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Abstract

Barnes, Tyler Douglas. M.S. Department of Psychology, Wright State University, 2016.
Detecting IER: An Item Response Theory Approach

Insufficient Effort Responding (IER) is prevalent enough in self-report data to cause
issues with construct validity. There are many ways to detect IER, but they are less than
ideal as they each detect different forms of IER. 1 compared an Item Response Theory
(IRT) approach consisting of the /. person-fit statistic and the Person Fluctuation
Parameter (PFP) to longstring, non-consecutive longstring, even-odd split, and
psychological synonyms indices. 1simulated 3200 samples with one of four types of
random responding: consecutive responding, non-consecutive patterned responding,
random responding following a normal distribution, and random responding following a
uniform distribution. Also, I generated an additional sample that consisted of all types of
IER examined within this study. I found that the IRT methods are able to detect IER
considerably better than the other indices, excluding using the longstring method to
detect consecutive responding. As such, they are robust enough to detect most forms of
IER. I conclude that using IRT approaches after removing the obvious {ER cases with the

longstring index is the best way to detect [ER,
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Detecting IER: An Item Response Theory Approach

There has been a renewed emphasis on the quality of data provided by self-report
responses to survey measures. The primary focus has been on identifying individuals
who provide unusable data because of careless or insufficient effort responding (IER;
Huang Curran, Keeney, Popski, & DeShon, 2012). Effortless responding adversely
affects the factor structure (e.g., Schmitt & Stults, 1986; Woods, 2006) and criterion-
related validity (McGrath, Mitchel, Kim, & Hough, 2010) of the test, thus limiting the
usefulness of the measure. Therefore, it is important to identify and remove these
respondents to maintain the psychometric integrity of the test.

Due to the affects that IER can have on data quality, researchers have devised
some ways to detect people who engage in IER (e.g., Huang et al., 2012). However,
these methods each have their flaws and are less than perfect detectors of IER. One
possible reason for this is that they are only able to detect one kind of IER although there
are different behavioral manifestations of IER. One possible fix for this is by using Item
Response Theory (IRT) approaches to detecting IER. Theoretically, [RT approaches
should be able to detect all forms of IER and thus, be strong detectors of IER.

Below, I begin by discussing the role of self-reported surveys in research and in
selection procedures. Within these surveys, IER is prevalent at levels that can lead to
improperly made decisions. 1 discuss statistical techniques that researchers use to detect
IER or cases. I expand on on previous research by Huang et al. (2012) and Meade and
Craig (2012) by comparing the effectiveness of the more common statistical approaches
for IER detection with IRT approaches. Researchers have examined the effectiveness of

each IER indicator (e.g. Huang et al. 2012; Meade & Craig, 2012), but there has yet to be



a study examining IRT in conjunction with the other indices. The purpose of my study is
to compare the IER indices in effectiveness and determine which index is the best
indicator of IER.
The Use of Self-Report Surveys

Self-report is one of the most common ways to assess many constructs used in
research and selection procedures (Spector & Brannick, 2009). This stems from the
many advantages of using self-report data. First, they are cheap and easy to use. It is
relatively easy to post an internet survey on various websites and research management
systems. Many websites code the data into a useable form, such as an electronic
spreadsheet, for data analysis. Also, researchers can distribute self-report surveys to
massive numbers of participants. Peer-reviewed self-report surveys have demonstrated
reliability and validity. It is rare to find a statistical package in which one cannot
compute internal consistency indices such as Cronbach’s Alpha or perform correlations
of muitiple test administrations to demonstrate test-retest reliability. As such, self-report
surveys usually assess constructs on a scale that is readily useable for reliability and
validation analyses. Finally, psychology researchers measure some constructs that
require asking the participant. These constructs can include feelings, emotions, deviant
behaviors, and other covert behaviors and constructs that researchers cannot observe. In
these instances, the only option to measure the constructs is to ask the participant.

Self-report methods have many advantages, but they also have some flaws. One
major flaw is that self-report measures are prone to aberrant responding (Karabatsos,
2003). Aberrant responding is defined as a response pattern on the test that does not

reflect the true ability of the examinee. Typically, researchers discuss five domains of



aberrant responding (creative responding, cheating, lucky guessing, careless, and random
responding), but I limit our discussion to the latter two.

Random responding occurs when the test taker selects response options
unsystematically (Karabatsos, 2003). Careless responding encompasses every other kind
of response pattern associated with inattentiveness. Careless responding includes two
components: response sets and inconsistent responding. Response sets occur when the
test takers follow a pattern when they answer, but the pattern is unrelated to the test
taker’s underlying level of the assessed construct (e.g., on a 5-point graphic rating scale,
responding with all fives, or 1,2,3,4,5,1,2,3,4,5, etc.). Inconsistent responding is when a
test taker answers related questions differently, but non-randomly (e.g., a participant
reports low extraversion and reports high extraversion in the same test). The behaviors of
random and careless responding might differ, but the underlying mechanism that drives
these two behaviors is the same: inattentiveness to the test.

Researchers have consolidated careless responding and random responding into
one category, coined insufficient effort responding (IER; Huang et al., 2012) This IER
definition subsumes both careless and random responding. In this study we assess IER as
defined by both consistent responding (both consecutive responses and non-consecutive
responses with a pattern) and inconsistent/random responding following Meade &
Craig’s (2012) recommendations by using both a random normal and random uniform
distribution from which to draw random responses.

Prevalence of [ER
IER is prevalent in self-report data, especially in online administration of surveys

(Beach, 1989). Johnson (2005) reported a base rate prevalence of 3.5% of his sample as



IER cases. Meade and Craig (2012) reported that 10 to 12%. Both studies use a
conservative classification of IER (participants responded to a large, however
unspecified, portion of the test with [ER). Researchers tend to find that most people, 50
to 73%, report some form of [ER on at least one item (Baer, Ballenger, Berry, & Wetter,
1997; Berry et al., 1991).

Issues Associated With IER

IER of any prevalence is problematic in psychometric research for at least three
reasons: it affects reliability, criterion-related validity, and construct-related validity of
self-report measures. When test takers respond randomly, those responses can attenuate
internal consistency coefficients such as Cronbach’s Alpha by answering inconsistently.
When someone responds in a response set, the effect on reliability is unpredictable
because the coefficients can be strengthened, attenuated, or the same as the true
coefficient (Meade & Craig, 2012). Regardless of the resulting reliability coefficient, it
will be inaccurate. Furthermore, removing [ER cases can improve internal consistency
(Huang et al., 2012).

The same is true for criterion-related validity coefficients. Hough et al. (1990)
demonstrated that randorn responding attenuated correlations between personality and job
performance variables. Logically, IER can strengthen relationships between two
variables. For example, if you are measuring two constructs and both measures are
susceptible to IER, it is possible that the measures both capture IER. This results in
stronger relationships due to common method variance.

People who engage in IER can report differently than the careful responder and

therefore will be considered an outlier. This is evident from the Mahalanobis D outlier



analysis that researchers can use to detect IER cases. Because these people are
considered outliers, they can have a strong effect on regression coefficients (Stevens,
1984). Stevens (1984) argued that 1 or 2 outliers can have a strong influence on
regression coefficients. This has a detrimental effect on the validity of findings and utility
(Stevens, 1984).

Similar to IER’s effects on criterion-related validity, it can affect other areas of
construct validity. When IER is present in 10% of a sample, unidimensional scales fit a
two-dimensional model better than a unidimensional model (Schmitt & Stults, 1985). As
such when removing cases with IER, the unidimensionality of a scale is improved
(Huang et al., 2012). Furthermore, it is unethical and invalid to interpret test results when
researchers are unsure that the test measures the intended construct.

It is important to address a practical issue with IER. The goal of any selection
procedure (school, workplace, etc.) is to distinguish between people who might perform
well on a task and those who might perform poorly. This distinction is frequently made
by using scores on tests. The use of the GRE, SAT and/or ACT for graduate and
undergraduate admissions in colleges and tests of personality, job experience, and/or
general mental ability for hiring are just a few examples of the prevalence of using test
scores to make decisions. Because IER can lead to spuriously high or low scores,
practitioners should not underestimate the importance of obtaining *“true” scores on tests
to improve prediction accuracy (Karabatsos, 2003).

Review of Detection Methods
Because of these issues due to IER, researchers have developed many ways to

detect [ER. These different techniques can be clumped into two different categories:



before (a priori) and after (post hoc) administration of the survey (Meade & Craig, 2012).
The techniques applied before test administrations involve making items/scales to
directly or indirectly measure IER. These a priori methods will not be used in this study
and will not be discussed further. The post hoc techniques are statistical indices
computed after the data are collected. Some of the popular techniques are reviewed
below.

Traditional Post Hoc Detection Methods

Some of these methods are complex, but have the advantage of not increasing
survey length. These methods can detect different types of IER behaviors that some of
the a priori methods, but all have the disadvantage of not having clearly defined cut-off
scores for classification into IER or non-IER cases. I will discuss only the indices that |
used in the study. For a more comprehensive review, | recommend Meade and Craig
(2012).

Long String. Long string measures detect people that give the same response,
consecutively, for many items. Also, long string methods can detect people who follow
small response sets {(e.g., 1,2,1,2,1,2, etc.). There are two methods within the long string
technique: maximum long string and average long string.

The maximum long string index involves finding the number of times a test taker
gives a consecutive response or set of responses. The index is that number. For example,
if a participant answers with a *“1” ten times consecutively, the index is ten (not one). In
average long string, researchers must give participants clusters of items on separate
pages. The researchers compute the maximum long string from each page and then

average the indices together as a measure of IER throughout the entire survey.



This method detects only a small portion of IER cases. Meade and Craig reported
that 2% of 436 people followed a response pattern conducive to detection by long string
methods (2012). While it is important to ensure data quality, 2% is less than the
conservative base rate of IER as proposed by Johnson (2005). In summary, this method
does not seem to be effective at detecting the majority of IER cases.

Consistency indices. There are three common consistency indices: psychological
antonyms, psychological synonyms, and even-odd split or person reliability. The
psychological antonyms index involves correlating all combinations of item pairs to tease
out the item pairs that have strong negative correlations. The index is computed by
correlating the observed scores between the antonym pairs for each person. A stronger
negative correlation for each person indicates more consistent responding. The
psychological synonyms index follows the same process as the psychological antonyms,
but instead, strong positive correlations between item pairs are used for the index. The
resulting correlation coefficient from the index should be strong and positive to indicate
consistency. For both of these indices, the convention is to find 30 pairs of items with a
correlation of at least .60 or -.60 (synonyms and antonyms, respectively) from which to
draw these indices.

The even-odd split index is computed by first reverse coding negatively coded
items. Then the researcher sums the even numbered items within each dimension of the
test. The same is done for the odd numbered items. The even and odd summed scores
within each dimension are the pairs used for the within-person correlation. Therefore, if
a test has five dimensions, the within person correlation will come from a correlation

with 5 pairs. A stronger positive correlation implies consistent responding.



Huang et al. found that the ability for the consistency indices depends on the cut
off scores (2012). The psychological antonym scales ability to detect IER ranges from
detecting 20 to 45% of overall IER cases with a 95% specificity (accurate 95% of the
time) cut off. The even-odd split ranged from detecting 16 to 46% of IER cases overall.
The best came from the previously established cut-off of a correlation of  =.30.
“Obvious” IER cases were easier to detect than suspect cases (Huang et al., 2012).

Meade and Craig found that the psychological synonyms detected 73.3 % of IER
cases and the odd-even split method identified 64.4% in empirical data (2012). They also
found, in simulated data, the odd-even split out performed both the psychological
synonyms and antonyms regardless of the prevalence of IER within the sample and
within the survey (Meade & Craig, 2012). It is important to note that all of the
consistency indices decline in detection ability when participants answer with IER on
small portions of the survey.

These indices have their weaknesses. Both the antonym and synonym indices
require extremely large tests to find the 30 pairs of related items with a correlation of .60
or -.60 needed for an accurate estimate of the correlations. Failure to find the required
number of these pairs can render the correlation uninterpretable because a slight
difference in one pair will change the index score drastically. This issue is a problem
with even-odd split as well. A researcher must administer a large test with a large
number of subtests in order to obtain a stable index.

Item Response Theory (IRT)
Item response theory (IRT) is a framework of mathematical models which 1

believe underlies how a person responds to an item. Unlike in Classical Test Theory,



IRT assumes that the relationship between a person’s response and their underlying
trait/ability (or theta) is non-linear and that items measure different levels of theta
differently.

IRT models give researchers a lot of information about the items. Figure 1 is an
illustrative example of the information gained from three dichotomous items. These
curves are called Item Response Curves (IRCs). These items are modeled from the two-
parameter logistic model seen below:

exp(a(g_ﬂ))
1+ exp(“(a‘ﬂ))

Probability(x|6,a,B) =

From theta (x-axis) and the item properties, | can calculate the probability of a correct
response (y-axis). Each of the items contains two item properties, or parameters:
discrimination (a) and location or difficulty (8).

Discrimination is described by how much of a change of ability induces a change
in probability of a correct response. A higher discrimination parameter implies that it is
easier to distinguish between people of similar ability. This is useful in selection
decisions where many applicants have similar ability and the goal is to find the “best of
the best”. For example, assume that I gave two people a test item rated on a scale from
one to 100. One person scores a 95 and the other scored a 96. If the item is not highly
discriminating, then the underlying ability estimates would be comparable. If the item is
highly discriminating, then the underlying ability estimates are distinct.

Discrimination is illustrated by the slope of the IRCs. High discrimination (ltem
2 and Item 3 in figure 1) implies a steep slope and low discrimination (item 1 in figure 1)
implies a flatter slope. Therefore, in a selection decision, it would be more prudent to use

Item 2 and/or Item 3.



Another view of the discrimination parameter is that it is not an item
characteristic, but a function of how the test taker interprets the item, or how well the
responses on a test reflect inconsistent interpretation of the test taker’s own ability
estimates (Lumsden, 1977; Ferrando, 2009). For example, on a test of conscientiousness,
on one item a person may believe that he/she is high in conscientiousness and report
thusly. Upon reading the next item, the person might re-evaluate his/her own level of
conscientiousness and believe that his/her own level of conscientiousness is different
from what he/she reported on the previous item. This leads to inconsistent responding,
which is quantified by Person Fluctuation Parameter (PFP). The IRT model that
incorporates this alternative view of the discrimination parameter substitutes the item
discrimination parameter for the PFP.

The location, or difficulty, parameter is defined by how much theta is needed to
have a 50% probability of a correct response on an item. This definition assumes a
dichotomous item where there is a correct response. In Figure 1, Items 1 and 2 have the
same difficulty parameter as the two curves intersect at 50% probability. Item 3 would
be considered more difficult, or has a higher 8 parameter, because the amount of ability
needed to achieve this 50% probability is more than the other two items.

While the above examples are described with dichotomous items, these
definitions and the underlying mechanisms are similar with polytomous items. The
interpretation of theta is exactly the same. The interpretations of the discrimination and
location parameters are similar, but there are separate probability calculations for each
response option (i.e. if you have a 5 point likert-type scale, you will calculate a

probability from all five response options). You will still have one discrimination

10



parameter, but you will have multiple location parameters; a parameter for each response
option minus one. For example, if you have five response options you will have four
location parameters.

In the graded response model, an IRT model used for polytomous items, the
calculations for the probabilities of each response option involves two steps. The first
step is calculating a Boundary Response Function (BRF) for each location parameter and
each ability estimate using the following formula:

exp(‘x(a-ﬂ))

SLUZE 1+ exp(‘x(e-ﬁ))

This results in four BRFs for each person, assuming five response options. The first BRF
is interpreted as the probability of responding with a 2, 3, 4, or 5 (assuming that you have
5 point likert-type scale). The second BRF is interpreted as the probability of answering
with a 3, 4, or 5. The third BRF is interpreted as the probability of answering with a 4 or
5. This pattern continues for each BRF.

These BRFs give researchers probabilities, but the probabilities are not specific
enough for practical use. For example, the third BRF tells us the probability of
answering with a 4 or 5, but this is not the probability of a specific response. The second
step is the calculation of the probabilities for a specific response option. Assuminga 5
point likert-type scale, the formulas are as follows:

Probability Responding with a 1 =1- BRF
Probability Responding with a 2 = BRF> - BRF;
Probability Responding with a 3 = BRF; — BRF:

Probability of Responding with a 4 = BRFy— BRF;
Probability of Responding with a 5= BRF;

11



From the probabilities obtained, researchers can calculate the likelihood of each
response pattern. Researchers can use this information to calculate a person-fit statistic.

Itern Response Theory person fit statistics. A person-fit statistic is an index of
how likely is a person’s response pattern or how much a person deviates from what the
model expects. Although these two conceptualizations are different, they converge upon
answering the same question. Does this person match our expectations based on the
proposed IRT model? Within the context of my study, person-misfit might be an
indication of IER.

IRT has a large advantage over the other methods because the person-fit statistics
should detect any kind of IER. All IER behaviors are considered deviations from prior
expectations or the response model. In long string, IER is deviation from the researcher’s
expectations of how often a consecutive response is appropriate. In Mahalanobis D, IER
is deviation from the mathematical centroid. In the consistency indices, IER is deviation
from the expectation of answering similar items similarly. Because all person-fit indices
compare expectations derived from an IRT model to observations, this encompasses all
of the definitions posited by the other indices. This means that IRT person-fit statistics
should detect all forms of [ER.

There are many different person-fit statistics and they differ in their ability to
detect careless responding (Meijer, 1996). Some are capable of detecting random
responding and other forms of IER, and some are better at detecting people who do not
understand the instructions or other forms of aberrant responding (Karabatsos, 2003).
This feeds into the advantage of IRT having the ability to detect all forms of aberrant

responding including [ER.
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The literature on the effectiveness of the person-fit statistics is contradictory.
These differences partially stem from: 1) the difference in test lengths, 2) the number of
misfitting responses within a single case of aberrant responding, 3) the prevalence of
misfitting response patterns within the sample, and 4) the vast number of different
statistics.

Longer tests tend to lead to better detection rates of person-fit statistics
(Karabatsos, 2003; Reise & Due 1991), Reise; and Due (1991) found that researchers
need at least 20 items of varying difficultly and low discrimination to detect aberrant
responding. Karabatsos (2003) supported the previous claim that longer tests are needed.
Conceptually, this is unsurprising. Parameters within IRT models are supposed to be
measurement invariant and a substantial amount of data are needed to reach this
ambitious goal.

Karabatsos conducted a review of the detection rates of aberrant responding for
36 person-fit statistics (2003). The study found that careless and random responders were
easiest to detect of all the different types of aberrant responses collapsing across
prevalence of aberrant responding and test lengths. A visual inspection of the figure
displaying this finding shows that most of the statistics seem to fall approximately
between a 80% to a 90% detection rate, with some being better and some being less
effective than this range. This result is more optimistic than previous studies. However,
when considering all of the simulated data within this study (collapsing across all test
lengths, types of aberrant responding, and prevalence), the detection rates decrease to
approximately a range of 70 to 80% with some being larger and some being considerably

lower (e.g., lower than 60%).
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Many researchers report that the number of aberrant responding cases affects the
detection rates of the IRT person-fit statistics (Karabatsos, 2003; Meijer & Sijtsma,
2001). Karabatsos found that a smaller prevalence of aberrant responders than 50% seem
more suitable for IRT person-fit statistics (2003). This makes sense because the
calculations of the person-fit statistics rely on the estimated parameters from the data. If
a large portion of the sample involves aberrant responding, the estimation programs will
inaccurately estimate parameters. This leads to aberrant responders fitting the [RT model
(Emons, 2009).

A test taker who engages in more IER frequently is a more severe case of aberrant
responding that someone who engages in IER in only a few instances. A person with
more aberrant responding is easier to detect by using IRT person-fit statistics than
someone with less (Emons, 2008; Meijer & Sijtsma, 2001). The reason is because the
person who engages in infrequent IER would yield only a slight, possibly negligible,
misfit whereas the more severe case is a clear misfit.

A review of the person-fit literature indicates that there are over forty different
person-fit statistics (Meijer & Sijtsma, 2001). However, I will focus this discussion on
the traditional Standardized Log-Likelihood statistic (/:) and the Person Fluctuation
Parameter (PFP) conceptualized as a person-fit statistic for the purposes of this article.

The I statistic is conceptually a standardized likelihood of a response pattem
given the ability and item parameter estimates (Drasgow, Levine, & Williams, 1985).
Therefore, larger numbers indicate better fit. The standardization of the statistic makes
the result less dependent on ability estimates (Meijer & Sijtsma, 2001). This is more

useful for the purposes of this article than the unstandardized version (/) as a person’s
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underlying ability and IER behaviors should be distinct, unrelated constructs. Note that
IER does not include guessing the answers. Logically, it makes sense that someone of
low ability would guess at the answers which can look like inconsistent responding, a
form of IER, but the process through which these response patterns appear are
contradictory. A test taker cannot be guessing and engaging at IER at the same time.

In the review by Meijer and Sijtsma (2001), the authors found that /- is an
effective IER index, detecting 67% of person misfit due to aberrant responding.
However, this study assumed that the true thetas were equivalent to the estimated thetas,
but, regardless of the estimation procedure, they are not equivalent. I rectified this issue
by using only estimated parameters in the calculation of the /- statistic.

The other “person-fit statistic” is the PFP. Traditionally, the PFP is an alternative
conceptualization of the item discrimination parameter in classical IRT. Whereas item
discrimination is an item characteristic that describes varability in response for a given
ability estimate centered on the difficulty parameter, the PFP is a parameter that
characterizes this variability as due to the person. Lumsden (1977) proposed a model that
incorporated the PFP and constrained the item discrimination parameter to be the same
for each item. Because the PFP is on the same metric as the item discrimination
parameter, higher parameter estimates indicate more consistent responding, and
subsequently, lower estimates are an indication of inconsistent responding and/or IER
behaviors within the context of the consistency indices previously discussed.

The largest disadvantage of IRT is that smaller tests and smaller sample sizes
cannot be effectively examined with this method. Although this seems to be an issue

with some measures, some, like personality surveys, tend to be large (e.g. MMPI and



IPIP) and they commonly administered the tests of these constructs online. This should
encourage large sample sizes.
Purpose of Present Study

Past research has examined at the efficacy of the various a posteriori methods and
some have looked at the efficacy of IRT person-fit statistics. However, research has yet
to compare the IRT and the other methods concurrently. I believe this is due to the
complexities of IRT. IRT requires a deep understanding of the methods to properly
interpret the results, but the flexibility of IRT can make it a powerful tool for detecting
IER on self-report measures,

I compared the IRT person-fit statistics to psychological synonyms, even-odd
split and the long string methods within simulated samples with the goal of discovering
the best method for detecting IER. With this goal in mind, I asked four research

questions:

1. Which IER index is the best at detecting consecutive responding (i.e., 1,1,1,1,
etc.)?

2. Which IER index is the best at detecting non-consecutive responses that
follow a pattern (i.e., 1,5,1,5,1,5,1,5, etc.)?

3. Which IER index is the best at detecting random responding that follows a
normal distribution?

4. Which IER index is the best at detecting random responding that follows a

uniform distribution?

A common complaint about simulated data is that it does not reflect real world

circumstances. This is arguably true, but it is impossible to assess the true accuracy of
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the indices without having known parameters. Therefore, I expanded previous research
by including a test of the indices on a simulated sample with all known forms of IER.

From this sample, 1 asked the following research question:
5. Which index performs the best in the mixed-1ER samples?
From the results of the previous questions I asked the last research question:
6. Overall, what is the best index for detecting IER?

Method

Design

I used a fully-crossed 2x4x4 design with 100 replications for each condition plus
one mixed-IER condition. The three manipulated conditions are: total number of cases,
type of IER within the sample, and the prevalence of IER. The total number of cases was
either be 500 or 1,000. The type of [ER was manipulated using four conditions: random
responding sampled from a uniform distribution, random responding from a normal
distribution, a response set with the same response in succession (e.g., 1,1,1,1, etc.), and a
response set with different consecutive responses but follows a pattern (e.g., 1,5,1,5,1,5,
etc.). The first two conditions come from Meade and Craig (2012). The last two
conditions are needed for comparing IRT to the other indices (especially the long string
method). While the same response in succession has been used previously to assess the
detective capabilities of indices (e.g., Meade & Craig, 2012), the repeating pattemn with
alternating responses condition is novel. This manipulation is needed to characterize the
people that follow a pattern, but do not give the same answer for many consecutive items.

Finally, I varied the percent of items within a sample with IER by 10% (10 items), 25%
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(25 items), 50% (50 items), and 100% (100 items). This will cover the entire range of the
possible prevalence of IER within a single case. For the mixed IER condition, I included
100 samples that have a total of 120 cases randomly sampled from the IER conditions
and 880 non-IER cases.

[ included the mixed IER samples because they are a better of reflection of an
empirical sample. There is only one type of IER represented within the non-mixed IER
samples. This probably does not reflect the true nature of an empirical sample where
people engage in different types of IER (e.g., some respond randomly and some respond
with response sets). Even though this analogue to a real-world sample is not a perfect
representation, it is impossible to know the true number of IER cases within a real-world
sample. Therefore, this simulation of a real-world sample is the best method by which
researchers can assess detection rates and false positives while mimicking the properties
of a real-world sample.

Data Generation

I generated the samples in the data analysis program R, from the Graded
Response Model previously described. The samples had five dimensions with 20 items
each rated on a 5-point graphic rating response format (100 items in all). Each sample
was generated from the same priors (difficulty, discrimination, and ability parameters).
The lowest difficulty parameter for each item were generated from a normal distribution
with mean = -2 and SD = .45, The subsequent difficulty parameters were calculated by
adding 1.3 from the previous difficulty parameter. 1 used a common discrimination
parameter of a = 2. All ability parameters were generated from a standard normal

distribution for each person and for all five dimensions. I forced correlations among the



ability parameters so that they refiected the correlations found in Table 1. These
correlations make the samples mimic the intercorrelations between the subscales on the
NEO-FFI found by McCrae and Costa (2004).

Each sample had a constant 12% prevalence of IER cases (i.e., 120 IER cases in
the 1,000 case samples and 60 IER cases in the 500 case samples). This differs from the
prevalence of IER within a single respondent. The prevalence of IER cases refers to the
number of cases in which 1 inserted IER. The prevalence of IER within a single
respondent refers to the number of item in which [ inserted IER within a single case.
This constant prevalence of IER comes from the estimates of the prevalence of [ER cases
suggested by Meade and Craig (2012). The IER was inserted into the samples via R
using a random number generator for the random responding conditions. For the
consecutive responses, | used a random number generator in R to select a number and
inserted that number a pre-determined number of times consecutively in each dimension
for the consecutive responding conditions. For the cases that use a response set that does
not include using the same response for consecutive items, I used a pattern of
interchanging responses between 1 and 5 for half of the IER cases and 5 and 1 in the
other half.

For the mixed IER samples, I generated 880 non-1ER cases. For the IER cases, 1
generated a separate sample that consists of IER cases only. Within the IER sample |
generated 50 cases for each IER type and each within-case IER prevalence (16 conditions
in total). Irandomly sampled without replacement 120 cases from the IER sample to

insert into the mixed IER sample. I repeated this process to make a total of 100 samples,
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The longstring conditions only represented 3.33% (four cases) of the IER conditions
based on Meade & Craig (2012) reporting that longstring is rarely used.
Data Analysis

Parameter estimation. After inserting IER cases into the samples, [ estimated the
location parameters using “mirt” package in R. These estimated item parameters are
required for the IRT person-fit statistics and for theta and PFP scoring using expected a
posteriori (EAP) estimation.

Using Ferrando’s (2009) recommendation for estimating PFPs, the item
discrimination parameters were constrained to be equal across all items. Then, [

estimated the PFPs and thetas, using the following formulas:

) [ j,yL |0, 7)1 (6)f (y )6
[ o, Lhxl6.7)1(0)s (7)o

and

[,e x,Iﬂ r)f(e)f(r)dnw
[, L0x)0.7)r(0)1(r)dnie

6,=E I
()I

Where:
v = PFP quadrature point
vi = PFP for each participant i
6 = Theta quadrature point
0; = Theta participant i
Lix; I 8,y) = the likelihood of a response given at each point of the theta and PFP
quadrature

Ay) = density distribution of the PFPs
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f(8) = density distribution of the thetas
The quadrature for the PFP estimation ranged from .1 to 5 in increments of .1. 1

used a lognormal density function where:

Where:

o = common item discrimination value

oy = standard deviation of the constrained item discrimination parameter (1 set it

to be one in this study)

The above equation forms the parameters needed in order to treat the PFP as normally
distributed and then make all the values positive to keep it on the same metric as the item
discrimination parameter. The quadrature for theta estimation will ranged from -4 to 4 in
increments of .1 with a standard, normal density distribution.

IRT person fit (I.). | chose to use two person fit statistics (/- and the PFP
described above) to assess IER detection rates. /:is the standardized form of /p which
involves calculation of a log- likelihood of a response pattern. Conceptually, this is a sum
of the likelihood of each response given the response model and then that sum is
standardized. A smaller likelihood indicates a misfit between the test taker and the

model. I chose /:as this seems to be a commonly used statistic among
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Industrial/Organizational psychologists, and it has shown to be effective at detecting IER.

This statistic is calculated by the following formula:

;= = ED)]

T ()

Where:
J
1= [x, (nP,y+ (1= X, )enP,,))
j=!
J
E(y=Y(Penlp, )+(P,otn[p,,)
e
W =3, {En il ]
j=1 Puju
Where:

J = number of test items

Xnj = examinee n score on the test item J

Py1= probability of that endorsing the chosen response

Pyje= probability of not endorsing the chosen response, where Pyn = f- Py

vy = variance, where vy = Pyjt Pujo

Traditional IER detection indices. Below I review how to conduct some of the
traditional post hoc statistical procedures for detecting IER.
Even-odd split. This index is essentially a split-half correlation for each person.

The two halves are found by using even-numbered items for one half, and then using the
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odd-numbered items for the other within each unidimensional scale. Then a Pearson
correlation is used to assess person reliability. If the resulting coefficient is strong this
indicates that the person responded to similar items similarly. As such, a stronger
positive correlation indicates more consistent responding, or less [IER. A minimum
requirement for this analysis is that there are 30 pairs of items. This is needed to help
stabilize the correlation. When there are fewer pairs, the unstable correlation coefficient
renders this index uninterpretable (e.g. it is difficult to interpret if there is a difference
between r = 0.30 and » = 0.50). As such, when a correlation coefficient is unstable,
introducing more data can drastically change the coefficient.

Psychological synonyms. The only difference between this index and the even-
odd split index lies in how the item pairs are chosen. In psychological synonyms, the
pairs are chosen by inter-item correlations with a coefficient of at least » = 0.60.
However, in this study, I had to relax this to a correlation of » = 0.45 in order to
consistently achieve the number of pairs needed to run the analysis effectively. The pairs
are divided into two halves to run a split-half correlation. Smaller and all negative
correlations indicate IER. The minimum requirement of 30 pairs of items to calculate the
split-half correlation is needed here.

Long string. This statistic is the largest number of times a single response appears
consecutively. For example, someone could have answered with a “1” ten consecutive
times. In that same response pattern, that person could have answered with a “3” five
consecutive times. The long string statistic would be ten in the above example because

‘ll”

appeared consecutively more times than the “3”.
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Empirical cut-offs. None of the proposed indices have a well-established cut-off
score for use in categorizing a case into an IER or non-1ER case. One way to establish
cut-offs involves converting the index into a percentile rank and then testing various
theoretically plausible ranks to determine which has the highest detection rates (power)
with the lowest error rate. However, the issue with this approach is that if the theoretical
cut-off is incorrect, this could affect the power rates. Therefore, instead of having a
single cut-off for each index, 1 used six percentile rank bands that cover the entire range
of possibilities. The bands included; 0% - 6%, 6.1% - 12%, 12.1% - 50%, 50.1% -
87.9%, 88% - 93.9%, and 94% - 100%. The bottom and top two bands come from the
12% prevalence of IER cases. The middle two are used just to cover all possibilities, and
were not used in the results.

Power. Power is a measure of the detecting rates of the indices by giving the
proportion of true positives detected. The calculation is performed with the following

formula:

Number of true positives detected
Total number of true positives

Power =

A larger proportion indicates better effectiveness. | calculated a power rate for each
index, for each percentile rank band, and for each condition.
Error. Error is another measure of the accuracy of each IER indicator. Error

measures the proportion of false positives. Error is calculated by the following formula:

Number of false positives detected
Total number of true negatives

Errar =

A small proportion indicates low error. 1 calculated an error rate for each index, for each
percentile rank band, and for each condition.

Results
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Within all indices, the power rates increased and the error rates decreased as the
amount of IER within the IER cases increased excluding the non-consecutive longstring
index. This is unsurprising as index accuracy should improve for more egregious cases
of IER.

RQ 1. Which [ER index is the best at detecting consecutive responding (i.e.,
1,1,1,1, etc.) The results for this question can be found on Table 2. Regardless of sample
size, the best index to use to detect consecutive responding for the 10% and 25%
conditions is the /- person-fit statistic. Regardless of sample size, in the 10% [ER
conditions the average power rate was .44 with an average error rate of .08. In the 25%
IER conditions the average power rates only ranged from .69 in the # = 500 conditions
and .70 in the n = 1,000 conditions. The average error rates stayed a constant .04. In the
10% IER condition, the PFP performed just as well as /. in the » = 500 conditions
(average power estimate of .44 and average error rate of .08). However, the PFP does not
perform as well as the /- in the 25% IER condition with an average power rate ranging
from .56 for the n = 500 conditions to .58 for the n = 1,000 conditions. The average error
rates were also larger (.06 for both sample size conditions). However, as convention
dictates, a power estimate of 0.8 is needed in order for the power to be considered
acceptable. Therefore, none of the indices were acceptable detectors of IER in the 10%
and 25% IER conditions. Regardless of sample size, in the 50% and 100% IER
conditions, the longstring index reached this convention of acceptable power (0.82 and
1.0, respectively with average error rates of .04 and 0). Therefore, it outperformed all of
the other indices. This makes sense as the longstring index is calculated by the number

of consecutive responses (i.e., it is measuring itself).
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All indices were able to detect IER cases perfectly (1.0 power rate and 0 errors) in
the 100% IER conditions. However, all indices {(excluding the longstring index) required
using cut-offs that are theoretically incorrect to use. For example, in the non-consecutive
index, the smallest numbers were indicators of IER although large numbers should
indicate IER. This complicates the interpretation of these indices, rendering them useless
by themselves.

RQ 2. Which IER index is the best at detecting non-consecutive responses that
Sfollow a pattern (i.e., 1,5,1,5,1,5,1,5, etc.)? The results for this question can be seen in
Table 3. Repardless of sample size, the best overall index for detecting non-consecutive,
patterned responses was the PFP. It produced no error and perfect power rates (1.0) for
the 25% to 100% IER conditions regardless of sample size. The weakest power rates the
PFP produced came from the 10% IER conditions, and they still reached the convention
of acceptable power (.88 for the n = 1,000 conditions and .89 for the n = 500 conditions
with a constant average error rate of .01).

The /. statistic performed well in the 25% and 50% IER conditions with no error
with perfect and almost perfect (.99) average power rates. In the 10% and 100% IER
conditions, the /- did not perform as well. It did not reach acceptable power in the 10%
IER conditions with a constant average power rate of .67. In the 100% IER conditions,
larger numbers indicated [ER, which is anti-theoretical. This renders the /- useless in
detecting non-consecutive patterned responses when all response options are answered in
a pattern.

The psychological synonyms index performed well in the 50% IER condition,

with an average power rate of .93 in the # = 500 conditions and .95 in the n = 1,000
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conditions with a constant average error rate of .01. However, the psychological
synonym index did not perform as well as the /. and PFP statistic in the 50% IER
conditions. It also performed perfectly in the 100% IER condition (power of 1.0 with no
erTor).

The non-consecutive longstring index produced perfect power rates in the 50%
and 100% IER conditions. It produced and almost no error (.01) in the 50% IER
conditions and no error in the 100% IER conditions. However, because it produced some
error in the 50% IER conditions, the PFP performed better. It performed dreadfully in
the 10% and 25% IER conditions. The largest average power rate in this condition was
.04. Overall, I would suggest using the PFP to detect non-consecutive, patterned
responding.

RQ 3. Which IER index is the best at detecting random responding that follows a
normal distribution? Results for this table can be found on Table 4. All indices,
excluding the longstring indices, tended to improve detecting random responding from a
normal distribution as sample size increased although this was not always true. When
there were decrements, the average power rates decreased by only .01, which I would
argue is not practically relevant. There were only three practically relevant
improvements. (1) In the 50% IER conditions, the average power rate increased from .26
to .35 for the psychological synonyms. (2) In the 100% IER conditions, the average
power rate increased from .81 to .85 in the psychological synonyms. (3) In the 10% IER
conditions, the average power rate increased from .30 to .35 for /.. Error rates almost

always remained equivalent.
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The only acceptable power rates came from the psychological synonyms,
the PFP and the /.. The psychological synonyms only reached acceptable average power
rates in the 100% IER conditions (.81 in the n = 500 conditions to .85 in the n = 1,000
conditions). The average error rates were .03 and .02 respectively.

The PFP had acceptable average power rates in the 50% and 100% IER
conditions. In the 50% IER conditions there was a minute decrement from an average
power rate of .88 to .87 as sample size increased. In the 100% IER conditions, the
average power rate was a constant .96. Although they did not reach acceptable power
rates, in the 10% IER conditions, the PFP performed the best with the highest average
power rates (.36 for n = 500 conditions and .38 for » = 1,000). That said, the error rates,
although constant, were fairly large (.09).

The /- slightly outperformed the PFP in the 50% and 100% IER conditions with
average power rates of .90 and .98 respectively and had no error in the 100% IER
conditions. The average power rates were unaffected by sample size. Also, /- did not
perform as well as the PFP in the 10% IER conditions, but it was as closest to the PFP
with average power rates of .30 for the n = 500 conditions and .35 for the n = 1,000
conditions. Overall, I believe that /- is the best detector of random responding following
a normal distribution, but followed closely by the PFP.

RQ 4. Which IER index is the best at detecting random responding that follows a
uniform distribution? Results for this question can be found in Table 5. Unlike in Table
4, there were not any drastic changes in average power rates due to sample size, but there
was one notable change in average error rates. In the 25% IER condition for the PFP, the

error rate increased from .02 to .05 as sample size increased.
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The only acceptable power rates came from the PFP and /.. The PFP had
acceptable average power rates in the 25% through 100% IER conditions for both sample
size conditions. The power rates slightly changed as sample size increased although
these changes were minute. In the 25% IER condition, the average power rates decreased
from .84 to .83. In the 50% IER condition, the average power rates decreased from .99 to
.98. Regardless of sample size, the PFP had perfect average power rates with no error in
the 100% IER condition. The PFP performed the best in the 10% IER condition although
the power rates did not reach .80 and the average error rate was high (.08 for » = 500, and
.07 for n = 1,000). The average power rate increased from .48 to .49 as sample size
increased.

Similar to the PFP, the /- had acceptable average power rates in the 25% through
100% IER conditions for both sample size conditions. The power rates had one minute
change as sample size increased. In the 25% IER condition, the average power rates
decreased from .83 to .82. In the 50% IER condition, the average power rates were a
constant .99. In the 100% IER condition, /- had perfect average power rates with no
error. The /- did not perform as well as the PFP in the 10% [ER condition, but it was
close. The average power rate was a constant .44 as sample size increased with an
average error rate of .08. Overall, I would consider both the /- and PFP to be equal in
detecting random responding from a uniform distribution

RQ 5. Which index performs the best in the mixed-IER samples? The results to
answer this question can be found in Table 6. In the mixed-1ER samples, the /- and the
PFP performed similarly. The /: performed the best with an average power rate of .76 and

an average error rate of .03. The PFP had an average power rate of .75 with an average
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error rate of .03. The smallest power rate of both of IRT indices were larger than that of
every other indices maximum power rate. Overall, the IRT indices had lower error rates
than every other index as well. The only discrepancy is that the average and minimum
error rates of the non-consecutive longstring index were comparable to the maximum and
average error rates of the IRT indices.

It is also noteworthy that none of the indices reached acceptable power rates with
the exception of some instances of the IRT indices reaching 0.80 and larger. This is
probably due to the prevalence of the 10% IER conditions within the samples. In almost
every condition, the 10% IER cases were difficult to detect and therefore, probably
attenuated the power rates.

RQ 6. Overall, what is the best index for detecting IER? In this study, there was
not a single, clear winner for the best index for detecting [ER. However, the /. and the
PFP performed the best overall. The PFP index performed well in comparison to all
other indices, excluding /., in all conditions except the 100% longstring conditions. The /-
index performed well in comparison to all other indices, excluding the PFP, in all but the
100% longstring and the 100% non-consecutive longstring conditions. The PFP out-
performed /: in a few conditions, but /: out-performed the PFP in a few conditions as
well. Therefore, | believe that both the PFP and the /- are equally useful for detecting
IER.

Discussion

This study was simulation study which extended the previous work done by

Meade and Craig (2012) and Huang et al. (2012). [ examined the power and error rates

of many of the traditional post hoc indices in conjunction with two IRT approaches (/:
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and PFP) to detecting IER. Overall, the IRT indices outperformed all other indices and
performed almost equally to each other. There were very few differences between the
performances of these indices due to sample size. In the mixed-IER samples, the IRT
indices performed the best. Given these results, | conclude that the IRT approach
provides the best indices for detecting IER accurately.

Although the IRT indices clearly out-performed the other indices, they are not
without limitations. IRT person-fit statistics require many items for one scale in order to
perform well (Reise & Due, 1991). That said, Reise and Due (1991) did not include the
PFP in their study. It is possible that the constraint of requiring 20 items might not hold
as strongly on the PFP as it does for /: because the PFP is an IRT parameter instead of a
person-fit statistic. This claim has yet to be tested, but it could educate researchers
further on the abilities of the PFP in detecting IER. That said, scales with only a few
items (e.g., 3 to 8 items) would most likely not yvield stable results as the PFP estimation
procedure (and IRT approaches in general) tend to require more items. Future research
should attempt to find the minimum number of items needed in order to yield an accurate
PFP estimate.

Another limitation of the use of IRT indices is that they require a large sample
size. 1 chose n =500 and » = 1,000 for our sample sizes and even 500 cases can be
difficult to achieve. However, it is interesting that 1 found only a few meaningful
differences within the IRT indices power rates between the two sample sizes. Also, the
few meaningful differences I did find, were in the 10% of items with IER conditions

where the power rates were low anyway. This leads me to suspect that n = 500 might not
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be the smallest sample size in which IRT can be used to detect IER. Future researchers
should address this concern with sample sizes in between 250 and 500 people.

For the non-consecutive patterned responding conditions, I did not address ali
possible combinations of patterns. However, this would a huge undertaking as there are
numerous possibilities for patterned responses. The number of these patterns
exponentially grow as the number of items and response options increase. Given the low
prevalence of this behavior and the amount of work it would take, I believe that this
would not provide much to the IER literature. However, manipulating the response
options to be more similar (like a repeating pattern of 1 and 2, or 4 and 5) might be
feasible. Although the IRT indices should be able to detect this, it depends on the
variation between the location parameters across the items. If the location parameters
were similar, it might seem that the person would fit the model. However, if the location
parameters were different, the person could be seen as not fitting the model.

Manipulating the sample size of the mixed IER samples would have been useful.
Because I sampled 120 cases (four of which came from the eight longstring conditions),
it is likely that each condition was semi-represented equally. If | were to have simulated
samples with n = 500 (60 IER cases), it would be more likely that the power rates would
vary more due to under and over representation of the IER conditions. This could help
researchers establish boundary conditions or help researchers to interpret the validity of
these indices in detecting IER.

Finally, these findings should be cross-validated in a real-world sample.
Although researchers developed IRT to explain how someone may respond to an item,

the samples presented in this study are only simulations. I am more confident in
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externalizing these findings with the addition of the mixed-IER samples than with only
the single condition samples. However, these samples are still simulations, and it is
impossible to simulate every response process underlying responses to a scale.
Therefore, there are issues with generalizing these results to the real world.

In validating IRT IER detection protocols in a real world sample, a vital step is to
ensure that the people are not fitting the model due to IER and not due other factors such
as true outliers where they might be detected as an IER case, but respond with accurate
information. This can be done by examining the correlations of the IRT approaches with
a combination of all the traditional approaches. Another useful approach to validating
IRT measures of IER is to use an approach like that used by Meade and Craig (2012),
which involved a Latent Profile Analysis and then a discriminant function analysis to see
if the IRT indices are able to predict classification from the Latent Profile Analysis.

Conclusions and Recommendations

[ conclude that the PFP and /: indices are great indicators of IER and are better
than the traditional post hoc indices in large tests and sample sizes. Even though the IRT
indices performed well in every condition, the long string method was the best for
detecting consecutive responding by far. The issue with the long string method is that the
less egregious cases are hard to detect. Therefore, | recommend that future users of IER
indices use the longstring method to detect obvious cases (i.e., 50% and 100% of the
items responded to with the same response) and then use the PFP and /: together to detect

the rest.
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Figure 1.

Plot of the probabilities of endorsement for three items in Item Response Theory.
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Table 1.

Intercorrelations between dimensions in each sample.

Factor 1 2 3 4
1 -
2 -38 -
3 -.04 24 -
4 -.29 22 10 -
5 -42 32 01 17
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Table 2.

Results for all indices in the longstring conditions.

IER Condition n = 500
Long NC Syn Split Lz PFP
Long
10%  .11(.11) .05(.06) .13(.12) .13(.12) .44(.08) .44(.08)

25%  .23(.09) .04(.06)* .06(.13)* .15(12) .69(.04) .56(.06)

Longstring
50% .82(.04) .02(.06)* .00(.14)* .04(.13)* .63(.05) .48(.07)
100% 1.0(.00) .00(.06)* .00(.14)* .00(.14)* .00(.14)* .00(.14)*
n = 1,000
Long NC Syn Split Lz PFP
Long
10% .11(.11) .05(.06) .13(.12) .14(.12) .44(.08) .33(.08)
25%  .23(.09) .04(.06)* .04(.13)* .15(.12) .70(.04) .58(.06)
Longstring

50%  .84(.04) .02(.06)* .00(.14)* .04(.13)* .64(.05) .48(.07)

100% 1.0(.00) .00(.06)* .00(.14)* .00(.14)* .00(.14)* .00(.14)*

Note. Long = Longstring Index; NC Long= Non-Consecutive Longstring index; Syn=
Psychological Synonyms Index; Split= Split-Half Method Index; Lz = /- person-fit index;
PFP = Person Fluctuation Parameter; * = the best power estimates were in anti-theoretical
percentile ranks; The numbers in parentheses are the error rates.
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Table 3.

Results for all indices in the non-consecutive longstring condition.

IER Condition n =500
Long NC Syn Split Lz PFP
Long
10%  .10(.12)* .04(.06) .11(.12)* .14(.12) .67(.04) .89(.01)
Non- 25%  .08(.12)* .03(.06) .00(.11)* .17(.12) .99(.00) 1.0(.00)
Consecutive

Longstring  50%  .04(.13)* 1.0(.01) .00(.01)* .24(.10) 1.0(.00) 1.0(.00)

100% .00(.15)* 1.0(.00) .00(.00)* .00(.14)* .00(.14)* 1.0(.00)

n = 1,000
Long NC Syn Split Lz PFP
Long
10%  .09(.11)* .04(.06) .11(.12)* .12(.12) .67(.04) .88(.01)
Non- 25%  .08(.12)* .03(.06) .00(.10)* .17(.12) .99(.00) 1.0(.00)
Consecutive

Longstring  50%  .04(.13)* 1.0(.01) .00(.01)* .24(.10) 1.0(.00) 1.0(.00)

100% .00{.14)* 1.0(.00) .00(.00)* .00(.14y* .00(.14)* 1.0(.00)

Note. Long = Longstring Index; NC Long= Non-Consecutive Longstring index; Syn=
Psychological Synonyms Index; Split= Split-Half Method Index; Lz = /. person-fit index;
PFP = Person Fluctuation Parameter; * = the best power estimates were in anti-theoretical
percentile ranks; The numbers in parentheses are the error rates.
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Table 4.

Results for all indices in the random responding following a normal distribution

conditions
IER Condition n= 500
Long NC Long Syn Split Lz PFP
10%  .11(.11)* .06(.06) A3(.12)  .16(.12)  .30(.09) .36(.09)
Random
Responding 25%  .08(.12)* .05(.06) 20(.10)  .24(.10) .66(.05) .66(.05)
from
Normal 50%  .06(.12)* .04(.06) .26(.08) .43(.07) .90(.01) .88(.02)
Distribution
100% .02(.14)* .02(.06)* .81(.03) .74(.04) .98(.00) .96(.01)
n = 1,000
Long  NC Long Syn Split Lz PFP
10%  .10(.12)* .06(.06) A4(12)  16(.12)  .35(.09) .38(.09)
Random
Responding 25%  .09(.12)* .05(.06) JA9(.12)  .24(.10)  .66(.05) .65(.05)
from
Normal 50%  .06(.12)* .04(.06) J35(.09)  .43(.07) .90(.01) .87(.02)
Distribution
100% .03(.13)* .02(.06)* .B5(.02) .75(.04) .98(.00) .96(.01)

Note. Long = Longstring Index; NC Long= Non-Consecutive Longstring index; Syn=
Psychological Synonyms Index; Split= Split-Half Method Index; Lz = /. person-fit index;
PFP = Person Fluctuation Parameter; * = the best power estimates were in anti-theoretical
percentile ranks; The numbers in parentheses are the error rates.
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Table 5.

Results for all indices in the random responding following a uniform distribution
conditions

IER Condition n =500
Long  NC Long Syn Split Lz PFP
10%  .10(.11)* .05(.06)  .14(.12) .17(.12) .44(.08) .48(.08)

Random
Responding 25%  .08(.12)* .04(.06) .17(.12) .28(.10) .83(.02) .84(.02)
from
Uniform 50%  .04(.12)* .03(.06)  .29(.10) .48(.07) .99(.00) .99{.00)
Distribution

100% .00(.14)* .01(.06)* .65(.05) .75(.04) 1.0(.00) 1.0(.00)

n= 1,000
Long NCLong  Syn Split Lz PFP
10%  .10(.12)* .05(.06) .13(.12) .17(.12) .44(.08) .49(.07)

Random

Responding 25%  .08(.12)* .04(.06) .16(.12) .27(.10) .82(.02) .83(.05)
from

Uniform 50%  .05(.13)* .03(.06) .26(.10) .49(.07) .99(.00) .98(.00)
Distribution

100% .00(.14)* .01(.06)* .67(.05) .75(.04) 1.0(.00) 1.0(.00)

Note. Long = Longstring Index; NC Long= Non-Consecutive Longstring index; Syn =
Psychological Synonyms Index; Split= Split-Half Method Index; Lz = /- person-fit index;
PFP = Person Fluctuation Parameter; * = the best power estimates were in anti-theoretical
percentile ranks; The numbers in parentheses are the error rates.
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Table 6.

Power and error estimates of each index in the mixed-IER condition,

Long NC Long Syn Split Lz PFP
Average 08(.13)  .04(.05) 43(.08) 41(.08) .76(.03) .75(.03)
Minimum 00(.07)  .01(.04) .29(.06) .24(.06) .66(.02) 63(.03)
Maximum .23(.22) .09(.08) 58(.10) 55(.10) .B8(.05) .82(.05)

Note. Long = Longstring Index; NC Long= Non-Consecutive Longstring index; Syn=
Psychological Synonyms Index; Split= Split-Half Method Index; Lz = /. person-fit index; PFP =
Person Fluctuation Parameter. Numbers in parentheses are error rates.
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