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ABSTRACT 

 

Alwethaynani, Maher Salem. M.S. Program of Microbiology and Immunology, Wright State 

University, 2016. The Expression of Aryl Hydrocarbon Receptor in RAW 264.7 Macrophages in 

the Presence of SOCS1 Peptide and SOCS3 Peptide Mimetic and Cells Infected with HSV-1 

 

 

Macrophages play a crucial role for our immune system and protect our body from 

infection. Suppressor of cytokine signaling (SOCS) proteins negatively regulate cytokine 

receptor and TLRs. The aryl hydrocarbon receptor (AhR) also performs an important role in 

immunity. This study investigated the changes in expression of AhR in RAW 264.7 macrophage 

cells after the addition of SOCS1 and SOCS3 peptide mimetics and also examined AhR 

expression in RAW 264.7 macrophage cells before and after the addition of HSV-1 RAW 264.7 

murine macrophage cell lines which are from male BALB/c mice were used in this study. The 

addition of the SOCS1 peptide mimetic treatment of uninfected RAW 264.7 macrophages caused 

a significant increase in AhR expression (p<0.001) associated with production of the pro- 

inflammatory cytokines such as TNF-α. However, treatment of uninfected RAW 264.7 

macrophages with SOCS3 peptide mimetic caused a significant decrease in AhR expression 

compared to uninfected control cells (p<0.01) associated with production of IL-10. Following 

viral challenge, there was an overall decrease in AhR expression in all treated RAW 264.7 

macrophages. During the course of the study, viabilities of RAW 264.7 macrophages with and 

without HSV-1 were assessed. Treatment of macrophages with SOCS3 increased cell viability 

compared to SOCS1 treatment while viability following both treatments was reduced in virus 

infected cells. These observations suggest that SOCS3 plays a critical role in controlling the 

effect of cytotoxic molecules. This study shows that SOCS1 peptide and SOCS3 peptidemimetic 

can impact AhR expression and cell survival of murine macrophages. 
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HYPOTHESIS 

 

SOCS3 peptide mimetic induces anti-inflammatory cytokines such as IL-10 and less pro- 

inflammatory cytokine such as nitric oxide and TNF-α. SOCS1 peptide mimetic is known to 

increase the production of pro-inflammatory cytokines such as TNF-α. During virus infection, 

SOCS functions to inhibit immune response allowing virus invasion and replication. I predicted 

that the AhR expression cells in RAW 264.7 murine macrophage cells would be upregulated in 

the presence of SOCS1 peptide mimetic, while the AhR expression in RAW 264.7 murine 

macrophage cells would be downregulated in the presence of SOCS3 peptide mimetic. The AhR 

expression by RAW 264.7 murine macrophage cells will be decreased following infection with 

HSV-1 with or without SOCS1 and SOCS3. 
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INTRODUCTION 

 
Macrophages and dendritic cells are formed upon differentiation of monocytes. They 

protect our body from infection and are phagocytic in nature. Any antigen that enters the body 

gets engulfed by these macrophages which in turn generate adaptive immune response. 

Macrophages, mast cells and neutrophils are mediated as professional phagocytic cells (Murray 

and Wynn, 2012). Macrophages can be identified by surface markers like F4/80 which 

differentiates them from dendritic cells. All the tissues contain resident macrophages. During the 

time of embryonic development, macrophages develop with the tissue. Macrophages become 

functionally specialized based on the type of cytokines they encounter (Lavin et al., 2015). 

Macrophages are activated by either classical or alternative pathway. Apart from engulfing 

microbes, they also play a role in wound healing and clearing cell debris (Mosser and Edwards, 

2008). 

The aryl hydrocarbon receptor (AhR) is activated in the presence of a ligand. It is present 

in the cytosol but is inactivated there with the help of proteins that are bound to it (Abel and 

Haarmann-Stemmann, 2010). The three kinds of proteins binding AhR are chaperones, hepatitis 

B virus X associated protein-2 and p23. Ligand binding to AhR receptor leads to upregulation of 

the enzymes that are responsible for metabolizing the ligand. Cytochrome P-450 is one example 

of an enzyme that is activated by this signaling. A compound that has high affinity for AhR is 

2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The binding of STAT1 and AhR occurs in 

response to LPS stimulations. Plasminogen activator inhibitor (Pai-2) is induced by LPS in RAW 

264.7 macrophages (Nguyen et al., 2013). AhR and Pai-2 together regulate pro-inflammatory 

cytokine production in macrophages. AhR also mediates the differentiation of IL-17 Th cells and 

IL-17 treg cells (Veldhoen, 2010). 
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Suppressor of cytokine signaling (SOCS) proteins are negative regulators of cytokine 

receptors and Toll Like Receptors (TLR). These proteins have a Src homology 2 (SH-2) domain 

and a carboxy terminal region having amino acids that forms SOCS box. There are eight kinds of 

SOCS proteins present, namely SOCS1-SOCS7 and CIS. SH2 domain interacts with 

phosphotyrosine phosphorylated proteins and the interaction of SOCS box takes place with 

elongin BC complex. This interaction inhibits the degradation of SOCS proteins. There is also a 

kinase inhibiting region present in SOCS protein. SOCS1 binding to JAK inhibits its catalytic 

activity. SOCS3 binds to the cytokine receptor area, present adjacent to JAK binding site and 

thus it inhibits the binding of JAK. Only by ubiquitination can these SOCS proteins be degraded 

(Yoshimura, 2005). 

Herpes Simplex Virus Type 1 (HSV-1) is a virus that has a double stranded DNA 

genome which is linear and is of approximate size of 152kbp (McGeoch et al., 2006). The viral 

DNA is enclosed in a capsid which is icosahedral in shape and surrounded by a proteinaceous 

cluster called tegument. The tegument is also inside an envelope. This envelope has different 

multifunction glycoproteins which play the role of attachment of the viral cell with the host. This 

virus causes mouth sores and may cause genital sores as well (World Health Organisation 

[WHO], 2016). It can affect humans efficiently as it has several modes (Karasneh and Shukla, 

2011). The virus first attaches itself to the host and then follows the anchoring of the viral cell to 

the host. HSV-1 inhibits immune response by preventing the activation of lymphocytes 

(Karasneh and Shukla, 2011). 
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LITERATURE REVIEW 

 

 
Herpes Simplex Virus Type 1 (HSV-1) 

 

HSV-1 or oral herpes is a highly contagious infection which mostly causes sores around 

the mouth (cold sores) but can also cause genital herpes (World Health Organisation [WHO], 

2016). The virus possesses a large sized, linear, double-stranded DNA genome which is 

approximately 152kbp long (McGeoch et al., 2006). This viral DNA genome is encased in an 

icosahedral shaped nucleocapsid which is surrounded by a tegument (a proteinaceous cluster 

forming a layer) which is also in turn encased in an envelope. This envelope is a polymorphic lipid 

bilayer which contains several copies of different multifunction glycoproteins which play various 

roles in attachment to and entry of host cells (Liu and Zhou, 2007). These glycoproteins are 

encoded in the genome of the virus by at least 74 different genes (McGeoch et al., 2006). 

HSV-1 which belongs to the alphaherpesvirus subfamily has excellent ability to infect 

human cells (Spear and Longnecker, 2003). This is due to several factors, one of which is its 

multiple entry modes (Karasneh and Shukla, 2011). The virus has the ability to infect host cells 

either by endocytosis or by direct fusion (fusion with the host cell’s plasma membrane). This is 

brought about by the interaction of seven glycoproteins (gK, gD, gC, gH, gB, gM and gL) 

(Heldwein and Krummenacher, 2008) which interact with their cognate receptors on the cell 

surface in a series of steps (Karasneh and Shukla, 2011). 

First step is the attachment of the virus to the host cell by binding of gB and/or gC to 

heparin sulphate proteoglycans on the host cell’s surface (Spear, 2004). This is followed by 

interaction of gD with a gD receptor which enhances tight anchoring of the virus to the hostcell’s 

plasma membrane (Campadelli-Fiume, Cocchi, Menotti and Lopez, 2000; Shukla and Spear, 2001). 
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Finally, gD undergoes conformational changes during receptor binding which is suspected to 

signal gB and gH/gL thereby facilitating membrane fusion followed by the release of the viral 

tegument proteins and viral nucleocapsid into the host cell’s cytoplasm (Akhtar and Shukla, 2009; 

Karasneh and Shukla, 2011). This is followed by uncoating of the nucleocapsid which allows the 

injection of viral DNA into the host cell’s nucleus through nuclear pores for onward replication 

and capsid assembly (Liu and Zhou, 2007). 

In human hosts, HSV-1 inhibits immune response by preventing the activation of cytotoxic 

T-lymphocytes (CTLs) which are major antiviral immune cells by secreting infected cell protein 

47 (ICP-47) that binds specifically to transporters associated with antigen processing (TAP) 

(EMBI-EBI, 2016). This obstructs peptide-binding and translocation which subsequently prevents 

peptides from being loaded unto MHC class I molecules leading to retention of empty MHC I 

molecules in the endoplasmic reticulum and ultimately resulting in proteosomal degradation 

(EMBI-EBI, 2016). In human hosts, HSV-1 exhibits both latent and lytic modes (James, 2004). 

As a result of certain illnesses or stress, the latent mode can however be reactivated into the lytic 

cycle, causing cutaneous disease (Alsharif, 2015; James, 2004). 

The host immune actions against HSV-1 are both complex and multifactorial involving 

both the innate and adaptive immune response (Chew et al., 2009) with macrophages playing anti- 

herpetic roles in the first stages of infection (Ellermann-Eriksen, 2005). The first wave of response 

is the production of cytokines (primarily type I interferons [IFN]) and tumour necrosis factor (TNF) 

(Ellermann-Eriksen, 2005). These have anti-viral activity and also stimulate the macrophages; this 

is followed by release of IL-12 and cytokines such as IFN-γ mainly by NK cells (Ellermann- 

Eriksen, 2005). The macrophages and other cells serve as a network for the control of the 
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replication of HSV-1 (Mantovani et al., 2004). Macrophages also inactivate the virus and protect 

other cells from infection (Mantovani et al., 2004). 

Macrophages 
 

Macrophages are a type of leukocytes (white blood cells) which are phagocytic in nature 

and protect our body against infecting agents. They engulf antigens which enter the body and 

generate immune responses. The precursor of macrophage is called monocyte. Monocytes then 

give rise to macrophages and dendritic cells. These, along with mast cells and neutrophils, are 

termed as professional phagocytic cells (Murray and Wynn, 2012). Macrophages can be 

differentiated from dendritic cells as they express surface markers like F4/80. They exist in 

nearly all tissues. During the time of embryonic development, macrophages develop with the 

tissue. The functional specialization of these cells depends on the type of cytokine they 

encounter (Lavin et al., 2015). 

Macrophage Functions 
 

As mentioned earlier, macrophages exist in all tissues. In cases of inflammation, they 

migrate to the tissue as a response to inflammation. They also migrate in steady state. 

Macrophages originate from peripheral blood mononuclear cells (PBMcs). In the bone marrow, 

there is a common myeloid progenitor cell present which is responsible for the production of 

differentiated cells. The bone macrophages are called osteoclasts; microglial cells are present in 

brain; liver macrophages are termed as kupffer cells and histiocytes are the macrophages present 

in connective cells (Mosser and Edwards, 2008). 

Functions of macrophages include defense from a range of microbes. An immune 

response is generated when antigens are engulfed which activates genes producing cytokines like 

IFN-γ and TNFα. Macrophages also perform anti-inflammatory function that play a significant 
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role in wound healing and clearing cell debris consequences from damaged and apoptotic cells 

(Mosser and Edwards, 2008). In addition, macrophages can recognize specific markers present 

on the cell surface by their receptors. Scavenger, complement and phosphatidyl serine receptors 

are present on the surface of macrophages for selection of only foreign cells or dying cells 

(Murray and Wynn, 2012). These receptors perform homeostatic functions independent of 

immune response (Mosser and Edwards, 2008). 

Macrophage Activation 
 

Macrophage activation happens because of many processes. One of them includes the 

endogenous danger signals. They trigger the activation of macrophages. They can respond to the 

environmental signals because of the plasticity they possess. Their physiology can also change 

based on the immune responses which can be either adaptive or innate. There are two pathways 

for macrophage activation. Classical pathway is the first pathway and it is called “M1” 

phenotype. Classical pathway includes macrophages that are activated during cell mediated 

immune responses (Mosser and Edwards, 2008; Mantovani, 2006). 

M1 cells are formed by the activation of TLR in the presence of IFN-ɣ, TNF-α, 

Granulocyte Colony Stimulating Factor (GMCSF), and microbial lipopolysaccharides (LPS) 

(Mosser and Edwards, 2008; Mantovani, 2006). High levels of reactive nitrogen species (RNS), 

reactive oxygen species (ROS), IL-12, IL-23 are produced by M1 cells which represent a 

proinflammatory role. M1 cells also produce low level of IL-10. M1 cells display a Th-1 like 

phenotype and also encourage inflammation, ECM destruction, and apoptosis (Mantovani, 

2006). The combination of two signals IFN-ɣ and TNF-α is responsible for the production of 

macrophages that are high in microbicidal or tumoricidal capacity. To maintain these classically 
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activated macrophages, an anti-inflammatory immune response is required (Mosser and 

Edwards, 2008) (Figure 1). 

The second pathway is alternative activation called “M2” phenotype. This gives rise to 

wound-healing macrophages. M2 cells also have anti-inflammatory functions. M2 cells are 

triggered by cytokines like IL-4, IL-10, and IL-13 or by glucocorticoid hormones. They express 

arginase-1, mannose receptor and IL-4 receptor-α. In compare to M1 cells, low levels of IL-12 

and IL-23 are produced by M2 cells. Also, M2 cells produce high levels of IL-10. They are also 

involved in Th2 cell mediated response (Pesce et al., 2006; Mantovani, 2006) (Figure 1). 

M1 and M2 cells can be differentiated from each other by understanding how arginine is 

metabolized by them. Arginine is catabolized into nitric oxide and citrulline by the enzyme nitric 

oxide synthase produced by M1 (Odegaard and Chawla, 2011). Bactericidal activity of nitric 

oxide helps in killing bacteria. Arginine is used to produce urea and polyamines which can 

support collagen synthesis. This is done by the enzyme arginase 1 that is produced by M2 cells 

(Odegaard and Chawla, 2011). 

Alternatively activated macrophages also produce molecules like YM1 and YM2 which 

are chitin or chitin like molecules. These macrophages may act detrimentally to host cells. This 

can happen when their matrix-enhancing activity is disrupted. An example of this is the tissue 

fibrosis that occurs in chronic schistosomiasis. It happens because of the over activation of 

wound healing macrophages. Treatment with IL-4 specific antibodies caused reduction in 

accumulation of wound healing macrophages (Mosser and Edwards, 2008). 
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Figure 1. Polarization and activation of macrophages. LPS and IFNγ activate M1 macrophages to 

produce TNFα, IL-6, iNOS and ROS. IL-13 or IL-4 activates M2 macrophages to produce IL-10 

(Modified from Mantovani, 2006). 
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The Aryl Hydrocarbon Receptor Signaling Pathway 
 

AhR receptor is of Per-Arnt-Sim family which is also known as helix-loop-helix family. 

 

It is a transcription factor that gets activated by a ligand. This mediates the effects of 

polyaromatic hydrocarbons. It is inactivated in the cytosol as protective proteins are bound to it 

to stabilize the receptor (Abel and Haarmann-Stemmann, 2010). 

These protective proteins are as follows: - 

 

1. Two chaperone proteins which perform the function of protecting cells from increasing in 

cell temperature (Feder and Hofmann, 1999). 

2. Hepatitis B virus X associated protein 2 (XAP-2). The function of this protein is to 

prevent the degradation of AhR (Lees, Peet, and Whitelaw, 2003). 

3. P23 protects the receptor from proteolysis (Nguyen et al., 2012). 

 

Ligands that are responsible for the activation of AhR include compounds that are either dietary 

or pharmaceutical. This activation leads to the up-regulation of the enzymes responsible for the 

metabolizing these xenobiotics. An example of such enzyme is Cytochrome P450A1 

(CYP450A1) (Nguyen et al., 2013). Ligands that are known to bind to this receptor and thus 

activating it are polycyclic aromatic hydrocarbons (PAH), and halogenated aromatic 

hydrocarbons (HAH). They are known to have high affinity with the AhR receptor. One of the 

compounds belonging to HAH family, TCDD, is known to have an extremely high affinity 

towards this receptor (Nguyen et al., 2013). When AhR comes in contact to its ligand, it gets 

transferred to the nucleus. In the nucleus, the AhR nuclear translocator (ARNT) leads to the 

detachment of protective proteins present in AhR. ARNT attaches itself to AhR leading to the 

formation of a functional transcription factor. This AhR- ARNT transcription factor binds to the 
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DNA at dioxin- responsive element (DRE). This binding leads to the regulation of expression of 

CYP450A1 enzyme (Meyer and Perdew, 1999). The deactivation of this transcription factor is 

done by the processes of phosphorylation/dephosphorylation resulting in the AhR existence 

degraded in the cytosol (Abel and Haarmann-Stemmann, 2010) (Figure 2). 

Macrophages are affected by the activation of AhR, resulting in the dysregulation of 

vitamin D3 catabolism. Vitamin D3 in its active form regulates immune responses. Deficiency of 

this vitamin D3 can result in many disorders. The deficiency of vitamin D3 induced by BaP and 

the activation of AhR in macrophages may mediate some of the smoking effects (Matsunawa et 

al., 2009). BaP activates AhR which in turns stimulates the catabolism of vitamin D3 thus 

modulating its signaling. AhR also co-operates with a transcription factor known as cellular viral 

musculoaponeurotic fibrosarcoma oncogene homolog (c-maf) that controls integrin beta-7 (β-7 

integrin) expression. β-7 integrin expression is also a molecular target of PAH (Monteiro et al., 

2007). 
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Figure 2. Aryl hydrocarbon receptor signaling pathway. AhR bind to its ligand then it gets 

transferred to the nucleus. AhR nuclear translocator (ARNT) leads to the detachment of 

protective proteins present in AhR. ARNT attaches itself to AhR leading to the formation of 

transcriptional activation of genes (Modified from Meyer and Perdew, 1999). 
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Suppressor of Cytokine Signaling 
 

SOCS proteins negatively regulated cytokine receptor and TLR. They consist of eight 

kinds, namely SOCS1- SOCS7 and CIS. They contain a Src homology 2 (SH2) domain and a 

~50 amino acid carboxy-terminal SOCS box. Interaction of SH2 domain takes place with the 

phosphotyrosine phosphorylated proteins while the SOCS box interacts with the elongin BC 

complex. This results in inhibiting the degradation of SOCS proteins (Yoshimura, 2005). 

Cytokines such as IFN-ɣ or TLR ligands (by LPS) induce SOCS1 and SOCS3. Phosphorylation 

of JAK1 and JAK2 takes place when these cytokines bind to their receptors. This activates the 

receptor to which STAT binds resulting in phosphorylation of STAT. Post phosphorylation, 

STAT dimerizes and this complex enters the nucleus and binds to the genes responsible for 

production of SOCS1 and SOCS3, causing their up-regulation (Hu et. al., 2002; Alexander, 

2002). 

SOCS proteins also contain a kinase inhibitory region (KIR) that is responsible for 

eliminating the activity of JAK. KIR is present near the amino-terminal domain. The binding of 

SOCS1 to JAK prevents it from performing its catalytic activity. The cytokine receptor area 

adjacent to the site of JAK binding then gets bound by SOCS3. Degradation of both the SOCS 

complexes can then be done by ubiquitination, allowing SOCS proteins to control the JAK- 

STAT signaling (Yoshimura, 2005; Yoshimura and Yasukaw, 2012). SOCS3 is also responsible 

for regulation of STAT3 signaling. An increase in SOCS3 causes anti-inflammatory signals. In 

macrophage polarization, the signaling pathways of NF-κB, phosphoinositide 3-kinases (PI3Ks), 

and extracellular signal-regulated kinase (ERK) are also regulated by SOCS1 and SOCS3. The 

cytokine-induced activation of SMAD3, STAT3, STAT6 and PIK3 are inhibited by SOCS3 

(Wilson, 2014). 
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Materials and Methods 
 

 

Cell Line 
 

Cell line of RAW 264.7 murine macrophages was obtained from the American Type Culture 

Collection, Manassas, VA. Petri plates were obtained from BD Biosciences. The ten percent of 

fetal bovine serum was acquired from Fisher Scientific and the 1% penicillin-streptomycin from 

MP Biomedical, LLC. Our African green monkey epithelial cells were provided by Dr. Nancy 

Sawtell at Children’s Hospital Medical Center in Cincinnati, OH. 

We began by using the RAW 264.7 murine macrophage cell line. This cell line originated from 

the Abelson murine leukemia virus-induced tumor, which was procured from an adult male 

BALB/C mouse. The murine cell line was cultured on 100mm x 20mm petri plates. The medium 

used was Dulbecco’s Modified Eagle’s Medium (DMEM), obtained from BD Biosciences, along 

with 10% heat-inactivate fetal bovine serum, and 1% penicillin-streptomycin antibiotic. The cells 

were grown in humidified 5% incubator set at 37°C. The cells were split two to three times per 

week. African green monkey epithelial cells, also known as Vero 76 cells, (CCL-81, ATCC) 

were used to proliferate HSV-1 (Syn 17+) and to calculate their titers. The cells were then 

infected with a 0.1 multiplicity of infection (MOI). 

Polarization Induction 
 

Once the RAW 264.7 cells reached 70% confluency, they were treated with 100ng/ml 

lipopolysaccharide (LPS), to induce an M1 phenotype. Cells were polarized for a period of 

twenty-four hours. The cells were collected using a cell scraper after the twenty-four-hour period 

for the purpose of cell viability and flow cytometry. LPS from E. coli 0111:B4 was obtained 

from Chondrex Inc, (Redmond, VA). 
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Cell Viability 
 

The RAW murine machrophages were grown to a confluency of approximately 70%. Cells were 

then stimulated with the LPS (100ng/ml), SOCS1 peptide (35µm/ml), and SOCS3 peptide 

(35µm/ml) with a (0.1 MOI) of virus or without a virus. Untreated-cells were the controls. Cells 

were incubated for a period of twenty-four hours. The cells that were grown using 24-well plates 

during the twenty-four-hour incubation period were collected using a cell scraper. They were 

centrifuged at 1500 rpm for 5 mins, at 4°C, after that the medium was removed. One ml of 

DMEM medium was added to the suspension of pellet. The cells were then stained with trypan 

blue at a ratio of 1:2. This equation was used to detect cell viability: 

% Cell Viability = [Total Viable Cells (Unstained) / Total Cells (Viable + Dead)] x 100 

 

Immunofluorescent Staining 
 

RAW 264.7 murine macrophages were grown in 8 wells removable silicone cultivation 

chambers (purchased from Ibidi) to approximately 50% confluency is reached. Cells were 

stimulated with LPS, SOCS1 peptide (35 μM/ml), and SOCS3 peptide (35 μM/ml) with a (0.1 

MOI) of virus or without a virus. Untreated-cells were used as a control. RAW 264.7 

macrophages were incubated 24 hours. Following the incubation period, the culture medium was 

immediately aspirated. Bovine Serum Albumin (1% BSA) was suspended in phosphate buffered 

saline. 1% BSA was used to wash the cells (3-5 minutes for 2 times). Then, four percent (4%) 

paraformaldehyde was used to fix the cells for 15 minutes at room temperature. The cells were 

washed with 1% BSA in PBS for three times (five minutes each). By using 0.25% Triton X-100 

diluted in PBS, cells were permeabilized and incubated for 10 minutes at room temperature. The 

cells were washed with 1% BSA in PBS for three times (five minutes each). Cells were 

incubated for 2 hours at room temperature with a blocking buffer (5% Goat serum, 3% BSA, and 
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0.05% tween) to limit non-specific binding. The cells were washed with 1% BSA in PBS for 

three times (5 mins each). The concentrations of primary antibody and dilutions were applied 

with a blocking buffer as shown in (Table 1). In blocking buffer, cells were incubated in diluted 

primary antibodies at a temperature of 4C overnight. Then, the cells were washed with 1% BSA 

in PBS for three times (five minutes each). In the dark, cells were incubated in Texas Red 

Phalloidin X and the secondary antibody as shown at (Table 1) for 2 hours at room temperature. 

The cells were washed with 1% BSA in PBS for three times (5 mins each). Cells were applied to 

one drop of Vectashield hardset mounting medium (H-1400), Vector Laboratories). Then cells 

were visualized an Olympus Epi-fluorescence microscope with a ‘spot’ digital camera. 
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Table 1. Summary of fluorescent label and antibodies used in immunofluorescence experiment. 
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Flow Cytometric Analysis 
 

Approximately 1.5-2 million cells from each treatment were placed in 1.5mL microcentrifuge 

tubes. The cells were washed with 1% BSA in PBS for three times (5 minutes each). Cells were 

spun at 153 RCF for five minutes at 4°C. Cells were then fixed with four percent of 

paraformaldehyde for twenty minutes at room temperature. The cells were washed with 1% BSA 

in PBS for three times (5 minutes each). Cells were permeabilized using 0.1% saponin for fifteen 

minutes at room temperature. Next, cells were blocked with a blocking buffer (3% BSA and 

0.1% saponin) for thirty minutes. The cells were washed with 1% BSA and 0.1% saponin in PBS 

for three times (5 minutes each). Cells were stained with anti-mouse AhR primary antibody 

(RPT9), in 100µL of 3% BSA for (30 mins) at 4°C (Perdew et al., 1995). The cells were washed 

with 1% BSA and 0.1% saponin in PBS for three times (5 minutes each). Cells were suspended 

with 500µL of 10% FBS and 0.1% sodium azidein in ice cold PBS. Then cells were analyzed 

using flow cytometry on an Accuri C6 Flow Cytometer. The FCS Express program was used to 

analyze the results from flow cytometry. In FCS Express program, isotype control was 

subtracted from the sample to generate the % of positive stained cells. 

SOCS Experiments 
 

Twenty-four hours before any treatment, murine macrophage cells were grown in triplicate, 

using 24-well plates. The original culture medium was replaced by fresh DMEM which 

contained 10% FBS and which was treated with LPS to obtain the M1 phenotype. We added the 

SOCS1 peptide and the SOCS3 peptide either with or without the HSV-1, after which the cells 

were incubated for twenty-four hours at 37C. After the incubation period, cells were collected 

using a cell scraper and were then centrifuged at 1500rpm for five minutes. The pellet was then 
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re-suspended in 1 ml of 10% DMEM medium and the cells were stained with trypan blue to 

determine the cell viability. 

Statistical Analysis 
 

Experiments were repeated a minimum of three successive times. Data were collected from 

representative experiments in order to measure cell viability and flow cytometric analysis. 

Using Sigma Plot 13.0 software, one-way ANOVA was applied to analyze the differences 

between the experimental testing groups. P values ≤0.05 were defined as a statistically 

significant. Data were depicted as the mean ± the standard error of the mean. 
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RESULTS 

 

 
RAW 264.7 Macrophage, treated with LPS, virus-infected macrophages and uninfected 

 

macrophages displayed morphological changes when compared to untreated macrophages 
 

RAW 264.7 Macrophages were activated with LPS for twenty-four hours to stimulate the 

M1 phenotype. LPS-treated macrophages without HSV-1 appeared enlarged and flattened with 

intracellular vacuoles, while control cells appeared rounded at twenty-four hours. Following viral 

challenge, control cells and LPS-treated macrophages exhibited rounded shapes at twenty-four 

hours (Figures 3, 4, 5 and 6). 

Cell Viabilities of RAW 264.7 Macrophage Untreated and Treated with LPS, SOCS1 and 
 

SOCS3 Peptide Mimetic after 24 Hours with and without HSV-1 Infection: 
 

RAW 264.7 Macrophages were treated with LPS, SOCS1 peptide and SOCS3 peptide 

mimetic for twenty-four hours with and without HSV-1 (MOI 0.1). Trypan blue assay was 

performed to detect the number of viable cells after 24 hours of treatment with LPS, SOCS1 and 

SOCS3 with and without HSV-1. Treated RAW 264.7 Macrophage cells were compared to the 

cell viabilities of the untreated M0 macrophages. 

RAW 264.7 Macrophages following treatment with LPS showed significant decrease 

(~50%, P-value <0.001) in cell viability compared to M0 control cells (~85%) after 24 hours. 

Macrophages treated with SOCS1 and SOCS3 Peptide mimetic displayed slight decrease (79%, 

82%, respectively) in cell viability compared to M0 control after 24 hours. M1 macrophages 

(~50%) treated with LPS in comparison with macrophages treated with SOCS1 Peptide and 

SOCS3 Peptide mimetic (79%, 82%, respectively) exhibited a significant decreased (with p 

value <0.001) in cell viability 24 hours post-treatment (Figure A7). 



20  

Following viral challenge, viabilities of RAW 264.7 macrophages following treatment 

with LPS or SOCS1 or SOCS3 peptide mimetic with HSV-1 were assessed. At 24 hours 

following treatment, M1 macrophages (~40%, p <0.001) exhibited a reduction in cell viability of 

~10% whereas both macrophages treated with SOCS1 Peptide and SOCS3 Peptide mimetic 

showed minor decreases in viability (77%, 79%, respectively) compared to M0 control cells. 

There was no significant difference in cell viability between cells treated with of SOCS1 and 

SOCS3 compared to M0 control cells (~83%). Both groups of cells treated with SOCS1 and 

SOCS3 (77%, 79%, respectively) showed significant increases (with p value <0.001) in cell 

viability compared to macrophages treated with LPS (Figure B 7). 

SOCS1-treated Macrophages Showed High Expression Levels of AhR, while Both SOCS3- 
 

treated and Control Macrophages Expressed Lower Levels of AhR in Comparison to 
 

SOCS1-treated Cells 
 

AhR expression by un-treated and treated macrophages following 24 hours of LPS, 

SOCS1 and SOCS3 peptide mimetic treatment in the presence and absence of HSV-1 infection 

was evaluated. Immunofluorescence staining and flow cytometry were performed after 24 hours 

of treatment. Immunofluorescent images suggested that SOCS1 macrophages appeared to 

express more AhR expression, while SOCS3 macrophages appeared to express less of AhR 

expression compared to control cells. LPS macrophages appeared to express more of AhR 

expression compared to SOCS3 and control cells (Figures 3, 4). Flow cytometric analysis of 

SOCS1 and LPS macrophages exhibited statistically significant increases level of AhR 

expression (45%, 42%, respectively, p value <0.001) compared to M0 (28%). By comparison, 

SOCS3 macrophages showed decreased level of AhR expression (19%, p value <0.05) compared 
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to M0. On the other hand, SOCS3 macrophages exhibited statistically significant decreased 

levels of AhR expression (p value <0.001) compared to SOCS1 and LPS (Figures 8 and 10). 

Virus Challenge Up Regulates AhR Expression in SOCS1-treated Macrophages, and Down 
 

Regulates AhR Expression in SOCS3-treated Macrophages 
 

 

In immunofluorescent images, infected cells with virus suggested that SOCS1 macrophages 

appeared to express more AhR expression, while SOCS3 macrophages and control cells 

appeared to express less of AhR expression compared to SOCS1 (Figures 5 and 6). Infected 

control cells with virus showed a decrease in AhR expression compared to un-infected control 

cells, while AhR expression was decreased in SOCS1 and SOCS3 following virus infection 

compared to uninfected cells (Figures 3, 4, 5, 6). Flow cytometric analysis of infected cells that 

treated with SOCS1 suggested that virus leads to up-regulation of AhR expression (Figures 9 

and 11). Following virus challenge, SOCS1-treated macrophages exhibited decreased levels of 

AhR expression (35%) compared to uninfected SOCS1-treated macrophages (45%) (Figures 8, 

9, 10, 11 and Table 2). AhR expression appeared slightly changed in SOCS3 macrophages that 

infected with virus when compared to un-infected SOCS3 macrophages (Figures 8, 9, 10, 11 and 

Table 2). Both samples expressed statistically significant increased levels of AhR in SOCS1- 

treated macrophages compared to SOCS3-treated macrophages. Virus-infected SOCS3-treated 

macrophages showed slightly a decreased level of AhR expression (15%, p value <0.001) while 

uninfected SOCS3-treated macrophages cells expressed (19%, p value <0.001). Virus- infected 

LPS-treated cells showed strongly decreased expression levels of AhR (23%, p value <0.01) 

when compared to uninfected LPS-treated cells (42%, p value <0.001). Similarly, virus-infected 

control cells expressed a high decreased in expression levels of AhR (9%, p value <0.001) when 

compared to uninfected control cells (28%, p value <0.001) (Figures 8, 9, 10, 11 and Table 2). 
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Figure 3. Un-treated RAW 264.7 macrophages and macrophages treated with LPS, SOCS 1, or 

SOCS 3 peptide mimetic after 24 hours and stained with Texas-Red Phalloidin X. (Scale bar =20 

μm). 
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Figure 4. Immunofluorescence images for AhR expression in un-treated RAW 264.7 

macrophage and macrophages treated with LPS, SOCS 1, and SOCS 3 peptide mimetic after 24 

hours and stained with anti-AhR antibody. (Scale bar =20 μm). 
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Figure 5. HSV-1 infected un-treated RAW 264.7 macrophages and HSV-1 infected macrophages 

treated with LPS, SOCS 1, or SOCS 3 peptide mimetic after 24 hours and stained with Texas- 

Red PhalloidinX. (Scale bar =20 μm). 
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Figure 6. Immunofluorescence images for AhR expression in HSV-1 infected un-treated RAW 

 

264.7 macrophage and HSV-1 infected macrophages treated with LPS, SOCS 1, or SOCS 3 

peptide mimetic after 24 hours and stained with anti-AhR antibody. (Scale bar =20 μm). 
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Figure 7. Cell viability of un-treated-macrophages (M0), Macrophages treated with LPS, 

macrophages treated with SOCS 1, and macrophages treated with SOCS 3 peptide mimetic after 

24 hours. (A) Shows un-infected cells. (B) Shows infected cells. Each value represents mean ± 

standard error (SE) of three separate experiments. ***; p ≤ 0.001. 
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Figure 8. Flow cytometry analysis of AhR expression levels in un-treated RAW 264.7 

macrophages after 24 hours. A, B, C, and D histograms show the percentage of cells positive for 

AhR expression in un-treated macrophages (M0), macrophages treated with LPS, SOCS 1, or 

SOCS 3 peptide mimetic after 24 hours and stained with anti-AhR antibody. Red: negative 

isotype control; black: anti-mouse AhR primary antibody, conjugated with PE. Three 

independent experiments were performed. 
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Figure 9. Flow cytometry analysis of AhR expression levels in un-treated RAW 264.7 

macrophages after 24 hours. A, B, C, and D histograms show the percentage of cells positive for 

AhR expression in un-treated macrophages (M0), macrophages treated with LPS, SOCS 1, or 

SOCS 3 peptide mimetic after 24 hours with HSV-1 infection and stained with anti-AhR 

antibody. Red: negative isotype control; black: anti-mouse AhR primary antibody, conjugated 

with PE. Three independent experiments were performed. 
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Figure 10. Un-treated RAW 264.7 macrophages (M0), macrophages treated with LPS, SOCS 1, 

or SOCS 3 Peptide Mimetic after 24 hours and stained with anti-AhR antibody. Each value 

characterizes mean ± standard error (SE) of three separate experiments. ***; p ≤ 0.001 **; p 

<0.01. 
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Figure 11. Un-treated infected RAW 264.7 macrophages (M0), infected macrophages treated 

with LPS, SOCS 1, or SOCS 3 peptide mimetic after 24 hours and stained with anti-AhR 

antibody. Each value characterizes mean ± standard error (SE) of three separate experiments. 

***, p ≤ 0.001; **, p <0.01; *, p <0.05. 
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Table 2. Summary of number of un-polarized and polarized macrophages pre and post- HSV-1 

infection that stained positive for AhR expression 
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DISCUSSION 

 

 
In this study, RAW 264.7 macrophages treated with LPS were flattened, extended, with 

irregular shape and contained visible intracellular vacuoles. These cells were strongly adherent in 

F-actin stains compared to uninfected control cells, while control cells appeared rounded and 

elongated. Following challenge with HSV-1, all RAW 264.7 macrophages including LPS-treated 

cells were rounded. This morphology of macrophages after exposure to HSV-1 made it difficult 

to distinguish different treatments. Morphological changes were seen possibly due to changes of 

the actin cytoskeleton that happen during the normal virus life cycle (Bigley, 2014; Reichard, 

2012). 

Viabilities of RAW 264.7 macrophages following treatment with LPS or SOCS1 or 

SOCS3 peptide mimetic with and without HSV-1 were assessed. Macrophages exposed to LPS 

showed a significant decrease in the cell viability with and without HSV-1 compared to the 

control cells (Figure 5). LPS-treated cells are known to produce high levels of reactive nitrogen 

species (RNS), reactive oxygen species (ROS), and TNF-α functioning as pro- inflammatory 

molecules. These cytotoxic molecules are implicated in decreased the cell viability of M1 

macrophages (Schachtele et al., 2010). 

SOCS molecules control JAK/STAT signaling pathway mediating cytokine production 

(Frey et. al., 2009). During viral infection, these proteins play an important role in controlling 

intracellular immune responses. SOCS3-treated macrophages displayed an increase in cell 

viability with and without HSV-1 infection compared to SOCS1-treated macrophages (Figure 5). 

Alsharif (2015) suggested that treatment of macrophages with SOCS3 peptide mimetic led to a 

decrease in the production of inflammatory cytokines (TNF-α and IL-6) and an increase in anti- 

inflammatory IL-10. In this study, increases in viability of SOCS3-treated macrophages support 
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the suggestion that SOCS3 plays a critical role in controlling the effect of cytotoxic molecules 

(Schachtele et al., 2010). 

AhR is also known to regulate the differentiation of inflammatory CD4+ Th IL-17 cells 

and T reg cells (Veldhoen, 2010). AhR might also interact with factors like interferon regulatory 

factor-4 (IRF-4) which regulates the formation of subsets of T cells, including the production of 

IL-17 cells (Veldhoen, 2010). Deficiency of IRF-4 producing cells can hinder the differentiation 

of Th17 cells (Brüstle et al., 2007). In the LPS response of macrophages, IRF-4 is responsible for 

negative regulation of TLR-4 signaling and in subsequent production of the pro-inflammatory 

cytokines such as TNF-α and IL-12 (Honma et al., 2005). AhR and IRF-4 interaction may be 

responsible for different roles performed by AhR. AhR is also involved in signaling in NFκB. 

The AhR suppresses the LPS induced activation of IL-6 by interacting with STAT1 on IL-6 

promoter that is known to inhibit the transcriptional activation of NFκB (Nguyen et al., 2013). 

In this study using flow cytometric analysis, LPS and SOCS1 peptide mimetic 

treatments of uninfected RAW 264.7 macrophages caused a significant increase in AhR 

expression (p<0.001) (Fig 10) associated with production of the pro-inflammatory cytokines 

such as TNF-α. AhR expression is induced by LPS and TLR ligands in murine macrophages 

(Kimura et al., 2009). Reichard (2012) found that SOCS1 expression predominated in the pro- 

inflammatory macrophages. 

SOCS3 peptide mimetic-treated of uninfected macrophages induced significant decrease 

in AhR expression compared to uninfected control cells (p<0.01) (Fig 10). SOCS3 protein has 

been shown to mediate IL-10 production and inhibition of nitric oxide and TNF-α production 

(Qasimi et al., 2006). Alsharif (2015) suggested that SOCS3 protects macrophages from the pro- 

inflammatory cytokines and cell toxicity. The SOCS3 peptide mimetic exerts an anti- 
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inflammatory response that protects against lytic effect of LPS and IFN-γ. Another explanation 

for anti-inflammatory effect of SOCS3 may be its use of SOCS3 signaling which lead to 

production of anti-inflammatory IL-10 (Qin et al., 2012). 

Following viral challenge, AhR expression decreased in all treated macrophages (Figure 

11). Cell viabilities were reduced in virus infected cells (Fig 5). This reduction in overall of AhR 

expression and cell viability was likely due to the crucial role of macrophages against viral 

infection (Reichard, 2012). This cell death may due to the pro-inflammatory products such as 

IFN-γ/TNF-α (Wang et al., 2011). However, inhibiting the JAK-STAT signaling by SOCS will 

inhibit cytokine production and inhibit immune system against infection (Cooney, 2002). 

Nowoslawski et al. (2010) found that viral proteins were able to hijack SOCS functions and 

made SOCS the targets of virus. Therefore, SOCS inhibits immune response, allowing virus 

invasion and replication (Nowoslawski et al., 2010). 

LPS activates STAT1 in macrophages (Kimura et al., 2009). AhR and STAT1 binding 

takes place in response to the stimulation given by LPS. Thus, AhR plays an important role in 

the JAK-STAT signaling due to the binding between AhR and STAT1. It is probable that certain 

factors that are responsible for Ahr-STAT1 binding are produced only by LPS. LPS is also 

known as the inducer of plasminogen-activator inhibitor (Pai-2) in RAW 264.7 macrophages 

(Nguyen et al., 2013). AhR co-operates with Pai-2 and regulates pro-inflammatory cytokine 

production in macrophages. This mechanism involves in NFκB. Pai-2 may be expressed in 

response to LPS and is a factor required for the binding of AhR and STAT1. (Nguyen et al., 

2013). 

SOCS3-treated macrophages displayed an increase in cell viability in infected cells and 

induced a high reduction in AhR expression (Figures 5 and 11). This finding supports the 
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important role of SOCS3 during viral replication. Yokota et al. (2004) found that SOCS3 

induction would have a dramatic impact on the immune system helping HSV-1 replication. 

SOCS3 inhibits antiviral immune responses (Nowoslawski et al., 2010). HSV-1 infection 

activates the induction of SOCS3 thus inhibiting the IFN production system. IFN-β is well 

known to activate JAK-STAT pathway through IRF-3 and NF-κB (Yokota et al., 2004). SOCS3 

may suppress the JAK-STAT pathway by inhibiting pro-inflammatory production including IFN- 

β (Yokota et al., 2004). SOCS3 promotes Th2 development by inhibiting IL-12- mediated STAT4 

activation in T cells also, it inhibits IL-6 signaling in macrophages (Yokota et al., 2004). The 

reduction of AhR expression post-infection may result from the upregulation in SOCS3 due to the 

infection as found in this study (Figures 5 and Fig 11). 
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FUTURE STUDIES 

 

 
SOCS proteins inhibit the JAK-STAT signaling allowing, inhibition of cytokine 

production and including the response of the immune system infection (Cooney, 2002). Viral 

proteins hijack SOCS functions and make them the targets of virus resulting inhibition of 

immune responses allowing virus invasion and replication (Nowoslawski et al., 2010). It would 

be beneficial to study the morphological changes and the AhR expression in macrophage cells 

after the addition of SOCS1 peptide and SOCS3 peptide mimics during the early stages of HSV- 

1 infection. These effects can be evaluated using RAW 264.7 macrophages treated with LPS or 

SOCS1 peptide or SOCS3 peptide mimetic or control cells with or without HSV-1 (0.1 MOI) for 

4, 6, and 12 hours to monitor the actin cytoskeleton during the early stage of infection. Thecell 

morphology could be evaluated via immunofluorescent microscope and AhR expression via flow 

cytometry. Based on the results of the present study SOCS1 peptide mimetic will be associated 

with production of increased inflammatory cytokines such a TNF-α and increased expression of 

AhR and treatments with SOCS3 peptide will be associated with production of anti- 

inflammatory IL-10 and decreased expression of AhR. I would expect that the actin cytoskeleton 

in SOCS1 macrophages would be more elongation than SOCS3 macrophages infected cells. 

Cytokine production could be measured using enzyme-linked immunosorbent assay (ELISA) or 

Luminex Multiplex Immunoassays of culture supernatant fluids to verify that there is a reduction 

in pro-inflammatory cytokines in SOCS3-treated macrophages as the population is shifted to the 

anti-inflammatory state. 

Cell viability studies should include measurements of apoptosis such as immunostaining 

for anexin V. AhR plays an important role in the apoptosis pathway. My study of cell viability 

with trypan blue displayed an increase in cell viability in SOCS3-treated macrophages with and 
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without HSV-1 while it showed a decrease in AhR expression post-infection. This decrease 

should be examined through anexin V assay to determine if there is any link between low AhR 

expression and higher cell survival in SOCS3-treated macrophages. This way will better define 

the specifics of the role the AhR plays in a macrophage’s apoptotic pathway. 

Stimulation of AhR using an exogenous AhR ligand such as TCDD or natural AhR ligand 

would be beneficial to see how AhR expression is affected. Exogenous AhR ligand may change 

the expression levels of AhR. AhR would bind to its exogenous ligand such as TCDD resulting 

to activate the AhR expression. In order to compare these conditions with this study, 

macrophages should be exposed to TCDD or natural AhR and measure the change of AhR 

expression level before and after the addition of the stimulation. I would expect that TCDD 

would bind the AhR and upregulate the AhR expression. 
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APPENDIX 
 
 

 

Figure 12. Flow cytometry analysis of AhR expression levels in un-treated RAW 264.7 control 

macrophages. A, B, C, and D histograms show the percentage of cells positive for AhR 

expression in control macrophages after 24 hours. Red: negative isotype control; black: anti- 

mouse AhR primary antibody, conjugated with PE. Three independent experiments were 

performed with four representative histograms. 
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Figure 13. Flow cytometry analysis of AhR expression levels in RAW 264.7 macrophages 

treated with LPS. A, B, C, and D histograms show the percentage of cells positive for AhR 

expression in macrophages treated with LPS after 24 hours. Red: negative isotype control; black: 

anti-mouse AhR primary antibody, conjugated with PE. Three independent experiments were 

performed with four representative histograms. 
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Figure 14. Flow cytometry analysis of AhR expression levels in RAW 264.7 macrophages 

treated with SOCS1. A, B, C, and D histograms show the percentage of cells positive for AhR 

expression in macrophages treated with SOCS1 after 24 hours. Red: negative isotype control; 

black: anti-mouse AhR primary antibody, conjugated with PE. Three independent experiments 

were performed with four representative histograms. 
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Figure 15. Flow cytometry analysis of AhR expression levels in RAW 264.7 macrophages 

treated with SOCS3. A, B, C, and D histograms show the percentage of cells positive for AhR 

expression in macrophages treated with SOCS3 after 24 hours. Red: negative isotype control; 

black: anti-mouse AhR primary antibody, conjugated with PE. Three independent experiments 

were performed with four representative histograms. 
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Figure 16. Flow cytometry analysis of AhR expression levels in un-treated RAW 264.7 control 

macrophages. A, B, C, and D histograms show the percentage of cells positive for AhR 

expression in control macrophages after 24 hours with HSV-1 infection. Red: negative isotype 

control; black: anti-mouse AhR primary antibody, conjugated with PE. Three independent 

experiments were performed with four representative histograms. 
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Figure 17. Flow cytometry analysis of AhR expression levels in RAW 264.7 macrophages 

treated with LPS. A, B, C, and D histograms show the percentage of cells positive for AhR 

expression in macrophages treated with LPS after 24 hours with HSV-1 infection. Red: negative 

isotype control; black: anti-mouse AhR primary antibody, conjugated with PE. Three 

independent experiments were performed with four representative histograms. 
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Figure 18. Flow cytometry analysis of AhR expression levels in RAW 264.7 macrophages 

treated with SOCS1. A, B, C, and D histograms show the percentage of cells positive for AhR 

expression in macrophages treated with SOCS1 after 24 hours with HSV-1 infection. Red: 

negative isotype control; black: anti-mouse AhR primary antibody, conjugated with PE. Three 

independent experiments were performed with four representative histograms. 
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Figure 19. Flow cytometry analysis of AhR expression levels in RAW 264.7 macrophages 

treated with SOCS3. A, B, C, and D histograms show the percentage of cells positive for AhR 

expression in macrophages treated with SOCS3 after 24 hours with HSV-1 infection. Red: 

negative isotype control; black: anti-mouse AhR primary antibody, conjugated with PE. Three 

independent experiments were performed with four representative histograms. 
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