). In the 0.4 g/L CMC experiment, about 74% of 1,1,1-TCA 
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degraded in 3 hours and ethane and ethane were observed as byproducts, however the week total 

carbon yield result confirmed about 60% of byproducts were under the detection limit (Fig. 

3.29). nZVI stabilized with 4g/L CMC could degrade about 87% 1,1,1-TCA in 3 hours. Beside 

Ethene and Ethane, 1,1_DCA would observe in this experiment. As shown in Figure 3.30, the 

addition of CMC stabilizer significantly improved nZVI/FeS reactivity toward 1,1,1-TCA, by as 

much as 45 fold increase in kobs between 0 and 4.0 g/L. 

3.2:  Discussion 

3.2.1 Chlorinated Methanes 

3.2.1.1 Carbon tetrachloride degradation by nZVI 

As reported in the previous section, CT was degraded completely by stabilized 0.05 g/L nZVI in 

1.5 hours. Lien and Zhang (1999) investigated CT degradation by nanoscale and microscale iron 

particles (<10 µm; commercial grade iron particles sourced from the supplier Aldrich); their 

results indicate that nZVI reactivity per unit surface area (kSA) is about 5 times greater that of the 

microscale iron particles. In another study (Song and Carraway, 2006), CT degradation by 0.16 

g/L unstabilized nZVI (0.02 g nZVI in 124 mL buffered water) was investigated (kobs = 5.02 hr-1; 

kM = 31.38 L g-1 hr-1). The kM (reactivity) of unstabilized nZVI particles towards CT (Song and 

Carraway, 2006) was ~4-fold slower than kM for stabilized nZVI reported in this study. 

3.2.1.2 Carbon tetrachloride degradation by nZVI/FeS 

The nZVI/FeS system showed greater effectiveness at degrading CT compared to nZVI alone. 

Only a few studies involving nZVI/FeS have been reported in the literature (Kim et al., 2011; 

2013; 2014). Kim et al. (2011) reported that nZVI/FeS showed superior reactivity than nZVI 
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towards TCE degradation. In comparison to unstabilized nZVI (kM =22 L g-1 hr-1) (Song and 

Carraway, 2006); however, CT degradation with nZVI/FeS (containing 1 wt. % sulfide) in the 

present study was 8-fold faster (kM = 224 L g-1 hr-1). 

 The first step in CCl4 reduction may involve removal of one chlorine to produce a 

trichloromethyl radical (Song and Carraway, 2006), after which the pathways branch. If 

hydrogenation occurs to replace the chlorine with hydrogen, CF is formed, which may further 

degrade to DCM (Song and Carraway, 2006, Feng and Lim, 2005), and onward possibly to 

chloromethane and methane by sequential dechlorination. However, in this study CH4 evolved 

too early to be attributable to a hydrogenolysis product of DCM reduction. Also, experiments 

with chlorinated methane as the target contaminant indicate DCM degrades very slowly or not at 

all in the presence of CMC-stabilized nZVI (Lein and Zhang, 1999). Methane formation during 

CT degradation may therefore be the result of alternative pathways like direct reduction (Lein 

and Zhang, 1999) where multiple chlorines may be removed from CT at the same time (Table 

3.12). 

3.2.1.3 Effect of sulfide loading in nZVI/FeS on CT degradation 

As reported in section 3.1.1.3, the rate constants of CT degradation (kobs) increased with 

increasing sulfide loading up to 1 wt% and, then, declined at higher sulfide loading (Figs. 3.31-

3.33). There could be several reasons for increase in CT kobs till 1 wt% sulfide in nZVI/FeS 

system. The FeS surface layer can be more selective in electron transfer from Fe0 core to the 

adsorbed CT than the iron oxide surface in unamended nZVI. Park et al. (2006) suggested that 

sulfide minerals can be less hydrophilic compared to iron oxides, which suggests that FeS layer 

on the sulfidated nZVI can potentially enhance CT chemisorption and efficient electron transfer 

http://www.sciencedirect.com/science/article/pii/S0043135415002328#bib50
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in comparison to unamended nZVI. The possible explanation for decreasing rate constant at 

higher sulfide loading can be due to blocking of the reactive sites by increase in FeS on the 

nanoparticle surface thereby inhibiting the dissolution of iron core. Similar phenomenon has also 

been observed in iron-based bimetallic systems (Xu and Bhattacharyya, 2005; Parshetti and 

Doong, 2009); for example, inadequate and excessive Ni loading on nZVI surface may lead to 

formation of Fe-rich area or Ni-rich area, which lowered the catalytic activity (Parshetti and 

Doong, 2009). Therefore, the highest reactivity of nZVI/FeS at 1% sulfide loading may be due to 

an optimal FeS arrangement on Fe0 surface. 

3.2.1.4 Chloroform degradation by nZVI 

DCM produced from CF reduction was via hydrogenolysis pathway, as previously suggested 

with nZVI (Lein and Zhang, 1999). However, DCM degradation with nZVI is typically slow 

(Lein and Zhang, 1999). The kinetics of DCM degradation with nZVI is not fast enough for 

methane yields observed during CF reduction (Song and Carraway, 2006). Therefore, to account 

for the methane yield observed from CF degradation, it is suggested that CF transformation to 

methane occurred directly, and without DCM as a reaction intermediate (Song and Carraway, 

2006), although small amounts of methane could also from DCM reduction via hydrogenolysis. 

Direct transformation of CF to methane has previously been suggested with ZVI (Song and 

Carraway, 2006), and with Ni-nZVI and microscale bimetallic Ni/Fe (Feng and Lim, 2005). 

3.2.1.5 Chloroform degradation by nZVI/FeS.  

As reported in section 3.1.1.5, CF degradation with nZVI/FeS (0.1 g/L stabilized nZVI and 1 

wt% sulfide) resulted in a substantial methane yield (m/m0: 0.22) in 2 hr, a 2-fold increase in 

comparison to CF degradation with nZVI. DCM yield was also higher (m/m0: 0.14) with 
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nZVI/FeS in comparison to CF degradation (m/m0: 0.11) with nZVI. This was likely due to faster 

CF reduction kinetics (kobs = 0.193 hr-1; kM = 1.93 L g-1 hr-1) that shows a ~2-fold increase in 

comparison to nZVI (kobs = 0.08 hr-1; kM = 0.82 L g-1 hr-1). 

3.2.1.6 Effect of sulfide loading on CF degradation. 

In the experiments of CF degradation with 0.1 g/L nZVI/FeS containing various sulfide loading 

(0.5-2 wt.%) described earlier in section 3.1.1.6, small increase in DCM yields and substantial 

methane yield with increasing sulfide loading is demonstrated. This suggests an increase in direct 

CF transformation to methane at higher sulfide loading. The reaction kinetics (kobs) for CF 

increased by increasing sulfide loading and reached the highest value at 1 wt.% sulfide (kobs = 

0.193 hr-1; kM = 1.93 L g-1 hr-1), a nearly 2-fold increase in comparison to nZVI (kobs = 0.082 hr-1; 

kM = 0.82 L g-1 hr-1). Similar to results described for CT degradation in section 3.2.1.3, the 

highest reactivity of nZVI/FeS with 1% sulfide loading may be attributed to an optimal FeS 

arrangement on the Fe0. 

3.2.2 CHLORINATED ETHANES 

3.2.2.1 Degradation of 1,1,1-TCA by nZVI and nZVI/FeS 

Song and Carraway (2005) studied on 1,1,1-TCA degradation by 0.081 g/L unstabilized nZVI 

(0.01 g nZVI in 124 mL buffered water) and the degradiation kinetics (kobs= 0.34 hr-1; kM= 4.2 L 

g-1 hr-1) is greater than stabilized nZVI in this study. It is likely that stabilization (by CMC) 

causes decreased reactivity of particles in water (Phenrat et al., 2009). The daughter products of 

1,1,1-TCA degradation by nZVI in this investigation are 1,1-DCA, ethane and ethane, which is 

similar to Song and Carraway (2005) experiment, but their yields are different. 1,1-DCA, formed 
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via hydrogenolysis, accounted for 69% of total carbon mass (Song and Carraway, 2005). 

However, in this study 1,1-DCA mole fraction yield is only 7%, which is less toxic and more 

desirable outcome. The nZVI/FeS system was more effective at degrading 1,1,1-TCA compared 

to the nZVI system (7 fold faster). Current results indicate that nZVI coated by sulfide can affect 

1,1-DCA reduction rate and lead the reaction pathway to non-toxic daughter products.   

Degradation of 1,1,1-TCA formed 1,1-DCA via hydrogenolysis, which degraded further 

to form ethane via hydrogenolysis (1,1,1-TCA→ 1,1-DCA→ chloroethane→ ethane). It is likely 

because during 3 hours sampling, first 1,1-DCA accumulated and then degraded to some extent. 

Since ethene and ethane formed quickly and simultaneously with 1,1-DCA, and not sequentially 

from 1,1-DCA degradation in this study, their production may have occurred by a parallel 

pathway. Ethane production from 1,1,1-TCA degradation by nZVI has been suggested to occur 

via reductive α-elimination pathway (Song and Carraway, 2005) and could be the parallel 

pathway for producing ethane (Table 3.12).  

The formation of ethene (m/m0 = 0.025) from 1,1,1-TCA degradation by fresh 0.1 g/L 

nZVI modified with 1 wt.% sulfide may suggest a pathway that forms 1,1-DCE by 

dehydrohalogenation followed by hydrogenolysis to ethene via vinyl chloride (1,1,1TCA→ 1,1-

DCE→ VC→ ethene) (Fennelly and Roberts, 1998). However, 1,1-DCE should be a key 

intermediate for the proposed pathway scheme, but it was not observed and may have been 

below the detection limit. Alternatively, carbene intermediate can form as a result of α-

elimination of 1,1-DCE that can hydrogenate to form ethene and ethane. In other words, α-

elimination pathway may play a critical role in a direct transformation of 1,1,1-TCA into ethane 

and ethene (Cwiertny et al., 2006). Song and Carraway (2005) reported that 1,1,1-TCA was 

rapidly transformed by unstabilized nZVI to form 1,1-DCA as the major product that should 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3390699/#CR87
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occur via hydrogenolysis pathway. However, the result from this study suggests that nZVI/FeS 

produce a higher yield of fully dechlorinated byproduct than by unstabilized nZVI. 

3.2.2.2 Effect of sulfide loading on 1,1,1-TCA degradation 

Similar to previous sections of this study, section 3.2.1.3 and 3.2.1.6 of this study, possible 

explanation for decreasing degradation kinetic at higher sulfide percentages( >1%) is that more 

FeS can block the active sites on the nZVI surface. Byproduct yields did not change much due to 

increase in sulfide loading from 0.5-1.5 wt. %. This study suggests that nZVI/FeS produced 

lower 1,1-DCA yield (m/m0) compare to stabilized nZVI, thus indicating less toxic byproducts 

due to greater dechlorination. The study also shows that 0.1 g/L nZVI/FeS modified with 1 wt. % 

sulfide has the optimal effect on the reaction kinetics.  

3.2.3 Effect of Iron loading on 1,1,1-TCA degradation. 

Increasing nZVI/FeS loading causes kobs to increase. This trend was expected because 

increase in nZVI/FeS loading increases its surface area that participates in reaction with 1,1,1-

TCA. This study indicates that linearity between the reaction rate-constant and the nZVI/FeS 

concentration holds, at least over the range investigated. Song and Carraway (2005) observed a 

similar relationship between 1,1,1-TCA degradation rate constants at various nZVI 

concentrations. The 1,1,1-TCA remaining (m/m0) shows decline from 0.23 at 0.1 g/L nZVI/FeS 

to 0.12 at 0.5 g/L nZVI/FeS at the end of 2 hr. Further, increase in ethane and ethene yields at 2 

hr is also evident at increasing nZVI/FeS concentration. Higher nZVI/FeS loading can create 

stronger reducing condition, facilitate larger total nZVI surface area and favor greater yields of 

non-toxic byproducts. 
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3.2.4 nZVI/FeS longevity. 

The longevity of the nZVI/FeS nanoparticles can be defined by the reactivity (km) remaining 

after a certain period (performance), where the decline in km may suggest loss of reactive 

nZVI/FeS mass during the period. Given the price of nZVI, multiple injections are unlikely at 

most sites. Therefore, longevity is critical to determining the return on investment (ROI) by the 

end-user. This relationship between longevity and ROI makes longevity a critical parameter in 

the utilization of nZVI for site remediation (Liles, 2009). 

3.2.4.1 Degradation of 1,1,1-TCA by fresh and aged nZVI/FeS 

As reported in section 3.1.4.1, Sarathy et al. (2008) studied the effects of aging on CCl4 

degradation using RNIP immersed in an aqueous solution at different intervals. The degradation 

kinetics was decreasing in the medium- to long- term period due to the formation of more 

protective, magnetite- rich oxides (Sarathy et al., 2008). 

The high reactivity of nZVI is related to its core–shell structure, which consists of a 

metallic iron (Fe0) core encapsulated by a thin oxide shell (Martin et al., 2008). The Fe0 core in 

the nZVI oxidizes upon reaction with an oxidant (e.g., water and oxygen), and eventually, the 

metallic iron is exhausted to form iron oxides and hydroxides. In a similar study by Liu et al., 

2015, the aging of nZVI was investigated over a period of 90 days in static water. The results 

indicated that initially Fe2+ ion in the Fe0 core diffused outwardly through the shell, and 

hollowed-out iron oxide shells emerge. Then, the iron oxide shell collapsed and became a flaky, 

acicular-shaped structure. The type and the crystal phase of second iron oxide minerals are vastly 

different at various aging times (Liu et al., 2015).  

http://www.sciencedirect.com/science/article/pii/S0045653514010935#b0105
http://www.sciencedirect.com/science/article/pii/S0045653514010935#b0105
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 The heterogeneous reactions on the corroding ZVI surface were complicated and resulted 

in a variety of reactive surface sites for contaminant removal (Satapanajaru et al., 2003). The loss 

of nZVI/FeS reactivity could be due to the dislodgment of FeS from the aged nZVI/FeS particles 

and encapsulation of sulfide islets by iron oxides film that developed/thickened over the aging 

period. Also, CMC is known to adversely affect reaction kinetics. Phenrat et al. (2009) showed 

that CMC stabilization can cause up to a 24-fold decrease in reactivity when treating TCE with 

nZVI. There are a variety of potential causes for loss in nZVI/FeS reactivity and there may be 

multiple processes occurring simultaneously that can lead to loss in nZVI/FeS reactivity.  

3.2.5 Effect of CMC concentration on reactivity 

It has been demonstrated in several studies that CMC of varying molecular weights 

outperformed other polyelectrolytes by producing nanoparticles with smaller size, higher 

reactivity, and better transport characteristics (Cirtiu et al., 2011). While CMC coatings increase 

the reactive surface area of nZVI by decreasing particle size and inhibit interparticle aggregation, 

CMC can also decreases nZVI reactivity by blocking the reactive surface sites (Phenrat et al., 

2009). At an nZVI loading of 0.10 g/L, He and Zhao (2007, 2008) determined that 4.0 g/L and 

2.0 g/L CMC loading gave the smallest and the most reactive nZVI particles, respectively. 

Although optimal CMC loading was reported relative to nZVI loading in the past, there is 

evidence that the absolute CMC concentration, regardless of nZVI loading, is a better predictor 

of performance (He and Zhao, 2008). It was previously observed that failure of polyelectrolytes 

to prevent nanoparticle aggregation is not caused by insufficient amounts of stabilizer, but rather 

the slow rate of particle coating at low stabilizer concentrations (Ditsch et al, 2005). 

Furthermore, during particle synthesis polyelectrolytes mediate the formation of more numerous, 

http://www.sciencedirect.com/science/article/pii/S0045653514010935#b0110
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smaller particles, an effect dependent on absolute polyelectrolyte concentration (He and Zhao, 

2007). 

Optimization of CMC loading in nZVI/FeS system may be complicated as FeS deposition 

on the nZVI surface can significantly influence nanoparticle interactions with the polyelectrolyte. 

The roles of CMC in blocking reactive sites on FeS/nZVI surface and preventing the 

nanoparticles from agglomeration are the two competing processes that have not been examined 

in this study. 

 Earlier in this study it was confirmed that 1wt% sulfide has the optimal effect on 

degradation CHCs, regardless of a CHC type. In this study, it was assumed that increasing CMC 

concentration to > 4 g/L in the given set-up can block more reactive surface sites and reduce 

reactivity. However, the effect of higher CMC concentration on potential decrease in nZVI/FeS 

particle size thus affecting an increase its reactivity was beyond the scope of this study. 

3.2.5.1. Degradation of 1,1,1-TCA by varying CMC concentrations. 

It is assumed beyond 4.0 g/L CMC loading, a plateau in reactivity would be observed, based on 

the two factors: (1) higher CMC concentrations may have no further effect on particle size or 

stability, and (2) continued improvements in particle size or stability may be negated by the 

reaction-inhibiting effect of the CMC surface coating (Phenrat et al., 2009). There was this 

possibility that at CMC concentration <4.0 g/L, nZVI surface would be more available for FeS 

particles to deposit and this might increase reactivity. However, the result, section 3.1.5.1, shows 

experiment with 0.4 g/L CMC had 3.3 fold smaller kobs than with 4g/L CMC, which suggests that 

0.4 g/L CMC concentration is not sufficient to stablize the nZVI particles and significant 

agglomeration may have occurred and subsequent FeS deposition on the surface was ineffective 
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Chapter 4 

CONCLUSIONS 

4.1.Review of Findings 

The five research objectives presented in the introduction were as follows: (1) evaluate the effect 

of sulfide loading and nZVI loading on degradation of CHCs, (2) measure degradation kinetics 

of select CHCs using a pseudo first-order modeling to compare the performance of nZVI/FeS to 

nZVI, (3) determine the degradation byproduct distribution and identify degradation pathways/ 

mechanisms resulting from reactions involving nZVI/FeS and various CHCs, (4) evaluate the 

effect of stabilizer loading on nZVI/FeS system, and (5) measure nZVI/FeS system longevity. 

1) Evaluate the effect of sulfide loading and nZVI loading on degradation of CHCs.  

Sulfide loading experiments showed that increasing the sulfide loading (0 – 10 wt. %) 

caused a linear increase in kobs followed by a drastic decrease, with the change occurring at 1 

wt.% sulfide. The same set of experiments were conducted for CF (0-2 wt.% sulfide) and 1,1,1-

TCA (0-1.5 wt.% sulfide) and it was observed regardless of CHC type, 1 wt.% sulfide is the 

optimal sulfide loading that shows the highest kobs in nZVI/FeS system. The possible explanation 

for this fact is that more FeS is formed with increasing levels of sulfide, which can block the 

active sites on the surface thereby inhibiting the dissolution of the core of nZVI particles. nZVI 
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concentration experiments with 1 wt.% sulfide showed that increasing nZVI concentrations 

increased kobs but decreased kM so it will be less efficient when applied at an industrial scale. 

2)  Measure degradation kinetics of select CHCs using a pseudo first-order model to compare 

the performance of nZVI/FeS to nZVI.  

The application of nZVI/FeS improves CHCs degradation and reaction kinetic could 

increase compare to unamended nZVI. In the range of (0.5-2 wt. %) sulfide loading, CT, CF, and 

1,1,1-TCA all degraded more rapidly in nZVI/FeS system compared to the unamended nZVI. 

Sulfide clearly has a favorable effect on degradation kinetics with regard to chlorinated methanes 

and ethanes.  

3) Determine the degradation byproduct distribution and identify degradation pathways/ 

mechanisms resulting from reactions involving nZVI/FeS and various CHCs. 

In this study of chlorinated methane, the rate constants increased with increasing 

chlorination, consistent with previous studies on this group of compounds (Matheson and 

Tratnyek, 1994; Lien and Zhang, 1999). Direct transformation of CT and CF to methane seems 

to be occurring with nZVI coated by sulfide, as the rapid appearance of methane observed could 

not have been produced from DCM hydrogenalysis which has slow degradation kinetics. 

Byproducts generated by nZVI/FeS reduction of 1,1,1-TCA resulted in the formation of ethane, 

ethane and 1,1-DCA. 1,1,1-TCA asymmetrical structure makes it a subject of reductive α-

elimination pathway which result in less toxic products in nZVI/FeS system. 

4) Evaluate the effect of stabilizer loading on nZVI/FeS system.  
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A set of experiments with 1 wt. % sulfide and lower CMC concentrations toward 1,1,1-

TCA were conducted and results relived a drastically decrease in kobs. Although at lower CMC 

concentration there would potentially be more room on nZVI surface for FeS particles, CMC 

amount is not sufficient to stablize all the nZVI particles. Therefore, agglomeration occurred 

before FeS particles can settle on the surface. 

5) Measure nZVI/FeS system longevity. 

The longevity experiments confirmed that nZVI/FeS particles remain highly reactive with 

1,1,1-TCA nine days after particle synthesis. The Fe0 core in the nZVI oxidizes upon reaction 

with water and oxygen, and eventually, the metallic iron is exhausted to form iron oxides and 

hydroxides which decrease reactivity. 

4.2. Future research 

This thesis identified one the most promising opportunities for improving nZVI reactivity by 

coating it with FeS. Based on the current state of the technology, nZVI appears to be too 

expensive for mainstream use as a remediation tool (Crane and Scott, 2012). Increasing the 

reactivity of nZVI toward chlorinated contaminants makes it a more viable, cost-effective option 

for remediation of contaminated groundwater. However, many opportunities for future research 

can be identified. There have been few field-scale studies of nZVI and no studies for nZVI/FeS 

system. Therefore, many possibilities for future research exist. Field studies are needed to 

discover how nZVI/FeS can be successfully transported to reach and mix with target 

contaminants in situ. In laboratory scale there are also additional CHCs that should be evaluated 

for degradation by nZVI/FeS. The toxicological effects of nZVI/FeS and use of engineered 

copolymers to stabilize nZVI/FeS should be considered for future studies as well.  
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1. CHLORINATED METHANES 

 

 
Figure 3.1: CT degradation with fresh 0.05 g/L nZVI prepared in 4 g/L CMC. Initial CT = 0.035 

moles, or 54.45 g/L (50 μL of 108.9 mg/L CT stock solution). CT degraded completely in 

about 1 hour, with chloroform as the only reaction byproduct. (A) CT degradation and byproduct 

(mole fraction); (B) ln [CT] vs. time plot showing CT degradation rate constant. 
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Figure 3.2: CT degradation with fresh 0.05 g/L nZVI modified with 1 wt. % sulfide, prepared in 

4 g/L CMC. Initial CT = 0.035 moles, or 54.45 g/L (50 μL of 108.9 mg/L CT stock solution). 

CT degraded completely in 1 hour, with chloroform as the only reaction byproduct. . (A) CT 

degradation and byproduct (mole fraction); (B) ln [CT] vs. time plot showing CT degradation 

rate constant. 
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Figure 3.3: CT degradation with fresh 0.05 g/L nZVI modified with 0.5 wt. % sulfide prepared in 

4 g/L CMC. Initial CT = 0.035 moles, or 54.45 g/L (50 μL of 108.9 mg/L CT stock 

solution).CT degraded completely in 1 hour, with chloroform as the only reaction byproduct. (A) 

CT degradation and byproduct (mole fraction); ln [CT] vs. time plot showing CT degradation 

rate constant. 
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Figure 3.4: CT degradation with fresh 0.05 g/L nZVI modified with 1.5 wt. % sulfide, prepared 

in 4 g/L CMC. Initial CT = 0.035 moles, or 54.45 g/L (50 μL of 108.9 mg/L CT stock 

solution).  CT degraded completely in 1 hour, with chloroform as the only reaction byproduct. 

(A) CT degradation and byproduct (mole fraction); (B) ln [CT] vs. time plot showing CT 

degradation rate constant.  
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Figure 3.5: CT degradation with fresh 0.05 g/L nZVI modified with 2 wt. % sulfide prepared in 4 

g/L CMC. Initial CT = 0.035 moles, or 54.45 g/L (50 μL of 108.9 mg/L CT stock 

solution).CT degraded completely in 1 hour, with chloroform as the only reaction byproduct. (A) 

CT degradation and byproduct (mole fraction); (B) ln [CT] vs. time plot showing CT degradation 

rate constant. 

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5

M
o

le
 f
ra

c
ti
o

n
 (

m
/m

0
)

time (hr)

(A) CT

CF

Total

y = -7.329x - 4.408
R² = 0.998

-10

-8

-6

-4

-2

0

0 0.25 0.5 0.75

ln
 (

C
T

 
m

o
le

s
)

time (hr)(B)



46 
 

 

 

 

Figure 3.6: CT degradation with fresh 0.05 g/L nZVI modified with 3 wt. % sulfide prepared in 4 

g/L CMC. Initial CT = 0.035 moles, or 54.45 g/L (50 μL of 108.9 mg/L CT stock solution). 

About 80% of CT degraded in 3 hours, with chloroform as the only reaction byproduct. (A) CT 

degradation and byproduct (mole fraction); (B) ln [CT] vs. time plot showing CT degradation 

rate constant  
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Figure 3.7: CT degradation with fresh 0.05 g/L nZVI modified with 4 wt. % sulfide prepared in 4 

g/L CMC. Initial CT = 0.035 moles, or 54.45 g/L (50 μL of 108.9 mg/L CT stock solution). 

CT degraded completely in 2.6 hours, with chloroform as the only reaction byproduct. (A) CT 

degradation and byproduct (mole fraction); (B) ln [CT] vs. time plot showing CT degradation 

rate constant. 
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Figure 3.8: CT degradation with fresh 0.05 g/L nZVI modified with 5 wt. % sulfide prepared in 4 

g/L CMC. Initial CT = 0.035 moles, or 54.45 g/L (50 μL of 108.9 mg/L CT stock solution). 

About 50% CT degraded in 3 hours, with chloroform as the only reaction byproduct. (A) CT 

degradation and byproduct (mole fraction); (B) ln [CT] vs. time plot showing CT degradation 

rate constant. 
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Figure 3.9: CT degradation with fresh 0.05 g/L nZVI modified with 6 wt. % sulfide prepared in 4 

g/L CMC. Initial CT = 0.035 moles, or 54.45 g/L (50 μL of 108.9 mg/L CT stock 

solution).About 70% CT degraded in 3 hours, with chloroform as the only reaction byproduct. 

(A) CT degradation and byproduct (mole fraction); (B) ln [CT] vs. time plot showing CT 

degradation rate constant. 
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Figure 3.10: CT degradation with fresh 0.05 g/L nZVI modified with 8 wt. % sulfide prepared in 

4 g/L CMC. Initial CT = 0.035 moles, or 54.45 g/L (50 μL of 108.9 mg/L CT stock 

solution).About 60% CT degraded in 2.2 hours, with chloroform as the only reaction byproduct. . 

(A) CT degradation and byproduct (mole fraction); (B) ln [CT] vs. time plot showing CT 

degradation rate constant. 
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Figure 3.11: CT degradation with fresh 0.05 g/L nZVI modified with 10 wt. % sulfide prepared 

in 4 g/L CMC. Initial CT = 0.035 moles, or 54.45 g/L (50 μL of 108.9 mg/L CT stock 

solution).About 50% CT degraded in 3 hours, with chloroform as the only reaction byproduct. 

(A) CT degradation and byproduct (mole fraction); (B) ln [CT] vs. time plot showing CT 

degradation rate constant. 
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Figure 3.12: CF degradation with fresh 0.1 g/L nZVI prepared in 4 g/L CMC. Initial CF = 0.097 

moles, or 110.58 g/L (50 μL of 233.12 mg/L CF stock solution).  About 28 % of CF degraded 

in 3 hours, with DCM and Methane as byproducts. (A) CF degradation and byproduct (mole 

fraction); (B) ln [CF] vs. time plot showing CT degradation rate constant. 
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 Figure 3.13: CF degradation with fresh 0.1 g/L nZVI modified with 1 wt. % sulfide prepared in 

4g/L CMC. Initial CF = 0.097 moles, or 110.58 g/L (50 μL of 233.12 mg/L CF stock 

solution).  About 36 % of CF degraded in 3 hours, with DCM and Methane as byproducts. (A) 

CF degradation and byproduct (mole fraction); (B) ln [CF] vs. time plot showing CT degradation 

rate constant. 
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Figure 3.14: CF degradation with fresh 0.1 g/L nZVI modified with 0.5 wt. % sulfide prepared in 

4g/L CMC. Initial CF = 0.097 moles, or 110.58 g/L (50 μL of 233.12 mg/L CF stock 

solution).  About 35 % of CF degraded in 3 hours, with DCM and Methane as byproducts. (A) 

CF degradation and byproduct (mole fraction); (B) ln [CF] vs. time plot showing CT degradation 

rate constant. 

 

 

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2 2.5 3 3.5

M
o

le
 f
ra

c
ti
o

n
 (

m
/m

0
)

time (hr)

(A) CF DCM

Methane Total

y = -0.1283x - 1.8619
R² = 0.9938

-2.5

-2

-1.5

0 1 2 3 4

ln
 (

C
F

 m
m

o
le

s
)

time (hr)(B)



55 
 

 
 

 

 

Figure 3.15: CF degradation with fresh0.1 g/L nZVI modified with 1.5 wt. % sulfide prepared in 

4g/L CMC. Initial CF = 0.097 moles, or 110.58 g/L (50 μL of 233.12 mg/L CF stock 

solution).  About 37 % of CF degraded in 3 hours, with DCM and Methane as byproducts. (A) 

CF degradation and byproduct (mole fraction); (B) ln [CF] vs. time plot showing CT degradation 

rate constant. 
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Figure 3.16: CF degradation with fresh0.1 g/L nZVI modified with 2 wt. % sulfide prepared in 

4g/L CMC. Initial CF = 0.097 moles, or 110.58 g/L (50 μL of 233.12 mg/L CF stock 

solution).  About 35 % of CF degraded in 3 hours, with DCM and Methane as byproducts. (A) 

CF degradation and byproduct (mole fraction); (B) ln [CF] vs. time plot showing CT degradation 

rate constant. 
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Figure 3.17: CF degradation with fresh0.1 g/L nZVI prepared in 4g/L CMC and modified at 

varied sulfide loading. Initial CF = 0.097 moles, or 110.58 g/L (50 μL of 233.12 mg/L CF 

stock solution). 

 

 

Figure 3.18: Comparison of CF degradation kinetics (kobs values) with fresh 0.1 g/L nZVI and 

different sulfide loading   prepared in 4g/L CMC. Initial CF = 0.097 moles, or 110.58 g/L (50 

μL of 233.12 mg/L CF stock solution). 
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Figure 3.19: 1,1,1-TCA degradation with fresh 0.1 g/L nZVI  prepared in 4 g/L CMC. Initial 

1,1,1-TCA = 0.077 moles, or 103 g/L (50 μL of 206.25 mg/L 1,1,1-TCA stock solution).  

About 36% of 1, 1, 1-TCA degraded in 3 hours, with Ethane, Ethene and 1,1-DCA as reaction 

byproducts. (A) 1,1,1-TCA degradation and byproduct (mole fraction); (B) ln[1,1,1-TCA] vs. 

time plot showing 1,1,1-TCA degradation rate constant. 
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Figure 3.20: 1,1,1-TCA degradation with fresh 0.1 g/L nZVI modified with 1 wt.% sulfide 

prepared in 4 g/L CMC. Initial 1,1,1-TCA = 0.077 moles, or 103 g/L (50 μL of 206.25 mg/L 

1,1,1-TCA stock solution).  About 87% of 1,1,1-TCA degraded in 3 hours, with Ethane, Ethene  

and 1,1-DCA as reaction byproducts. (A) 1,1,1-TCA degradation and byproduct (mole fraction); 

(B) ln[1,1,1-TCA] vs. time plot showing 1,1,1-TCA degradation rate constant. 

 

 

0.00

0.02

0.04

0.06

0.08

0.10

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5

E
th

a
n

e
,E

th
e

n
e

 m
o

le
 f

ra
c
ti
o

n
(m

/m
0

)

C
-T

o
ta

l,
1

,1
,1

-T
C

A
,1

,1
-D

C
A

 
M

o
le

 f
ra

c
ti
o

n
 (

m
/m

0
)

time (hr)

(A) TCA DCA

Total Ethane

Ethene

y = -0.609x - 0.422
R² = 0.998

-3

-2

-1

0

0 0.5 1 1.5 2 2.5 3

ln
 (

1
,1

,1
-T

C
A

 m
m

o
le

s
)

time (hr)(B)



60 
 

 

Figure 3.21: 1,1,1-TCA degradation with fresh 0.1 g/L nZVI modified with 0.5 wt.% sulfide  

prepared in 4 g/L CMC. Initial 1,1,1-TCA = 0.077 moles, or 103 g/L (50 μL of 206.25 mg/L 

1,1,1-TCA stock solution).  About 74% of 1,1,1-TCA degraded in 3 hours, with Ethane , Ethene  

and 1,1-DCA as reaction byproducts. (A) 1,1,1-TCA degradation and byproduct (mole fraction); 

(B) ln[1,1,1-TCA] vs. time plot showing 1,1,1-TCA degradation rate constant.  
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Figure 3.22: 1,1,1-TCA degradation with fresh 0.1 g/L nZVI modified with 1.5 wt.% sulfide 

prepared in 4 g/L CMC. Initial 1,1,1-TCA = 0.077 moles, or 103 g/L (50 μL of 206.25 mg/L 

1,1,1-TCA stock solution).  About 67% of 1,1,1-TCA degraded in 3 hours, with ethane, ethene  

and 1,1-DCA as reaction byproducts. (A) 1,1,1-TCA degradation and byproduct (mole fraction); 

(B) ln[1,1,1-TCA] vs. time plot showing 1,1,1-TCA degradation rate constant. 

 

0.00

0.02

0.04

0.06

0.08

0.10

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5

E
th

a
n

e
,E

th
e

n
e

 m
o

le
 f

ra
c
ti
o

n
(m

/m
0

)

C
-T

o
ta

l,
1

,1
,1

-T
C

A
,1

,1
-D

C
A

 
M

o
le

 f
ra

c
ti
o

n
 (

m
/m

0
)

time (hr)

(A) TCA DCA

Total Ethane

Ethene

y = -0.315x - 0.473
R² = 0.998

-2

-1

0

0 0.5 1 1.5 2 2.5 3

ln
 (

1
,1

,1
-T

C
A

 m
m

o
le

s
)

time (hr)(B)



62 
 

 

Figure 3.23: 1,1,1-TCA degradation with fresh 0.1 g/L nZVI prepared in 4 g/L CMC and 

modified with varied sulfide loading.  Initial 1,1,1-TCA = 0.077 moles, or 103 g/L (50 μL of 

206.25 mg/L 1,1,1-TCA stock solution). 

 

Figure 3.24: Comparison of 1,1,1-TCA degradation kinetics (kobs values) with fresh 0.1 g/L nZVI 

prepared in 4g/L CMC and modified with different sulfide loading. Initial 1,1,1-TCA = 0.077 

moles, or 103 g/L (50 μL of 206.25 mg/L 1,1,1-TCA stock solution. 
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Figure 3.25: : 1,1,1-TCA degradation with fresh 0.5 g/L nZVI prepared in 4 g/L CMC and 

modified with 1 wt.% sulfide. Initial 1,1,1-TCA = 0.077 moles, or 103 g/L (50 μL of 206.25 

mg/L 1,1,1-TCA stock solution).  About 89% of 1,1,1-TCA degraded in 3 hours, with ethane, 

ethene  and 1,1-DCA as reaction byproducts. (A) 1,1,1-TCA degradation and byproduct (mole 

fraction); (B) ln[1,1,1-TCA] vs. time plot showing 1,1,1-TCA degradation rate constant. 
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Figure 3.26: Comparison of 1,1,1-TCA degradation kinetics (kobs values) for 2 different fresh 

nZVI  concentrations prepared in 4 g/L CMC and modified with 1 wt% sulfide. Initial 1,1,1-TCA 

= 0.077 moles, or 103 g/L (50 μL of 206.25 mg/L 1,1,1-TCA stock solution. 

 

Figure 3.27: 1,1,1-TCA degradation by aged 0.5 g/L nZVI prepared in 4 g/L CMC modified with 

1 wt.% sulfide. Initial 1,1,1-TCA = 0.077 moles, or 103 g/L (50 μL of 206.25 mg/L 1,1,1-

TCA stock solution). The variation in 1,1,1-TCA kobs appears to show a power function decline in 

nZVI/FeS reactivity with time. 

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6

k
o
b
s

(h
r-1

)

nZNI  loading (g/L)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 50 100 150 200 250

k
o
b
s
 (

h
r-1

)

time (hrs)



65 
 

 

 

Figure 3.28: 1,1,1-TCA degradation with fresh unstable 0.5 g/L nZVI modified with 1 wt.% 

sulfide. Initial 1,1,1-TCA = 0.077 moles, or 103 g/L (50 μL of 206.25 mg/L 1,1,1-TCA stock 

solution).  About 7% of 1,1,1-TCA degraded in 2 hours, with no byproduct. 

 

Figure 3.29: 1,1,1-TCA degradation with fresh 0.5 g/L nZVI prepared in 0.4 g/L CMC and 

modified with 1 wt.% sulfide. Initial 1,1,1-TCA = 0.077 moles, or 103 g/L (50 μL of 206.25 

mg/L 1,1,1-TCA stock solution).  About 74% of 1,1,1-TCA degraded in 3 hours, with ethane and 

ethene  as reaction byproducts. 
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Figure 3.30: Comparison of 1,1,1-TCA degradation kinetics (kobs values) with fresh 0.5 g/L nZVI 

prepared at 0, 0.4, and 4 g/L CMC loading and modified with 1 wt% sulfide. Initial 1,1,1-TCA = 

0.077 moles, or 103 g/L (50 μL of 206.25 mg/L 1,1,1-TCA stock solution). 
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Figure 3.31: CT degradation (ln [CT] vs. time) with fresh 0.05 g/L nZVI prepared in 4 g/L CMC 

and modified at varied sulfide loading. Initial CT = 0.035 moles, or 54.45 g/L (50 μL of 108.9 

mg/L CT stock solution). (A) CT degradation at 0-1.5 wt. % sulfide loading; (B) CT degradation 

at 3-10 wt. % sulfide loading. 
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Figure 3.32: Comparison of CT degradation with fresh 0.05 g/L nZVI and different sulfide 

loading prepared in 4 g/L CMC. Initial CT = 0.035 moles, or 54.45 g/L (50 μL of 108.9 mg/L 

CT stock solution. 

 

 
Figure 3.33: Comparison of CT degradation kinetics (kobs values) with fresh 0.05 g/L nZVI and 

different sulfide loading prepared in 4 g/L CMC. Initial CT = 0.035 moles, or 54.45 g/L (50 

μL of 108.9 mg/L CT stock solution.   
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Table 3.1: Final Carbon Tetrachloride by products mole fraction in degradation with 0.05 g/L 

fresh nZVI modified with Na2S (0.1 molar, 0.5-1 wt. % sulfide) in 4 g/L CMC and 30 mM 

TAPSO at pH 7 after 1.5 hours. [CT] 0 = 0.035 µmoles (50μL of 108.9 mg/L CT stock solution).  

 

Sulfide loading 

(wt. %) 

CT remaining 

(m/m0) 

Final CT 

degradation (%) 

Final CF 

remaining (m/m0) 

Carbon mass 

balance (m/m0) 

0 0 100 0.69 0.69 

0.5 0 100 0.74 0.74 

1 0 100 0.62 0.62 

1.5 0 100 0.78 0.78 

2 0 100 0.54 0.54 

3 0.42 58 0.39 0.81 

4 0.064 94 0.55 0.62 

5 0.68 32 0.39 1.07 

6 0.56 44 0.23 0.80 

8 0.48 52 0.2 0.68 

10 0.78 22 0.12 0.90 
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Table 3.2: Carbon Tetrachloride degradation with 0.05 g/L fresh nZVI modified with Na2S (0.1 

molar, 0.5-10 wt. % sulfide) in 4 g/L CMC and 30 mM TAPSO at pH 7. [CT] 0 = 0.035 µmoles 

(50μL of 108.9 mg/L CT stock solution) 

 

Sulfide Loading (wt. %) Overall CT_kobs (hr-1) CT  kM (L g-1 hr-1) R2 

0 5.79 1.15E+02 1 

0.5 10.09 2.02E+02 0.996 

1 11.2 2.24 E+02 1 

1.5 8 1.6 E+02 1 

2 7.32 1.46 E+02 0.997 

3 0.55 1.12 E+01 0.994 

4 1.66 2.1 E+01 0.999 

5 0.28 5.84 0.997 

6 0.35 7 0.989 

8 0.34 6.8 0.998 

10 0.132 2.92 0.923 
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Table 3.3: Chloroform degradation with 0.1 g/L fresh nZVI modified with Na2S (0.1 molar, 0.5-

2 wt. % sulfide) in 4 g/L CMC and 30 mM TAPSO at pH 7. [CF] 0 = 0.097 µmoles (50 μL of 

233.12 mg/L CF stock solution).  

 

Sulfide Loading (wt. %) Overall CF_kobs (hr-1) CF_ kM (L g-1 hr-1) R2 

0 0.082 8.2E -1 0.954 

0.5 0.128 1.28 0.998 

1 0.193 1.93 0.992 

1.5 0.158 1.58 0.986 

2 0146 1.46  0.997 
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Table 3.4: Final Chloroform mole fraction in degradation with 0.1 g/L fresh nZVI modified with Na2S (0.1 molar, 0.5-2 wt. % 

sulfide) in 4 g/L CMC and 30 mM TAPSO at pH 7 after 2 hours. [CF] 0 = 0.097 µmoles (50 μL of 233.12 mg/L CF stock solution).  

 

Sulfide loading 

(wt. %) 

Final CF (m/m0) Final CF degradation 

(%) 

Final DCM (m/m0) Final Methane  

(m/m0) 

Carbon mass balance 

(m/m0) 

0 0.73 27 0.101 0.094 0.97 

0.5 0.74 26 0.076 0.173 1 

1 0.58 42 0.14 0.2 0.94 

1.5 0.73 27 0.138 0.174 1.04 

2 0.72 28 0.139 0.160 1.03 
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Table 3.5: Final 1,1,1-TCA mole fraction in degradation  with 0.1 g/L fresh  nZVI modified with Na2S (0.1 molar, 0.5-1.5 wt. % 

sulfide) in 4 g/L CMC and 30 mM TAPSO at pH 7 after 2  hours. [TCA] 0 = 0.077 µmoles (50 μL of 206.25 mg/L 1,1,1-TCA stock 

solution).  

 

Sulfide loading 

(wt.%) 

Final 1,1,1-

TCA (m/m0) 

Final 1,1,1-TCA 

degradation (%) 

Final 1,1-

DCA (m/m0) 

Final Ethane 

(m/m0) 

Final Ethene 

(m/m0) 

Carbon Mass balance 

(m/m0) 

0 0.64 36 0.073 0.014 NA 0.76 

0.5 0.25 75 0.049 0.026 0.021 0.44 

1 0.13 87 0.049 0.025 0.025 0.36 

1.5 0.33 77 0.063 0.026 0.020 0.54 
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Table 3.6: 1,1,1-TCA degradation with 0.1 g/L fresh nZVI modified with Na2S (0.1 molar, 0.5-1.5 wt. % sulfide) in 4 g/L CMC and 

30 mM TAPSO at pH 7. [TCA] 0 = 0.077 µmoles (50 μL of 206.25 mg/L 1,1,1-TCA stock solution).  

 

Sulfide Loading (wt. %) Overall 1,1,1-TCA kobs (hr-1) 1,1,1-TCA_ kM  (L g-1 hr-1) R2 

0 0.086 8.6E-1 0.981 

0.5 0.349 3.49 0.994 

1 0.609 6.09 0.998 

1.5 0.315 3.15 0.998 
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Table 3.7: 1,1,1-TCA degradation with fresh nZVI modified with Na2S (1 wt.% sulfide) in 4 g/L CMC and 30 mM TAPSO at pH 7. 

[TCA]0 = 0.077 µmoles (50 μL of 206.25 mg/L 1,1,1-TCA stock solution).  

 

nZVI conc.(g/L) Sulfide Loading (wt. %) Overall 1,1,1-TCA kobs (hr-1) 1,1,1TCA_kM (L g-1 hr-1) R2 

0.1 1 0.609 6.09 0.998 

0.5  1 1.01 2.02 0.981 
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Table 3.8: Final 1,1,1-TCA mole fraction in degradation with 0.5 g/L fresh  nZVI modified with Na2S (0.1 molar, 1 wt. % sulfide) in 

4 g/L CMC and 30 mM TAPSO at pH 7 after 2  hours. [TCA]0 =  0.077 µmoles (50 μL of 206.25 mg/L 1,1,1-TCA stock solution).  

 
nZVI 

conc.(g/L) 

Sulfide Loading 

(wt. %) 

Final 1,1,1-TCA 

(m/m0) 

Final 1,1,1-TCA 

degradation (%) 

Final 1,1-DCA 

(m/m0) 

Final Ethane Mole 

Fraction (m/m0) 

Final Ethene 

(m/m0) 

0.1 1 0.23 77 0.069 0.030 0.028 

0.5 1 0.12 86 0.076 0.048 0.031 
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Table 3.9: 1, 1,1TCA degradation with 0.5 g/L aged nZVI modified with Na2S (0.1 molar, 1 wt. % sulfide) in 4 g/L CMC and 30 mM 

TAPSO at pH 7.For each injection, [TCA] 0 = 0.077 µmoles (50 μL of 206.25 mg/L 1,1,1-TCA stock solution).  

 

injection Time(hours) Overall TCA_kobs (hr-1) TCA_ kM (L g-1 hr-1) R2 

1 0.083 0.794 7.94 0.994 

2 32.42 0.315 3.15 0.988 

3 125.46 0.294 2.94 0.982 

4 197.47 0.261 2.61 0.976 
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Table 3.10: Final 1, 1,1TCA and by products mole fraction in degradation with 0.5 g/L aged 

nZVI modified with Na2S (0.1 molar, 0.5-1.5 wt. % sulfide) in 4 g/L CMC and 30 mM TAPSO 

at pH 7 after 2 hours. of each injection sampling . For each injection, [TCA] 0 = 0.077 µmoles (50 

μL of 206.25 mg/L 1,1,1-TCA stock solution).  
 

Injection Final TCA (m/m0) Final TCA degradation (%) 

1 0.13 87 

2 0.40 60 

3 0.36 64 

4 0.35 65 

 
 
 
 
 
 
 
 

Table 3.11: 1, 1,1-TCA degradation with 0.5 g/L aged nZVI modified with Na2S (0.1 molar, 1 

wt. % sulfide) in 30 mM TAPSO at pH 7at different CMC concentration. [TCA] 0 = 0.077µmoles 

(50 μL of 206.25 mg/L 1,1,1-TCA stock solution). 

 

CMC Conc. (g/L) Overall 1,1,1-TCA kobs (hr-1) 1,1,1TCA_ kM (L g-1 hr-1) R2 

0 0.022 0.044 0.978 

0.4 0.295 0.59 0.998 

4 0.988 1.97 0.968 

 

  



79 
 

Table 3.12: CHC degradation byproduct and pathways with nZVI and Na2S 

Parent Products Reaction Pathway 
Experimental 

Conditions 

CT CF 

Methane 

Hydrogenolysis 

Sequential hydrogenolysis or direct 

reduction 

30 mM TAPSO (pH 7) 

4 g/L CMC 

CF DCM  

Methane 

Hydrogenolysis 

Sequential hydrogenolysis or direct 

reduction 

30 mM TAPSO (pH 7) 

4 g/L CMC 

1,1,1-

TCA 

Ethane 

 

Ethene 

 

 

 

1,1-DCA 

Direct transformation (α-elimination/ 

reactive intermediate) 

Direct transformation (reactive 

intermediate) or dehydrohalogenation and 

hydrogenolysis  

 

Hydrogenolysis 
 

30 mM TAPSO (pH 7) 

4 g/L CMC 
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APPENDIX A: CALCULATIONS FOR DETERMINING AMOUNT (μmoles) IN REACTORS 

 

A.1: Chlorinated hydrocarbons quantification 

1. Stock solution prepared in 160 mL serum bottle with 160 mL Milli-Q water and 20 μL 

pure CHC. Concentration of stock was determined as follows: 

 Cs = (ρCHC * Vpure) / Vw 

  Where: Cs = Concentration of stock (mg L-1) 

   ρCHC = Density of CHC (mg L-1) 

   Vpure = Volume of pure CHC (L) 

   Vw = Volume of water in stock reactor 

Example: Chloroform stock 

  Cs = (1,480,000 mg L-1 * 0.00002 L) / 0.16 L = 185 mg L-1 = 0.185 g L-1 

 

2. Various amounts of stock were then added to reactor bottles or standards containing 96 

mL aqueous medium (TAPSO or Milli-Q water, respectively). Calibration curves were 

constructed with amount (Mt) on the ordinate (y-axis) and corresponding peak areas on 

the abscissa (x-axis). The amount added to bottle was determined as follows: 

 Mt = [(Cs * Vs) / FW] * 1,000,000 μmoles 

  Where: Mt = Amount of CHC added to bottle (μmoles) 

   Cs = Concentration of stock (g L-1) 

   Vs = Volume of stock added (L) 

   FW = Formula weight of CHC (g mol-1) 

   1 mol = 1,000,000 μmoles 

Example: Chloroform experiment (50 μL stock added to reactor) 

Mt = [(0.185 g L-1 * 0.00005 L) / 119.38 g mol-1] * 1,000,000 μmoles  

= 0.311 μmoles 
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3. The partitioning coefficient was determined by using a dimensionless Henry’s Constant 

for each CHC according to the following: 

fw =  
1

(1+k′H(
Va
Vw

))
  

 Where: fw = Partitioning coefficient 

  k’
H = Dimensionless Henry’s Constant for CHC at 25oC. 

  Va = Volume of head space in reactor (mL) 

  Vw = Volume of aqueous medium in reactor (mL) 

Example: Dimensionless Henry’s Constant for CF = 0.148  

fw =  
1

(1+0.148(
64 mL

96 mL
))

 = 0.910 

 

4. The partitioning coefficient was then used to calculate aqueous μmoles after partitioning 

according to the following: 

 Mw = Mt * fw 

  Where: Mw = Amount in aqueous phase (μmoles) 

   Mt = Amount of CHC added to bottle (μmoles) 

   fw = Partitioning coefficient 

  Example: Mw with CF partitioning coefficient  

   Mw = 0.311 μmoles * 0.910 = 0.282 μmoles 

   This can also be represented in μg by the following: 

0.282 μmoles * 119.38 g mol-1 * 1 mol / 106 μmoles * 106 μg / 1 g = 33.7 

μg 
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APPENDIX B: CHC DEGRADATION AND BYPRODUCTS (µmoles) 

 

1. CHLORINATED METHANES 

 

 
 

 

Figure b.1: CT degradation and byproducts (µmoles) with fresh 0.05 g/L nZVI prepared in 4 g/L 

CMC. Initial CT = 0.035 moles, or 54.45 g/L (50 μL of 108.9 mg/L CT stock solution).  

 

 

0

0.005

0.01

0.015

0.02

0.025

0 0.5 1 1.5 2

C
-T

o
ta

l,
C

T
, 
C

F
 (

m
m

o
le

s
)

time (hr)

CT

CF

Total



83 
 

 
Figure b.2: CT degradation and byproducts (µmoles) with fresh 0.05 g/L nZVI modified with 0.5 

wt. % sulfide prepared in 4 g/L CMC. Initial CT = 0.035 moles, or 54.45 g/L (50 μL of 108.9 

mg/L CT stock solution).  

 

Figure b.3: CT degradation and byproducts (µmoles) with fresh 0.05 g/L nZVI modified with 1 

wt. % sulfide prepared in 4 g/L CMC. Initial CT = 0.035 moles, or 54.45 g/L (50 μL of 108.9 

mg/L CT stock solution).  
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Figure b.4: CT degradation and byproducts (µmoles) with fresh 0.05 g/L nZVI modified with 1.5 

wt. % sulfide prepared in 4 g/L CMC. Initial CT = 0.035 moles, or 54.45 g/L (50 μL of 108.9 

mg/L CT stock solution).  

 

Figure b.5: CT degradation and byproducts (µmoles) with fresh 0.05 g/L nZVI modified with 2.0 

wt. % sulfide prepared in 4 g/L CMC. Initial CT = 0.035 moles, or 54.45 g/L (50 μL of 108.9 

mg/L CT stock solution).  
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Figure b.6: CT degradation and byproducts (µmoles) with fresh 0.05 g/L nZVI modified with 3.0 

wt. % sulfide prepared in 4 g/L CMC. Initial CT = 0.035 moles, or 54.45 g/L (50 μL of 108.9 

mg/L CT stock solution).  

 

Figure b.7: CT degradation and byproducts (µmoles) with fresh 0.05 g/L nZVI modified with 4.0 

wt% sulfide with 4.0 wt% sulfide prepared in 4 g/L CMC. Initial CT = 0.035 moles, or 54.45 

g/L (50 μL of 108.9 mg/L CT stock solution).  
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Figure b.8: CT degradation and byproducts (µmoles) with fresh 0.05 g/L nZVI modified with 5.0 

wt. % sulfide prepared in 4 g/L CMC. Initial CT = 0.035 moles, or 54.45 g/L (50 μL of 108.9 

mg/L CT stock solution).  

 

Figure b.9: CT degradation and byproducts (µmoles) with fresh 0.05 g/L nZVI modified with 6.0 

wt. % sulfide prepared in 4 g/L CMC. Initial CT = 0.035 moles, or 54.45 g/L (50 μL of 108.9 

mg/L CT stock solution). 
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Figure b.10: CT degradation and byproducts (µmoles) with fresh 0.05 g/L nZVI modified with 

8.0 wt. % sulfide prepared in 4 g/L CMC. Initial CT = 0.035 moles, or 54.45 g/L (50 μL of 

108.9 mg/L CT stock solution).  

 

Figure b.11: CT degradation and byproducts (µmoles) with fresh 0.05 g/L nZVI modified with 

10.0 wt. % sulfide prepared in 4 g/L CMC. Initial CT = 0.035 moles, or 54.45 g/L (50 μL of 

108.9 mg/L CT stock solution).  
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Figure b.12: CF degradation and byproducts (µmoles) with fresh0.1 g/L nZVI prepared in 4g/L 

CMC. Initial CF = 0.097 moles, or 110.58 g/L (50 μL of 233.12 mg/L CF stock solution).  

 

Figure b.13: CF degradation and byproducts (µmoles) with fresh0.1 g/L nZVI modified with 0.5 

wt. % sulfide prepared in 4g/L CMC. Initial CF= 0.097 moles, or 110.58 g/L (50 μL of 233.12 

mg/L CF stock solution).  
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Figure b.14: CF degradation and byproducts (µmoles) with fresh0.1 g/L nZVI modified with 1.0 

wt. % sulfide prepared in 4g/L CMC. Initial CF= 0.097 moles, or 110.58 g/L (50 μL of 233.12 

mg/L CF stock solution).  

 

Figure b.15: CF degradation and byproducts (µmoles) with fresh0.1 g/L nZVI modified with 1.5 

wt. % sulfide prepared in 4g/L CMC. Initial CF= 0.097 moles, or 110.58 g/L (50 μL of 233.12 

mg/L CF stock solution).  
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Figure b.16: CF degradation with fresh0.1 g/L nZVI modified with 2 wt% sulfide prepared in 

4g/L CMC. Initial CF= 0.097 moles, or 110.58 g/L (50 μL of 233.12 mg/L CF stock solution).  
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2. CHLORINATED ETHANES 

 

Figure b.17: 1,1,1-TCA degradation and byproducts (µmoles) with fresh 0.1 g/L nZVI  prepared 

in 4 g/L CMC. Initial 1,1,1-TCA = 0.077 moles, or 103 g/L (50 μL of 206.25 mg/L 1,1,1-TCA 

stock solution).   

  

 Figure b.18: 1,1,1-TCA degradation and byproducts (µmoles)with fresh 0.1 g/L nZVI modified 

with 0.5 wt.% sulfide prepared in 4 g/L CMC. Initial 1,1,1-TCA = 0.077 moles, or 103 g/L 

(50 μL of 206.25 mg/L 1,1,1-TCA stock solution).  
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Figure b.19: 1,1,1-TCA degradation and byproducts (µmoles) with fresh 0.1 g/L nZVI modified 

with 1.0 wt.% sulfide prepared in 4 g/L CMC. Initial 1,1,1-TCA = 0.077 moles, or 103 g/L 

(50 μL of 206.25 mg/L 1,1,1-TCA stock solution).  

 

Figure b.20: 1,1,1-TCA degradation and byproducts (µmoles)with fresh 0.1 g/L nZVI modified 

with 1.5 wt.% sulfide prepared in 4 g/L CMC. Initial 1,1,1-TCA = 0.077 moles, or 103 g/L 

(50 μL of 206.25 mg/L 1,1,1-TCA stock solution).  
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