
Wright State University Wright State University 

CORE Scholar CORE Scholar 

Browse all Theses and Dissertations Theses and Dissertations 

2016 

Optical Redox Imaging of Metabolic Activity Optical Redox Imaging of Metabolic Activity 

Syed Anwar Hyder Zaidi 
Wright State University 

Follow this and additional works at: https://corescholar.libraries.wright.edu/etd_all 

 Part of the Biomedical Engineering and Bioengineering Commons 

Repository Citation Repository Citation 
Zaidi, Syed Anwar Hyder, "Optical Redox Imaging of Metabolic Activity" (2016). Browse all Theses and 
Dissertations. 1699. 
https://corescholar.libraries.wright.edu/etd_all/1699 

This Thesis is brought to you for free and open access by the Theses and Dissertations at CORE Scholar. It has 
been accepted for inclusion in Browse all Theses and Dissertations by an authorized administrator of CORE 
Scholar. For more information, please contact library-corescholar@wright.edu. 

https://corescholar.libraries.wright.edu/
https://corescholar.libraries.wright.edu/etd_all
https://corescholar.libraries.wright.edu/etd_comm
https://corescholar.libraries.wright.edu/etd_all?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F1699&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/229?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F1699&utm_medium=PDF&utm_campaign=PDFCoverPages
https://corescholar.libraries.wright.edu/etd_all/1699?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F1699&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library-corescholar@wright.edu


 

OPTICAL REDOX IMAGING OF METABOLIC 

ACTIVITY 

 

A thesis submitted in partial fulfillment 

of the requirements for the Degree Of 

Master of Science in Biomedical Engineering 

 

 

by 

 

 

 

 

SYED ANWAR HYDER ZAIDI 

B.E. E.C.E, Osmania University, 2014 

 

 

 

 

 

 

2016 

Wright State University



Wright State University 

GRADUATE SCHOOL 

October 10th, 2016 

I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY 

SUPERVISION BY Syed Anwar Hyder Zaidi ENTITLED Optical Redox Imaging of 

Metabolic Activity BE ACCEPTED IN PARTIAL FULFILLMENTOF THE 

REQUIREMENTS FOR THE DEGREE OF Master of Science in Biomedical Engineering. 

 

_____________________ 

Ulas Sunar, Ph.D. 

Thesis Director 

_____________________ 

Jaime E. Ramirez-Vick, Ph.D. 

Chair, Department of Biomedical, Industrial and Human Factors Engineering 

 

Committee on 

Final Examination 

______________________________ 

Jaime Ramirez-Vick, PhD 

______________________________ 

Debra Mayes, Ph.D. 

______________________________ 

Ulas Sunar, Ph.D. 

______________________________ 

Robert E.W. Fyffe , Ph.D. 

Vice President for Research  

 Dean of the Graduate School



iii 
 

ABSTRACT 

 

Zaidi, Syed Anwar Hyder. M.S.B.M.E, Department of Biomedical, Industrial and Human 

Factors Engineering, Wright State University, 2016. Optical Redox Imaging of Metabolic 

Activity  

 

 

 

Fluorescence imaging can be used to determine tissue metabolism, which is an indication 

of the cellular functionality. Metabolic contrast is useful for the early detection of several 

medical conditions such as cancer, diabetes, lung diseases etc. 

This study aims to use fluorescence imaging to quantify NADH and FAD, which are 

cellular metabolic indicators. A parameter known as Redox ratio, can be used to study 

metabolic state of several tissue types and disease states.  

To quantify the Redox ratio, three fluorescence imaging systems were optimized to 

measure the fluorescence signal from NADH and FAD. The first system was a camera 

based model suitable for laboratory and clinical settings. The second and third were 

compact versions of the same instrument. The systems were characterized and brain cancer 

cells were measured using the camera based system and the compact model, which resulted 

in a similar Redox ratio. 
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Introduction and Background 
 

1.1 Introduction 

Mitochondria play a very essential role in a cellular metabolism. Dysfunction in 

mitochondria may lead to several diseases as shown in the Figure 1.1 [1-2]. Pioneer works 

of Warburg showed the involvement of mitochondria in a tumor cell [3]. Since then, a 

number of studies were performed to investigate the presence of mitochondrial 

dysfunction[1] in many conditions such as aging[4,5], neurodegenerative diseases like 

Parkinson’s and Alzheimer’s [6-8], tissue damage post stroke[9] , spinal cord injury[10], 

cardiovascular diseases[11], liver and kidney[12,13], diabetes and obesity[14-16], 

cancer[17-25]  and many other medical conditions.  

 

Figure 1.1: Mitochondrial dysfunction 

Adapted for Mayevsky et al, 2009 [2] 

http://www.sciencedirect.com/science/article/pii/S1567724909000117#bib93
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Pioneer works of Chance et al showed a relation between function of mitochondria in 

health and disease by quantifying NADH redox state in mitochondria [26-28]. Since then 

several studies were performed in various pathophysiological conditions to study 

metabolic changes in experiments, animals and patients [29-30]. 

 

1.1.1 Cancer  

Cancer can be one the of the consequences of mitochondrial dysfunction. Cancer is defined 

as an abnormal growth or uncontrolled division of cells [31]. There are several types of 

cancer which including breast, oral, brain, prostate and many more. Figure 1.2 shows the 

cancer cases and mortality rate in both developed and underdeveloped countries.  

 

 

Figure 1.2: Cancer statistics [32] 
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1.1.1.1 Brain Cancer 

Brain tumors can be benign or malignant and only the latter is termed as brain cancer. 

Cancerous cells compete with the healthy cells and take up their space, blood and nutrients 

to grow and spread [33]. The exact cause of brain cancer is not clearly [33]. Not all brain 

tumors show symptoms and some are detected only when a CT or MRI scan is done [33]. 

Common symptoms include headache, weakness, nausea, changes in intellectual capacity 

or emotional response gradually, difficulty in walking and in speech, but some of these are 

not limited to brain tumors alone and can be missed easily [33]. CT and MRI are generally 

performed for the diagnosis. 

If a tumor is suspected, then a biopsy will be performed followed by pathophysiological 

examination to detect the presence of cancer. Biopsy of the brain is usually one piece which 

is enough for diagnosis, however removing aby brain tissue for a biopsy can cause further 

brain damage and might also cause infection.  

 

Figure 1.3: Brain cancer statistics [34] 
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Generally, treatment of neuronal tumors involves surgery for the removal of the tumor 

followed by radiation or chemotherapy to remove any remaining cancerous cells [33].  

 

1.1.2 Motivation 

As per the 2012 census there were about 14.1 million cancer cases around the world [35]. 

Around 256,213 cases of brain tumors [36] have been reported worldwide in 2012. As per 

2016 census, 1,685,210 new cancer cases and 595,690 cancer deaths have occurred in The 

United States, making it the major cause of death in 21 states [37]. Approximately 78,000 

brain cancer diagnoses have been reported in the U.S.  Hence there is an urgent need to 

develop a device which can accurately identify the presence of cancer noninvasively in its 

early stages to avoid mortality.  

Presence of cancer alters metabolism of the cell which is associated with cell growth and 

proliferation [38-39]. Usually cancer cells have increased metabolism which is used as a 

tool for investigating or detecting cancer in the body [40]. A wide range of clinical 

instruments have already been developed which can accurately identify the presence of 

cancer but are expensive and require the patient to visit the hospital for diagnoses. Thus, 

an instrument should be developed which is portable (Wearable), low cost and user friendly 

which could potentially make cancer diagnoses easy and detectable in its early stages. The 

aim of this study is to develop a portable, inexpensive and wireless device capable of 

measuring the fluorescence emitted by fluorophores such as Nicotinamide Adenine 

Dinucleotide (NADH) [41] and Flavin Adenine Dinucleotide (FAD) [42] which are 

involved in cellular metabolic pathways.  
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1.2 Background of Redox Ratio 

1.2.1 Mitochondria  

Mitochondria are found in all Eukaryotic cells where they play a large role in cellular 

metabolism and energy generation. Structure of mitochondria is shown in Figure 1.4. 

Overall, mitochondria have several important functions, the most important functions 

being oxidation of food materials and cellular respiration [43]. Cellular respiration is the 

process where the breakdown of complex food molecules through oxidation within the cell 

leads to the release of considerable amounts of energy [44]. Complex molecule compounds 

known as respiratory substrates are oxidized during this process. Carbohydrates are the 

preferred substrates, but proteins and fats can be used as well [45]. 

 

 

Figure 1.4: Mitochondria structure [46] 

When respiratory substrates are broken down in the presence of oxygen it is called aerobic 

respiration. All the energy is not released free into the cell in a single step. It is released in 
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a series of reactions which are controlled by enzymes [47]. The chemical energy thus 

obtained is held in the form of Adenosine triphosphate (ATP) [48], which can then be 

utilized as a source of energy for the cell [49-50]. Energy released by oxidation in 

respiration is used to synthesize ATP and not used directly. The amount of energy that is 

produced depends on the quantity of oxygen present inside the cell [51]. This energy is 

produced through a process called the electron transport chain. Redox reactions such as 

respiration extracting energy through this process. 

Energy trapped in ATP is utilized in various processes for the organism and the carbon 

components produced during respiration is used for bio synthesis of various other 

molecules in the cells [52]. ATP synthase is an important enzyme providing energy for the 

cell through the synthesis of ATP. ATP is formed from a reversible reaction of Adenosine 

diphosphate (ADP) and Inorganic Phosphate (PI) popularly known as ATP-ADP cycle. 

 

ADP + PI +free ATP 

 

Thus, Mitochondria are also often referred to as miniature biochemical factories wherein 

respiratory substrates and other food stuff are completely broken down and oxidized to 

carbon dioxide and water. Energy generated during this process is stored as reduced 

coenzymes and prosthetic groups which later undergo oxidation and form ATP which is 

rich in energy. ATP generated out of mitochondria is used in many energy requiring 

processes [53].  
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1.2.2 Electron Transport Chain 

As mentioned in the previous section, energy is produced in the cell through a process 

called the electron transport chain, which is responsible for the generation of energy within 

the cells.  

 The electron transport chain is a chemical series of electron donation and electron 

acceptance. A continuous transportation of electrons form an electron donor to a more 

electronegative acceptor takes place. This process continues to the most electronegative 

acceptor at the end of the chain [54]. Finally, the energy is released by the conversion of 

ATP from ADP as mentioned in the previous section 1.2.1. The entire process is 

called oxidative phosphorylation. 

There are two proteins in the mitochondrial inner membrane, NADH and FAD, which get 

oxidized by complex chemical reactions resulting in the release of a proton across the 

membrane. A Figure of electron transport chain is shown in Figure 1.5.   

 

Figure 1.5: Electron transport chain [54-55] 

https://en.wikipedia.org/wiki/Oxidative_phosphorylation
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1.2.3 Mitochondrial Oxidative Stress 

In the process of electron transport chain, a small number of electrons do not participate in 

this process and directly leak to oxygen [54]. This leads to the formation of free radical 

which cause a phenomenon known as oxidative stress. 

 Oxidative stress is defined as the excess or deficiency of oxygen in the cell, caused by the 

imbalance of reactive oxygen produced in the cell and the system’s inability to repair the 

resulting damage caused by it [54,56]. Disturbance in the normal redox reaction in the cell 

produces peroxides and free radicals which can have toxic effects [57], which can have a 

damaging effect on the cell [54]. Therefore, for the proper functionality of the cell, quantity 

of oxygen present in the cell and its surroundings play a very vital role [58-60]. 

 

 

Figure 1.6: Mitochondrial dysfunction and death of the cell [63] 
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Oxidative stress is responsible for causing several diseases and aging in a cell [61-63]. The 

amount of energy produced in the cell is a function of the quantity of oxygen present in the 

cell. Oxidative stress, the imbalance of oxygen present in the cell, can cause various 

malfunctioning in the cell and can also lead to cell death [54]. The Figure 1.6 shows the 

mitochondrial dysfunction and ultimately the death of the cell [63]. 

  Oxidative stress is seen in a number of neurological diseases such as Amyotrophic Lateral 

Sclerosis [64], Parkinson's disease [65], Alzheimer's disease [66], Huntington's disease 

[67], and Multiple sclerosis[68-69].  

Several diseases are caused by poor functioning of the cell due to the improper balance of 

oxygen in the mitochondria which accelerates cell death [70]. Thus, determining the 

amount of oxygen present inside the cell can prove a very useful tool for feedback of the 

health of the cell. This is very important in situations relating to mitochondrial dysfunction 

and oxidative stress [54]. In such situations, oxidation state (redox state) can be used to 

determine the health of the tissue. 

1.3 Optical Imaging 

In this section, optical imaging, especially fluorescence imaging is explained.  

1.3.1 Optical Imaging 

Imaging performed using light as tool is termed as optical imaging. This imaging technique 

has emerged in the past decades as a strong tool for determining the anatomy [71], 

physiology [72], metabolic [73], and molecular function [74] of the tissue under 

https://en.wikipedia.org/wiki/Parkinson%27s_disease
https://en.wikipedia.org/wiki/Alzheimer%27s_disease
https://en.wikipedia.org/wiki/Huntington%27s_disease
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investigation [54]. In this research, measurement of redox ratio can be done without using 

harmful radiation on the subject [54]. Moreover, optical imaging techniques have the 

advantage of being non-invasive, inexpensive and being very sensitive for detection 

purposes [75]. The one disadvantage of optical imaging is that penetration depth limiting 

access to tissue anatomy is less when compared to other imaging modalities like MRI, CT 

etc. [76].   

Optical imaging can use a wide spectral range covering ultraviolet light to infrared light. 

For this research, we use ultra violet (UV) light as the excitation wavelength for both 

NADH and FAD. When the photons from the optical sources interact with the tissue, they 

either are absorbed or scattered. 

1.3.2 Light Transport in Tissue  

A common model for tissue imaging is the semi-infinite geometry, as shown in Figure 1.7. 

In semi-infinite geometry, there is a single interface, typically with air above and tissue 

below. When the light is incident on the surface, multiple processes can occur. Some 

percentage will undergo specular reflection and never enter the tissue. For photons that 

enters the tissue, they will either be scattered in random directions and or absorbed 

depending upon the wavelength used and the property of the tissue. Thus, there are two 

main optical parameters that define the light transport in tissue: absorption and scattering 

parameters. I will be introducing briefly these parameters in the next sections. 
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Figure 1.7: Interaction of light with the tissue  

1.3.2.1 Light Absorption  

The relation between absorption of light in a non-scattering, absorbing medium was first 

given by Bourger in 1729 and then by Lambert in 1760 [77]. Per this study when light with 

an intensity 𝐈𝐎 passes through a cuvette having a thickness d then the light obtained at the 

other end will have a lower intensity comparatively [77].  

 

Figure 1.8: Absorption of light in a non-scattering medium [77] 
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The absorption of light in tissue is due to various chromophores present in the body such 

as water, oxy-hemoglobin (HBO2), deoxy-hemoglobin (HHB), lipids, porphyrins, 

melanin, NADH and Flavin’s, collagen, elastin, and lipo-pigments depending on the 

wavelength range we are investigating [54]. In the Near Infrared (NIR) wavelength region, 

the main absorption occurs due to oxy-hemoglobin (HbO2), and deoxy-hemoglobin (Hb) 

chromophores. Thus, for tissue oxygenation studies, this wavelength range is commonly 

used. 

The Figure 1.9 shows the absorption spectrum of HHB and HBO2 

 

Figure 1.9: Absorption Spectra of a oxy and deoxy hemoglobin[78] 

1.3.2.2 Light Scattering  

Light Scatter in a tissue because the cells and cellular organelles that make up a tissue have 

a mismatched refractive index. [79]. When the refractive index changes between various 
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organelles within the cells, which account for a large portion of solid content of the tissue, 

scattering occurs [77]. In the visible and near-infrared wavelengths, scattering is the major 

mechanism in the propagation of light through the tissue. Even in thin tissue, photons are 

likely to scatter multiple times before reaching the boundary [77]. Scattering causes the 

photons to travel a greater distance within a tissue thereby increasing the probability of the 

photon getting absorbed which is shown in the Figure 1.10 [77] 

 

Figure 1.10: Scattering of light [77] 

Scattering is affected by several factors namely age, tissue oxygenation, and wavelength 

of light [80]. For instance, in brain scattering increases with age, from birth to adulthood. 

This occurs because as people age there is a two-fold increase in lipid and protein content. 

In addition, the lipid in white matter, is increased by seven folds [81].  

In biological tissue, light scatters multiple times and is characterized by a term known as 

the reduced scattering coefficient (µ𝐬′). Reduced scattering coefficient is the reciprocal of 

the total distance travelled by the photon before it gets completely randomized.  

Due to variation in the size of cancer cells, there is a difference in the reduced scattering 

coefficient between normal and cancerous cells [82].  
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1.3.2.3 Penetration Depth 

In fluorescence spectroscopy, the light source and detector are generally placed on the 

surface of the tissue, therefore primarily superficial information is collected. The 

penetration depth is low because of two factors. First, fluorescence is a weak signal. This 

means the source and detector are typically placed very close to each other to detect the 

signal. Light that reaches the detector travels a “banana curve”, and as Figure 1.11 shows, 

the separation between the source and detector influences the penetration depth. The depth 

can be increased by increasing the source-detector separation but that would limit the signal 

detected. Thus, there is a tradeoff between intensity of collected light and penetration 

depth. 

 

Figure 1.11: Penetration depth in smaller source detector separation (S-D small) and large 

source detector separation (S-D large) 
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 The second factor affecting the penetration depth of light in tissue is the choice of 

wavelength. As discussed in previous sections, shorter wavelength light tends to undergo 

more absorption and scattering events, limiting the penetration depth. For fluorescence 

spectroscopy, a shorter wavelength is used in most studies which further reduces the 

penetration depth [83-85].  The relationship between penetration depth and wavelength is 

shown in the Figure 1.12 [86] 

 

Figure 1.12: Penetration depth as a function of wavelength [86] 

1.3.3 Fluorescence Imaging 

In this section the principles of fluorescence imaging will be discussed. 

1.3.3.1 Mechanism of Fluorescence Imaging 

Fluorescence is defined as the process wherein a fluorophore absorbs an excitation photon 

and then emits a lower energy photon. [87]. The process of fluorescence is divided into 

two stages namely the Excitation state and the Fluorescence emission state. 
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Excitation: In this process a photon of energy called excitation energy is supplied to the 

fluorophore by means of a light source (lamp, laser, light emitting diode, etc.), promoting 

the molecule to jump to higher energy state as shown in Figure 1.13. Each fluorophore has 

specific excitation and emission wavelengths where more absorption and emission occurs.  

The process of fluorescence can be depicted by the Figure below

 

Figure 1.13: Stages of fluorescence [54,88] 

An important parameter of every fluorophore is the fluorescence quantum yield. This 

parameter is defined as the ratio of excitation photons to emission photons.  

Fluorescence emission: The fluorophore returns to the ground stage by emitting a photon 

of energy called emission energy. Photon energy is inversely related to the wavelength, or 

directly related to the frequency of the light. Due to the dissipation of energy that occurred 
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in the excited state, the emitted energy will be lower than the absorbed energy and the 

wavelength of the fluorescence photon will be longer. The separation between excitation 

and emission wavelength is known as Stokes shift, which is shown in Figure 1.14. 

 

Figure 1.14: Stokes shift [54,89] 

In vivo fluorescence gets affected by factors such as (i) movement artifacts (ii) Blood 

oxygenation changes (iii) Variation in tissue absorption properties (iv) Tissue blood 

volume variation  [90]. Work has been done to nullify their effect for more accurate 

measurement. For instance, movement artifacts can be corrected by making proper contact, 

effects of absorption can be nullified by the subtraction technique [91-92], correction in 

blood volume can be done by taking measurements on thin slices of the imaging tissue [93] 

or by using the reflected light [94].  

Early works of Chace et al and others showed that it was possible to link intrinsic 

mitochondrial fluorophores to metabolism [95-105]. Fluorescence imaging, can be used to 
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determine the metabolism of cells which can be used as tool to determine tissue 

functionality. 

 

1.3.3.2 Intrinsic Mitochondrial Fluorophores  

Only a few fluorophores involved in cellular metabolic process are auto-fluorescent and 

these can be used to study the metabolism of the tissue [54]. These fluorophores include 

tryptophan, collagen, NADH, Flavin’s, and porphyrins [54]. As discussed earlier, NADH 

and FAD are essential in mitochondrial metabolic activity and play a very important part 

of the electron transport chain. Therefore, NADH and FAD fluorescence can be used to 

study the oxidation state (redox state) of the mitochondria [106].    

NADH is fluorescent in its reduced state and gives no fluorescence in oxidized form 

whereas FAD is fluorescent in its oxidized form. We use a parameter known as redox ratio 

to measure the metabolic state of the tissue and mitochondrial redox. The fluorescent 

signals emitted from these fluorophores can be used as indicators of tissue vitality and 

metabolism [107-109].  

NADH has its peak excitation at 340nm (ultraviolet) and peak emission at 460nm (blue). 

FAD on the other hand has two excitation wavelengths. One is at 340nm (ultraviolet) and 

the other is at 448nm (blue) while the peak emission of FAD is at 520nm (green) as shown 

in Figure 1.15. 
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Figure 1.15: Excitation and emission wavelengths of NADH and FAD [110-111] 

The NADH redox ratio is defined as the ratio of concentration of NADH to the summation 

of concentration of FAD and NADH. 

NADH REDOX RATIO (R.R) = 
𝐂𝐎𝐍𝐂𝐄𝐍𝐓𝐀𝐑𝐓𝐈𝐎𝐍 𝐎𝐅 𝐍𝐀𝐃𝐇

𝐂𝐎𝐍𝐂𝐄𝐍𝐓𝐑𝐀𝐓𝐈𝐎𝐍 𝐎𝐅 𝐅𝐀𝐃+𝐂𝐎𝐍𝐂𝐄𝐍𝐓𝐑𝐀𝐓𝐈𝐎𝐍 𝐎𝐅 𝐍𝐀𝐃𝐇
          (1.1) 

Whereas, FAD redox ratio is defined as the ratio of concentration of FAD to the summation 

of concentration of FAD and NADH. 

FAD REDOX RATIO (R.R) =  
𝐂𝐎𝐍𝐂𝐄𝐍𝐓𝐀𝐑𝐓𝐈𝐎𝐍 𝐎𝐅 𝐅𝐀𝐃

𝐂𝐎𝐍𝐂𝐄𝐍𝐓𝐑𝐀𝐓𝐈𝐎𝐍 𝐎𝐅 𝐅𝐀𝐃+𝐂𝐎𝐍𝐂𝐄𝐍𝐓𝐑𝐀𝐓𝐈𝐎𝐍 𝐎𝐅 𝐍𝐀𝐃𝐇
             (1.2) 

Because of important role played by these intrinsic mitochondrial fluorophores, 

fluorescence imaging techniques has widely been used in biomedical research to study the 

path-physical state of tissues [112-113], diagnose and/or monitor various diseases in heart 

[114-115], kidney [116-117], liver [118], lung [107], skeletal muscles [119], cervix [120] 

and brain [121].  
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1.3.3.3 Applications of Fluorescence Imaging 

As mentioned in the previous section, fluorescence imaging can be used for several 

applications. A few of them are discussed in this section.  

1.3.3.3.1 Brain Application 

Mayevsky and Chance et al detected the fluorescence emission from the brain in various 

conditions such as Anoxia, Ischemia etc. [29,122-124].  Their study concluded that Redox 

ratio is the best way to evaluate mitochondrial function and tissue oxygen balance. 

Fluorescence is used to study the changes occurring during brain stimulation. The study 

was done by observing the NADH changes occurring due to cortical and ischemic change 

during myocardial infarction [125]. Changes occurring in NADH signal can be used to 

determine the metabolic changes [126]. Redox ratio can also be used to differentiate 

between normal and cancer tissues in the brain and the study concluded that normal brain 

tissue had higher FAD redox (FAD/FAD+NADH) compared to a cancer tissue [127]. The 

reason for this being FAD gives fluorescence in oxidized form and NADH in reduced form.   

1.3.3.3.2 Other Applications 

Fluorescence from NADH and FAD can be used to differentiate between normal oral 

keratinocytes and squamous carcinoma cells form various origin [128]. Detection of FAD 

fluorescence can be used diagnose the presence of malignant oral mucosa since the cancer 

region would have no FAD fluorescence emission [129]. 
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FAD redox is another parameter which can be used to detect oral malignancy [130]. It was 

seen that normal cells and post treated cancer had more redox ratio in comparison to the 

cancer cells. NADH and FAD can be used to detect cancer in neck and head area. Pauli et 

also conclude that out of all endogenous fluorophores only NADH and FAD could 

effectively differentiate between normal and cancer cells [131].   

FAD Redox ratio can be used to differentiate normal tissue from cancer tissue in breast 

biopsy’s [132]. FAD redox can also be used to differentiate between (aggressive) and less 

metastatic (indolent) tissues in the breast [133]. Tryptophan to NADH ratio was also used 

to discriminate normal, aggressive and non-aggressive cancer tissues in the breast. The 

study concluded that the ratio was maximum for aggressive followed by less aggressive 

cancer tissue and was least for normal tissue [134]. 

NADH redox (NADH/FAD) can be used to study changes in a rat’s perfused lung [135]. 

The ratio can be used to evaluate the pulmonary ischemia-reperfusion on lung tissue [136]. 

NADH redox can also be used to evaluate the condition of respiratory chain in a rat’s lungs 

due to ischemia, hypoxia and Ischemia-reperfusion [107]. 

Fluorescence emitted by NADH and FAD can be used to differentiate normal, benign and 

cancer tissue in prostate [137]. NADH fluorescence can used to determine the presence of 

cancer in prostate tissue. It was seen that cancer tissue had more NADH fluorescence in 

comparison to normal tissue [138]. By recording the emission at various excitation 

wavelengths of NADH, an excitation- emission matrix can be constructed which can be 

used to detect the presence of cancer in prostate tissue. 
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Fluorescence emitted by NADH and FAD to investigate the presence of retinal pigmentosa 

in mice [139]. Fluorescence of the two fluorophores can be used to determine the effects 

of oxidative on mitochondrial redox in salt sensitive hypertension [140]. NADH 

fluorescence can be used to differentiate between normal and cancerous bronchial tissue 

[141]. NADH and FAD fluorescence can be used to study the photo aging process [142]. 

Metabolic state of the tissue based on auto fluorescence can be used to discriminate 

between normal and cancer cells of the bladder [143]. 

1.4 Discussion 

In the next chapter (Chapter 2) instrumentation and results of standard bench top camera 

based systems will be explained in detail which is more suitable for Laboratory and Clinical 

environment. There is also a need for combat and wireless device  

In chapter 3 and chapter 4, instrumentation and results of compact systems will be 

explained in detail. 
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Instrumentation and Results of Camera 

Based Model 

2.1 Introduction 

The first design was made looking at relevant literature, suitable for clinical and Lab 

environment. This model provides high resolution images.  

 

2.2 Instrumentation ` 

This section deals with sources and the detectors which are generally used for the design 

of a fluorescence measurement device. All the source and detectors, along with their pros 

and cons would be discussed in this section 

2.2.1 Light Sources 

The two common light sources which are used in optical instrumentation is a Laser diode 

or a Light Emitting Diode (LED).  
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2.2.1.1 Light Emitting Diode  

Light emitting diode knows as LED’s are inexpensive, efficient and rugged [144]. They 

are also available in number of wavelength ranges.  Their only disadvantage is that they 

have a wide spectral bandwidth (~20nm to ~60nm FWHM) and this can cause problems in 

sensitive optical measurements where precise wavelength is required. In the case of 

fluorescence measurements, a light source need not have high precision in wavelength 

fluorophore has an excitation spectrum which is a wide and thus precision is not important. 

Thus, LED’s are the ideal light sources for Fluorescence measurements. 

2.2.1.2 Laser Diodes  

Laser diodes are of two types namely single mode(SM) and multimode(MM) laser diode. 

A SM has a smaller core radius than a MM laser. SM laser supports larger bandwidth than 

a SM laser. A SM laser has lower signal losses compared to a MM laser.  A SM laser are 

more coherent than a MM laser. Both SM and MM laser are expensive and are chosen 

depending upon type of application.  

2.2.2 Detector Sources 

The common light sources used in optical instrumentation are the PIN diodes, Avalanche 

Photo Diode(APD), Photo Multiplier Tube(PMT), Spectrometer and Multispectral camera. 

2.2.2.1 Pin Diodes 

PIN diodes are very inexpensive and have a good quantum efficiency and dynamic range 

[144].  Most of the PIN diodes have peak sensitivity in the 600nm -800nm range. They do 

not have very high sensitive as they do not have an internal amplifier but this can be 
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designed. They are usually used in application where sensitivity is not very important and 

for shorter source and detector separation [144].   

2.2.2.2 APD 

Avalanche photo diodes are comparatively more sensitive than PIN diodes but they tend to 

have a smaller dynamic range [144]. They have an in-build amplifier which tend to increase 

their sensitivity. These are expensive than PIN diodes and they require a high voltage 

supply for their operation. They are used in applications where the source-detector 

separation distance is large.  

2.2.2.3 PMT 

Photo multiplier tube and APD have about the same sensitivity and dynamic range. PMT’s 

can provide a farther more gain compared to a APD. The operating voltage is even higher 

for a PMT when compared to a APD. The disadvantage of PMT is that it that they are 

highly sensitive to supply voltage fluctuations, their gain depends on spectra and their 

linearity is poor [144]. 

2.2.2.4 Spectrometer 

A spectrometer is a device which collects the light, separates the light based on their 

wavelength and displays the intensity values at specific wavelengths. A spectrometer can 

have a desired spectral response as this depends on the groove density which can be altered. 

The optical resolution (wavelength) can also be varied by varying the opening slit of a 

spectrometer. A spectrometer is very sensitive device but is expensive compared to PMT 
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and APD. As a spectrometer gives a complete spectrum of a wide range of wavelengths, 

thus it is a commonly used in fluorescence applications. 

2.2.2.5 Multispectral Camera 

A multispectral camera is like a spectrometer as it captures the imaging surface and 

provides the intensity at a specific wavelength within an image. It is equal or has a greater 

sensitivity than a spectrometer. A multispectral camera is the most expensive detecting 

module. Most of multispectral cameras are equipped with a filter mechanism which can be 

used and only a desired range of wavelength can be measured which eliminated the use of 

additional optical filters. The main advantage of using a camera is that it can take the image 

from a greater separation distance and provide accurate results. Another advantage of the 

camera is that it provides a complete image of imaging surface unlike point measurements 

in other detecting modules. 

 

2.3 Camera Based Module 

In this section the Light source unit and the light detector unit of the camera based model 

will be explained in detail. 

2.3.1 Light Source Unit (LSU) 

2.3.1.1 LED 

The light source chosen for the camera based model was a high-power LED from Mightex. 

The wavelength chosen was 365nm as this was capable of exciting both NADH and FAD. 
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The product number of this LED is LCS-0365-02-22. The specification of the LED is given 

in the Table 2.1.  

 

 

 

 

Table 2.1: Specifications of LED (Camera model) 

2.3.1.2 LED Driver 

The LED driver used to run the LED was SLC series LED driver from Mightex. The part 

number of this driver is SLC-SA04-US. The LED driver is connected to P.C by means of 

USB or a RS 232 interface. The LED’s cathode and anode are connected to the driver as 

marked and the desired supply current is varied by means of a software. By varying the 

supply current, optical power of the LED could be varied.  The specifications of the LED 

driver are given in the Table 2.2.  

Table 2.2: Specifications of LED Driver (Camera model) 

PARAMETER VALUE 

SUPPLY VOLTAGE 9-12V 

SUPPLY CURRENT <4000mA 

DRIVING VOLTAGE (max) Supply voltage-0.5V 

CURRENT RESOLUTION 12 bit 

 

PARAMETER VALUE 

WAVELENGTH 365nm 

OPERATING CURRENT 500mA 

OPERATING VOLTAGE 3.8V 

OUTPUT POWER 80mW 
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2.3.2 LED Testing 

The most important testing for a source used for optical applications is its power or stability 

testing. It is very important for the source to be stable as variation in its power can lead to 

false diagnoses. For instance, at a certain optical power a certain amount of fluorescence 

intensity is expected. Due to instable power, if the optical power of the LED falls below its 

normal value then the emitted fluorescence will also be low leading to false readings. Thus, 

it is very important that the source be highly stable. In this experiment the current was set 

to give a power of around 55mW. 

        

 

Figure 2.1: Power stability of the LED (Camera based) 

The mean and standard deviation from the LED stability test is shown in the Table 2.3. 
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Table 2.3: Specifications of LED Driver (Camera model) 

 

 

 

2.3.2 Light Detector Unit (LDU) 

The detector used to detect fluorescence in the camera based module was a Nuance 

Multispectral Camera from Perkin Elmer. The camera has a USB interface with the P.C 

and the images are taken using a Multispectral Imaging software. The camera can capture 

images in both RGB mode and fluorescence mode depending upon the type of application.   

The resolution of the camera is 14 bit and various binning and acquisition times can be 

used to capture the image. The filter cube in the camera acts like a filter and can be set to 

pass a desired range of wavelengths. The specifications of camera are given in Table 2.4. 

Table 2.4: Specifications of the Multispectral Camera 

 

 

 

 

 

 

PARAMETER VALUE 

MEAN 55mW 

STANDARD DIVIATION 220nW 

PARAMETER VALUE 

SUPPLY VOLTAGE 5V DC 

WAVELENGTH RANGE 400nm- 700nm 

CAMERA RESOLUTION 14 bit (4096 intensity levels) 

OPTICAL RESOLUTION 10nm 

ACQUISTION TIME 10ms – 7s 

BINNING 1x1, 2x2, 4x4 

FILTER CUBE RANGE 10nm-full range 
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2.3.2.1 Detector Testing 

Testing the detector is essential to see if the device is calibrated and is working accurately. 

As a device becomes old calibration is required so that the detection is precise. The 

Multispectral Camera used in the design was tested by means of a detector card from 

Thorlabs Inc (Part no:  VRC2). The purpose of using this detector card was because of its 

absorption and emission property. This was like fluorescence excitation and emission and 

was the best way to test the device. The absorption and emission of the detector card from 

Thorlabs is shown in the Figure 2.2.  

 

 

Figure 2.2: The absorption and emission of the detector card (Thorlabs.com) 

https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=296&pn=VRC2#3218 

 

The absorption wavelength used for detector testing was a 532nm Laser pointer from E-

Bay. The distance between the detector card and camera was around 22 cm. A camera Lens 

was used to focus the camera on the detector card.   

https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=296&pn=VRC2#3218
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Figure 2.3: Excitation light from the laser pointer and its spectrum (Filter: 480-580nm) 

Figure 2.4: Emission light from the Detector card and its spectrum (Filter: 580-720nm) 

The result (Figures 2.3 and Figure 2.4) obtained using the camera was very like the 

specification sheet from Thorlabs Inc which show that the camera was calibrated and 

accurate. 

 

2.3.3 Experimental Setup 

The setup used for fluorescence detection was simple and straight forward. The light from 

the LED was collimated onto the imaging surface at a small angle so that it does not 
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obstruct the camera’s imaging path. The distance between the LED and the imaging surface 

was about 10cm.  The emitted fluorescence was detected by the camera placed at 27cm 

from the imaging surface. The camera was equipped with a tunable filter cube which could 

pass desired range of wavelengths and stop unwanted wavelengths. A camera Lens was 

also attached in front of the camera to focus the camera onto the imaging surface. The 

complete setup of the camera based model used for all the experiments is shown in the 

Figure 2.5. 

 

Figure 2.5: Block Diagram of Camera Based Model Setup 

A screen shot of Multispectral Imaging software used to capture images in all these 

experiments is shown in the Figure 2.6 
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Figure 2.6: Multispectral Imaging software 

2.4 Phantom Experiment 

In this section the phantom experiment conducted using the camera based model will be 

explained in detail. 

2.4.1 Experimental Procedure 

The phantom experiment was done to test the linearity of NADH and FAD using the 

camera based model with increasing concentration. Four concentrations of NADH and 

FAD were made and placed in a 96 well palette, the LED at 365nm was illuminated on the 

four wells having different concentrations to excite NADH and FAD. Initially the 

reflectance at 365nm was taken to eliminate the effects of improper illumination and then 

the emission spectra was captured. The fluorescence was corrected for reflectance, image 

processing was performed and finally a linearity curve was plotted. The setup used to 

perform all the experiments in shown in the Figure 2.7 
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Figure 2.7: Setup 

2.4.2 Phantom Preparation 

Phantoms were prepared using the powdered form of NADH and FAD from Sigma Aldrich 

Inc. The part number for NADH is N8129 and the part number of FAD is F6625. Four 

concentrations of NADH solution at 0uM, 70uM, 140uM, 280Um and FAD at 0uM, 40uM, 

80uM, 160Um   were prepared and placed in placed in a 96 well palette and imaging was 

done. Solution and molecular weights of components used is shown in Table 2.5 

The solution of desired Molarity was prepared per the formula shown below 

 

                                  MOLARITY = 
MOLES OF SOLUTE

LITERS OF SOLUTION
                                               (2.1) 

                                 MOLES OF SOLUTE = 
WEIGHT

MOLECULAR WEIGHTT 
                              (2.2) 
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Table 2.5: Solution used and Molecular weights 

 

 

 

 

A stock solution of NADH and FAD in 2.5ml Tris 0.1M HCL solution was prepared and 

then further diluted to give the required concentrations. The part no of Tris 0.1M HCL is 

T2319 Sigma Aldrich Inc.  NADH of 4.2mM in 2.5 ml of Tris H.C.L was prepared and 

then further diluted to get lower concentrations. Diluting 5 µL in 295 µL intra-lipid solution 

(Intra-lipid + Ink) gave a concentration of 70 µM. Similarly, diluting 10 µL, 20 µL in 290 

µL and 280 µL intra-lipid solution gave a concentration of 140 µM and 280 µM 

respectively. Similarly, FAD of 2.4mM in 2.5 ml of Tris H.C.L was prepared and then 

further diluted to get lower concentrations. Diluting 5 µL in 295 µL intra-lipid solution 

gave a concentration of 40 µM. Similarly diluting 10 µL and 20 µL in 290 µL and 280 µL 

intra-lipid solution gave a concentration of 80uM and 160 µM respectively. 

The optical properties of Intra-lipid are shown in the Table 2.6.  

Table 2.6: Optical properties of Intra-lipid 

COEFFICIENT VALUE (cm-1) 

REDUCED SCATTERING 10 

ABSORPTION 0.1 

 

PARAMETER VALUE 

SOLUTION 0.1M HCL 

MOLECULAR WEIGHT OF NADH 829.51 

MOLECULAR WEIGHT OF FAD 709.40 
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2.4.3 Experiment 

The camera based model is setup as described in the section 2.3.3 . Initially four 

concentrations of NADH were placed in 96 well palette to form a square structure so that 

the light from LED can evenly illuminate all the four concentrations. For NADH 

reflectance the images were taken in 2x2 binning (Combining adjacent pixels in an image), 

fluorescence mode with an acquisition time of five seconds. Similarly, FAD fluorescence 

images were taken in 2x2 binning with an acquisition time of two and a half seconds. The 

results are shown in Figures 2.8-2.11 

  

        Figure 2.8 : Reflectance of FAD            Figure 2.9 : Different concentrations of FAD   

  

         Figure 2.10 : NADH Reflectance    Figure 2.11 : Different concentrations of NADH 
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The spectrum of these images is shown in the Figures 2.12,2.13  

 

                     Figure 2.12 : FAD spectrum                      Figure 2.13 : NADH  spectrum 

After acquisition, images are saved in .im3 file format. The images in .in3 format can be 

opened by using the Multispectral imaging software only. The software also gives the 

provision to select and portion of an image and visualize the spectrum of the selected 

portion. This can be exported to Xcel and then MATLAB was used to perform data 

analysis. It is also possible to extract a channel from the .im3 cube and save as .TIFF or 

.JPEG image and perform image processing on it. For this experiment the channels at 

which NADH and FAD gave peak were extracted and image processing was performed. 

 

2.4.4 Image Processing 

As mentioned in the previous section the peak channels were and processing was 

performed on them. The following steps were done to perform image analysis. Initially the 

reflectance image was selected and the four different concentrations were separated. The 

same procedure was done to NADH and FAD fluorescence images. Next the reflectance 
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image was divided with its corresponding fluorescence image for correction purposes. Next 

the random pixel created by division (misalignment of the image) were removed. Results 

are shown in the Figures 2.14,2.15   

 

Figure 2.14: FAD image after image processing 

 

Figure 2.15: NADH image after image processing 

Finally, the mean of each concentration was taken and linearity curve was plotted. The 

linearity curves for NADH and FAD fluorescence is shown in the Figures 2.16,2.17  
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Figure 2.16: FAD linearity curve 

 

 

Figure 2.17: NADH linearity curve 

R² = 0.9998

0

5

10

15

20

25

0 20 40 60 80 100 120 140 160 180

F
lu

o
re

sc
en

ce
/R

ef
le

ct
a
n

ce

Concentration in µM

FAD Linearity Curve 

R² = 0.9909

0

0.5

1

1.5

2

2.5

3

3.5

0 50 100 150 200 250 300F
lu

o
re

sc
en

ce
/R

ef
le

ct
a
n

ce

Concentration in µM

NADH Linearity Curve 



40 
 

2.5 Ex-Vivo Experiments 

In this section the experiments performed ex-vivo on mice placenta and cancer cells will 

be discussed. 

2.5.1 Measurement 0f FAD in Placenta  

In this experiment, mice placentas were used to detect FAD fluorescence. The setup used 

in the experiment is like setup shown in Figure with an excitation light of 450nm.  

Experiment was performed on three placentas numbered 7-9 which is showed in the Figure 

2.18.  

 

Figure 2.18: Placenta  

2.5.1.1 Results 

The images were taken at integration time 2 seconds. As the aim of this study was to 

determine the FAD signal from the sample, peak channel for FAD emission (520nm) and 

excitation (450nm) were extracted from the image cube and image processing was 
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performed on it and average of normalized fluorescence in each sample was calculated. 

The results from the placenta is shown in the Figure 2.19,2.24. 

  

                 Figure2.19: Image cube                               Figure 2.20: Spectrum 

Figure 2.21: Raw fluorescence            Figure 2.22: Reflectance 
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Figure 2.23: Normalized fluorescence     

 

Figure 2.24: Normalized fluorescence for each placenta 
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From the resultant data, placenta number 9 had maximum fluorescence and that is since it 

has less blood comparatively to placenta 7 and 8. Presence of blood increases reduces 

fluorescence intensity. Whereas the fluorescence intensity from placenta 7 and 8 are close 

to each other. This also shows that using a single fluorescence intensity as results may be 

misleading and redox ratio is a better and accurate parameter. 

2.5.2 Brain Cancer Cells 

In this experiment cancer cells from brain were used to obtain the FAD redox ratio which 

is defined as the ratio of FAD concentration to the summation of NADH and FAD 

concentration. The setup used in the experiment is like setup shown in Figure with an 

excitation light of 365nm. Brain cancer cells is shown in the Figure 2.25 

 

 

Figure 2.25: Cancer cells 

2.5.2.1 Results 

The images were taken at integration time 2 seconds. As the aim of this study was to 

determine the FAD redox ratio, peak channel for FAD (520nm), NADH (460nm) emission 
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and excitation (410nm) were extracted from the image cube and image processing was 

performed on it and average of redox ratio from the cancer cells was calculated. The results 

from brain cells is shown in the Figure 2.26-2.30. 

  

          Figure 2.26: Image cube                          Figure 2.27: Spectrum-Cancer Cells 

 

Figure 2.28: NADH-460nm                       Figure 2.29: FAD-520nm 
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Figure 2.30: Redox Ratio-Cancer Cells 

Table 2.7: Mean and standard deviation of redox ratio – Cancer cells  

 

 

 

The obtained redox ratio is close to the literature value [132]. 

 

2.5.3 Brain Normal Cells 

Similar steps were performed for normal cells as described in section 2.52. Initially Image 

cube was captures, peak emission of NADH and FAD was extracted from the image cube, 

REDOX RATIO VALUE 

MEAN 0.6297 

STD 0.0016 
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image processing was performed on the extracted images and finally FAD redox ratio was 

calculated. The results obtained are shown in the Figure 

 

Figure 2.31: Normal cells 

 

 

            Figure 2.32: NADH-460nm                            Figure 2.33: FAD-520nm 
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Figure 2.34: Redox Ratio-Normal cells 

 

Table 2.8: Mean and standard deviation of redox ratio – Normal cells 

 

 

 

The obtained redox ratio is close to the literature value [132]. 

 

2.5.4 Comparison of Normal and Cancer Redox Ratio  

This section gives a comparison of redox ratio in cancer cells when compared to normal 

cells. Table 2.8 gives a comparison of redox ratio in both normal and cancer cells.  

REDOX RATIO VALUE 

MEAN 0.4414 

STD 0.0019 
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Figure 2.35: Mean and standard deviation of redox ratio – Both cells 

 

Table 2.8: Mean and standard deviation of redox ratio – Both cells 

 

 

 

The obtained redox ratio is close to the literature value [132]. 

 

2.6 CONCLUSION 

The camera based model is accurate, linear and can also detect low concentration value of 

fluorophore. It provides an image of measurements which could be useful differentiate the 
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diseased area in a normal tissue. The limitations of this model are that the setup is 

expensive, occupied space and wired. To overcome these limitations a compact and 

wireless model was designed which would be explained in the next chapter. 
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Instrumentation and Results of Compact 

Model 

3.1 Introduction 

As a metabolometer has the capability of detecting a number medical disorders, making a 

compact, wireless and inexpensive device could serve several advantages. This chapter the 

instrumentation of the compact and wireless fluorescence model will be discussed.  The 

aim was to make the device compact and low cost. The various parts used and the reason 

for their selection will also be mentioned in this chapter. 

Some previous works have been done to make the device compact. Chance et al made a 

miniature Fluorescent Metabolometer to detect the fluorescence intensities and display 

them on a LCD screen [145]. This model was compact but did not use any wireless 

operation. Kornilin et al used a compact model to detect the auto fluorescence model from 

the skin [146]. Another fluorescence detection model was built of a size of a pill which 

could detect bleeding in the stomach [147].    

3.1.1 Significance of Compact and Wireless Model 

Mentioned in this section is the significance of the designed device over other instruments. 
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3.1.1.1 Compact and Light Weight 

There are several advantages of having a compact device. The first one being, it could be 

moved anywhere without the need of the patient to come to a specific location, like in most 

of medical diagnoses. This could be very advantageous in cases of old, weak and patients 

with mental disorders.  Having compact and low weight makes a device wearable and could 

be used to provide continuous monitoring of a person’s medical condition and this could 

be particularly useful in military applications. 

 

3.1.1.2 Wireless 

Having a wireless device also has several advantages. Having a wired device could limit 

patient’s movement and could attract his/her attention during continuous monitoring [148]. 

Having wires in hospital environment could also lead tripping hazards [149]. Having wires 

in a device would increase size and weight of a device [150]. Additionally, making a device 

wireless and compatible with a mobile device could make the device use friendly and easy 

to use.  

 

3.1.1.3  Inexpensive Device 

Building an inexpensive device could make the cancer detection possible even in 

underdeveloped countries which do not have sufficient medical technology and 

equipment’s to detect cancer. By building such device there is a possibility that the 

mortality rate due to cancer in underdeveloped countries could be reduced.  
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3.2 Instrumentation 

In this section, all the electronics used for instrumentation of the small model will be 

mentioned. 

 3.2.1 Light Source Unit 

As the aim for the compact model was to make the device low cost, Light Emitting Diodes 

(LED’s) were used as the source units for the device. These are usually cheap, compact 

and are available in number of optical power specifications. The wavelength chosen for the 

compact model was a 365nm LED from Marktech Optoelectronics Inc. The part number 

of the LED is 1125-1254-ND. This wavelength was chosen as both NADH and FAD are 

excited using this and to eliminate the use a second source unit  

The specifications of the LED are shown in the Table 3.1 

Table 3.1: Specifications of the LED 

PARAMETER VALUE 

WAVELENGTH 365nm 

SUPPLY VOLTAGE 3.5 V 

SUPPLY CURRENT 100mA 

OPTICAL POWER 54mW 

 

The LED had a high optical power of 54mW at a forward current of 100mA. This optical 

power is high for in vivo applications and was reduced by reducing the forward current. 
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The spectrum and V-I characteristics of the LED are shown in Figure 3.1 and Figure 3.2. 

      

      Figure 3.1 : LED spectrum[151]                   Figure 3.2 : V-I characteristics [151] 

3.2.1.1 LED Driver 

The LED driver used in this model is a constant current source. This is used to prevent the 

fluctuations in current or voltage effect on the optical power illuminated form the LED. 

This is important as fluctuations in the LED’s optical power can vary the fluorescence 

emitted by the fluorophore which may lead to false diagnosis. To avoid these problems a 

constant current source is used as a LED driver. This is constructed using a LM 317 I.C 

chip from Texas Instruments. This is a voltage regulator and upon circuit design, this can 

be converted to a constant current source where the output current depending upon the load 

resistor. By using this I.C chip, LED would give a constant output irrespective of changes 

in input voltage or current. While designing this constant current driver, it is important to 

keep in mind that the power supply used in the circuit should be at least 2.5V greater than 
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the forward voltage of the LED for its proper operation.  The circuit used for the constant 

current source is shown in the Figure 2.3. 

 

Figure 3.3: Circuit of constant current source 

Here the value of resistance R is chosen depending on the following equation  

                                            I (Current) =
1.25

R
                                     (3.1) 

 

3.2.1.2 Light Source Unit Testing 

The most important testing of the source used for optical applications is its power or 

stability testing. It is very important for the source to be very stable because variation its 

power can lead to false positives during diagnosis. The LED stability testing is shown in 

the Figure 3.4. Results of stability test is given in Table 3.2.  
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Figure 3.4: Stability test for LED (Compact model) 

 

Table 3.2: Stability test of LED (Compact model) 

 

 

 

3.2.1.3 Switching 

The switch was used to turn on and off the LED on receiving the digital inputs from the 

control unit. Initially Multiplexer was used to turn on and off the LED. The part number of 

the multiplexer is CD54HC4052. This I.C chip on receiving digital inputs from the control 

unit passes one of the inputs to the output. The pin diagram of the Multiplexer is shown in 

the Figure 3.5.  

PARAMETER VALUE 

MEAN 47.85 

STANDARD DIVIATION 182nW 
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Figure 3.5: Pin configuration of multiplexer [152] 

Relation between control signal and the input selection is shown in Table 3.3 

Table 3.3: Relation between Control signal and the input selection 

 

 

 

 

 

Multiplexer was used as a switch in the following fashion. The supply of the LED was 

given to one of the inputs of the multiplexer and the other inputs of the multiplexer had no 

connection. The terminals of the LED were connected at the Multiplexer’s output. On 

providing the control signal (S0,S1) as (0,0) the LED would receive the supply and  would 

turn on. Upon receiving other signals, the supply would be disconnected from the LED and 

would turn off. The drawback of the multiplexer was that due to its high resistance the 

S 0 S1 output 

0 0 Input 1 

0 1 Input 2 

1 0 Input 3 

1 1 Input 4 
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input (constant current) passed onto the output (LED) dropped and LED could not receive 

required voltage. 

To avoid this problem Analog switch from Vishay electronics (Part number: DG 413) was 

used to switch the LED. These were used as used two single-pole/single-throw (SPST) 

analog switches. Each Analog switch IC has four individual switches. These switches had 

a low input resistance thereby causing no voltage drop.  Each switch has three pins, one is 

the input which is the output of constant current source, second is the digital port which 

was connected to the control unit and third was the output port which was connected to the 

LED. On receiving high digital signal from the control unit, switch connects the input to 

the output and upon receiving digital low it is disconnects the output from the input. In this 

way, LED, can be turned on and off by communicating with the control unit.  

The Pin configuration of the Analog switch is shown in the Figure 3.6 

 

 

Figure 3.6: Pin configuration of analog switch [153] 
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Table 3.4: Specifications of the Analog switch 

PARAMETER VALUE 

SUPPLY VOLTAGE Up to 45V 

ON RESISTANCE 25 Ohm 

SWITCHING TIME 110ns 

 

3.2.2 Detector Source Unit 

The detector chosen for the device is OPT 101 from Texas Instruments. It is an 8 pin Dip 

Packaged I.C chip. The main advantage of this detector is that it has low noise, with good 

sensitivity in the range of 450nm-800nm which is desirable. It also has a build in amplifier 

whose gain can be varied by changing the loads resistor values. 

The circuit for OPT 101 and its sensitivity is shown in the Figure 3.7,3.8 respectively. 

 

Figure 3.7: Circuit of OPT 101[154] 
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Figure 3.8: Sensitivity curve of OPT 101[154] 

 

The pin configuration of OPT 101 is shown in the Figure 3.9.  

 

Figure 3.9: Pin configuration of OPT 101[154] 
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The specifications of the OPT 101 are shown in Table 3.5 

Table 3.5: Specifications of Detector-OPT 101 

PARAMETER VALUE 

SENSITIVITY AREA 2.2mm x2.2 mm 

SENSITIVITY (NADH) 0.4 

SENSITIVITY (FAD) 0.22 

SUPPLY VOLTAGE (DUAL) 0- +/- 15 

MAXIMUM DETECTION SUPPLY-1.5V 

 

 

3.2.2.1 Detector Source Unit Testing 

The test conducted on the detector to test its sensitivity and stability was the linearity test. 

In this test the water was taken in a cuvette, LED and detector were placed at right angles 

that there is a minimal leakage from the light source in the detector unit. The fluorophore 

used for the linearity test was fluorescein. The excitation wavelength of Fluorophore is 

anywhere between 360nm-470nm and the emission peak is around 530nm. The fluorescein 

solution used was taken from amazon. The part number of this product is B00WREOKIU. 

This solution was taken and the light intensity was measured with no fluorescein, 1 drop, 

2 drops and 3 drops of fluorescein. Then the leakage was deducted from the detected signal 

to give a pure fluorescence signal. To prevent the leakage of light source onto the detector 

a 500nm long pass filter was used from Thorlabs (Part number: FELH0500)  

 



61 
 

The setup, fluorescence and the results are shown in the Figures 3.10, 3.11.  

Figure:3.10 Small model setup                                Figure 3.11: Fluorescence 

 

 The result of linearity test is given in the Table 3.6 

 

Table 3.6: Linearity test (Compact Model) 

CONCENTRATION INTENSITY 

NO CONCENTRATION 130Mv 

1 DROP 620Mv 

2 DROP 1170Mv 

3 DROP 2260Mv 
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The Linearity plot is shown in the Figure 3.12 

 

  

Figure 3.12: The Linearity Plot 

 

3.2.2.2 Amplifier 

The detector used in the device could give an amplification of about 1.1 x 10^7. If further 

amplification was needed, then a post amplifier was used to provide further amplification. 

The amplifier used in the device was an I.C TL072CP. This I.C chip provided the desired 

amplification. It was possible to change the amplification provided by the Operational 

Amplifier (Op-Amp) by slightly varying its circuit components. The pin configuration of 

the I.C chip used is shown in the Figure.  

The block diagram and pin configuration of the Operational amplifier is shown in the 

Figure 3.13 and 3.14.  
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Figure 3.13: Operational Amplifier [155]Figure 3.14: Pin Configuration of Op-Amp[155] 

 

The specifications of the operational amplifier used in the design is shown in the Table 3.7 

Table 3.7: Specifications of Operational Amplifier 

PARAMETER VALUE 

SUPPLY VOLTAGE (DUAL) -15 - +15 

MAX AMPLIFIED VOLTAGE +/- SUPPLY 

AMPLIFICATION - Rf/Rin 

 

 

3.2.2.3 Optical Filters 

Filters were used in this setup to separate the signal emitted by NADH and FAD. Gelatin 

filters form Gam Color were initially used to perform the separation. The part number of 

the filters used in the device are Gold rush -388(FAD) and Orchid-955(NADH). The pass 

spectrum of these filters is shown in the Figures 5.13-5.15 
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The transmission data of Gelatin filters is shown in the Figures 3.15-3.17 

 

Figure 3.15: Transmission data of Gold rush -388(FAD)[156] 

 

Figure 3.16: Transmission data of Orchid -955(NADH). [156] 

 

Figure 3.17: Transmission data of Heat Shield [156] 
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Due to their low efficiency, there were not included in the device as they were not able to 

efficiently separate the signals (NADH and FAD) and they also included a lot of light from 

the excitation LED.  

 To avoid this, glass filters from Edmund optics were used to perform the separation. The 

diameter of these glass filters was about 11.7mm. One glass filter centered at 460nm was 

used to pass only the NADH signal to the detector and another filter centered at 520nm 

was used pass only the FAD signal to the detector. The part number of the filters used are 

62-083 (NADH) and 62-095(FAD).  To avoid leakage from the source two layers of 400nm 

long pass gelatin filters were placed on top of glass filters. The part number of this gelatin 

filter from Gam-color is Heat Shield 99. 

 

The pass spectrum of glass filters and heat shield is shown in the Figures 3.18,3.19. 

 

Figure 3.18: Transmission data of 467nm bandpass filter [157] 
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Figure 3.19: Transmission data of 515nm bandpass filter [158] 

 

3.2.3 Control Unit 

The control unit used in most of such applications is Data Acquisition Card (DAC) from 

National Instruments. This is easy to use and has all the functionality of a perfect control 

unit. The drawback of using a DAC is that it is expensive, has a larger size and would make 

the device wired which is not desired. So, a microcontroller Atmel-Atmega32P (Arduino) 

is used in place of a DAC unit. The advantage of using this microcontroller is that it is 

inexpensive and have a considerable number of analog input, analog output and digital 

lines sufficient for the application. The specifications of the Microcontroller are shown in 

the Table 3.8. 
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Table 3.8: Specifications of the Microcontroller 

 

 

 

 

 

 

 

 

 

 

To control a microcontroller, a program was written on its software (ARDUINO 1.6.11) 

and dumped on it. After dumping the code, the microcontroller would perform the desired 

functionality. It also has transmission and reception ports which can be used for wireless 

application. Another advantage of using microcontroller is that it has good ADC resolution 

of about 5mV which is good when compared to the expensive Data Acquisition Card. In 

addition to that the microcontroller has a regulated 5V and 3.3 V supply which can be used 

as a power supply to other components in the device. 

 

The Pin configuration of the microcontroller is shown in the Figure 3.20  

Microcontroller ATmega328P 

Operating Voltage 5V 

Input Voltage (recommended) 7-12V 

Input Voltage (limit) 6-20V 

Digital I/O Pins 14 

PWM Digital I/O Pins 6 

Analog Input Pins 6 

SRAM 2 KB 

EEPROM 1 KB 

Clock Speed 16 MHz 

Length 68.6 mm 

Width 53.4 mm 

Weight 25 g 
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Figure 3.20: Pin configuration of Arduino [159] 

 

3.2.4 Wireless Application 

The device was made wireless using a Bluetooth module. The Bluetooth module used in 

the device is HC-06. This module was chosen for wireless transmission because it is 

compact and inexpensive.  Another advantage of using HC-06 is that it can easily be 

connected to any device having Bluetooth facility and data can be logged on the PC using 

a Tera-term serial emulator which is available online for free or an application can be 

created on android or IOS platform using which two-way communication can be done 

between the Bluetooth module and a mobile phone. To use the Bluetooth module along 
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with the microcontroller the program written on the microcontroller had to be modified by 

including the header files of the Bluetooth module and the way you want wireless 

communication to take place. The specifications of the HC-06 are shown in the Table 3.9.  

Table 3.9: specifications of the HC-06 

PARAMETER VALUE 

SUPPLY VOLTAGE  3.1-5V 

FREQUENCY 2.4GHz 

BAUD RATE 9600-38400 

SIZE 27mm×13mm×2mm 

 

On using the Bluetooth module with the microcontroller, it was possible to get around 140 

digital converted values from a single detector or about 50-70 digital converted values from 

two detectors which gave sufficient averaging.  

The HC-06 is connected to the microcontroller as shown in the Figure 3.21 

 

Figure 3.21: Connected of HC-06 with the microcontroller [160] 
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3.2.5 Power Supply 

As the aim was to make the device wireless, wall power supplies were not used to power 

the device. Instead a couple of Lithium Ion batteries from Adafruit.com (Part number 1317) 

were used. These Batteries are rechargeable and can be charged to a voltage of 3.7 V. A 

couple of these batteries were connected in series to give a total voltage of 7.4V which was 

used as a power supply to the detectors and the microcontroller. Providing a voltage of 

about +/- 7.4 V DC to the detectors makes a maximum detectable range of the detectors to 

+/-5V. All the other components in the device were powered using the 5v supply from the 

Microcontroller. These Lithium Ion batteries were charged using the rechargeable kit from 

Adafruit.com (Part number 2190).  

 

The Li-ion battery and its charger are shown in Figure 3.22 

 

Figure 3.22: Battery and charger 
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3.2.6 Display 

The following were used to display the values detected by the device. 

3.2.6.1 Liquid Crystal Display 

Liquid Crystal Display (LCD) was initially used to display the results obtained from the 

device. The idea was not to use wireless communication and directly display the digital 

values converted by the microcontroller onto the LCD screen. The LCD screen selected for 

this was taken from Adafruit.com (Part no: 198) and was 20 X 4 LCD screen. To use the 

LCD, the program written onto the microcontroller was modified by adding specific details 

and headers of the LCD screen. Next the way results are to be displayed was also include 

in the program.  

The connection between the LCD and microcontroller is shown in the Figure 3.23 

 

Figure 3.23: Connection between LCD and microcontroller [161] 

The results obtained and dis-played on the LCD screen is shown in the Figure 3.24 
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Figure 3.24: Display on LCD screen 

3.2.6.2 Wireless Bluetooth Display 

Using a Bluetooth module with the device made possible to connect it to any device having 

Bluetooth facility. 

3.2.6.2.1 Tera-Term 

On a personal computer, downloading a Tera-Term terminal made it easy to communicate 

with the device. It was possible to give instructions to the device and to take results from 

the device. The panel of Tera-Term emulator is shown in the Figure 3.25. 

 

Figure 3.25: Tera Term terminal 
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3.2.6.2.2 LABVIW 

A Lab-view code was also written to get the values form Bluetooth and display the real-

time values. The front panel of the Lab-view code is shown in the Figure 3.26 

 

Figure 3.26: Lab-view front panel 

3.2.6.2.3 Mobile Application 

As the device, could send the data wirelessly to any device having Bluetooth, a mobile 

application on Android platform was used to avoid the usage of P.C, give commands and 

record the measurements on a mobile phone. The mobile application was user friendly and 

the user only had to decide the acquisition time and the detected data would be saved as a 

text file on the mobile phone indicating the results. The mobile application used is the 

Bluetooth serial controller available on Android platform for free. The panel of this 

application is shown in the Figure 3.27 
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Figure 3.27: Mobile application 

 

3.2.7 Post Processing 

In this application, a lot of post processing was not used as the results directly indicated 

the fluorescence values detected by the detector. When Lab-view code was used, the 

program included the post processing section which gave the average of detected values.  

In the case of results obtained from Mobile application and Tera-term emulator, they were 

stored as an Xcel file and the average of results was taken either in Excel directly or 

MATLAB. 
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3.3 Block Diagram  

The block diagram of the complete setup is shown in the Figure 3.28 

 

Figure 3.28: Block diagram of compact model 

 

3.4 3d Printed Patch 

The patch used to hold the source and detectors was designed using Fee-Cad software and 

printed using a 3D printer. The patch was designed such that it had outlets for the source 

(LED) and detector coupled with filter. The patch has straps on either side which can be 

firmly attached to the detecting surface and thereby avoiding any stray light getting into 

the detectors. Due to size restrictions, the source-detector separation no less than 1 cm was 

obtained. The 3D printed patch is shown in the Figure 3.29 
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Figure 3.29: Patch 

 

3.5 Experiment and Result 

The efficiency of the device was tested by its ability to differentiate the concentrations of 

NADH and FAD in normal tissue to that of cancer tissue as shown in the paper [132]. Per 

this, a normal tissue has a mean concentration of NADH and FAD as 84um and 83um 

respectively. Whereas a normal tissue has a mean concentration of NADH and FAD is 

308um and 217um respectively. For these concentrations, FAD redox ratio which is the 

ratio of FAD fluorescence intensity to the sum of FAD and NADH fluorescence intensity 

was calculated.  For normal tissue a mean redox ratio value of 0.44 was obtained and for a 

cancer tissue a redox ratio value of 0.56 was obtained. 

To perform a similar study Tonic water (Quinine) was used in place of NADH which has 

similar excitation-emission wavelength to NADH. Similarly, Fluorescein was used in place 

of FAD because of its similar fluorescence properties. Fluorescein also gets excited at a 

couple of wavelengths 365nm, 450nm and has an emission peak at 530nm. These 
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fluorophores were used for preliminary testing as NADH and FAD are expensive drugs. 

On the contrary fluorescein and quinine have different molar excitation coefficient and 

quantum yield compared to NADH and FAD. To make them comparable for the 

experiment the concentration of fluorescein and quinine were reduced to mimic the molar 

excitation coefficient and quantum yield of FAD and NADH respectively. 

After making the parameters of fluorescein and quinine equivalent to NADH and FAD, 

concentration of quinine and fluorescein in normal tissue was 6um and 14um respectively. 

Whereas for a cancer tissue the concentration of quinine and fluorescein in normal tissue 

was 14um and 52um respectively. These concentrations were added to the prepared 

phantom and the fluorescence emitted by them was recorded.  

In this experiment phantom used had optical properties us’ as 10cm-1 and absorption 

coefficient as 0.1cm-1. Scattering was introduced into the phantom by adding 20% intra-

lipid solution and absorption was introduced by adding Indian ink to the water. After 

phantom of desired optical properties was made, the required concentration of quinine and 

fluorescein were added and fluorescence was detected by the detectors. The detector 

coupled with a 460nm Band Pass Filter detected quinine and the detector coupled with a 

580nm Band Pass Filter detected fluorescein. The acquisition time was set to 2000ms and 

the detected value was averaged to give the net fluorescence value. Finally, the 

fluorescence detected by the device at normal concentration to cancer conditions were 

compared and R.R was calculated. 
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The setup used in the experiment is shown in the Figure 3.30  

 

Figure 3.30: Setup of compact model 

 

The complete setup is shown in the figure 3.31 

 

Figure 3.31: Compact Device 
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                      Figure 3.32: Patch                                 Figure: 3.33: Fluorescence                         

Finally, the detected fluorescence shown in the Figure 5.30 was corrected for peak and 

sensitivity.  So, the resultant redox ratio for a normal tissue and cancer tissue was 0.515 

and 0.617 respectively. Per previous study the mean value of redox ratio normal tissue and 

cancer tissue was 0.44 and 0.56 respectively [132]. The results obtained by the device are 

off by 9-15% but is still within the standard deviation of the study. The comparison is 

shown in Table 3.10.  

 

Table 3.10: Results from compact model 

TISSUE (R.R) PAPER [132] COMPACT MODEL % ERROR 

NORMAL 0.44 0.515 14 

CANCER 0.56 0.617 9 
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3.6 Conclusion 

The designed explained in this chapter is wireless, compact and inexpensive. The design is 

also accurate and can detect concentrations to about 4µM. The limitation of this compact 

model was the large source-detector separation distance. The presence of glass filters 

restricted the source-detector separation distance not less than 1 cm which prevented the 

device from measuring very low concentrations. Even if the glass filters were removed and 

cut to exactly fit onto the detector surface then the source-detector separation would be 

around 6mm which is not a huge difference. The minimum concentration that could be 

detected by the compact device was around 6µM of NADH. To detect even lower 

concentrations a third design was used which will be explained in the next chapter. 
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Instrumentation and Results of 

Spectrometer Based Model 

4.1 Introduction 

To overcome the problems of large source detector separation distance and small 

concentration measurement in the compact module an alternative devised using a 

spectrometer which could possibly overcome all the drawbacks of the compact model 

discussed in the previous chapter. 

The study of the interaction of  matter with electromagnetic radiation is known as 

Spectroscopy [162-163]. Biomedical spectroscopy is done by measuring the interaction 

between light and tissue, which provides a variety of information of the tissue [164].  

 

4.2 Instrumentation 

In this section, all the components used for the instrumentation of the modified small 

fluorescence model will be mentioned

https://en.wikipedia.org/wiki/Matter
https://en.wikipedia.org/wiki/Radiation
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4.2.1 Light Source Unit 

The LED used for the modified design was a fiber coupled LED from Mightex Inc. The 

part number of this LED is FCS-0365-000. The wavelength chosen for this model was a 

365nm as both NADH and FAD could be excited using this and would eliminate the use a 

second source unit. The main advantage of using this LED was that it was compact, fiber 

coupled and not very expensive 

The specifications of the LED are shown in the Table 4.1 and spectrum in Figure 4.1. 

Table 4.1: Specifications of the LED (Spectrometer model) 

PARAMETER VALUE 

WAVELENGTH 365nm 

SUPPLY VOLTAGE 3.7 V 

SUPPLY CURRENT 500mA 

OPTICAL POWER 18mW 

 

 

Figure 4.1: LED spectrum 
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4.2.1.1 LED Driver 

The driver used to run the LED was constant current source and was taken form Digi-key 

(part number 945-1122-ND). This supply gave a constant current to the LED of 

500mA.The Specifications of the constant current driver is shown in the Table 4.2 

Table 4.2: Specifications of the LED driver (Spectrometer model) 

 

 

 

 

 

 

The pin configuration of LED driver is shown in the Figure 4.2 

 

Figure 4.2: Pin configuration of led driver [165] 

  

PARAMETER VALUE 

WAVELENGTH 365nm 

SUPPLY VOLTAGE 4.5-36V 

OUTPUT VOLTAGE MAX 500mA 

OUTPUT VOLTAGE MAX 2-35V 
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The connection from the LED driver to the LED is shown in the Figure 4.3. 

 

Figure 4.3: Connection from LED driver to the LED [165] 

4.2.1.2 Light Source Unit Testing 

The most important testing of the source used for optical applications is its power or 

stability testing. It is very important for the source to be very stable as variation its power 

can lead to false positives during diagnosis. Thus, it is very important that the source should 

be highly stable. The result is shown in the Figure 4.4 and Table 4.3. 

 

Figure 4.4: LED stability test (Spectrometer model) 
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Table 4.3: Stability test of LED (Spectrometer model) 

 

 

 

 

4.2.1.3 Switch 

The switch used in this version is the same switch (Vishay: DG-413) used for the compact 

model explained in section 3.2.1.3. The input of the switch was the LED driver. As each 

switch has three pins, one is the input which is the output of LED driver, second is the 

digital port which was connected to the control unit and third was the output port which 

was connected to the LED. In this way LED, can be turned on and off by communicating 

with the control unit. 

 

4.2.2 Detector Source Unit 

The detector used for this design was STS spectrometer from Ocean Optics. The advantage 

of using a spectrometer is that it is very sensitive, fiber based and ultra-compact. The only 

disadvantage of spectrometer was that it was a little expensive. The specifications of the 

spectrometer are shown in the Table. Sensitivity solves the problem of lower concentration 

detection and fiber based solved the problem of large source-detector separation. The 

specifications of the STS spectrometer are shown in Table 4.4. 

PARAMETER VALUE 

MEAN 6223counts 

STANDARD DIVIATION 36.9 counts 

% ERROR 0.5 
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Table 4.4: Specifications of the Spectrometer 

 

 

 

 

 

The sensitivity curve of the spectrometer is shown in the Figure 4.5 

 

Figure 4.5: Sensitivity curve of spectrometer- oceanoptics.com 

 

4.2.2.1 Detector Unit Testing 

The spectrometer was tested to see the minimum detectable concentration it could measure. 

This experiment was done by measuring the fluorescence emitted by fluorescein. A stock 

solution of fluorescein was made using its powdered form (Sigma Aldrich: 518-47-8). This 

PARAMETER VALUE 

WAVELENGTH RANGE 350-800nm 

OPTICAL RESOLUTION 12nm 

DYBAMIC RANGE 5 x 109 

INTEGRATION TIME 10 µs to 10 

s 

ADC RESOLUTION 14 bits 
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was further diluted to make lower concentrations. The prepared solution was excited using 

the 365nm LED and the fluorescence emitted by it was measured on the spectrometer. The 

experiment setup is shown in the Figure 4.6. 

 

 

Figure 4.6: Experimental Setup of spectrometer based model 

 

The experiment started with the fluorophore concentration in micro molar range and the 

concentration was reduced to Nano molar range. The instrument could measure up to 5uM 

with an integration time of 100ms. An integration time of 1 second was used to measure 

the concentration in Nano molar range and the instrument could measure a concentration 

of 2nM. It is possible to set the integration time of spectrometer up to 10 seconds and take 

the measurements. So, experiment was stopped at this point as from the data obtained it 

was clear that the device could measure concentration lower than 2nM. 

The results obtained from the experiment is shown in Figure 4.7. 
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Figure 4.7: Linearity in Micro molar range with integration time 100ms 

 

 

Figure 4.8: Linearity in Nano molar range with integration time 1s 
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4.2.3 Wireless Application 

The following components were used for the wireless transmission of data from the 

spectrometer to the P.C / Laptop / Mobile device. 

 

4.2.3.1 Raspberry Pi 

The control unit used for transmitting the signal from the spectrometer to the P.C and giving 

digital signal to the analog switch is a Raspberry Pi. This is a smallest form of processing 

unit available which works on Linux operating system. The specifications of the Raspberry 

Pi are shown in the Table 4.5 

Table 4.5: Specifications of the Raspberry Pi 

 

 

 

 

 

A spectrometer and WIFI dongle were connected to the USB ports of Raspberry Pi and the 

one of the general-purpose input/output (GPIO) pin of the Pi was given to the analog switch 

to turn on and off the LED. 

PARAMETER VALUE 

RAM 1GB 

PROCESSOR 900MHz 

USB PORTS 4 

GPIO PINS 40 

MIN SUPPLY CURRENT 700mA 



90 
 

4.2.3.2 WIFI 

A WIFI dongle was attached to one of the ports of the Raspberry pi to transmit the data 

wirelessly from the Raspberry Pi to the control device and vice versa. The WIFI dongle 

used had a speed of 150Mbps. This enabled to control the design with any device having 

WIFI facility. To control the spectrometer and LED from the control device a program was 

written in .HTML and two webpages were created which are shown in Figure 6.8 and 6.9.  

One webpage was used to control the spectrometer and this program was taken from ocean 

optics. The other webpage was used to turn on and off the LED. A screenshot of the 

webpages used to control the Spectrometer and LED are shown in the Figure 49,4.10 

 

 

Figure 4.9: Screensoot of Spetrometer webpage (Ocean Optics) 



91 
 

  

Figure 4.10: Screensoot of LED webpage 

4.2.4 Power Supply 

The power supply initially used to power the device was a portable power supply form 

Ocean-optics (Part: CM-5095-WE). The specifications of the power supply are shown in 

Table 4.6.   

Table 4.6: Specifications of the Power supply from Ocean Optics 

 

 

 

 

This power supply was given to the Raspberry Pi and the Spectrometer, WIFI dongle 

received power from its USB ports and the power supply could power all of them without 

any problem. When the 5V supply of Raspberry Pi was given to the LED driver to run the 

LED but the power supply did not have sufficient current to power up all the components. 

To overcome the problem of current deficiency this power supply was replaced by another 

PARAMETER VALUE 

VOLTAGE 5V 

CURRENT 1A 

CAPACITY 3000mAh 
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Jackery power supply taken from Amazon.com (Part number: B00AANMVNQ). This 

solved the problem of insufficient current. The specification of the power supply form 

Jackery is shown in the Table 4.7. 

Table 4.7: Specifications of the Power supply from Jackery 

 

 

 

Two paths were taken from the output of the supply and one was given to Raspberry Pi and 

the other was given to the LED driver. 

4.3 Block Diagram  

The block diagram of the complete setup is shown in the Figure 4.11. 

 

Figure 4.11: Block diagram of spectrometer model 

PARAMETER VALUE 

VOLTAGE 5V 

CURRENT 2A 

CAPACITY 6000mAh 
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4.4 3D Printed Module 

A module was designed using AutoCAD software and 3D printed to fit all the components 

of the spectrometer model in a small box. The box also had openings for spectrometer and 

LED using which fibers of different diameters can be attached before taking the 

measurements. It also had slits to turn on the module, charge the battery, show the charge 

of the battery and for cooling purpose. 

 

Figure 4.12: Front and side view of the spectrometer module 

 

 

  Figure 4.13: Top view of spectrometer module       Figure 4.14: Handheld device 
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4.5 Ex-Vivo Experiment 

In this section the experiments performed ex-vivo on mice placenta and cancer cells will 

be discussed. 

4.5.1 Measurement 0f Redox Ratio in Placenta  

In this experiment, mice placentas were used to detect FAD redox ratio. The setup used in 

the experiment is shown in the Figure  

Experiment was performed on three placentas numbered 7-9 which is showed in the Figure 

4.15. 

 

Figure 4.15: Placenta  

4.5.1.1 Results 

Several measurements were performed on each placenta and average of these readings 

were divided by LED leakage to obtain the spectra for each placenta. This spectrum was 

used to extract the NADH (460nm) and FAD (520nm) excitation band. The results are 

shown in Figure 4.16,4.17. 
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Figure 4.16: Extracted values of NADH and FAD 

The extracted NADH and FAD values were used to obtain the FAD redox ratio which is 

given as shown below 

FAD REDOX RATIO = 
FAD

FAD+NADH
 

 

Figure 4.17: Redox ratio of each sample 
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These results are like camera based model which shows placenta 9 had maximum 

fluorescence since it has less blood comparatively to placenta 7 and 8. Presence of blood 

increases reduces fluorescence intensity. Whereas the fluorescence intensity from placenta 

7 and 8 are close to each other. 

 

4.5.2 Brain Cancer Cells 

In this experiment cancer cells from brain were used to obtain the FAD redox ratio. The 

setup used in the experiment is like Figure 4.9,410. Brain cancer cells is shown in the 

Figure 4.18. 

 

Figure 4.18: Cancer cells 

4.5.2.1 Results 

Several measurements were performed on cancer cells and the medium in which they were 

grown and their average was divided to remove the any auto fluorescence from the 

medium. This ratio gave the final spectrum.  This final spectrum was used to extract the 
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NADH (460nm) and FAD (520nm) excitation band. The results are shown in the Figures 

4.19,4.20. 

 

             Figure 4.19: Normalized fluorescence signal-Cancer cells 

The extracted values of NADH and FAD is shown in the Figure 4.18 

 

     Figure 4.20: Extracted NADH and FAD- Cancer cells 

0

1000

2000

3000

BRAIN CANCER CELLS

FLUOROPHORE CONCENTRATION

NADH FAD

FAD 
NADH 



98 
 

FAD REDOX RATIO = 
FAD

FAD+NADH
 

Table 4.8: Mean and standard deviation of redox ratio – Cancer cells 

 

 

 

These values are very like the camera based model and literature [132]. 

4.5.3 Brain Normal Cells 

A similar process was performed like section 4.5.3 and FAD redox ratio of normal cells 

was calculated 

 

     Figure 4.21: Normalized fluorescence signal-Normal cells 

REDOX RATIO VALUE 

MEAN 0.6116 

STD 0.0183 
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Figure 4.22: Extracted NADH and FAD- Normal cells 

 

Table 4.9: Mean and standard deviation of redox ratio -Normal Cells 

 

 

 

These values are very like the camera based model and literature [132]. 
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4.5.4 Comparison of Camera Model and Spectrometer Model 

The results obtained from both the instruments are shown in Table 4.10 

Table 4.10: Redox ratio comparison 

 

The Figure 4.23 below shows the comparison of camera based model and compact model 

 

Figure 4.23: Comparison between camera system and compact spectrometer system 

As it is seen from the plot the values of the redox ratio obtained with camera based 

system and compact spectrometer system are very similar. 
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4.6 Conclusion 

The spectrometer model is slightly larger in size but a lot more sensitive compared to the 

compact model explained in previous chapter. This design can detect low fluorophore 

concentration unlike the compact model. The sensitivity of the of the spectrometer model 

is in comparison to the camera model which is evident from the close redox ratio obtained 

from the brain cells. 

 

4.7 Comparison of Three Systems 

The Table 4.11 shows the comparison of all the three models used. 

 

Table 4.11: Comparison of modalities 

PARAMETER CAMERA BASED 

SYSTEM 

COMPACT MODEL SPECTROMETER 

MODEL 

SENSITIVITY VERY HIGH MODERATE HIGH 

PORTABLITY NO PORTABILITY HIGH PORTABILITY HIGH PORTABILITY 

COST VERY HIGH VERY LOW LOW 
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