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Abstract

Qiliang,Shao. M.S.E.E., Department of Electrical Engineering, Wright State University,
2016. FPGA realization of low register systolic multipliers over GF (2m).

Finite field multiplication over GF (2m) is a critical component for elliptic curve cryptog-

raphy (ECC). National Institute of Standards and Technology (NIST) has recommend-

ed five polynomials (two trinomials and three pentanomials) for ECC implementation.

Although there are a lot reports available on polynomial basis multipliers, efficient im-

plementation of a design with flexible field-size is quite rare. There is another basis to

represent the field called normal basis. Normal basis multiplication over GF (2m) is wide-

ly used in various applications such as elliptic curve cryptography (ECC). As a special

class of normal basis with low complexity, Gaussian normal basis (GNB) has received

considerable attention recently. In this paper, we first propose a novel low-complexity

hybrid-size systolic polynomial basis multiplier based on a proposed novel hybrid-size

(for both pentanomial and trinomial) algorithm for efficient systolization of finite field

multiplications. Next, we propose a novel decomposition algorithm to develop a digit-

level (DL) low critical-path delay and low register-complexity systolic structure for GNB

multiplication over GF (2m). For the hybrid-size systolic polynomial multipliers, both the

theoretical and field-programmable gate array (FPGA) implementation show that, our

proposed architectures have lower register-complexity than the existing ones. The pro-

posed hybrid-size multiplier can also be extended to other field-size and can be used as a

third-party intellectual property (IP) core for various cryptosystems. At the same time,

the proposed systolic Gaussian normal basis multipliers can achieve both low critical-path

and low register-complexity through the theoretical and application-specific integrated

circuit (ASIC) comparisons with the existing GNB multipliers.

Key Words-Gaussian normal basis (GNB), finite field multiplication, systolic structure,

irreducible polynomials, low complexity, digit-level, low critical-path delay.
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Chapter 1

Introduction

This chapter will introduce the outline of the whole thesis. It presents some existing

works of finite field multipliers, both polynomial multipliers and GNB multipliers. The

contributions of this report are also given here.

1.1 Preliminary

1.1.1 Polynomial Multipliers

Elliptic curve cryptography (ECC) is widely used in many fields such as wearable devices

and portable systems [1-4]. Finite field multiplication over GF (2m) is a crucial part

of ECC, and there are mainly two bases selected to represent the field operation, i.e.,

polynomial basis [5-13] and normal basis [14-17]. Due to the simpler design structures,

polynomial-based multipliers are more popularly used in hardware implementation than

normal basis ones [8].

In general, pentanomials and trinomials are two main irreducible polynomials [7-11], [17-

26]. The National Institute of Standards and Technology (NIST) has recommended three

pentanomials and two trinomials, which are popularly used for ECC implementation [5].

Although there are many reports available in the literature focusing efficient implemen-

tation of finite field multipliers based one either pentanomial or trinomial, there is still

few specific design with hybrid-size multiplier.

Systolic design and non-systolic design are two basic structures for field multipliers over

GF (2m). Because of the modularity and regularity of the structure, polynomial-based

systolic multipliers are considered to be used in applications [5-11]. Also, systolic design

1



has the pipelining structure, and the registers must be used in all the processing elements

(PEs) in the systolic array [5]. Therefore, systolic structures usually have higher register-

complexity, compared with lower complexity and longer time delay of non-systolic designs.

Systolic structure with low register-complexity are needed when realized in field-program-

mable gate array (FPGA) platforms, where the register-resources are not so rich. Based

on the irreducible polynomials, a great deal of efforts have been made to reduce the

complexity [7-10], [23-26]. In [23], Lee et al. introduced a bit-parallel AOP-based systolic

multiplier. In addition, Xie et al. [24] presented another efficient AOP-based structure of

multiplier. In [7], a bit-parallel trinomial based systolic multiplier has been presented by

Lee et al. Meher [8] introduced efficient bit-parallel systolic and super-systolic designs. A

low register-complexity systolic structure has been proposed in [9]. Jos Luis Imana et al.

[28] introduced a low-complexity bit-parallel multiplier based on irreducible pentanomials.

Many other works were reported for implementation of finite field multiplication over

GF (2m) [11], [17].

1.1.2 Gaussian Normal Basis Multipliers

Low-complexity implementations of finite field multipliers over GF (2m) have drawn sub-

stantial attention recently due to their widespread applications in various environments.

A lot of efforts have been carried to obtain low-complexity multipliers with high-performa-

nce for various usage including elliptic curve cryptography (ECC) [1], [31]-[33].

In general, there are three bases can be selected to represent a finite field, i.e., polyno-

mial basis, normal basis, and dual basis [34]-[48]. Compared with polynomial basis and

dual basis, normal basis is much more efficient in the hardware designs involving with

many squaring operations since normal basis has an advantage that the squaring of field

elements can be simply obtained by cyclic shifting without hardware usage. Compared

with other two bases, Normal basis, therefore, has drawn much more attention in the

applications which utilize frequent squarings.

Gaussian normal basis (GNB), as a special class of normal basis over GF (2m) [34]-[38]

(where m > 1 and m is not divisible by eight), has received considerable attention in the

literature due to its low complexity. GNB has been included in a number of standards

such as IEEE [49] and NIST [50] for elliptic curve digital signature algorithm (ECDSA).

According to the structuring of finite field multipliers based on normal basis, especially

2



GNB, the respective implementations can be categorized into three groups: 1) bit-level

including parallel-in serial-out (PISO) [51], serial-in parallel-out (SIPO) [52]-[53], and

parallel-in parallel-out (PIPO) [54]-[55]; 2) digit-level which includes the structures of:

parallel-in serial-out [56], parallel-in parallel-out [46]-[47], and serial-in parallel-out [48];

and 3) bit-parallel, which includes the multiplier of [32].

For large field sizes in GF (2m), the multiplications can be realized by using systolic array

to achieve high-speed and regular implementations [39]. Systolic structures are vast-

ly used in applications with high-performance requirements as the processing elements

(PEs) in the structure employ registers for pipelining. In [40], Kwon has presented an

efficient digit-serial systolic multiplier based on optimal normal basis. In [41], another

systolic multiplier is proposed for high-performance implementation. Other efficient sys-

tolic multipliers over GF (2m) have been proposed in [39] and [42]. Besides that, efficient

digit-serial systolic multipliers are introduced in [26], [43]-[44]. Very recently, an efficient

digit-level (DL) systolic GNB multiplier is introduced in [48]. Although these GNB mul-

tipliers have been optimized to achieve low complexity through DL implementation, their

area-time complexities are still relatively high and need to be improved.

In Chapter 3 of this thesis, we propose a novel decomposition algorithm to develop DL

systolic GNB multipliers over GF (2m) in order to achieve low critical-path delay, high-

speed and low-complexity implementations. First, we introduce novel multiplication algo-

rithms to reduce the respective critical-path delay and register-complexity. Then, a new

structure of proposed systolic GNB multiplier is proposed. The proposed multiplier can

achieve low critical-path delay and low register-complexity compared with the best of the

existing GNB systolic multiplier of [48]. Finally, we also compare the hardware and time

complexities of the proposed architectures with the existing ones through application-

specific integrated circuit (ASIC) synthesis to benchmark the higher efficiencies of the

presented design.

3



1.2 Summery of contribution

1.2.1 Proposed Low-Complexity Hybrid-Size Systolic Polyno-

mial Multipliers over GF (2m)

Many designs about finite field polynomial systolic multipliers have been reported. Most

of these designs focus on the specific NIST recommended polynomials, such as pen-

tanomials and trinomials. In Chapter 2 of this thesis, we propose a novel hybrid-size

(for both pentanomial and trinomial) algorithm for efficient systolization of finite field

multiplications. After that, an detailed example of a hybrid-size multiplier (combined

with GF (2163) and GF (2233)) is presented as well as the proposed systolic structure.

Both the theoretical and field-programmable gate array (FPGA) implementation show

that, the proposed hybrid-size design (can perform both GF (2163) and GF (2233) multi-

plications) are found to have at least 70.0% and 47.6% less area-delay product (ADP)

and power-delay product (PDP) than the combination of proposed individual GF (2163)

and GF (2233) multipliers (best of all existing designs), respectively. Besides that, the

proposed hybrid-size one only involves 70.0% and 47.6% more ADP and PDP than the

proposed individual GF (2233) multiplier, respectively.

1.2.2 Proposed Low-Complexity Systolic Gaussian Normal Ba-

sis Multipliers over GF (2m)

A lot of works have been done concerning Gaussian normal basis multipliers. In Chapter

3 of this thesis, we propose a novel decomposition algorithm to develop a digit-level (DL)

low critical-path delay and low register-complexity systolic structure for GNB multipli-

cation over GF (2m). Compared with the existing digit-level GNB multipliers (through

both the theoretical and application-specific integrated circuit (ASIC) comparison), the

proposed multiplier not only has lower critical-path delay, but also achieves significantly

less area-delay product (ADP), e.g., for a systolic structure of digit-size of 7 for GF (2409),

the proposed structure has 28.9% less critical-path delay and 26.8% less ADP compared

to the best of the existing designs in [24], respectively.
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1.2.3 Report Outline

The following parts of the report are organized in this way.

Chapter 2 proposes hybrid-size systolic polynomial multipliers over GF (2m) with low

complexity. Several classes of irreducible polynomials are shown within this chapter.

Chapter 3 talks about the low critical-path low-complexity digit-level systolic gaussian

normal basis multipliers.

Chapter 4 presents the conclusion for the whole thesis.

5



Chapter 2

Efficient Implementation of Low

Complexity Hybrid-Size Systolic

Polynomial Multipliers over GF(2m)

2.1 Low Register-Complexity Systolic Multipliers Based

on NIST Trinomials and Pentanomials

In this section, we briefly review the conventional algorithm and existing systolic struc-

tures for NIST trinomials and pentanomials first, and then present the modified low

register-complexity systolic structures.

2.1.1 Review of Conventional Polynomial Multiplication

Let’s define F (t) = tm + pm−1 · tm−1 + · · ·+ p2 · t2 + p1 · t+ 1, as an irreducible polynomial

of degree m over GF (2m) where pi ∈ GF (2) are the coefficients. The polynomial basis

{1, t, t2, . . . , tm−1}, where t is a root of F (t), is used to represent the field elements.

Therefore, the three elements A,B,C ∈ GF (2m) can be represented as

A =
m−1∑
i=0

ai · ti, B =
m−1∑
i=0

bi · ti, C =
m−1∑
i=0

ci · ti, (2.1)

where ai, bi, ci ∈ GF (2), for 0 ≤ i ≤ m− 1.

6



Let us define C as the product of A and B, then we have

C = A ·B mod F (t). (2.2)

The above equation (2.2) can also be written in the form of:

C =
m−1∑
i=0

bi · (ti · A mod F (t)). (2.3)

Let us define

A(0) = A

A(1) = ti · A mod F (t),
(2.4)

so that we can derive A(i+1) from A(i) recursively that

A(i+1) = t · A(i) mod F (t). (2.5)

Then, we have

A(i+1) = (ai0 · t+ ai1 · t2 + · · ·+ aim−1 · tm) mod F (t), (2.6)

where

A(i) =
m−1∑
j=0

aij · tj. (2.7)

Because t is a root of polynomial F (t), then we have

F (t) = tm + pm−1 · tm−1 + · · ·+ p1 · t+ 1 = 0, (2.8)

then we can have

tm = pm−1 · tm−1 + · · ·+ p1 · t+ 1. (2.9)

Substituting the tm into (2.7), then we have

A(i+1) = aim−1 + (ai0 + p1 · aim−1) · t

+ · · ·+ (aim−2 + pm−1 · aim−1) · tm−1.
(2.10)

7



Let’s define

A(i+1) = ai+1
0 + ai+1

1 · t+ · · ·+ ai+1
m−1 · ti+1, (2.11)

then we can have

ai+1
0 = aim−1

ai+1
j = aij−1 + pj · aim−1, for 1 ≤ j ≤ m− 1.

(2.12)

Given a general pentanomial of degree m,

F (t) = tm + ts1 + ts2 + ts3 + 1. (2.13)

We can substitute (2.13) into (2.12) to have

ai+1
0 = aim−1

ai+1
s1

= ais1−1 + aim−1

ai+1
s2

= ais2−1 + aim−1

ai+1
s3

= ais3−1 + aim−1

ai+1
j = aij−1, for 1 ≤ j ≤ m− 1 and j 6= s1, s2, s3.

(2.14)

The same as the general trinomial of degree m given by

F (t) = tm + ts + 1, (2.15)

where it can be substituted into (2.12) to have

ai+1
0 = aim−1

ai+1
s = ais−1 + aim−1

ai+1
j = aij−1, for 1 ≤ j ≤ m− 1 and j 6= s.

(2.16)

2.1.2 Conventional Systolic Structure

The conventional systolic multiplier based on NIST polynomials is shown in Fig. 2.1,

where it consists of m PEs including three types of PEs: PE-1, PE-m, and regular

PE (PE-2 through PE-(m − 1)). The internal structures of these PEs are shown in

Figs. 2.1(b), (c), and (d), respectively, where RC denotes the reduction cell (perform

the operations of (2.14) and (2.16)). The internal structure of RC is shown in Fig. 2.2,

8
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Figure 2.1: Conventional systolic structure for finite field multiplication over GF (2m)
based on NIST pentanomials and trinomials. (a) Systolic structure. (b) Internal structure
of PE-1. (c) Internal structure of a regular PE (PE-2 through PE-(m− 1)). (d) Internal
structure of PE-m.
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Figure 2.2: Detailed design of RC. (a) Detailed design of RC for pentanomial F (t) =
tm + ts1 + ts2 + ts3 + 1. (b) Detailed design of RC for trinomial F (t) = tm + ts + 1.

where it involves three XORs for pentanomial and one XOR operation for trinomial. The

latency of the structure in Fig. 2.1 is m cycles, where the duration of each cycle period is

TA +TX (TA and TX refer to the delays of an AND gate and an XOR gate, respectively).

2.1.3 Modified Low Register-Complexity Systolic Structure

For the structure of Figs. 2.1 and 2.2, we find that (m−3) or (m−1) registers in the RC

of each PE pipeline unprocessed (without XOR operations) signals to the next PE. These

registers can be removed if we propose another broadcasting strategy. As shown in Figs.
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Figure 2.3: Detailed design of the modified systolic structure. (a) Modified systolic
structure. (b) Modified reduction cell for pentanomial F (t) = tm + ts1 + ts2 + ts3 + 1.

2.3 and 2.4, a novel connection strategy including three types of connections is proposed,

namely the full connection, selected connection, and recombination. For each PE, m bits

of operand A(i) are directly fed to the AND gate in the PE for multiplication operation

with one bit of operand B through full connection. Besides, 4 (or 2) bits of operand

A(i) are selected to be fed into the modified RC (MRC) for XOR operations according

to (2.14) and (2.16). The 3 (or 1) output bits from MRC will then be recombined into

the operand A(i+1) to be used in next PE. Therefore, compared with the structure of

Fig. 2.1, (m− 3) (or (m− 1)) registers are reduced because of the proposed connection

strategy. The modified structure has the same time-complexity as the previous one, but

the register-complexity is significantly reduced.
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Figure 2.4: Detailed design of the modified systolic structure. (a) Modified systolic
structure. (b) Modified reduction cell for trinomial F (t) = tm + ts + 1.

2.1.4 Area-Time Complexities

The area-time complexities of the proposed design in Figs. 2.3 and 2.4 are shown in

Table 2.1, along with existing and conventional designs. It can be seen that the proposed

design involves significantly less area-complexity when compared with competing ones,

especially in terms of the register-complexity.

2.1.5 FPGA Implementation

We have also implemented these systolic structures in Table 2.1 to confirm the efficiency

of proposed structures. We have synthesized these designs using Xilinx ISE 14.1 on

Virtex 6 FPGA family with NIST pentanomial F (t) = t163 + t7 + t6 + t3 +1 and trinomial

F (t) = t233 + t74 + 1. The results in terms of area-time-power complexities are shown

in Table 2.2. It can be seen that the proposed structures outperform the existing ones,

especially on register-complexity.
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Table 2.1: COMPARISON OF AREA-TIME COMPLEXITIES OF VARIOUS SYS-
TOLIC NIST POLYNOMIAL MULTIPLIERS

Design AND NAND XOR XNOR Register Critical-path delay Latency

For NIST Pentanomials F (t) = tm + ts1 + ts2 + ts3 + 1

[11]1 m2 -
m2 + 2m+

-
2m2 − 2m−

TA + TX

[m/(2l + 2) + 1

2lm + 2l + 2 2lm− 2l− 2 +log2(2l + 2)]

MBP-II [29]2 m2 -

m2 − 3m2/d2+

-

m2 +md +m2/d + 3m

TA + TX d + 1 + log2dm/de5m/d + 3m2/d− −ds1 + ds3 + 5m/d−

m− 3− s1 + s3 s1 + s3 − 4d + 4m− 3

Fig. 2.33 m2 - m2 + 2m− 1 - m2 + 3m− 1 TA + TX m

For NIST Trinomials F (t) = tm + ts + 1

[8] - m2 m2 − 1 - 2m2 − 2m TNA + TX m

Fig. 2 [10] - m2 < 1.5m2 + 0.5m + 1 - 1.5m2 + 0.5m 2TX m + 1

Fig. 3 [10] - m2 < 1.5m2 + 0.5m + 1 - 1.5m2 + 2m TNA + TX m + 2

Fig. 8 [30] - m2 - m2 − 1 m2 + 3m− 1 TNA + TXN (m + 7)/2

Fig. 2.43 m2 - m2 − 1 - m2 +m TA + TX m

TNA: The delay time of an NAND gate. TXN : The delay time of an XNOR gate.
1: Here l=min{m− s1, s1 − s2, s2 − s3}. In [11], the authors have also used NAND and XNOR to replace part of original AND and XOR
gates, we just list them as AND and XOR gates here, for simplicity of discussion.
2: The design of [29] is a low-latency design, where the original systolic array is decomposed into d arrays for parallel implementation.
3: For simplicity of discussion, we list here only the basic systolic structures. Although the proposed designs can be extended for
low-latency implementation, which will be seen in Section III.

Table 2.2: FPGA IMPLEMENTATION RESULTS OF VARIOUS POLYNOMIAL-
BASED MULTIPLIERS

Design Area Delay1 Power ADP2 PDP3

For NIST Pentanomials F (t) = t163 + t7 + t6 + t3 + 1

[11] 52, 482 1.695 1.613 88, 957 2.734

MBP-II [30] 55, 249 1.695 1.698 93, 647 2.878

Fig. 2.3 28, 149 1.695 0.865 47, 713 1.466

For NIST Trinomials F (t) = t233 + t74 + 1

[8] 111, 840 1.695 3.435 189, 569 5.822

Fig. 8 [31] 54, 987 1.695 1.689 93, 202 2.863

Fig. 2.4 54, 522 1.695 1.675 92, 415 2.839

Unit for area: number of slice register; Unit for delay: ns; Unit for power: W (Power is
estimated at 100MHz).
1: Delay = Critical-Path.
2: ADP: Area-delay product = Area×Delay.
3: PDP: Power-delay product = Power×Delay.
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

c0
c1

.

.

.
cs1−1

cs1
cs1+1

.

.

.
cs2−1

cs2
cs2+1

.

.

.
cs3−1

cs3
cs3+1

.

.

.
cm1−1



=



a0 am1−1 am1−2 am1−3 · · ·
a1 a0 am1−1 am1−2 · · ·
.
.
.

.

.

.

.

.

.

.

.

.
.
. .

as1−1 as1−2 as1−3 as1−4 · · ·
as1 as1−1 + am1−1 as1−2 + am1−2 as1−3 + am1−3 · · ·
as1+1 as1 as1−1 + am1−1 as1−2 + am1−2 · · ·

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.

as2−1 as2−2 as2−3 as2−4 · · ·
as2 as2−1 + am1−1 as2−2 + am1−2 as2−3 + am1−3 · · ·
as2+1 as2 as2−1 + am1−1 as2−2 + am1−2 · · ·

.

.

.

.

.

.

.

.

.

.

.

.
.
. .

as3−1 as3−2 as3−3 as3−4 · · ·
as3 as3−1 + am1−1 as3−2 + am1−2 as3−3 + am1−3 · · ·
as3+1 as3 as3−1 + am1−1 as3−2 + am1−2 · · ·

.

.

.

.

.

.

.

.

.

.

.

.
. .
.

am1−1 am1−2 am1−3 am1−4 · · ·



×



b0
b1

.

.

.
bs1−1

bs1
bs1+1

.

.

.
bs2−1

bs2
bs2+1

.

.

.
bs3−1

bs3
bs3+1

.

.

.
bm1−1



(2.17)



c0
c1
c2
c3

.

.

.
cs−1
cs
cs+1

.

.

.
cm2−1



=



a0 am2−1 am2−2 am2−3 · · ·
a1 a0 am2−1 am2−2 · · ·
a2 a1 a0 am2−1 · · ·
a3 a2 a1 a0 · · ·
.
.
.

.

.

.

.

.

.

.

.

.
.
.
.

as−1 as−2 as−3 as−4 · · ·
as as−1 + am2−1 as−2 + am2−2 as−3 + am2−3 · · ·
as+1 as as−1 + am2−1 as−2 + am2−2 · · ·

.

.

.

.

.

.

.

.

.

.

.

.
.
. .

am2−1 am2−2 am2−3 am2−4 · · ·



×



b0
b1
b2
b3

.

.

.
bs−1
bs
bs+1

.

.

.
bm2−1



(2.18)

2.2 Proposed Low Complexity Hybrid-Size Systolic

Polynomial Multipliers

In this section, we first present the proposed hybrid-size polynomial multiplication algo-

rithm, and then give the details of the proposed low complexity systolic structure based

on detailed example.

2.2.1 Proposed Hybrid Polynomial Multiplication Algorithm

First of all, let us assume that the field orders of pentanomial and trinomial arem1 andm2,

respectively. Without loss of generality, we can also assume m1 < m2 (though it is easy to

extend to other cases like m1 > m2). Then, the pentanomial and trinomial multiplication

process of (2.1)-(2.16) can be represented by the two matric-vector multiplications of

(2.17) and (2.18), respectively. For simplicity of discussion, we can use [CP ] = [AP ]× [BP ]

to represent (2.17), where [CP ] and [BP ] are bit-vectors contain all the bits of operands C

and B, respectively, while [AP ] is the multiplication process matrix of (2.17). Similarly,

we can also use [CT ] = [AT ] × [BT ] to represent (2.18) (where [CT ] and [BT ] are bit-

vectors of operands C and B, respectively, and [AT ] is the multiplication process matrix

of (2.18)).
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Comparing [AP ] of (2.17) with [AT ] of (2.18), we can find that they all share with one

matrix (m1 by m1) as

[AC ] =



a0 0 0 · · · 0

a1 a0 0 · · · 0

a2 a1 a0 · · · 0
...

...
...

. . .
...

am1−1 am1−2 am1−3 · · · a0


, (2.19)

where [AC ] is a “half-cyclic” matrix, i.e., near half of the matrix are all “0”, while the

rest are all bits of “a0, a1, a2, ..., am−1” (no bit-addition operations are involved).

Substitute (2.19) into [CP ] = [AP ]× [BP ], we can have

[CP ] = ([APX ] + [AC ])× [BP ], (2.20)

where [APX ] is a matrix of m1 by m1 as

[APX ] =



0 am1−1 am1−2 · · ·

0 0 am1−1 · · ·

0 0 0 · · ·

0 am1−1 am1−2 · · ·

0 0 am1−1 · · ·

0 0 0 · · ·

0 am1−1 am1−2 · · ·

0 am1−1 am1−2 + am1−1 · · ·

0 0 am1−2 · · ·
...

...
...

. . .

0 am1−2 am1−3 · · ·



. (2.21)

Similarly, one can also decompose [CT ] = [AT ]× [BT ] as

[CT ] = ([ATX ] + [A′C ])× [BT ], (2.22)

where [A′C ] is a m2 by m2 matrix mainly constituted with matrix [AC ] and a number of
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“0” to fill the rest empty positions, as:

[A′C ] =


[AC ] 0 0 0

0 0 0 0
...

...
. . .

...

0 0 · · · 0

 , (2.23)

and the detail of matrix [ATX ] is as follows:

[ATX ] =



0 am2−1 am2−2 am2−3 · · ·

0 0 am2−1 am2−2 · · ·

0 0 0 am2−1 · · ·
...

...
...

...
. . .

0 am2−1 am2−2 am2−3 · · ·

0 0 am2−1 am2−2 · · ·
...

...
...

...
. . .

am1 am1−1 am1−2 am1−3 · · ·

am1+1 am1 am1−2 am1−2 · · ·
...

...
...

...
. . .

am2−1 am2−2 am2−3 am2−4 · · ·



. (2.24)

One can see that as (2.19) and (2.23) are all matrices with no XOR operations, (2.21)

and (2.24) still involve certain amount of XOR operations. To facilitate the proposed

systolic implementation, we can precalculate these XOR operations in advance, then the

rest computation will be easier, e.g., the term of am1−2 + am1−1 in the third column of

matrix [APX ] can be computed in advance for (2.21) (similar rules apply to [ATX ] of

(2.24)). Such that (2.20) and (2.22) can be rewritten as

[CP ] = (ρ{[APX ]}+ [AC ])× [BP ], (2.25)

and

[CT ] = (ρ{[ATX ]}+ [A′C ])× [BT ], (2.26)

where ρ{·} represents the above mentioned pre-XOR-computation operations.

15



Based on (2.17)-(2.26), we can have the proposed hybrid multiplication algorithm as given

by Algorithm 2.1.

Algorithm 2.1 Proposed hybrid-size polynomial multiplication.

Inputs: A and B are the two field elements of polynomials in GF (2m) to be multiplied,

S is the select signal.

Output: C = A ·B mod F (t) (F (t) can be pentanomial and trinomial).

1. Initialization step

1.1 [AP ] = [AC ] + [APX ].

1.2 [AT ] = [A′C ] + [ATX ].

1.3 [A1] = 0, [A2] = 0 [D] = 0, [D′] = 0, [E] = 0, [E1] = 0, [E2] = 0.

2. Pre-XOR-computation step

2.1-a. [A1] = ρ{[APX ]}.

2.1-b. [A2] = ρ{[ATX ]}.

3. Multiplication step

3.1. [D] = [AC ]× [BP ] (or [D′] = [A′C ]× [BT ]).

3.2-a. [E1] = [A1]× [BP ].

3.2-b. [E2] = [A2]× [BT ].

4. Selection step

If S = 0, then

[E] = [E1] + [D].

Else,

[E] = [E2] + [D′].

5. Final step

5.1. Operand C ⇐ [C] = [E].

where for simplicity of discussion, [E] is sized as m1 by m1 for pentanomial (the same

size as [D]), and m2 by m2 for trinomial (the same size as [D′]).

16



162 161 160 1 161 158 157

162 161 2 162 159 158

16

0

1 0

2 1 0

3 2 1 0

4 3 2 1

5 4 3 2

6 5 4 3

7 6 5 4

162 161 160 159 0

0

0 0

0 0 0

0 0 0 0

0 0 0

0 0

0

0

0

0

0

P

a a a a a a a

a a a a a a

a

a

a a

a a a

a a a a

a a a a
A

a a a a

a a a a

a a a a

a a a a a

  

  

 
 
 
 
 
 
 

  
 
 
 
 
 
 
  

2 3 160 159

4 161 160

162 161 160

1 161 158 157

5 162 161

162 161

2 162 159 158

6 162

162

3 160 159

7 4 161 160

162 161 160

1 161 158 157

8

162 162 161 161 160

0

0 0

0 0 0

0

0

a a a

a a a
a a a

a a a a

a a a
a a

a a a a

a a
a

a a a

a a a a
a a a

a a a a

a

a a a a a

 

  

  

  

  

 

 

   

  

 

5 162 161

2 162 159 158

1 161 158 157

160 157 156

0

1 0

2 1 0

3 2 1 0

73 72 71 70

74 73 72

0 0 0 0

( )

0 0 0 0

0 0 0

0 0

0

0

C PX

T

a a a

a a a a

a a a a

a a a

A A

a

a

a a

a a a

a a a a

a a a a

a a a
A

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    
 

    
 

   
 
 

   



232 231 230 229 228 1 160

232 231 230 229 2 161

232 231 230 3 162

232

71

75 74 73 72

162 161 160 159 0

0

0 0

0 0 0

0 0 0 0

0

0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

a a a a a a a

a a a a a a

a a a a a

a a

a

a a a a

a a a a a

 
  
 
  
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 

231 4 163

74

232 231 230 229 228 75 1 160

232 231 230 229 76 2 161

163 89

163 162 161 160 159 158 164 90

164 163 162 161 160 159 165 91

232 231 23

0 0 0 0 0 0

0

0 0

0 0 0 0 0 0

a a

a

a a a a a a a a

a a a a a a a

a a

a a a a a a a a

a a a a a a a a

a a a



 

 







0 229 228 227 0 159

'

( )

C TX

a a a a a

A A

b

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

Figure 2.5: Detailed example according to Algorithm 2.1. (a) Pentanomial example of
GF (2163). (b) Trinomial example of GF (2233).

2.2.2 Detailed Example and Computation Steps

To have a clear understanding of the proposed algorithm and design strategy, we give

here an example of defining pentanomial F (t) = t163 + t7 + t6 + t3 + 1 and trinomial

F (t) = t233 + t74 + 1. Then, according to Algorithm 2.1, we have the equations as shown

in Fig. 2.5.

Then, we can re-express [AC ] of Fig. 2.5 as [AC ] = [A
(0)
C A

(1)
C A

(2)
C · · · A(162)

C ], where

A
(0)
C through A

(162)
C represents every column of [AC ], respectively. Similarly, we can have
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Figure 2.6: Proposed hybrid-size systolic multiplier, where the dotted box denotes selec-
tive connection.

[A′C ] = [A
′(0)
C A

′(1)
C A

(2)
C · · · A′(232)C ] where A

′(0)
C through A

′(232)
C are the corresponding

columns of [A′C ].

Likewise, after the pre-XOR-computation operations, we can have ρ{[APX ]} = [A
(0)
PX A

(1)
PX

A
(2)
PX · · · A

(162)
PX ] and ρ{[ATX ]} = [A

(0)
TX A

(1)
TX A

(2)
TX · · · A

(232)
TX ], where A

(0)
PX through A

(162)
PX

and A
(0)
TX through A

(232)
TX are every columns of ρ{[APX ]} and ρ{[ATX ]}, respectively.

Then, the rest multiplication step according to Algorithm 2.1 is:

[E] = A
(0)
C b0 + A

(1)
C b1 + · · ·+ A

(162)
C b162

+ A
(0)
PXb0 + A

(1)
PXb1 + · · ·+ A

(162)
PX b162,

(2.27)

or

[E] = A
′(0)
C b0 + A

′(1)
C b1 + · · ·+ A

′(232)
C b232

+ A
(0)
TXb0 + A

(1)
TXb1 + · · ·+ A

(232)
TX b232.

(2.28)

Then, we can have the following structure.

2.2.3 Proposed Hybrid-Size Systolic Structure

The overall structure of hybrid-size systolic multiplier based on Algorithm 2.1 (where the

example of Fig. 2.5 is employed) is shown in Fig. 2.6, which consists of one computation

core and two extra PEs. PE-0 performs the pre-XOR-computation of operandA according
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Figure 2.7: Detailed internal structure of PE-0.

to Step 2 of Algorithm 2.1. The detailed structure of PE-0 is shown in Fig. 2.7, where

we use multi-stage pipelining technique to maintain the critical-path of PE-0 as TX (TX

is the delay time of an XOR gate, and according to Fig. 2.5, the maximum time for pre-

XOR-computation operations is 4TX for [APX ] and 2TX for [ATX ], respectively). Note

that for those bits without XOR operations, we do not need to add register for pipelining.

The output bits of PE-0 (in total 956 bits: 233 bits of a0 through a232, 491 bits from

pre-XOR-computation of [APX ], and 232 bits from pre-XOR-computation of [ATX ]) are

selected to be connected to the computation core (as indicated by the dotted box), where

the computation core mainly executes the Steps of 3 and 4 of Algorithm 2.1.

The internal structure of the computation core is shown in Fig. 2.8, where four arrays

of PEs are involved. The first (from top) array is for the computation of [AC ], the
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Figure 2.8: Detailed structure of the proposed multiplier, where the black boxes represent
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design of PE-1. (c) Example of detailed design of a regular PE. (d) Detailed design of
PE-2.

second array is for [APX ], and the third and fourth arrays are for the calculation of [ATX ]

(decomposed into two arrays for parallel processing). The computation core contains 558

PEs (where two kinds of PEs are being used), and Figs. 2.8(b) and (c) gives the example

of the detailed design of PE-1 and regular PE, respectively. PE-1 performs multiplication

between one selected operand and one bit of operand B, and then produces the result to

its right. The regular PE performs the multiplication between one selected operand and
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Figure 2.9: Proposed low-latency systolic structure.
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Table 2.3: COMPARISON OF AREA-TIME COMPLEXITIES OF VARIOUS SYS-
TOLIC POLYNOMIAL MULTIPLIERS

Design AND NAND XOR XNOR Register Latency Critical-path Delay

For NIST Pentanomial F (t) = t163 + t7 + t6 + t3 + 1

Fig. 5(a) 27, 658 - 27, 986 - 28, 312 163 TA + TX

[11] 26, 569 - 27, 225 - 52, 482 44 TA + TX

MBP-II [29] 26, 569 - 26, 890 - 53, 136 164 TA + TX

For NIST Trinomial F (t) = t233 + t74 + 1

Fig. 5(b) 58, 100 - 58, 169 - 58, 565 233 TA + TX

[8]1∗ 54, 289 - 55, 454 - 121, 684 32 TA + TX

Fig. 3∗ [10] 54, 289 - 81, 551 - 81, 900 235 TA + TX

For Hybrid-size Polynomial m1 = 163, m2 = 233

Fig. 2.6 72, 858 - 72, 882 - 74, 940 233 TA + TX

TA and TX are the critical-path delay of AND gate and XOR gate, respectively.
∗: The authors have used NAND and XNOR, we just list them as AND and XOR gates here
for simplicity discussion.
1: The super-systolic structure.
2: The structure with e = 2 and d = 1 (PEs from MS-I).

one bit of operand B first, and then adds the input from the left PE to yield the final

result to the right.

The detailed design of PE-2 of Fig. 2.6 is also shown in Fig. 2.8(d), where the selection

signal S works to produce the output C according to the field-size selected (as Step 4

of Algorithm 2.1). Note that for pentanomial, only the first 163 output bits (from top)

will be counted as output of C. The proposed systolic structure produces a result in 170

cycles (PE-0 is 4 cycles, computation core is 163 cycles, and PE-2 is 3 cycles), and the

critical-path of each cycle is TA + TX (TA denotes the delay time of an AND gate).

2.2.4 Low-Latency Structure

For practical implementations, we can further reduce the latency of proposed structure

in Figs. 2.6 and 2.8. Let 233 = l ·d+x, where 0 ≤ x ≤ d (it is applicable to any field-size

of m). Assuming x = 0 for simplicity, however, it can be extended to x 6= 0. Then, we

can decompose each array in the computation core of Fig. 2.8(a) divided into l arrays as

shown in Fig. 2.9 (each array will have d PEs).
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Table 2.4: FPGA IMPLEMENTATION RESULTS OF VARIOUS POLYNOMIAL-
BASED MULTIPLIERS

Design Area Delay1 Power ADP2 PDP3

Fig. 2.3 28, 149 1.695 0.865 47, 713 1.446

Fig. 2.4 54, 552 1.695 1.675 92, 415 2.839

Proposed 77, 006 1.695 2.364 130, 525 4.007

Unit for area: number of slice register; Unit for delay: ns; Unit for power: W (Power is
estimated at 100MHz).
1: Delay = Critical-Path.
2: ADP: Area-delay product = Area×Delay.
3: PDP: Power-delay product = Power×Delay.

2.3 Area and Time Complexity

2.3.1 Theoretical Comparison

The area and time complexities in terms of logic gate count, register count, latency, and

critical-path delay of the proposed and existing structures are listed in table 2.3. The

comparison contains two parts: pentanomials and trinomials. According to the table,

the register-complexity of the multiplier in [11] is 52,482, and MBP-II in [29] has 53,136

registers, while our modified structure of pentanomial as shown in Fig. 2.5(a) requires

the register-complexity of 28,312, which is 46.05% less than [11], and 46.72% less than

[29]. Similar condition is found in comparison of trinomials. Our modified structure

of trinomial as shown in Fig. 2.5(b) has lower register-complexity of 58,565 compared

with the existing ones, among which the structure of Fig. 3 in [10] has 81,900 registers,

while the super-systolic structure in [8] need even more registers, which is 121,684. Our

modified trinomial structure saves 28.49% and 51.87% registers when compared to [10]

and [8], respectively. Our proposed hybrid-size systolic polynomial multiplier as shown in

Fig. 2.6 has much less area complexities than any combination of the listed pentanomials

and trinomials.

2.3.2 FPGA Implementation

We also implement our proposed design on hardware (FPGA platform) to investigate the

performance of the proposed low-complexity, low-latency hybrid-size systolic polynomial
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multiplier as shown in Fig. 2.9. We have synthesized the proposed structure using Xilinx

ISE 14.1 on Virtex 6 FPGA family. The results in terms of area-time-power complexities

are shown in Table 2.4. It can be seen that our proposed low-complexities hybrid-size

systolic multiplier outperform the combination of the existing ones.
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Chapter 3

Low Critical-Path Low-Complexity

Digit-Level Systolic Gaussian

Normal Basis Multiplier

In this chapter, we propose a digit-level systolic Gaussian normal basis multiplier which

can achieve low critical-path and low register-complexity.

3.1 Review of the Existing DL Systolic GNB Multi-

plier

Normal basis N = {β, β2, β22 , · · · , β2m−1} exists in the finite field GF (2m) over GF (2) for

any positive integer m, where β is called normal element. Each field element in GF (2m),

take A = (a0, a1, · · · , am−1) as an example, can be represented as a linear combination

of the elements in N , i.e., A =
∑m−1

i=0 aiβ
2i = a0β + a1β

2 + · · · + am−1β
2m−1

, where

ai ∈ GF (2m), 0 ≤ i ≤ m − 1. Assume that m > 1 and T > 1 are two integers. Let

p = mT + 1 be a prime number and gcd(mT/k,m) = 1, where k is the multiplication

order of 2 modulo p. Then, the normal basis N = {β, β2, β22 , · · · , β2m−1} of GF (2m) over

GF (2) is called the Gaussian normal basis of type T [45].

The multiplication over GNB can be performed based on a multiplication matrix Mm×m

[49]. Let A and B be two field elements over GF (2m),
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A =
m−1∑
i=0

aiβ
2i , B =

m−1∑
j=0

bjβ
2j . (3.1)

then we can have their product C as

C = (c0, c1, · · · , cm−1) = AB =
m−1∑
i=0

m−1∑
j=0

aibjβ
2i+2j . (3.2)

Let us define µi,j = β2i+2j ∈ GF (2m) as a field element, where 0 ≤ i, j ≤ m − 1. Then,

with respect to N , one can have

µi,j =
m−1∑
l=0

µ
(l)
i,jβ

2l , (3.3)

substituting (3.3) into (3.2), one can have

C =
m−1∑
i=0

m−1∑
j=0

aibj

m−1∑
l=0

µ
(l)
i,jβ

2l

=
m−1∑
i=0

m−1∑
j=0

m−1∑
l=0

aibjµ
(l)
i,jβ

2l .

(3.4)

Let us define the l-th coordinate of C as

cl =
m−1∑
i=0

m−1∑
j=0

aibjµ
(l)
i,j , (3.5)

which can also be represented in a matrix form as

cl = a ·M(l) · btr, 0 ≤ l ≤ m− 1, (3.6)

where a = [ a0, a1, · · · , am−1 ] denotes the row vector corresponding to the field element

A, and btr represents the matrix transpose of row vector b = [ b0, b1, · · · , bm−1 ] which

corresponds to the field element B. M(l) and can be obtained from the l-fold right and

down cyclic shifting of the multiplication matrix M = M(0). Then, we can write the

product C as

C =
m−1∑
l=0

clβ
2l . (3.7)
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Figure 3.1: (a) Existing DL systolic GNB multiplier over GF (2m) [48]. (b) Detailed
structure of PE.

Algorithm 3.1 Existing DL Systolic multiplication [48].

Inputs: A = (a0, a1, · · · , am−1) and B = (b0, b1, · · · , bm−1) are two field elements over

GF (2m), where m is an odd number.

Output: C = (c0, c1, · · · , cm−1) = A ·B.

1. C = 0

2. V = A� 1, where A = (am−1, am−2, · · · , a1, a0).

3. for i = 0 to n− 1 do.

4. Ci = 0.

5. Vi,0 = V � kid+ (k − 1)d.

6. Bi,0 = B � kid+ (k − 1)d.

7. for j = 1 to k do.

8. Ci = (Ci � d) + L(Vi,j−1, Bi,j−1).

9. Vi,j = Vi,j−1 � d and Bi,j = Bi,j−1 � d.

10. end for.

11. C = (C � kd) + Ci.

12. end for.
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Recently, a low-latency systolic GNB multiplier has been proposed in [48]. Algorithm

3.1 describes the existing systolic GNB multiplication. Let us define q = dm/de, where

d is the digit size and 1 ≤ d ≤ m. Then, the product C = AB can be performed as

C =
∑q−1

i=0 L
2id(V � id, B � id), where L(V,B) =

∑d−1
j=0 J

2j(V � j, B � j). Let

us define n and k as two integers that satisfy q = kn, then, we can get the partial

product Ci by Ci =
∑k−1

j=0 L
2id(Vi � jd, Bi � jd). Thus, one can decompose the

product C into n-term partial products, which is C = C0 + C2kd

1 + · · · + C2(n−1)kd

n−1 =

(((Cn−1)
2kd + Cn−2)

2kd + · · · )2kd + C0. Each partial product can be written as Ci =

(((L(Vi, Bi))
2d + L(Vi � d, Bi � d))2

d
+ · · ·+)2

d
+ L(Vi � (k − 1)d, Bi � (k − 1)d).

Based on Algorithm 3.1, Fig. 3.1(a) depicts the existing DL systolic GNB multiplier

over GF (2m) [48]. We can see that the existing multiplier contains k processing elements

(PEs) and one accumulating modular (AM). Each PE is carried out by the Steps 8 and

9 of Algorithm 3.1, and the AM is computed by Step 11.

Fig. 3.1(b) presents the detailed internal structure of PEs. According to Algorithm 3.1,

we need to define the output B of PEj as Bi,j to compute the partial product Ci. Two

elements Vi and Bi, 1 ≤ i ≤ n−1, are fed to the multiplier from left cyclically to compute

the partial product Ci recursively. The latency of the multiplier is (k + n) cycles, i.e.,

it takes (k + n) cycles to get the final product C = AB. The critical-path delay of the

existing systolic GNB multiplier is TA + (dlog2T e + dlog2(d + 1)e)TX , where TA and TX

are the delay of an AND gate and an XOR gate, respectively. The structure of Fig. 3.1

has d
√

m
d
edm AND gates, {≤ d

√
m
d
ed(m − 1)(T − 1)/2 + (1 + d

√
m
d
ed)m} XOR gates,

and (1 + 3d
√

m
d
e)m bit-registers.

3.2 Proposed Algorithm

In this section, we present our proposed algorithms separately to reduce the critical-path

and register-complexity.

3.2.1 Low Critical-Path Delay

From the structure of Fig. 3.1(b) and Algorithm 3.1, we find that inside the PE, the oper-

ation L(Vin, Bin) consists of three main parts, i.e., two additions and one multiplication.

The first addition consists of a recombined addition operation (RAO), which performs
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Figure 3.2: Proposed strategy of designing low critical-path delay DL systolic GNB mul-
tiplier over GF (2m), where S box refers to shift operation. (a) Proposed DL systolic GNB
multiplier. (b) Detailed structure of PEs, where black boxes denote registers.

the addition of a series of reconstructed operand B itself. All the bits of operand B are

positionally-recombined and some of them are added together to form the new bits ac-

cording to Algorithm 3.1. Then, the multiplication is performed between the operand B

after the recombined addition and the operand V . The result of multiplication is added

with the input from the previous PE and then produces the result to the next PE on its

right. The critical-path delay of this structure is thus TA + (dlog2T e+ dlog2(d+ 1)e)TX .

Although the structure in Fig. 3.1 is efficient in implementation, it can still be improved

further, e.g., the critical-path delay needs to be shortened for practical high-performance

applications. Here, we introduce a novel algorithm in which the critical-path delay is

shortened by performing the RAO of the operand B in advance.

Fig. 3.2 depicts the proposed strategy of achieving low critical-path delay implementation

based on the existing DL systolic multiplier over GF (2m). Form Fig. 3.2(a), one can see

that the structure consists of (k + 1) PEs and one accumulation cell (AC). The detailed

internal operational-structure of these components are presented in Fig. 3.2(b). First

of all, an additional PE (PE-0) is added to perform the first RAO of operand B before

PE-1. The result of RAO from PE-0 is then yielded to PE-1 to perform the multiplication

and then the addition. Meanwhile, we still have the RAO in PE-1 which yields its result

to the next PE on its right. “S box” performs the shifting of the bits of both operands

V and B. After (k + 1) clock cycles, we get the first partial product. All the partial

products Cis are recursively fed into the AC to get the final result C after n clock cycles.

The critical-path delay of this proposed architecture is thus TA + (dlog2(d + 1)e)TX (for

NIST recommended GNB, (dlog2(d+ 1)e)TX is larger than dlog2T e).
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According to the strategy shown in Fig. 3.2, we derive here the modified low critical-path

delay DL systolic multiplication algorithm as presented in the proposed Algorithm 3.2.

Algorithm 3.2 Low critical-path delay DL Systolic Multiplication.

Inputs: A = (a0, a1, · · · , am−1) and B = (b0, b1, · · · , bm−1) are two field elements over

GF (2m), where m is an odd number.

Output: C = (c0, c1, · · · , cm−1) = A ·B.

1. C = 0

2. V = A� 1, where A = (am−1, am−2, · · · , a1, a0).

3. for i = 0 to n− 1 do.

4. Ci = 0.

5. Vi,0 = V � kid+ (k − 1)d.

6. Bi,0 = B � kid+ (k − 1)d.

7. B∗i,0 = RAO(Bi,0).

8. for j = 1 to k do.

9. Ci = (Ci � d) +MA(Vi,j−1, B
∗
i,j−1).

10. Vi,j = Vi,j−1 � d and Bi,j = Bi,j−1 � d.

11. B∗i,j = RAO(Bi,j).

12. end for.

13. C = (C � kd) + Ci.

14. end for.

According to Algorithm 3.2, we perform the first RAO of the operand B independently

in PE-0, which corresponds to Step 7. Each PE (from PE-1 to PE-k) is carried out by the

computation of the Steps 9, 10, and 11 of Algorithm 3.2, where MA denotes multiplication

and addition inside each PE, and AC is carried out in Step 13. By computing the RAO

of operand B in advance in each PE, we have shortened the critical-path delay of the

structure of Fig. 3.1.
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Figure 3.3: Data pipelining of operand B among PEs for the structure of Fig. 3.1, where
the diagonal line represents data flow between PEs, and the vertical line represents data
flow in one PE.
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Figure 3.4: Data pipelining of operand V among PEs for the structure of Fig. 3.1, where
the diagonal line represents data flow between PEs, and the vertical line represents data
flow in one PE.

3.2.2 Low Register-Complexity

Systolic structure sometimes suffers from large register-complexity, as all the PEs in the

array are uniform and fully-pipelined (there are a lot of registers in the PEs). In this

subsection, we propose a novel strategy to reduce the corresponding registers among PEs.

As seen from Fig. 3.1(b), there are generally two types of registers equipped for one PE:

Type-one for operand pipelining (after bits shifting, the top one for operand B and the

bottom one for operand V ); another one for pipelining of computation (the registers used

to pipeline the data after the L(Bin, Vin) operation). The registers used to pipeline the

computational data are critical to the correctness of final output while the registers for

pipelining the shifted operands (the top and bottom ones) are relatively less important.

Based on the above consideration, we propose here a novel strategy to reduce the registers

related to the pipelining of the shifted operands (the top and bottom ones). Let us first

consider the data pipelining of shifted-operand B among PEs in the existing design of

31



one operand cluster

Bn-1

Bn-3 Bn-1Bn-2

Bn-2 Bn-1

Bn-4 Bn-2Bn-3

Bn-5 Bn-3Bn-4

• • •

• • •

• • •

• • •

• • •

PE-1 PE-3 PE-4 PE-5PE-2

Bn-1

Bn-2 Bn-1

1

3

2

4

5

• • •

• • •

• • •

• • •

• • •

• • •

• • •

cycles

Bn+3Bn+2Bn+1Bn

Bn+1

Bn

Bn+2

Bn+1

Bn

Bn

Figure 3.5: Data pipelining of operand B among PEs with added operands for the struc-
ture of Fig. 3.1, where the gray area represents all added operands, and the green area
represents one specific operand cluster fed to all PEs.
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Figure 3.7: Example of rearranging data pipelining by using operand cluster B′i.

[48]. It is seen that, in Fig. 3.3, the shifted-operand’s subscript (the subscript denotes

the degree of shifting, according to Fig. 3.1) increases one per cycle for a single PE (for

neighboring PEs, within the same cycle, the subscript increases with the numbering of

PE). The pipelining of the bits of shifted-operand V is similar to the shifted-operand B,

as shown in Fig. 3.4.

To give the detailed register-reduction strategy, we can first add extra operands with
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corresponding subscript to fill the data flow table (highlighted gray areas), such that the

operand’s subscript increases one per cycle for a single PE and one for neighboring PEs,

as shown in Figs. 3.5 and 3.6. For simplicity of discussion, we can define all the shifted-

operands for one specific clock cycle as one operand cluster, as shown in Figs. 3.5, 3.6,

and 3.7. Thus, after the required clock cycles, we can still get the same output as that

in Fig. 3.1 since the corresponding operand will still be fed to corresponding PE during

each cycle period.

According to the rearranged data pipelining scheme, we then define the operand-vector

B
′
i and V

′
i (for k number of PEs), where 0 ≤ i ≤ n−1 , to represent each operand cluster,

whose initial value is

B
′

i = [ B(n−1−i), B(n−i), · · · , B(n+k−2−i) ]

V
′

i = [ V(n−1−i), V(n−i), · · · , V(n+k−2−i) ]
(3.8)

which can also be represented as

B
′

i = [ B
(0)
i , B

(1)
i , · · · , B(k−2)

i , B
(k−1)
i ]

V
′

i = [ V
(0)
i , V

(1)
i , · · · , V (k−2)

i , V
(k−1)
i ]

(3.9)

then, the product C can be written as

C =
n−1∑
i=0

B
′

iV
′

i . (3.10)

Then, we have the modified low register-complexity DL systolic multiplication algorithm

as proposed in Algorithm 3.3.

Algorithm 3.3 Low Register-Complexity DL Systolic Multiplication.

Inputs: A = (a0, a1, · · · , am−1) and B = (b0, b1, · · · , bm−1) are two field elements over

GF (2m), where m is an odd number.

Output: C = (c0, c1, · · · , cm−1) = A ·B.
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1. C = 0

2. V = A� 1, where A = (am−1, am−2, · · · , a1, a0).

3. for i = 0 to n− 1 do.

4. Ci = 0.

5. V
′
i = [ V

(0)
i , V

(1)
i , · · · , V (k−2)

i , V
(k−1)
i ]� id.

6. B
′
i = [ B

(0)
i , B

(1)
i , · · · , B(k−2)

i , B
(k−1)
i ]� id.

7. for j = 1 to k do.

8. Ci = (Ci � d) + L(V
(j−1)
i , B

(j−1)
i ).

9. end for.

10. C = (C � kd) + Ci.

11. end for.

where Steps 5 and 6 denote the initialization of the value of the operand-vector and

their cyclic shifting. Through this arrangement, the register count used for pipelining

shifted-operands can be removed.

3.2.3 Proposed DL Systolic GNB Multiplication Algorithm

Based on the discussion in Subsections A and B, we then combine the two modified

algorithms together to propose our novel multiplication algorithm. The proposed multi-

plication algorithm for DL systolic GNB multiplier over GF (2m), which can achieve both

low critical-path delay and low register-complexity, is proposed in Algorithm 3.4.

Algorithm 3.4 Proposed DL Systolic Multiplication.

Inputs: A = (a0, a1, · · · , am−1) and B = (b0, b1, · · · , bm−1) are two field elements over

GF (2m), where m is an odd number.

Output: C = (c0, c1, · · · , cm−1) = A ·B.

1. C = 0

2. V = A� 1, where A = (am−1, am−2, · · · , a1, a0).

3. for i = 0 to n− 1 do.
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4. Ci = 0.

5. V
′
i = [ V

(0)
i , V

(1)
i , · · · , V (k−2)

i , V
(k−1)
i ]� id.

6. B
′
i = [ B

(0)
i , B

(1)
i , · · · , B(k−2)

i , B
(k−1)
i ]� id.

7. B
(0)∗

i = RAO(B
(0)
i ).

8. for j = 1 to k do.

9. Ci = (Ci � d) +MA(V
(j−1)
i , B

(j−1)∗
i ).

10. B
(j)∗

i = RAO(B
(j)
i ).

11. end for.

12. C = (C � kd) + Ci.

13. end for.

As one can see in Algorithm 3.4, Steps 5 and 6 perform the operations of initialization of

the value of the operand cluster as well as the cyclic shifting. RAO is performed by Steps

7 and 10, and AC is computed by Step 12. By computing the first RAO in advance and

rearranging the data broadcasting, we have successfully shorten the critical-path delay

and reduced the register-complexity.

3.3 Proposed Low Critical-path Delay Low Register-

Complexity DL Systolic GNB Multiplier

Based on the proposed Algorithm 3.4, we present here the proposed DL systolic GNB

multiplier over GF (2m), which can achieve both low critical-path delay and low register-

complexity.

3.3.1 Proposed Structure

The proposed DL systolic structure of GNB multiplier overGF (2m) based on the proposed

Algorithm 3.4 is depicted in Fig. 3.8. As shown in Fig. 3.8(a), it consists of one AC,

(k + 1) number of PEs, and two shift-registers for operands B and V , respectively. The

detailed internal structures of AC and PEs are presented in Fig. 3.8(b). The shift-

registers rearrange all the bits of operand B and V , so that there will be only one operand
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Figure 3.8: Proposed low critical-path delay low register-complexity DL systolic GNB
multiplier over GF (2m). (a) Proposed structure of DL systolic GNB multiplier. (b)
Detailed internal structures of PEs, where black boxes denote registers.

cluster to be fed to k number of PEs in one clock cycle period. For PE-0, there is only

one component: RAO, which yields an output to PE-1 to perform multiplication with

operand V and then the addition. The internal structures of PEs from PE-1 to PE-(k−1)

are the same, where each PE contains one RAO, one multiplication operation and one

addition operation. The RAO performs reconstructed addition operation, whose result

is yielded to the multiplication operation in the next PE on its right. The multiplication

is then performed between operand V and the result of RAO from the previous PE, and

the result from multiplication is then added with the output of addition operation from

the previous PE. PE-k performs only multiplication and addition operations. The result

of the last PE (PE-(k)) will fed to AC every cycle after the AC receives its first input

from left, and the final result C can be obtained after (n+ k + 1) clock cycles.

3.3.2 An Example

Let us take type 4 GNB over GF (27) as an example. Assume d = 1 and k = 7, then, we

have q = 7 and n = 1. The multiplication matrix M is
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M =



0 1 0 0 0 0 0

1 0 1 0 0 1 1

0 1 0 1 1 1 0

0 0 1 0 0 1 0

0 0 1 0 0 0 1

0 1 1 1 0 0 1

0 1 0 0 1 1 1


. (3.11)

Thus, we can obtain

c0 = a0b1 + a1(b0 + b2 + b5 + b6)

+ a2(b1 + b3 + b4 + b5) + a3(b2 + b5)

+ a4(b2 + b6) + a5(b1 + b2 + b3 + b6)

+ a6(b1 + b4 + b5 + b6).

(3.12)

According to Algorithm 3.4, (3.12) can also be represented as

c0 = V
(0)
0 ·B(0)∗

0 , (3.13)

where

V
(0)
0 = [ a0, a1, a2, a3, a4, a5, a6 ], (3.14)

and

B
(0)∗

0 = [ b1, (b0 + b2 + b5 + b6),

(b1 + b3 + b4 + b5), (b2 + b5),

(b2 + b6), (b1 + b2 + b3 + b6),

(b1 + b4 + b5 + b6) ].

(3.15)

37



Table 3.1: COMPARISON OF THE AREA AND TIME COMPLEXITIES FOR VARI-
OUS DL MULTIPLIERS OVER GF (2m)

Design #XOR #AND #Register Latency CPD

GNB [44] <
d(m−1)

2
(T − 1) + dm dm 3m dm

d
e TW1

GNB [46], [47] ≤ d(m−1)
2

(T − 1) + dm dm 3m dm
d
e TW1

PB [28] dm + 2d dm 4m + 3d + 1 2dm
d
e TW2

GNB [43] d2 + d +mT + 1 d2 3.5d2 + 8mT d + mT
d

(mT
d

+ 1) TA + TX

GNB [48] ≤
d
√

m
d
ed(m−1)

2
(T − 1) + (1 + d

√
m
d
ed)m d

√
m
d
edm (1 + 3d

√
m
d
e)m ≤ 2d

√
m
d
e TW1

Proposed ≤
d
√

m
d
ed(m−1)

2
(T − 1) + (1 + d

√
m
d
ed)m d

√
m
d
edm < (3 + 2d

√
m
d
e)m ≤ 2d

√
m
d
e + 1 TW3

CPD: Critical-path delay.
TW1 = TA + (dlog2Te + dlog2(d + 1)e)TX ,
TW2 = TA + (dlog2Te + dlog2de)TX ,
TW3 = TA + (dlog2(d + 1)e)TX ,
TA and TX are the critical-path delay of AND gate and XOR gate,respectively.

We can also obtain the value for V
(1)
0 · · ·V

(6)
0 and B

(1)∗

0 · · ·B(6)∗

0 . Then, following the steps

in Algorithm 3.4, we can finally get the partial product Ci, which is also the final product

C in this case.

3.4 Area-Time Complexities

3.4.1 Theoretical Comparison

The area-time complexities of the proposed and the existing ones of [26, 43-44, 46-48]

in terms of logic-gate-count, register-count, critical-path delay, and latency are shown

in Table 3.1. According to the table, the latency of the proposed DL systolic multi-

pliers is (2d
√
m/de + 1), while [26] requires 2dm/de and a number of existing GNB

multipliers require the latency of dm/de. In addition, multiplier in [43] has latency of

(d+mT/d(mT/d+ 1)) clock cycles, which is more than the proposed one. We have also

chosen the field of GF (2409) to have a detailed comparison of the latencies of various DL

GNB multipliers. As shown in Tables 3.2, the latency of our proposed structure is only

1 clock cycle more than the one in [48]. However, the latency of proposed one is much

lower than the other existing multipliers. As the digit-size increases from 2 to 14, our

proposed multiplier has nearly 2.3-13.2 times less latency compared with those in [26]

and [44].

In terms of register-complexity and critical-path delay, one can see from Table 3.1 that
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Table 3.2: COMPARISON OF LATENCY OVER GF (2409)

Digit-size (d) 2 4 6 8 10 12 14

[26] 410 206 138 104 82 70 60

[44] 205 103 69 52 41 35 30

[48] 30 22 18 16 14 12 12

Proposed 31 23 19 17 15 13 13

Table 3.3: COMPARISON OF CRITICAL-PATH DELAY WITH DIFFERENT DIGIT-
SIZE FOR VARIOUS DL MULTIPLIERS OVER GF (2409)

Design Digit-size CPD

Proposed

7 TA + 3TX
13 TA + 4TX
19 TA + 5TX
33 TA + 6TX

[48]

7 TA + 5TX
13 TA + 6TX
19 TA + 7TX
33 TA + 8TX

[26]

7 TA + 5TX
13 TA + 6TX
19 TA + 7TX
33 TA + 8TX

the DL-PIPO multiplier in [48] requires (1 + 3d
√
m/de)m registers and its critical-path

delay is TW1 = TA+(dlog2T e+dlog2(d+1)e)TX . While the proposed architecture requires

< (3+2d
√
m/de)m registers, and the critical-path delay is TW3 = TA+(dlog2(d+1)e)TX ,

which is significantly less than the existing one of [48]. We have also chosen field size of

GF (2409) to have a detailed comparison of ours and the existing ones of [26] and [48] as

shown in Table 3.3. It is seen that the critical-path delay of our proposed structure is

significantly less than the existing ones.

3.4.2 ASIC Implementation

We have also synthesized our proposed and the existing designs to obtain the area-time

complexity. We have used Synopsys Design Compiler based on Taiwan Semiconductor

Manufacturing Company (TSMC) 65-nm standard-cell library. The results in terms of

area, critical-path delay, and latency-cycles (including latency time) of our proposed

systolic structure are shown in Table 3.4 with different field sizes (m = 163, 283, and

39



Table 3.4: ASIC SYNTHESIS RESULTS OF THE PROPOSED SYSTOLIC MULTI-
PLIER

m,T Area [µm2] CPD [ns] d Latency Time [ns]

163, 4
14, 254 0.87 9 11 9.57
16, 146 0.94 11 9 8.46
38, 894 1.96 28 7 13.72

283, 6
109, 512 1.13 16 11 12.43
170, 811 1.31 21 9 11.79
310, 254 2.36 36 7 16.52

409, 4
202, 972 1.04 13 13 13.52
260, 882 1.27 19 11 13.97
618, 238 2.67 41 9 24.03

Table 3.5: ASIC SYNTHESIS RESULTS FOR THE EXISTING AND THE PROPOSED
DL MULTIPLIERS OVER GF (2409)

Design Digit-size Latency Area [µm2] CPD [ns] Latency time [ns] Area-delay product (ADP) [pm2s]

Proposed

7 17 123, 742 0.91 15.47 1, 914

13 13 202, 972 1.04 13.52 2, 744

19 11 260, 882 1.27 13.97 3, 644

[48]

7 16 128, 201 1.28 20.4 2, 615

13 12 207, 222 1.38 16.6 3, 439

19 10 264, 327 1.63 16.3 3, 782

[46], [47]

13 32 71, 760 1.44 46.1 3, 308

18 23 115, 806 1.55 35.6 4, 122

23 18 147, 475 1.68 29.7 4, 380

[26] 13 64 58, 917 1.23 78.7 4, 637

409) and digit sizes. As shown in Table 3.4, our proposed design performs better when

the digit size becomes smaller.

We have also compared our systolic multiplier with the existing DL multipliers in terms

of different digit sizes with the same field size m = 409, as shown in Table 3.5. One

can see that for the same digit size d = 13, our proposed multiplier has shorter critical-

path delay and smaller latency time compared with the other multipliers. Moreover, the

area-delay product (ADP) of the proposed one is the smallest among all the multipliers

in Table 3.5. For the field size of m = 409 (digit size of d = 13), our proposed systolic

multiplier has a latency time of 13.52ns and area of 202, 972µm2, while the multiplier in

[48] (with the same digit size) needs 16.6ns and has 207, 222µm2 ([46] and [47] have even

larger results). For digit size of d = 7, the ADP of the proposed structure is 26.7% more

efficient than [48]. For d = 13, our design is 18.6%, 70.7%, and 82.8% faster than that

(total time) in [48], [46] ([47]), and [26], respectively. The ADP of the proposed design

with d = 13 is 20.2%, 17.0%, and 40.8% less the existing of [48], [46] and [47], and [26],

respectively.
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Chapter 4

Conclusion

4.1 Low complexity hybrid-size systolic polynomial

multipliers

An efficient, new hybrid structure of pentanomials and trinomials for low-complexity

implementation of finite field multipliers over GF (2m) has been proposed in Chapter 2.

Based on the similarities of the computation matrices of operand A of the pentanomial-

based and trinomial-based multipliers, we sperate the common bits of operand A of both

multipliers to form a new matrix named AOP-liked matrix, which reduces the register-

complexity. Moreover, a novel low register-complexity algorithm for hybrid systolic finite

field polynomial multipliers has been presented. We have also introduced structures for

low-latency and digit-parallel implementation. Both the theoretical analysis and the

FPGA implementation results have confirmed the higher efficiency of the proposed ar-

chitectures compared with the competing ones.

4.2 Low complexity digit-level systolic Gaussian nor-

mal basis multipliers

A low critical-path delay, low register-complexity DL systolic GNB multiplier overGF (2m)

has been proposed in the third chapter of this thesis. We have proposed a novel multipli-

cation algorithm to reduce the critical-path delay and the register-complexity. Moreover,

both theoretical and ASIC implementation results are presented for comparison. Based
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on our presented results, our proposed design has smaller critical-path delay and few-

er register-complexity when compared with the existing DL systolic multipliers. The

proposed DL multiplier, thus, can be extended and employed in sensitive usage models

including high-performance cryptographic applications.
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Chapter 5

Publication

Q. Shao, Z. Hu, S. Chen, P. Chen, R. Azarderakhsh, M. Mozaffari-Kermani, and J.

Xie, “Low Critical-Path Low-Complexity Digit-Level Systolic Gaussian Normal Basis

Multiplier,”IEEE Trans. VLSI Systems, submitted for review.
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